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1. Symmetric functions

Partitions

A partition is a collection µ of boxes in a corner where the convention is that gravity goes up
and to the left. As for matrices, the rows and columns of µ are indexed from top to bottom and
left to right, respectively.

The parts of µ are µi = (the number of boxes in row i of µ),
the length of µ is `(µ) = (the number of rows of µ),
the size of µ is |µ| = µ1 + · · ·+ µ`(µ) = (the number of boxes of µ).

(1.1)

Then µ is determined by (and identified with) the sequence µ = (µ1, . . . , µ`) of positive integers
such that µ1 ≥ µ2 ≥ · · · ≥ µ` > 0, where ` = `(µ). For example,

(5, 5, 3, 3, 1, 1) = .

A partition of k is a partition λ with k boxes. Write λ ` k if λ is a partition of k. Make the
convention that λi = 0 if i > `(λ). The dominance order is the partial order on the set of partitions
of k,

P+(k) = {partitions of k} = {λ = (λ1, . . . , λ`) | λ1 ≥ · · · ≥ λ` > 0, λ1 + . . . + λ` = k},

given by

λ ≥ µ if λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi for all 1 ≤ i ≤ max{`(λ), `(µ)}.

PUT THE PICTURE OF THE HASSE DIAGRAM FOR k = 6 HERE.

Tableaux
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Let λ be a partition and let µ = (µ1, . . . , µn) ∈ Zn
≥0 be a sequence of nonnegative integers. A

column strict tableau of shape λ and weight µ is a filling of the boxes of λ with µ1 1s, µ2 2s, . . .,
µn ns, such that

(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight of p so that

shp(p) = (λ1, . . . , λn), where λi = number of boxes in row i of p, and
wt(p) = (µ1, . . . , µn), where µi = number of i s in p.

For example,

p =

has shp(p) = (9, 7, 7, 4, 2, 1, 0) and
wt(p) = (7, 6, 5, 5, 3, 2, 2).
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For a partition λ and a sequence µ = (µ1, . . . , µn) ∈ Z≥0 of nonnegative integers write

B(λ) = {column strict tableaux p | shp(p) = λ},
B(λ)µ = {column strict tableaux p | shp(p) = λ and wt(p) = µ},

(1.2)

Symmetric functions

The symmetric group Sn acts on the vector space

Zn = Z-span{x1, . . . , xn} by wxi = xw(i),

for w ∈ Sn, 1 ≤ i ≤ n. This action induces an action of Sn on the polynomial ring Z[Xn] =
Z[x1, . . . , xn] by ring automorphisms. For a sequence γ = (γ1, . . . , γn) of nonnegative integers let

xγ = xγ1
1 · · ·xγn

n , so that Z[x1, . . . , xn] = Z-span{xγ | γ ∈ Zn
≥0}.

The ring of symmetric functions is

Z[Xn]Sn = {f ∈ Z[Xn] | wf = f for all w ∈ Sn}, (1.3)

Define the orbit sums, or monomial symmetric functions, by

mλ =
∑

γ∈Snλ

xγ , for λ ∈ Zn
≥0,

where Snλ is the orbit of λ under the action of Sn. Let

P+ = {λ = (λ1, . . . , λn) ∈ Zn
≥0 | λ1 ≥ · · · ≥ λn} (1.4)
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so that
{mλ | λ ∈ P+} is a Z-basis of Z[Xn]Sn . (1.5)

Interpolating symmetric functions

Define qr(Xn; q, t) = qr(x1, . . . , xn; q, t) by the generating function

n∏
i=1

1− xitz

1− xiqz
= (q − t)

∑
r≥0

qr(x1, . . . , xn; q, t)zr.

Note that with this definition q0 = 1/(q − t). Define the elementary symmetric functions, the
complete symmetric functions and the power symmetric functions by the formulas

(−t)r−1er(Xn) = qr(Xn; 0, t),

qr−1hr(Xn) = qr(Xn; q, 0), and

qr−1pr(Xn) = qr(Xn; q, q), respectively.

(1.6)

The elementary symmetric functions have special importance because of the following ways in
which they appear naturally.
(1) If f(t) is a polynomial in t with roots γ1, . . . , γn then

the coefficient of tr in f(t) is (−1)n−rer(γ1, . . . , γn). (1.7)

(2) If A is an n×n matrix with entries in F with eigenvalues γ1, . . . , γn then the trace of the action
of A on the rth exterior power of the vector space Fn is

tr(A,
∧r Fn) = er(γ1, . . . , γn), so that

Tr(A) = e1(γ1, . . . , γn), and det(A) = en(γ1, . . . , γn),
(1.8)

and the characteristic polynomial of A is

chart(A) =
n∑

r=0

(−1)n−ren−r(γ1, . . . , γn)tr. (1.9)

Expanding
1− xitz

1− xiqz
= 1 + (q − t)

∑
`>0

q`−1x`
iz

` and multiplying out

n∏
i=1

1− xitz

1− xiqz
=

1− x1tz

1− x1qz
· · · 1− xntz

1− xnqz

gives
qr =

∑
1≤i1≤···≤ir≤n

(q − t)Card({j | ij<ij+1})qCard({j | ij=ij+1})xi1xi2 · · ·xir
. (1.10)

from which it follows that

qr =
∑
λ`r

(q − t)`(λ)−1qr−`(λ)mλ(x1, . . . , xn).
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For an n× n matrix a = (aij) with entries from Z≥0 let

xa =
n∏

i=1

(xi)aij , and wt(a) = q|λ|−`(a)(q − t)`(a)−`(λ),

where `(a) is the number of nonzero entries in a, `(λ) is the number of nonzero entries in λ, and
|λ| is the sum of the entries of λ. Define

rs(a) = (ρ1, . . . , ρn),
cs(a) = (γ1, . . . , γn),

where ρi =
∑̀
j=1

aij and γj =
n∑

i=1

aij ,

so that rs(a) and cs(a) are the sequences of row sums and column sums of a, respectively.

Proposition 1.11. For a sequence of nonnegative integers λ = (λ1, . . . , λ`) define

qλ(Xn; q, t) = qλ1(Xn; q, t) · qλ2(Xn; q, t) · · · qλ`
(Xn; q, t).

Then
qλ =

∑
µ

aλµ(q, t)mµ , where aλµ(q, t) =
∑

a∈Aλµ

wt(a),

and the sum is over partitions µ such that |µ = |λ|.

Proof. If λ = (λ1, . . . , λ`) then

qλ =
∏̀
j=1

qλj
=

∑
rs(a)=λ

wt(a)xa =
∑

γ∈Zn
≥0

∑
rs(a)=λ
cs(a)=γ

wt(a)xγ =
∑

µ

aλµ(q, t)mµ.

Multiplying out

n∏
i=1

1− xitz

1− xiqz
=

1
1− x1qz

· 1
1− x2qz

· · · 1
1− xnqz

(1− xntz)(1− xn−1tz) · · · (1− x1tz)

gives
qr =

∑
i1≤i2≤···≤ik>ik+1>···>ir

qk−1(−t)r−kxi1 · · ·xik
xik+1 · · ·xir . (1.12)

The bijection ???? between sequences i1 ≤ i2 ≤ · · · ≤ ik > ik+1 > · · · > ir and column strict
tableaux of shape (k1r−k) yields

qr =
r∑

k=1

(−t)r−kqk−1s(k1r−k)(Xn). (1.13)

For each positive integer k define

[k]q,t =
qk − tk

q − t
= qk−1 + tqk−2 + · · ·+ tk−2q + tk−1.
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Comparing coefficients of zr on each side of(
n∏

i=1

1− xisz

1− xitz

)(
n∏

i=1

1− xitz

1− xiqz

)
=

n∏
i=1

1− xisz

1− xiqz

gives

(t− s)qr(Xn; t, s) + (q − t)(t− s)

r−1∑
j=1

qj(Xn; q, t)qr−j(Xn; t, s)


+ (q − t)qr(Xn; q, t) = (q − s)qr(Xn; q, s).

(1.14)

Example. Putting s = 0, q = 0 and t = 0 in (???) yield, respectively,

qr(Xn; q, t) +

r−1∑
j=1

hj(Xn)tjqr−j(Xn; q, t)

− hr(Xn)[r]q,t = 0

qr(Xn; q, t) +

r−1∑
j=1

ej(Xn)(−q)jqr−j(Xn; q, t)

+ (−1)rer(Xn)[r]q,t = 0

r∑
j=0

(−t)r−j [j]q,thj(Xn)er−j(Xn) = (q − t)qr(Xn; q, t).

Then putting????? (???)gives

rqr(Xn; q, t)−

r−1∑
j=1

pj(Xn)(qj − tj)qr−j(Xn; q, t)

− pr(Xn)[r]q,t = 0.

and the Newton identities

khk =
∑
i=1

pihk−i and kek =
k∑

i=1

(−1)i−1piek−i,

are obtained by putting??? in (???).

Proposition 1.15. Let λ = (λ1, . . . , λn) be a partition. Then

(a) eλ′ =
∑
µ≤λ

aλ′µmµ,

where aλµ is the number of matrices with entries from {0, 1} with row sums λ′ and column
sums µ.

(b) aλ′λ = 1 and aλ′µ = 0 unless µ ≤ λ.

(c) {eλ | `(λ′) ≤ n} is a Z-basis of Z[Xn]Sn .

(d) Z[x1, . . . , xn]Sn = Z[e1, . . . , en] = Z[h1, . . . , hn] and Q[x1, . . . , xn]Sn = Q[p1, . . . , pn].
(e) The set {hλ | `(λ′) ≤ n} is a basis of Z[Xn]Sn .

Proof. (a) follows by putting q = 0 in (???).
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(b) Since there is a unique matrix A with rs(A) = λ′ and cs(A) = λ, aλ′λ = 1. If A is a 0, 1
matrix with rs(A) = λ′ and cs(A) = µ then µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi since there are at most
λ1 + · · ·+ λi nonzero entries in the first i columns of A. Thus aλ′µ = 0 unless µ ≤ λ.
(c) is a consequence of (b) and the fact that {mλ | `(λ) ≤ n} is a basis of Z[Xn]Sn .
(d) The first equality is an immediate consequence of (c). The second equality follows from the
identity (???), which allows one to, inductively, expand hr in terms of er, er−1, . . . , e1. Similarly,
the third equality follows from the Newton identity (???) which allows one to, inductively, expand
pr in terms of er, er−1, . . . , e1 (with coefficients in Q).

Proposition 1.16.
(a) There is an involutive automorphism ω of Z[Xn]Sn defined by

ω: Z[Xn]Sn −→ Z[Xn]Sn

ek 7−→ hk

(b) ω(qr(Xn; q, t)) = qr(Xn;−t,−q) and ω(pk) = (−1)k−1pk.

Proof. The map ω is a well defined ring homomorphism since Z[Xn]Sn = Z[e1, . . . , en] is a polyno-
mial ring. Comparing coefficients of zk on each side of

1 =

(
n∏

i=1

(1− xiz)

)(
n∏

i=1

1
1− xiz

)
yields 0 =

k∑
r=1

(−1)rerhn−r.

Thus e1 = h1, and

hk =
k∑

i=1

(−1)eihk−i and ek = (−1)−k
k∑

i=0

(−1)eihk−i =
k∑

j=1

(−1)−j−1ek−jhj . (1.17)

From the first of these relations, by induction on k,

ω(hk) =
k∑

i=1

(−1)i+1hiek−i,

and, by comparing this identity with the second relation in (???) shows that ω(hk) = ek. Hence
ω2 = id.
(b) ????

For a partition λ = (1m12m2 · · ·) of k define

zλ = 1m1m1!2m2m2! · · · so that
n!
zλ

= Card({w ∈ Sk | w has cycle type λ}) (1.18)

is the size of the conjugacy class indexed by λ in the symmetric group Sk. Recalling that

ln(1− xiyj) =
∑
k≥1

xk
i yk

j

k
since ln(1− t) =

∫
1

1− t
dt =

∫
(1 + t + t2 + · · ·)dt,
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we have

∏
i,j

1
1− xiyj

= exp ln

∏
i,j

1
1− xiyj

 = exp

∑
i,j

ln(1− xiyj)

 = exp

∑
k

∑
i,j

xk
i yk

j

k


= exp

(∑
k

pk(x)pk(y)
k

)
=
∏
k

exp
(

pk(x)pk(y)
k

)
=
∏
k

∑
mk≥0

(
pmk

k (x)pmk

k (y)
kmkmk!

)

=
∑

m1,m2,...

(
pm1
1 (x)pm2

2 (x) · · · pm1
1 (y)pm2

2 (y) · · ·
1m1m1!2m2m2! · · ·

)
=
∑

λ

pλ(x)pλ(y)
zλ
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