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1. Symmetric functions
Partitions

A partition is a collection p of boxes in a corner where the convention is that gravity goes up
and to the left. As for matrices, the rows and columns of y are indexed from top to bottom and
left to right, respectively.

The parts of p are  p; = (the number of boxes in row i of p),
the length of pis  £(u) = (the number of rows of ), (1.1)
the size of p is || = p1 + -+ + pguy = (the number of boxes of 1).

Then p is determined by (and identified with) the sequence p = (i1, ..., us) of positive integers
such that pug > pg >+ > g > 0, where £ = {(u). For example,

(5,5,3,3,1,1) =

A partition of k is a partition A with k& boxes. Write A F k if A is a partition of k. Make the
convention that \; = 0if i > ¢(X). The dominance order is the partial order on the set of partitions
of k,

P71 (k) = {partitions of k} = {A\= (Aq,...,; ) | A1 > > X >0, Ay +...+ N\ =k},
given by

A>pu if MAX++ N>+ pe+--+p, forall <i<max{l(A\),{(un)}.
PUT THE PICTURE OF THE HASSE DIAGRAM FOR k = 6 HERE.

Tableauz
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Let A be a partition and let = (p1,...,4,) € Z%, be a sequence of nonnegative integers. A
column strict tableau of shape A and weight u is a filling of the boxes of A with uy 1s, us 2s, ...,
Un ns, such that

(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight of p so that

shp(p) = (A1, ..., A\n), where \; = number of boxes in row i of p, and

wt(p) = (K15, fn), where p; = number of ¢s in p.

For example,

1|1 ]1]2]2]
p= 212121233
313[3[4(4[4]5 has shp(p) =(9,7,7,4,2,1,0) and
415|516 wt(p) = (7,6,5,5,3,2,2).
67
L7
For a partition A and a sequence p = (u1, ..., in) € Z>o of nonnegative integers write

B(A) = {column strict tableaux p | shp(p) 1,

=
: (1.2)
B(\), = {column strict tableaux p | shp(p) = A and wt(p) = u},

Symmetric functions
The symmetric group S, acts on the vector space
7" = Z-span{zy,...,x,} by WT; = Toy(s),

for w € S,,, 1 < i < n. This action induces an action of S,, on the polynomial ring Z[X,]| =
Z[zxq,...,zy] by ring automorphisms. For a sequence v = (71,...,7,) of nonnegative integers let

=]t so that  Z[zy,...,x,] = Z-span{z? | v € Z%,}.
The ring of symmetric functions is
Z[X, )% = {f € Z|X,] | wf = f for all w € S,,}, (1.3)
Define the orbit sums, or monomial symmetric functions, by

my = g x7, for \ € Zgo,
YESHA

where S, A is the orbit of \ under the action of \S,,. Let

Pr={A=(1,....0) €Z% | M1 > > A} (1.4)
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so that
{my | A€ PT} is a Z-basis of Z[X,]%". (1.5)

Interpolating symmetric functions

Define ¢, (X,;q,t) = g-(x1, ..., Ts;q,t) by the generating function

HM = (q_t)ZQT(xla "7$n;q’t)zr'

1— 2,92
i=1 id r>0

Note that with this definition g9 = 1/(¢ — t). Define the elementary symmetric functions, the
complete symmetric functions and the power symmetric functions by the formulas

(_t)rileT(Xn) - qT(XTL; Oat)7
qr_lhr(Xn) = QT(Xn;CLO)a and (16)
¢ 'p-(Xn) = ¢(Xn:q,q), respectively.

The elementary symmetric functions have special importance because of the following ways in
which they appear naturally.

(1) If f(t) is a polynomial in ¢ with roots =1, ...,~, then
the coefficient of t" in f(t) is (—1)" e, (Y1, -+, Vn)- (1.7)

(2) If A is an n X n matrix with entries in F with eigenvalues 71, . ..,7, then the trace of the action
of A on the r*" exterior power of the vector space F™ is

tr(A, A" F™) = e (v1,...,7vn), so that

(1.8)
Tr(A) =e1 (V1,5 7n), and det(A) = en(v1, -y Yn),
and the characteristic polynomial of A is
n
char;(A) = Z(—l)"fren_r(fyl, ce )t (1.9)
r=0
1—x;t
Expanding e L (g—1) Z ¢"~'2t2" and multiplying out
1 — 29z
£>0
ﬁl—mitz 1 —xtz 1—a,tz
Pl 1—2,g2 1—21q2 1—2x,qz
gives
qr = Z (q — t)Card({j | 45<ija}) gCard({y | ij:ij“})milﬂ:ig cex (1.10)

1< <--<i<n
from which it follows that

qr = Z(q - t)e()\)_lqr_e()\)mA(xla s al‘n)'
A7
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For an n x n matrix a = (a;;) with entries from Zx let
rt = H(fﬂi)“”, and  wt(a) = ¢ (g — 1)@=t
i=1

where £(a) is the number of nonzero entries in a, £(\) is the number of nonzero entries in A, and
|A| is the sum of the entries of A. Define

rs(a) = (p1,-- ., pn),

4 n
where pi = a;; and ;= Qij,
cs(a) = (Y1, -+ ,n), ; / / ; ’

so that rs(a) and cs(a) are the sequences of row sums and column sums of a, respectively.
Proposition 1.11. For a sequence of nonnegative integers A = (A1, ..., \¢) define

D Xnsq,t) = o (Xns @, t) - o (Xni g t) -, (X g, t).

Then
= Zaw(q, tym, , where ar,(gq,t) = Z wt(a),

1 U/EA)\‘U.

and the sum is over partitions p such that |p = |A|.

Proof. If A = (A1,...,A\¢) then

¢
qr = Hqu = Z wt(a)z® = Z Z wt(a)x? = Zam(q,t)mu.
j=1 rs(a)=AX NELL ) Ta(a)=x w
20 cs(a)=n
|
Multiplying out
n
1—xz;tz 1 1 1
H = : (1 —zpt2)(1 — xp_1tz) - (1 — z1t2)
iy 1 —=z;qz 1—z1q2 1—29qz 1—=x,qz
gives
qr = Z TG L T Tig T (1.12)
11 << < S > D>y
The bijection 777?7 between sequences i1 < 49 < -+ < 4 > i1 > -+ > i, and column strict

tableaux of shape (k17~F) yields

T

G =Y (=) FgF s gy (X)), (1.13)
k=1

For each positive integer k define

qk _tk
[k]q,t = p— :qk_l+tqk_2+---+tk_2q+t’f_1.
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Comparing coefficients of z” on each side of
ﬁl—xisz ﬁl—%‘tz _ﬁl—xisz
P 1—z;tz Pl 1—xqz P 1— 29z

gives

(t — 8)g-(Xn; t,8) + (g — £)(t — 5) ;%(Xn? ¢,1)0r—;(Xnst, 5) (1.14)

+ (q - t)Qr(Xm%t) - (q - S)QT’(XTL;Q7 S)‘

Ezample. Putting s =0, g =0 and t = 0 in (?77) yield, respectively,

r—1
G (X @, 8) + | D0 (X)) g (Xni q,1) | = he(X) [Pl = 0
j=1
r—1 ‘
qr(Xn;q,t) + ej(Xn)(=0) ¢r—5(Xn;q, ) | + (=1)"er(Xn)[rlge =0

1

J
r

D (=" [flgehi (Xn)er—i(Xn) = (¢ — )ar(Xn; ¢, 1).
j=0

r—1
TQr(XnQQ7t) - ij(Xn)(qj _tj)QT—j(XnQCLt) _pr(Xn)[r]q,t =0.
Jj=1

and the Newton identities

k
khy = Zpihk_i and ke = Z(—l)i_lpiek—ia
i=1

=1

are obtained by putting??? in (777).

Proposition 1.15. Let A = (A1,...,\,) be a partition. Then

(a) ex = Z ax My,

H<A

where ay,, is the number of matrices with entries from {0,1} with row sums X" and column
sums fu.

(b) axx =1 and ay, =0 unless p < \.

(c) {ex | £(N) < n} is a Z-basis of Z[X,,]5".

(d) Zlwy,...,x,)% =Zley,...,en] = Zlh1,. .., hy] and Q[zy,. .., 2,]%" = Q[p1,. .., pnl.
(e) The set {hy | £(\') < n} is a basis of Z[X,,]°".

Proof. (a) follows by putting ¢ = 0 in (777).
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(b) Since there is a unique matrix A with rs(A) = X and ¢s(4) = X\, ayy = 1. If Aisa 0,1
matrix with rs(A) = X and ¢s(A) = p then py + -+ + p; < A; + -+ - + \; since there are at most
A1+ -+ + A; nonzero entries in the first 7 columns of A. Thus ay/, = 0 unless pp < A.

(c) is a consequence of (b) and the fact that {m, | £(\) < n} is a basis of Z[X,]%".

(d) The first equality is an immediate consequence of (c¢). The second equality follows from the

identity (?77), which allows one to, inductively, expand h, in terms of e,,e,_1,...,e;. Similarly,
the third equality follows from the Newton identity (?77) which allows one to, inductively, expand
pr in terms of e, e,_1,...,e1 (with coefficients in Q). 1

Proposition 1.16.
(a) There is an involutive automorphism w of Z[X,]°" defined by

w: Z[X,)% — Z[X,]%
€k — hy

(b) w(gr(Xn;q,t) = q(Xn; —t, —q) and w(py) = (=1) 1py.

Proof. The map w is a well defined ring homomorphism since Z[X,,]°» = Zley, ..., e,] is a polyno-
mial ring. Comparing coefficients of z* on each side of

n n k
1= (H(l — :Ulz)> (H . —1xiz> yields 0= Z(—l)rerhn_r.

=1 =1

Thus e; = hq, and

k k k

he =Y (e and  ep = (=1)"*> (=Deihpy =Y (1) 7 ey yhy. (1.17)

i=1 i=0 j=1
From the first of these relations, by induction on k,

k

w(hg) = Z(_l)’H—lhiek*i?

i=1
and, by comparing this identity with the second relation in (?7??) shows that w(hg) = er. Hence
w? =id.
(b) 7777 1

For a partition A = (1™12™2...) of k define

|
zx = 1"'m12™2my! - - so that :—)\ = Card({w € Sk | w has cycle type A}) (1.18)

is the size of the conjugacy class indexed by A in the symmetric group Si. Recalling that

k., k
Ly yj . 1 2

ln(l — Q:l’y]) = T since ln(l — t) = mdt = (1 + t =+ t + .- )dt,
k>1



SYMMETRIC FUNCTIONS 7

we have
1 1 by}
Hﬁ = eXpln Hﬁ = exp Zln(l —xly]) = exp ZZT
ig iYj id iYj i PR
_ pr( pr( P (@)pp* (v)
= exp (Z ) Hexp ( > H Z < k:mkmk >
k myg -~ >0
S P (2)py® () -y (W)pe® (y) -\ _ 3 pA(@)pA(Y)
o 1mimq12mamyl - .. /\ Z)
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