Symmetric functions
 Lecture Notes

Arun Ram*
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu
Version: January 29, 2004

1. Symmetric functions

Partitions

A partition is a collection μ of boxes in a corner where the convention is that gravity goes up and to the left. As for matrices, the rows and columns of μ are indexed from top to bottom and left to right, respectively.

The parts of μ are $\quad \mu_{i}=($ the number of boxes in row i of $\mu)$, the length of μ is $\quad \ell(\mu)=($ the number of rows of $\mu)$,
the size of μ is $\quad|\mu|=\mu_{1}+\cdots+\mu_{\ell(\mu)}=($ the number of boxes of $\mu)$.
Then μ is determined by (and identified with) the sequence $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of positive integers such that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{\ell}>0$, where $\ell=\ell(\mu)$. For example,

A partition of k is a partition λ with k boxes. Write $\lambda \vdash k$ if λ is a partition of k. Make the convention that $\lambda_{i}=0$ if $i>\ell(\lambda)$. The dominance order is the partial order on the set of partitions of k,

$$
P^{+}(k)=\{\text { partitions of } k\}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \mid \lambda_{1} \geq \cdots \geq \lambda_{\ell}>0, \lambda_{1}+\ldots+\lambda_{\ell}=k\right\}
$$

given by

$$
\lambda \geq \mu \quad \text { if } \quad \lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{i} \quad \text { for all } 1 \leq i \leq \max \{\ell(\lambda), \ell(\mu)\} .
$$

PUT THE PICTURE OF THE HASSE DIAGRAM FOR $k=6$ HERE.

Tableaux

[^0]Let λ be a partition and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{>0}^{n}$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with $\mu_{1} 1 \mathrm{~s}, \mu_{2} 2 \mathrm{~s}, \ldots$, $\mu_{n} n \mathrm{~s}$, such that
(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write $\operatorname{shp}(p)$ and $\mathrm{wt}(p)$ for the shape and the weight of p so that

$$
\begin{array}{rll}
\operatorname{shp}(p) & =\left(\lambda_{1}, \ldots, \lambda_{n}\right), & \text { where } \quad \lambda_{i}=\text { number of boxes in row } i \text { of } p, \quad \text { and } \\
\operatorname{wt}(p) & =\left(\mu_{1}, \ldots, \mu_{n}\right), & \text { where } \quad \mu_{i}=\text { number of } i \text { s in } p .
\end{array}
$$

For example,
has $\quad \operatorname{shp}(p)=(9,7,7,4,2,1,0) \quad$ and $\mathrm{wt}(p)=(7,6,5,5,3,2,2)$.

For a partition λ and a sequence $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$
\begin{align*}
B(\lambda) & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda\} \\
B(\lambda)_{\mu} & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda \text { and } \mathrm{wt}(p)=\mu\} \tag{1.2}
\end{align*}
$$

Symmetric functions

The symmetric group S_{n} acts on the vector space

$$
\mathbb{Z}^{n}=\mathbb{Z}-\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\} \quad \text { by } \quad w x_{i}=x_{w(i)}
$$

for $w \in S_{n}, 1 \leq i \leq n$. This action induces an action of S_{n} on the polynomial ring $\mathbb{Z}\left[X_{n}\right]=$ $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by ring automorphisms. For a sequence $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of nonnegative integers let

$$
x^{\gamma}=x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}}, \quad \text { so that } \quad \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{Z}-\operatorname{span}\left\{x^{\gamma} \mid \gamma \in \mathbb{Z}_{\geq 0}^{n}\right\}
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}\left[X_{n}\right]^{S_{n}}=\left\{f \in \mathbb{Z}\left[X_{n}\right] \mid w f=f \text { for all } w \in S_{n}\right\} \tag{1.3}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad \text { for } \lambda \in \mathbb{Z}_{\geq 0}^{n}
$$

where $S_{n} \lambda$ is the orbit of λ under the action of S_{n}. Let

$$
\begin{equation*}
P^{+}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \tag{1.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}\left[X_{n}\right]^{S_{n}} \tag{1.5}
\end{equation*}
$$

Interpolating symmetric functions
Define $q_{r}\left(X_{n} ; q, t\right)=q_{r}\left(x_{1}, \ldots, x_{n} ; q, t\right)$ by the generating function

$$
\prod_{i=1}^{n} \frac{1-x_{i} t z}{1-x_{i} q z}=(q-t) \sum_{r \geq 0} q_{r}\left(x_{1}, \ldots, x_{n} ; q, t\right) z^{r}
$$

Note that with this definition $q_{0}=1 /(q-t)$. Define the elementary symmetric functions, the complete symmetric functions and the power symmetric functions by the formulas

$$
\begin{array}{rlrl}
(-t)^{r-1} e_{r}\left(X_{n}\right) & =q_{r}\left(X_{n} ; 0, t\right), \\
q^{r-1} h_{r}\left(X_{n}\right) & =q_{r}\left(X_{n} ; q, 0\right), \quad \text { and } \tag{1.6}\\
q^{r-1} p_{r}\left(X_{n}\right) & =q_{r}\left(X_{n} ; q, q\right), & \quad \text { respectively. }
\end{array}
$$

The elementary symmetric functions have special importance because of the following ways in which they appear naturally.
(1) If $f(t)$ is a polynomial in t with roots $\gamma_{1}, \ldots, \gamma_{n}$ then

$$
\begin{equation*}
\text { the coefficient of } t^{r} \text { in } f(t) \text { is }(-1)^{n-r} e_{r}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \tag{1.7}
\end{equation*}
$$

(2) If A is an $n \times n$ matrix with entries in \mathbb{F} with eigenvalues $\gamma_{1}, \ldots, \gamma_{n}$ then the trace of the action of A on the $r^{\text {th }}$ exterior power of the vector space \mathbb{F}^{n} is

$$
\begin{align*}
& \operatorname{tr}\left(A, \bigwedge^{r} \mathbb{F}^{n}\right)=e_{r}\left(\gamma_{1}, \ldots, \gamma_{n}\right), \quad \text { so that } \\
& \operatorname{Tr}(A)=e_{1}\left(\gamma_{1}, \ldots, \gamma_{n}\right), \quad \text { and } \quad \operatorname{det}(A)=e_{n}\left(\gamma_{1}, \ldots, \gamma_{n}\right), \tag{1.8}
\end{align*}
$$

and the characteristic polynomial of A is

$$
\begin{equation*}
\operatorname{char}_{t}(A)=\sum_{r=0}^{n}(-1)^{n-r} e_{n-r}\left(\gamma_{1}, \ldots, \gamma_{n}\right) t^{r} \tag{1.9}
\end{equation*}
$$

Expanding $\frac{1-x_{i} t z}{1-x_{i} q z}=1+(q-t) \sum_{\ell>0} q^{\ell-1} x_{i}^{\ell} z^{\ell}$ and multiplying out

$$
\prod_{i=1}^{n} \frac{1-x_{i} t z}{1-x_{i} q z}=\frac{1-x_{1} t z}{1-x_{1} q z} \cdots \frac{1-x_{n} t z}{1-x_{n} q z}
$$

gives

$$
\begin{equation*}
q_{r}=\sum_{1 \leq i_{1} \leq \cdots \leq i_{r} \leq n}(q-t)^{\operatorname{Card}\left(\left\{j \mid i_{j}<i_{j+1}\right\}\right)} q^{\operatorname{Card}\left(\left\{j \mid i_{j}=i_{j+1}\right\}\right)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \tag{1.10}
\end{equation*}
$$

from which it follows that

$$
q_{r}=\sum_{\lambda \vdash r}(q-t)^{\ell(\lambda)-1} q^{r-\ell(\lambda)} m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)
$$

For an $n \times n$ matrix $a=\left(a_{i j}\right)$ with entries from $\mathbb{Z}_{\geq 0}$ let

$$
x^{a}=\prod_{i=1}^{n}\left(x_{i}\right)^{a_{i j}}, \quad \text { and } \quad \operatorname{wt}(a)=q^{|\lambda|-\ell(a)}(q-t)^{\ell(a)-\ell(\lambda)}
$$

where $\ell(a)$ is the number of nonzero entries in $a, \ell(\lambda)$ is the number of nonzero entries in λ, and $|\lambda|$ is the sum of the entries of λ. Define

$$
\begin{aligned}
& r s(a)=\left(\rho_{1}, \ldots, \rho_{n}\right), \\
& \operatorname{cs}(a)=\left(\gamma_{1}, \ldots, \gamma_{n}\right),
\end{aligned} \quad \text { where } \quad \rho_{i}=\sum_{j=1}^{\ell} a_{i j} \quad \text { and } \quad \gamma_{j}=\sum_{i=1}^{n} a_{i j}
$$

so that $r s(a)$ and $c s(a)$ are the sequences of row sums and column sums of a, respectively.
Proposition 1.11. For a sequence of nonnegative integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ define

$$
q_{\lambda}\left(X_{n} ; q, t\right)=q_{\lambda_{1}}\left(X_{n} ; q, t\right) \cdot q_{\lambda_{2}}\left(X_{n} ; q, t\right) \cdots q_{\lambda_{\ell}}\left(X_{n} ; q, t\right)
$$

Then

$$
q_{\lambda}=\sum_{\mu} a_{\lambda \mu}(q, t) m_{\mu}, \quad \text { where } \quad a_{\lambda \mu}(q, t)=\sum_{a \in A_{\lambda \mu}} \mathrm{wt}(a)
$$

and the sum is over partitions μ such that $|\mu=|\lambda|$.
Proof. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ then

$$
q_{\lambda}=\prod_{j=1}^{\ell} q_{\lambda_{j}}=\sum_{r s(a)=\lambda} \mathrm{wt}(a) x^{a}=\sum_{\gamma \in \mathbb{Z}_{\geq 0}^{n}} \sum_{\substack{s(a)=\lambda \\ c s(a)=\gamma}} \mathrm{wt}(a) x^{\gamma}=\sum_{\mu} a_{\lambda \mu}(q, t) m_{\mu}
$$

Multiplying out

$$
\prod_{i=1}^{n} \frac{1-x_{i} t z}{1-x_{i} q z}=\frac{1}{1-x_{1} q z} \cdot \frac{1}{1-x_{2} q z} \cdots \frac{1}{1-x_{n} q z}\left(1-x_{n} t z\right)\left(1-x_{n-1} t z\right) \cdots\left(1-x_{1} t z\right)
$$

gives

$$
\begin{equation*}
q_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}>i_{k+1}>\cdots>i_{r}} q^{k-1}(-t)^{r-k} x_{i_{1}} \cdots x_{i_{k}} x_{i_{k+1}} \cdots x_{i_{r}} . \tag{1.12}
\end{equation*}
$$

The bijection ???? between sequences $i_{1} \leq i_{2} \leq \cdots \leq i_{k}>i_{k+1}>\cdots>i_{r}$ and column strict tableaux of shape $\left(k 1^{r-k}\right)$ yields

$$
\begin{equation*}
q_{r}=\sum_{k=1}^{r}(-t)^{r-k} q^{k-1} s_{\left(k 1^{r-k}\right)}\left(X_{n}\right) \tag{1.13}
\end{equation*}
$$

For each positive integer k define

$$
[k]_{q, t}=\frac{q^{k}-t^{k}}{q-t}=q^{k-1}+t q^{k-2}+\cdots+t^{k-2} q+t^{k-1}
$$

Comparing coefficients of z^{r} on each side of

$$
\left(\prod_{i=1}^{n} \frac{1-x_{i} s z}{1-x_{i} t z}\right)\left(\prod_{i=1}^{n} \frac{1-x_{i} t z}{1-x_{i} q z}\right)=\prod_{i=1}^{n} \frac{1-x_{i} s z}{1-x_{i} q z}
$$

gives

$$
\begin{align*}
(t-s) q_{r}\left(X_{n} ; t, s\right) & +(q-t)(t-s)\left(\sum_{j=1}^{r-1} q_{j}\left(X_{n} ; q, t\right) q_{r-j}\left(X_{n} ; t, s\right)\right) \tag{1.14}\\
& +(q-t) q_{r}\left(X_{n} ; q, t\right)=(q-s) q_{r}\left(X_{n} ; q, s\right)
\end{align*}
$$

Example. Putting $s=0, q=0$ and $t=0$ in (???) yield, respectively,

$$
\begin{aligned}
& q_{r}\left(X_{n} ; q, t\right)+\left(\sum_{j=1}^{r-1} h_{j}\left(X_{n}\right) t^{j} q_{r-j}\left(X_{n} ; q, t\right)\right)-h_{r}\left(X_{n}\right)[r]_{q, t}=0 \\
& q_{r}\left(X_{n} ; q, t\right)+\left(\sum_{j=1}^{r-1} e_{j}\left(X_{n}\right)(-q)^{j} q_{r-j}\left(X_{n} ; q, t\right)\right)+(-1)^{r} e_{r}\left(X_{n}\right)[r]_{q, t}=0 \\
& \sum_{j=0}^{r}(-t)^{r-j}[j]_{q, t} h_{j}\left(X_{n}\right) e_{r-j}\left(X_{n}\right)=(q-t) q_{r}\left(X_{n} ; q, t\right)
\end{aligned}
$$

Then putting????? (???)gives

$$
r q_{r}\left(X_{n} ; q, t\right)-\left(\sum_{j=1}^{r-1} p_{j}\left(X_{n}\right)\left(q^{j}-t^{j}\right) q_{r-j}\left(X_{n} ; q, t\right)\right)-p_{r}\left(X_{n}\right)[r]_{q, t}=0 .
$$

and the Newton identities

$$
k h_{k}=\sum_{i=1} p_{i} h_{k-i} \quad \text { and } \quad k e_{k}=\sum_{i=1}^{k}(-1)^{i-1} p_{i} e_{k-i},
$$

are obtained by putting??? in (???).
Proposition 1.15. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition. Then
(a) $e_{\lambda^{\prime}}=\sum_{\mu \leq \lambda} a_{\lambda^{\prime} \mu} m_{\mu}$,
where $a_{\lambda \mu}$ is the number of matrices with entries from $\{0,1\}$ with row sums λ^{\prime} and column sums μ.
(b) $a_{\lambda^{\prime} \lambda}=1$ and $a_{\lambda^{\prime} \mu}=0$ unless $\mu \leq \lambda$.
(c) $\left\{e_{\lambda} \mid \ell\left(\lambda^{\prime}\right) \leq n\right\}$ is a \mathbb{Z}-basis of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$.
(d) $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]=\mathbb{Z}\left[h_{1}, \ldots, h_{n}\right]$ and $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{Q}\left[p_{1}, \ldots, p_{n}\right]$.
(e) The set $\left\{h_{\lambda} \mid \ell\left(\lambda^{\prime}\right) \leq n\right\}$ is a basis of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$.

Proof. (a) follows by putting $q=0$ in (???).
(b) Since there is a unique matrix A with $r s(A)=\lambda^{\prime}$ and $\operatorname{cs}(A)=\lambda, a_{\lambda^{\prime} \lambda}=1$. If A is a 0,1 matrix with $\operatorname{rs}(A)=\lambda^{\prime}$ and $\operatorname{cs}(A)=\mu$ then $\mu_{1}+\cdots+\mu_{i} \leq \lambda_{1}+\cdots+\lambda_{i}$ since there are at most $\lambda_{1}+\cdots+\lambda_{i}$ nonzero entries in the first i columns of A. Thus $a_{\lambda^{\prime} \mu}=0$ unless $\mu \leq \lambda$.
(c) is a consequence of (b) and the fact that $\left\{m_{\lambda} \mid \ell(\lambda) \leq n\right\}$ is a basis of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$.
(d) The first equality is an immediate consequence of (c). The second equality follows from the identity (???), which allows one to, inductively, expand h_{r} in terms of $e_{r}, e_{r-1}, \ldots, e_{1}$. Similarly, the third equality follows from the Newton identity (???) which allows one to, inductively, expand p_{r} in terms of $e_{r}, e_{r-1}, \ldots, e_{1}$ (with coefficients in \mathbb{Q}).

Proposition 1.16.

(a) There is an involutive automorphism ω of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$ defined by

$$
\begin{array}{ccc}
\omega: \mathbb{Z}\left[X_{n}\right]^{S_{n}} & \longrightarrow & \mathbb{Z}\left[X_{n}\right]^{S_{n}} \\
e_{k} & \longmapsto & h_{k}
\end{array}
$$

(b) $\omega\left(q_{r}\left(X_{n} ; q, t\right)\right)=q_{r}\left(X_{n} ;-t,-q\right)$ and $\omega\left(p_{k}\right)=(-1)^{k-1} p_{k}$.

Proof. The map ω is a well defined ring homomorphism since $\mathbb{Z}\left[X_{n}\right]^{S_{n}}=\mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]$ is a polynomial ring. Comparing coefficients of z^{k} on each side of

$$
1=\left(\prod_{i=1}^{n}\left(1-x_{i} z\right)\right)\left(\prod_{i=1}^{n} \frac{1}{1-x_{i} z}\right) \quad \text { yields } \quad 0=\sum_{r=1}^{k}(-1)^{r} e_{r} h_{n-r}
$$

Thus $e_{1}=h_{1}$, and

$$
\begin{equation*}
h_{k}=\sum_{i=1}^{k}(-1) e_{i} h_{k-i} \quad \text { and } \quad e_{k}=(-1)^{-k} \sum_{i=0}^{k}(-1) e_{i} h_{k-i}=\sum_{j=1}^{k}(-1)^{-j-1} e_{k-j} h_{j} . \tag{1.17}
\end{equation*}
$$

From the first of these relations, by induction on k,

$$
\omega\left(h_{k}\right)=\sum_{i=1}^{k}(-1)^{i+1} h_{i} e_{k-i}
$$

and, by comparing this identity with the second relation in (???) shows that $\omega\left(h_{k}\right)=e_{k}$. Hence $\omega^{2}=\mathrm{id}$.
(b) ????

For a partition $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ of k define

$$
\begin{equation*}
z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots \quad \text { so that } \quad \frac{n!}{z_{\lambda}}=\operatorname{Card}\left(\left\{w \in S_{k} \mid w \text { has cycle type } \lambda\right\}\right) \tag{1.18}
\end{equation*}
$$

is the size of the conjugacy class indexed by λ in the symmetric group S_{k}. Recalling that

$$
\ln \left(1-x_{i} y_{j}\right)=\sum_{k \geq 1} \frac{x_{i}^{k} y_{j}^{k}}{k} \quad \text { since } \quad \ln (1-t)=\int \frac{1}{1-t} d t=\int\left(1+t+t^{2}+\cdots\right) d t
$$

we have

$$
\begin{aligned}
\prod_{i, j} \frac{1}{1-x_{i} y_{j}} & =\exp \ln \left(\prod_{i, j} \frac{1}{1-x_{i} y_{j}}\right)=\exp \left(\sum_{i, j} \ln \left(1-x_{i} y_{j}\right)\right)=\exp \left(\sum_{k} \sum_{i, j} \frac{x_{i}^{k} y_{j}^{k}}{k}\right) \\
& =\exp \left(\sum_{k} \frac{p_{k}(x) p_{k}(y)}{k}\right)=\prod_{k} \exp \left(\frac{p_{k}(x) p_{k}(y)}{k}\right)=\prod_{k} \sum_{m_{k} \geq 0}\left(\frac{p_{k}^{m_{k}}(x) p_{k}^{m_{k}}(y)}{k^{m_{k}} m_{k}!}\right) \\
& =\sum_{m_{1}, m_{2}, \ldots}\left(\frac{p_{1}^{m_{1}}(x) p_{2}^{m_{2}}(x) \cdots p_{1}^{m_{1}}(y) p_{2}^{m_{2}}(y) \cdots}{1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots}\right)=\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}
\end{aligned}
$$

Notes and References

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????.

