Radicals

Arun Ram* Department of Mathematics University of Wisconsin-Madison Madison, WI 53706 ram@math.wisc.edu

December 26, 2003

1. Definitions

Finiteness conditions

Let R be a ring with identity and let M be an R-module.

The module M is **noetherian** if it satisfies ACC on submodules.

The module M is **artinian** if it satisfies DCC on submodules.

The module M is **finitely generated** if there is a finite subset $\{m_1, \ldots, m_k\}$ of M such that $M = \text{span}-\{m_1, \ldots, m_k\}$, the submodule generated by $\{m_1, \ldots, m_k\}$.

A composition series of M is a chain of submodules $0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$ such that M_i/M_{i+1} is simple.

Proposition 1.1. Let N be a submodule of M.

- (a) M is noetherian if and only if N and M/N are noetherian.
- (b) M is artinian if and only if N and M/N are artinian.
- (c) M has a finite composition series if and only if N and M/N have finite composition series.

(d) If M is finitely generated then M/N is finitely generated.

Proof.

Proposition 1.2.

- (a) M is noetherian and artinian if and only if M has a finite composition series.
- (b) M is noetherian if and only if every submodule of M is finitely generated.
- (c) If R is noetherian and M is finitely generated then M is noetherian.

^{*} Research supported in part by the National Science Foundation (DMS-0097977).

Proof. (a) follows from Theorem ???, below.

(b) \Leftarrow : Assume that every submodule of M is finitely generated. Let $N_1 \subseteq N_2 \subseteq \cdots$ be an ascending chain. Then $\bigcup N_i$ is a finitely generated submodule of M Let x_1, \ldots, x_k be generators and let ℓ_1, \ldots, ℓ_k be such that $x_i \in N_{\ell_i}$. Then $x_1, \ldots, x_k \in N_r$ where $r = \max\{\ell_1, \ldots, \ell_k\}$. So $\bigcup N_i = N_r$ and $N_r = N_{r+1} = N_\ell$ for all $\ell > r$. So M is noetherian.

(b) \Rightarrow : Assume that M is notherian and let N be a submodule of M. Then

 $\{P \subseteq N \mid P \text{ is finitely generated}\}$

has a maximal element P_{\max} . If $P_{\max} \neq N$ let $x \in N \setminus P_{\max}$. Then $P \subseteq \langle P_{\max}, x \rangle \subseteq N$ and $\langle P_{\max}, x \rangle$ is finitely generated, which is a contradiction to the maximality of P_{\max} . So $P_{\max} = N$. So every submodule of M is finitely generated.

Theorem 1.3. Let M be an R-module.

(a) Any two series

$$0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_r = M$$
 and $0 \subseteq M'_1 \subseteq M'_2 \subseteq \cdots \subseteq M'_s = M$

can be refined to have the same length and the same composition factors.

- (b) *M* has a finite composition series if and only if *M* any series can be refined to a composition series.
- (c) If M has a finite composition series then any two composition series for M have the same length.

Proof. In the series (*) change $M_i \subseteq M_{i+1}$ to

$$M_{i} = (M'_{0} + M_{i}) \cap M_{i+1} \subseteq (M'_{1} + M_{i}) \cap M_{i+1} \subseteq \dots \subseteq (M'_{s} + M_{i}) \cap M_{i+1} = M_{i+1},$$

and change $M'_j \subseteq M'_{j+1}$ to

$$M_j = (M_0 + M'_j) \cap M'_{j+1} \subseteq (M_1 + M'_j) \cap M'_{j+1} \subseteq \dots \subseteq (M_r + M'_j) \cap M'_{j+1} = M'_{j+1}.$$

Claim:

$$\frac{(M'_j + M_{i-1}) \cap M_i}{(M'_{j-1} + M_{i-1}) \cap M_i} \cong \frac{(M_i + M'_{j-1}) \cap M'_j}{(M_{i-1} + M'_{j-1}) \cap M'_j}$$

Lemma 1.4. (Modular law) If A, B, C are submodules of M and $B \subseteq C$ then

$$C + (A \cap B) = (C + A) \cap B.$$

Proof. If $k + b \in C + (A \cap B)$ then $k + b \in (C + A) \cap B$. So $C + (A \cap B) \subseteq (C + A) \cap B$.

If $b = k + a \in (C + A) \cap B$ then $b = k + a = k + (b - k) \in C + (A \cap B)$ and so $(C + A) \cap B \subseteq C + (A \cap B)$.

Lemma 1.5. Zassenhaus isomorphism If $V \subseteq U$ and $V' \subseteq U'$ are submodules of M then

$$\frac{(U+V')\cap U'}{(V+V')\cap U'} \cong \frac{U\cap U'}{(U\cap V')+(U'\cap V)} \cong \frac{(U'+V)\cap U}{(V'+V)\cap U}.$$

Proof.

Examples.

- (1) Let \mathbb{F} be a field. A finite dimensional vector space is both noetherian and artinian. An infinite dimensional vector space V has $\operatorname{Rad}(V) = 0$, $\operatorname{soc}(V)$ and is neither noetherian or artinian.
- (2) Let $R = \mathbb{Z}$. Then every submodule of RR is generated by one element. The ring \mathbb{Z} is noetherian but not artinian: $\mathbb{Z} \supseteq p\mathbb{Z} \supseteq p^2\mathbb{Z} \supseteq \cdots$.

$$\operatorname{Rad}(\mathbb{Z}) = \bigcap_{L_{\max}} L_{\max} = \bigcap_{p \text{ prime}} p\mathbb{Z} = 0.$$

Radicals and socles

If $m \in M$, $\operatorname{ann}(m) = \{r \in R \mid rm = 0\}$. The **annihilator** of M is $\operatorname{ann}(M) = \{r \in R \mid rM = 0\}$. The **radical** of M is

 $\operatorname{Rad}(M) = \bigcap_{P_{\max}} P_{\max}$, the intersection of the maximal proper submodules of M.

The **socle** of M is

$$\operatorname{soc}(M) = \sum_{P_{\min}} P_{\min},$$
 the sum of the simple submodules of M

The head of M is M/Rad(M). The socle series of M is

$$0 = \operatorname{soc}^0(M) \subseteq \operatorname{soc}^1(M) \subseteq \cdots$$

where $\operatorname{soc}^1(M) = M$ and $\operatorname{soc}^i(M)$ is determined by

$$\frac{\operatorname{soc}^{i}(M)}{\operatorname{soc}^{i-1}(M)} = \operatorname{soc}\left(\frac{M}{\operatorname{soc}^{i-1}(M)}\right).$$

The **radical series** of M is

$$0 = \operatorname{Rad}^{0}(M) \supseteq \operatorname{Rad}^{1}(M) \supseteq \cdots \qquad \text{where} \quad \operatorname{Rad}^{i}(M) = \operatorname{Rad}(\operatorname{Rad}^{i-1}(M)).$$

The **socle length** of M is the smallest positive integer n such that $\operatorname{soc}^{n}(M) = M$ and $\operatorname{soc}^{n-1}(M) \neq M$.

The **radical length** of M is the smallest positive integer n such that $\operatorname{Rad}^{n}(M) = 0$ and $\operatorname{Rad}^{n-1}(M) \neq 0$.

The socle layers of M are $\operatorname{soc}^{k}(M)/\operatorname{soc}^{k-1}(M)$. The radical layers of M are $\operatorname{Rad}^{k-1}(M)/\operatorname{Rad}^{k}(M)$.

Proposition 1.6. If M has socle length n them M has radical length n and

 $\operatorname{soc}^{j}(M) \supseteq \operatorname{Rad}^{n-j}(M), \qquad 0 \le j \le n.$

Proof.

Proposition 1.7. Let R be a ring.

 L_{\max}

- (a) $\operatorname{Rad}(R) = \bigcap L_{\max}$, the intersection of the maximal left ideals of R.
- (b) $\operatorname{Rad}(R) = \bigcap_{I_{\text{prim}}} I_{\text{prim}}$, the intersection of the primitive two-sided ideals of R.
- (c) $\operatorname{Rad}(R) = \{x \in R \mid 1 axb \text{ is invertible for all } a, b \in R\}.$
- (d) $\operatorname{Rad}(R)$ contains all nilpotent ideals.

Proof. (a) This is a restatement of the definition of $\operatorname{Rad}(R)$, since the submodules of $_RR$ are the left ideals of R.

(b) If M is a simple R-module and $m \in M$ then $\operatorname{ann}(m) = \{r \in R \mid rm = 0\}$ is a maximal left ideal of R because $R/\operatorname{ann}(m) \cong M$. The primitive ideal

$$\operatorname{ann}(M) = \{r \in R \mid rM = 0\} = \bigcap_{m \in M} \operatorname{ann}(m).$$

(c) Let $s \in \operatorname{Rad}(R)$. Then R(1-x) = R since 1-x is not in any maximal left ideal. So t(1-x) = 1 for some $t \in R$. So $1 - t = -tx \in \operatorname{Rad}(R)$. So 1 - (1 - t) = t has a left inverse, which must be 1 - x. So 1 - x is invertible in R. By (b) $\operatorname{Rad}(R)$ is an indeal and so 1 - axb is invertible for every $a, b \in R$. So $\operatorname{Rad}(R) = \{x \in R \mid 1 - axb$ is invertible for all $a, b \in R\}$

Assume 1 - axb is invertible for all $a, b \in R$. Let L_{\max} be a maximal left ideal not containing x. Then $1 = ax + \ell$ for some $a \in R$, $p \in L_{\max}$. So $1 - ax \in L_{\max}$. So $L_{\max} = R$ which is a contradiction. So x is an element of every maximal left ideal. So $\{x \in R \mid 1 - axb \text{ is invertible for all } a, b \in R\} \subseteq \text{Rad}(R)$.

(d) Let N be a nilpotent ideal with $N^k = 0$. If $x \in N$ then $x^k \in N^k = 0$ and so $x^k = 0$. Then $(1 + x + x^2 + \cdots + x^{k-1})(1 - x) = 1$ and so 1 - x is invertible. Thus, since N is an ideal, 1 - axb is invertible for every $a, b \in R$. Thus, by (c), $N \subseteq \text{Rad}(R)$.

The proof of (bb) and (bc) of the following theorem uses:

Lemma 1.8. (Nakayama's lemma) If M is a finitely generated R-module and $\operatorname{Rad}(R)M = M$ them M = 0.

Proof. Assume $M \neq 0$. Let m_1, \ldots, m_k be a minimal generating set for M. Since $\operatorname{Rad}(R)M = M$,

$$m_k = \sum_{i=1}^k a_i m_i, \quad \text{with } a_i \in \operatorname{Rad}(R).$$

So $(1 - a_k)m_k = \sum_{i=1}^{k-1} a_i m_i$. But $1 - a_k$ has a left inverse in R. So $m_k = \sum_{i=1}^{k-1} (1 - a_k)^{-1} a_i m_i$, which contradicts the minimality. So M = 0.

Theorem 1.9. Let R be an artinian ring. Then

- (a) $\operatorname{Rad}(R)$ is the largest nilpotent ideal of R.
- (b) If M is a finitely generated R-module then
 - (ba) M is noetherian and artinian,
 - (bb) $\operatorname{Rad}(M) = \operatorname{Rad}(R)M$,
 - $(bc) \operatorname{soc}(M) = \{ m \in M \mid \operatorname{Rad}(R)m = 0 \}.$
- (c) R is noetherian.

Proof. (a) Let n be such that $\operatorname{Rad}(R)^n = \operatorname{Rad}(R)^{2n}$. If $\operatorname{Rad}(R)^n \neq 0$ then there is a minimal left ideal with $\operatorname{Rad}(R)^n I \neq 0$ (since $\operatorname{Rad}(R)^n \operatorname{Rad}(R)^n \neq 0$). Let $x \in I$, $x \neq 0$, be such that $\operatorname{Rad}(R)^n x \neq 0$. By minimality, $I = \operatorname{Rad}(R)^n x = \operatorname{Rad}(R)^n \operatorname{Rad}(R)^n x$. So x = ax, with $a \in \operatorname{Rad}(R)$. So (1-a)x = 0. Since 1-a is invertible in R, x = 0. But this is a contradiction. So $\operatorname{Rad}(R)^n = 0$. So $\operatorname{Rad}(R)$ is a nilpotent ideal.

(ba) Let $M_i = \operatorname{Rad}(R)^i M$. Then, since M is finitely generated and R is artinian, there is a surjective homomorphism

$$R \oplus \cdots \oplus R \longrightarrow M.$$

Thus M is artinian. So M_i/M_{i+1} is artinian and $\operatorname{Rad}(R)$ acts by 0. So M_i/M_{i+1} is a $R/\operatorname{Rad}(R)$ module and thus M_i/M_{i+1} is a finite direct sum of simple submodules. So, by (a), M has a
composition series and is both noetherian and artinian.

(bb) By Nakayama's lemma, $\operatorname{Rad}(R)(M/N_{\max}) = 0$ for every maximal proper submodule $N_{\max} \subseteq M$. So $\operatorname{Rad}(R)M \subseteq N_{\max}$ for every N_{\max} . So $\operatorname{Rad}(R)M \subseteq \operatorname{Rad}(M)$.

Since M/M_1 is a finite direct sum of simple modules, $\operatorname{Rad}(M/M_1) = 0$. So $\operatorname{Rad}(M) \subseteq M_1 = \operatorname{Rad}(R)M$.

(bc) The set

$$N = \{m \in M \mid \operatorname{Rad}(R)m = 0\}$$

is a submodule of M and $\operatorname{Rad}(R)N = 0$. Since N is artinian, N is a finite direct sum of simple submodules. So $\operatorname{soc}(M) \supseteq N$.

Nakayama's lemma implies that if S is a simple module, then $\operatorname{Rad}(R)S = 0$. So $\operatorname{Rad}(R)\operatorname{soc}(M) = 0$. So $\operatorname{soc}(M) \subseteq N$.

(c) follows from (ba). \blacksquare

Semisimplicity

Proposition 1.10. Let M be an R-module. Then M has a simple submodule.

Proof.

Proposition 1.11. (Schur's lemma)

(a) If R^{λ} and R^{μ} are simple *R*-modules then

$$\operatorname{Hom}_R(R^\lambda, R^\mu) = 0$$
, if $R^\lambda \not\cong R^\mu$, and $\operatorname{End}_R(R^\lambda) = \mathbb{D}_\lambda$ is a division ring.

(b) If $M = \bigoplus_{\lambda \in \hat{A}} (R^{\lambda})^{\oplus m_{\lambda}}$ is a finite direct sum of simple modules then

$$\operatorname{End}_R(M) = \bigoplus_{\lambda \in \hat{A}} M_{m_\lambda}(\mathbb{D}_\lambda),$$

where $\mathbb{D}_{\lambda} = \operatorname{End}_{R}(R^{\lambda})$ are division rings.

Proof. (a) Let $\phi: R^{\lambda} \to R^{\mu}$ be a homomorphism. Then, since R^{λ} and R^{μ} are simple, ker ϕ is either 0 or R^{λ} , and im ϕ is either 0 or R^{μ} . So ϕ is either 0 or an isomorphism.

(b) If $M = \bigoplus_{\lambda \in \hat{A}} \bigoplus_{i=1}^{m_{\lambda}} R^{\lambda,i}$, with $R^{\lambda,i} \cong R^{\lambda}$, for $1 \le i \le m_{\lambda}$, then

$$\operatorname{End}_{R}(M) = \bigoplus_{\lambda \in \hat{A}} \bigoplus_{i,j=1}^{m_{\lambda}} \operatorname{End}_{R}(R^{\lambda,i}, R^{\lambda,j}) = \bigoplus_{\lambda \in \hat{A}} M_{m_{\lambda}}(\mathbb{D}_{\lambda}).$$

Proposition 1.12. Let M be an R-module.

- (a) $\operatorname{soc}(M) = M$ if and only if for every submodule $N \subseteq M$ there is a submodule $N' \subseteq M$ with $M = N \oplus N'$.
- (b) Let N be a submodule of M. If soc(M) = M then soc(N) = N and soc(M/N) = M/N.

Proof. (a) \Leftarrow : If $\operatorname{soc}(M) \neq M$ then $M = \operatorname{soc}(M) \oplus N'$. Let N be a simple submodule of N' (the existence of N is nontrivial and uses Zorn's lemma, see Theorem ???). Then $\operatorname{soc}(M) + N \neq \operatorname{soc}(M)$, but this is a contradiction to the definition of $\operatorname{soc}(M)$.

(a) \Rightarrow : Let N be a submodule of M and let $N' = \sum_{P \cap N=0} P$ be the sum of the simple submodules P of M such that $P \cap N = 0$. Then $N \cap N' = 0$ since, for a simple submodule P of M, $P \cap N = P$ or $P \cap N = 0$. Since $N + N' \supseteq \operatorname{soc}(M) = M$, N + N' = M. So $M = N \oplus N'$.

Proposition 1.13. The following are equivalent:

- (a) M is a finite direct sum of simple submodules.
- (b) M is artinian and soc(M) = M.
- (c) M is noetherian and soc(M) = M.
- (d) M has a finite composition series and soc(M) = M.
- (e) M is finitely generated and soc(M) = M.
- (f) M is artinian and $\operatorname{Rad}(M) = 0$.

Proof. The implications (a) \Leftrightarrow (b), (a) \Leftrightarrow (c), (a) \Leftrightarrow (d) follow directly from Proposition ??? and Proposition ???a.

(a) \Rightarrow (f) follows directly from the definitions.

(f) \Rightarrow (a): Let N_i be a finite (by DCC) number of maximal proper submodules such that

$$\operatorname{Rad}(M) = \bigcap N_i = 0$$

Then

$$\phi : \begin{array}{ccc} M & \longrightarrow & M/N_1 \oplus \cdots \oplus M_/N_k \\ m & \longmapsto & (m+N_1, \dots, m+N_k) \end{array}$$

has ker $\phi = 0$. So $M \cong im(M)$ which is a submodule of the semisimple module $M/N_1 \oplus \cdots M/N_k$. So $M \cong im(M)$ is finite length and soc(M) = M. So M is a direct sum of simple submodules. (c) \Rightarrow (e) since M is noetherian implies that M is finitely generated.

(e) \Rightarrow (c): Let N be a submodule of M and let N' be a complement. Then $N \cong M/N'$ and thus, since M is finitely generated, N is finitely generated. Thus every submodule of M is finitely generated. So M is noetherian.

Theorem 1.14. (Artin-Wedderburn) The following are equivalent:

- (a) R is artinian and $\operatorname{Rad}(R) = 0$,
- (b) $_{R}R$ is a finite direct sum of simple modules
- (c) $R \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}(\mathbb{D}_{\lambda})$, where \hat{A} is a finite index set, d_{λ} are positive integers, and \mathbb{D}_{λ} are division rings.

Proof. (a) \Leftrightarrow (b) is a consquence of Proposition ???.

(a) \leftarrow (c) is a consquence of the fact that the simple $M_{d_{\lambda}}(\mathbb{D}_{\lambda})$ module is $\mathbb{D}_{\lambda}^{d_{\lambda}}$ the vector space of column vectors of length d_{λ} .

(a) \Rightarrow (c): The map

$$\begin{array}{cccc} R^{\mathrm{op}} & \longrightarrow & \mathrm{End}_R({}_RR) \\ r & \longmapsto & \phi_r \end{array} \quad \text{where} \quad \phi_r(x) = xr, \quad \text{for } x \in R, \end{array}$$

is a ring isomorphism. Thus, by Schur's lemma,

$$R^{\mathrm{op}} \cong \mathrm{End}_R({}_RR) \cong \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{D}_\lambda), \quad \text{and thus} \quad R \cong \left(\bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{D}_\lambda)\right)^{\mathrm{op}} \cong \bigoplus_{\lambda \in \hat{A}} M_{d_\lambda}(\mathbb{D}_\lambda).$$

Radicals and finiteness conditions for rings

Let R be a ring.

The ring R is a **noetherian** if $_RR$ is noetherian.

The ring R is a **artinian** if $_{R}R$ is artinian.

A left ideal of R is a submodule of $_RR$.

An ideal I of R is **primitive** if $I = \operatorname{ann}(M)$ for a simple R-module M.

Simple and almost simple rings

The ring R is **primitive** if 0 is a primitive ideal.

The ring R is a **semiprimitive** if $\operatorname{Rad}(R) = 0$.

The ring R is **simple** if its only ideals are 0 and R.

The ring R is **prime** if A, B are ideals with AB = 0 then A = 0 or B = 0.

An ideal P is **prime** if R/P is a prime ring.

The ring R is **semiprime** if 0 is the only nilpotent ideal.

Proposition 1.15. Let R be a ring and let Spec(R) be the set of prime ideals of R.

(a) R is semiprime if and only if $\bigcap_{\mathfrak{p}\in \operatorname{Spec}(R)}\mathfrak{p}=0.$

(b) R is primitive if and only if R is a dense subring of $\operatorname{End}_{\mathbb{D}}(U)$ for some \mathbb{D} -vector space U.

(c) R is artinian and semiprime if and only if R is artinian and semiprimitive.

(d) R is artinian and primitive if and only if R is artinian and simple.

(e) R is artinian and primitive if and only if $R \cong M_n(\mathbb{D})$, for some $n \in \mathbb{Z}_{>1}$, \mathbb{D} a division ring.

Proof.

Burnside's theorem and Jacobson density

A subring R of $\operatorname{End}_{\mathbb{D}}(U)$ is **dense** if for every $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ and every finitely generated $V \subseteq U$ there is an $r \in R$ with $\operatorname{Res}_{V}^{U}(r) = \operatorname{Res}_{V}^{U}(\alpha)$. Define a topology on $\operatorname{End}_{\mathbb{D}}(U)$ by making

$$U(\alpha, V) = \{\beta \in \operatorname{End}_{\mathbb{D}}(U) \mid \operatorname{Res}_{V}^{U}(\beta) = \operatorname{Res}_{V}^{U}(\alpha)\} \quad \text{open}$$

for each $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ and each finitely generated $V \subseteq U$. Then R is **dense** in $\operatorname{End}_{\mathbb{D}}(U)$ if $\operatorname{End}_{\mathbb{D}}(U)$ is the closure of R, $\overline{R} = \operatorname{End}_{\mathbb{D}}(U)$.

Example. Consider an infinite dimensional vector space U with basis u_1, u_2, \ldots Then

 $\operatorname{End}_{\mathbb{C}}(U) \cong M_{\infty}(\mathbb{C})$ = {infinite matrices with a finite number of nonzero entries in each column}.

Let

 $I = \{ \text{finite rank elements of } M_{\infty}(\mathbb{C}) \} \\ = \{ \alpha \in \text{End}_{\mathbb{C}}(U) \mid \text{im } \alpha \text{ is finite dimensional} \}.$

and let

$$R = \{ n \cdot 1 + \ell \mid n \in \mathbb{Z}, \ell \in I \}.$$

Then R is a dense subring of $\operatorname{End}_{\mathbb{C}}(U)$,

$$\mathbb{C} = \operatorname{End}_R(U)$$
 and $R \neq \operatorname{End}_{\mathbb{C}}(U)$.

Theorem 1.16. Let U be a simple R-module and let Im(R) be the image of R in End(U). Let $\mathbb{D} = \text{End}_R(U)$, a division ring.

- (a) $\operatorname{Im}(R)$ is a dense subring of $\operatorname{End}_{\mathbb{D}}(U)$.
- (b) If R is artinian the $\text{Im}(R) = \text{End}_{\mathbb{D}}(U)$.

Proof. We will show that if $x_1, \ldots, x_n \in U$ and $\alpha \in \text{End}_{\mathbb{D}}(U)$ then there is an $r \in R$ with $rx_i = \alpha x_i$ for $1 \leq i \leq n$. The proof is by induction on n using the following lemma:

Lemma 1.17. Let $u \in U$. Then

$$\operatorname{ann}(x_1,\ldots,x_n)u = 0 \qquad \Longleftrightarrow \qquad u \in \mathbb{D}\operatorname{-span}\{x_1,\ldots,x_n\}.$$

Assume the lemma and assume that $x_1, \ldots, x_n \in U$ and $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ are given. By the induction assumption, there is $r' \in R$ such that

$$r'x_i = \alpha x_i, \quad \text{for } 1 \le i \le n-1.$$

If $x_n \notin \mathbb{D}$ -span $\{x_1, \ldots, x_n\}$ then, by the lemma, $\operatorname{ann}(x_1, \ldots, x_{n-1})x_n \neq 0$. Since $\operatorname{ann}(x_1, \ldots, x_{n-1})x_n$ is a nonzero *R*-submodule of *U* and *U* is simple $\operatorname{ann}(x_1, \ldots, x_{n-1})x_n = U$. So

$$\ell x_n = (\alpha - r')x_n$$
, for some $\ell \in \operatorname{ann}(x_1, \dots, x_{n-1})$.

Then

$$(r'+\ell)x_i = x_i$$
, for $1 \le i \le n-1$, and $(r'+\ell)x_n = x_n$

(b) Let R be artinian and let U be a simple module. Let I be a minimal element of

$$\{\operatorname{ann}(x_1,\ldots,x_k) \mid x_1,\ldots,x_k \in U\}$$

and let x_1, \ldots, x_k be the finite subset of U such that $I = \operatorname{ann}(x_1, \ldots, x_k)$. Let $u \in I$. If $\operatorname{ann}(x_1, \ldots, x_k)u \neq 0$ then $\operatorname{ann}(x_1, \ldots, x_k, u) \subseteq I$ and $\operatorname{ann}(x_1, \ldots, x_k, u) \neq I$, a contradiction to the minimality of I. So $\operatorname{ann}(x_1, \ldots, x_n)u = 0$. So $u \in \mathbb{D}$ -span $\{x_1, \ldots, x_n\}$. So U is finite dimensional. Now (c) follows from (b).

Proof of the lemma. \Leftarrow : trivial.

 \Rightarrow : Assume $\operatorname{ann}(x_1, \ldots, x_n)u = 0$. The proof is by induction on n.

Case 1. If $\operatorname{ann}(x_1, \ldots, x_{n-1})x_n = 0$ then $x_n \in \operatorname{span}\{x_1, \ldots, x_{n-1}\}$ and so $\operatorname{ann}(x_1, \ldots, x_{n-1})u = 0$. So $u \in \operatorname{span}\{x_1, \ldots, x_{n-1}\}$.

Case 2. If $\operatorname{ann}(x_1, \ldots, x_{n-1})x_n \neq 0$ then $\operatorname{ann}(x_1, \ldots, x_{n-1})x_n = U$. Define an *R*-module homomorphism

If $\ell x_n = \kappa x_n$ then $\ell - \kappa \in \operatorname{ann}(x_1, \ldots, x_{n-1}) \cap \operatorname{ann}(x_n) = \operatorname{ann}(x_1, \ldots, x_n)$. So $(\ell - \kappa)u = 0$ and $\ell u = \kappa u$ which shows that α is well defined. So $\alpha \in \mathbb{D} = \operatorname{End}_R(U)$.

Now $\operatorname{ann}(x_1, \ldots, x_{n-1})(u - \alpha x_n) = 0$ and so, by the induction hypothesis, $u - \alpha x_n \in \operatorname{span}\{x_1, \ldots, x_{n-1}\}$. So $u \in \operatorname{span}\{x_1, \ldots, x_n\}$.

3. Radicals of algebras

Let A be an algebra over a field \mathbb{F} .

The radical of A is the intersection of the maximal left ideals of A,

$$\operatorname{Rad}(A) = \bigcap_{L_{\max}} L_{\max}.$$

Proposition 3.1. Assume A satisfies the descending chain condition on left ideals. Then A is completely reducible if and only if Rad(A) = 0.

Proof.

A nilpotent ideal is an ideal I such that $I^k = 0$ for some $k \in \mathbb{Z}_{>0}$. A nilpotent element is an element $x \in A$ such that $x^k = 0$ for some $k \in \mathbb{Z}_{>0}$.

If $\vec{t}: A \to \mathbb{C}$ is a trace on A then

$$\operatorname{Rad}(\vec{t}) = \{ a \in A \mid \vec{t}(ab) = 0 \text{ for all } b \in A \}.$$

Proposition 3.2.

(e) $\operatorname{Rad}(A) = \operatorname{Rad}(\vec{t})$, if \vec{t} is the trace of a faithful representation of A.

Proof.

6. References

- [Bou1] N. BOURBAKI, Algebra I, Chapters 1–3, Elements of Mathematics, Springer-Verlag, Berlin, 1990.
- [Bou2] N. BOURBAKI, Groupes et Algèbres de Lie, Chapitre IV, V, VI, Eléments de Mathématique, Hermann, Paris (1968).