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1. Definitions

Finiteness conditions

Let R be a ring with identity and let M be an R-module.

The module M is noetherian if it satisfies ACC on submodules.

The module M is artinian if it satisfies DCC on submodules.

The module M is finitely generated if there is a finite subset {m1, . . . ,mk} of M such that
M = span-{m1, . . . ,mk}, the submodule generated by {m1, . . . ,mk}.
A composition series of M is a chain of submodules 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such that
Mi/Mi+1 is simple.

Proposition 1.1. Let N be a submodule of M .

(a) M is noetherian if and only if N and M/N are noetherian.

(b) M is artinian if and only if N and M/N are artinian.

(c) M has a finite composition series if and only if N and M/N have finite composition series.

(d) If M is finitely generated then M/N is finitely generated.

Proof.

Proposition 1.2.

(a) M is noetherian and artinian if and only if M has a finite composition series.

(b) M is noetherian if and only if every submodule of M is finitely generated.

(c) If R is noetherian and M is finitely generated then M is noetherian.
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Proof. (a) follows from Theorem ???, below.

(b) ⇐: Assume that every submodule of M is finitely generated. Let N1 ⊆ N2 ⊆ · · · be an
ascending chain. Then

⋃
Ni is a finitely generated submodule of M Let x1, . . . , xk be generators

and let `1, . . . , `k be such that xi ∈ N`i
. Then x1, . . . , xk ∈ Nr where r = max{`1, . . . , `k}. So⋃

Ni = Nr and Nr = Nr+1 = N` for all ` > r. So M is noetherian.

(b) ⇒: Assume that M is noetherian and let N be a submodule of M . Then

{P ⊆ N | P is finitely generated}

has a maximal element Pmax. If Pmax 6= N let x ∈ N\Pmax. Then P ⊆ 〈Pmax, x〉 ⊆ N and
〈Pmax, x〉 is finitely generated, which is a contradiction to the maximality of Pmax. So Pmax = N .
So every submodule of M is finitely generated.

Theorem 1.3. Let M be an R-module.

(a) Any two series

0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M and 0 ⊆ M ′
1 ⊆ M ′

2 ⊆ · · · ⊆ M ′
s = M

can be refined to have the same length and the same composition factors.

(b) M has a finite composition series if and only if M any series can be refined to a composition
series.

(c) If M has a finite composition series then any two composition series for M have the same
length.

Proof. In the series (*) change Mi ⊆ Mi+1 to

Mi = (M ′
0 + Mi) ∩Mi+1 ⊆ (M ′

1 + Mi) ∩Mi+1 ⊆ · · · ⊆ (M ′
s + Mi) ∩Mi+1 = Mi+1,

and change M ′
j ⊆ M ′

j+1 to

Mj = (M0 + M ′
j) ∩M ′

j+1 ⊆ (M1 + M ′
j) ∩M ′

j+1 ⊆ · · · ⊆ (Mr + M ′
j) ∩M ′

j+1 = M ′
j+1.

Claim:
(M ′

j + Mi−1) ∩Mi

(M ′
j−1 + Mi−1) ∩Mi

∼=
(Mi + M ′

j−1) ∩M ′
j

(Mi−1 + M ′
j−1) ∩M ′

j

.

Lemma 1.4. (Modular law) If A,B,C are submodules of M and B ⊆ C then

C + (A ∩B) = (C + A) ∩B.

Proof. If k + b ∈ C + (A ∩B) then k + b ∈ (C + A) ∩B. So C + (A ∩B) ⊆ (C + A) ∩B.

If b = k + a ∈ (C + A) ∩B then b = k + a = k + (b− k) ∈ C + (A ∩B) and so (C + A) ∩B ⊆
C + (A ∩B).
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Lemma 1.5. Zassenhaus isomorphism If V ⊆ U and V ′ ⊆ U ′ are submodules of M then

(U + V ′) ∩ U ′

(V + V ′) ∩ U ′
∼=

U ∩ U ′

(U ∩ V ′) + (U ′ ∩ V )
∼=

(U ′ + V ) ∩ U

(V ′ + V ) ∩ U
.

Proof.

Examples.
(1) Let F be a field. A finite dimensional vector space is both noetherian and artinian. An infinite

dimensional vector space V has Rad(V ) = 0, soc(V ) and is neither noetherian or artinian.
(2) Let R = Z. Then every submodule of RR is generated by one element. The ring Z is noetherian

but not artinian: Z ⊇ pZ ⊇ p2Z ⊇ · · ·.

Rad(Z) =
⋂

Lmax

Lmax =
⋂

p prime

pZ = 0.

Radicals and socles
If m ∈ M , ann(m) = {r ∈ R | rm = 0}.
The annihilator of M is ann(M) = {r ∈ R | rM = 0}.
The radical of M is

Rad(M) =
⋂

Pmax

Pmax, the intersection of the maximal proper submodules of M .

The socle of M is

soc(M) =
∑
Pmin

Pmin, the sum of the simple submodules of M .

The head of M is M/Rad(M).
The socle series of M is

0 = soc0(M) ⊆ soc1(M) ⊆ · · ·

where soc1(M) = M and soci(M) is determined by

soci(M)
soci−1(M)

= soc
(

M

soci−1(M)

)
.

The radical series of M is

0 = Rad0(M) ⊇ Rad1(M) ⊇ · · · where Radi(M) = Rad(Radi−1(M)).

The socle length of M is the smallest positive integer n such that socn(M) = M and socn−1(M) 6=
M .
The radical length of M is the smallest positive integer n such that Radn(M) = 0 and Radn−1(M) 6=
0.
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The socle layers of M are sock(M)/sock−1(M).
The radical layers of M are Radk−1(M)/Radk(M).

Proposition 1.6. If M has socle length n them M has radical length n and

socj(M) ⊇ Radn−j(M), 0 ≤ j ≤ n.

Proof.

Proposition 1.7. Let R be a ring.

(a) Rad(R) =
⋂

Lmax

Lmax, the intersection of the maximal left ideals of R.

(b) Rad(R) =
⋂

Iprim

Iprim, the intersection of the primitive two-sided ideals of R.

(c) Rad(R) = {x ∈ R | 1− axb is invertible for all a, b ∈ R}.
(d) Rad(R) contains all nilpotent ideals.

Proof. (a) This is a restatement of the definition of Rad(R), since the submodules of RR are the
left ideals of R.
(b) If M is a simple R-module and m ∈ M then ann(m) = {r ∈ R | rm = 0} is a maximal left
ideal of R because R/ann(m) ∼= M . The primitive ideal

ann(M) = {r ∈ R | rM = 0} =
⋂

m∈M

ann(m).

(c) Let s ∈ Rad(R). Then R(1−x) = R since 1−x is not in any maximal left ideal. So t(1−x) = 1
for some t ∈ R. So 1 − t = −tx ∈ Rad(R). So 1 − (1 − t) = t has a left inverse, which must be
1− x. So 1− x is invertible in R. By (b) Rad(R) is an indeal and so 1− axb is invertible for every
a, b ∈ R. So Rad(R) = {x ∈ R | 1− axb is invertible for all a, b ∈ R}

Assume 1−axb is invertible for all a, b ∈ R. Let Lmax be a maximal left ideal not containing x.
Then 1 = ax+` for some a ∈ R, p ∈ Lmax. So 1−ax ∈ Lmax. So Lmax = R which is a contradiction.
So x is an element of every maximal left ideal. So {x ∈ R | 1− axb is invertible for all a, b ∈ R} ⊆
Rad(R).
(d) Let N be a nilpotent ideal with Nk = 0. If x ∈ N then xk ∈ Nk = 0 and so xk = 0. Then
(1 + x + x2 + · · ·+ xk−1)(1− x) = 1 and so 1− x is invertible. Thus, since N is an ideal, 1− axb
is invertible for every a, b ∈ R. Thus, by (c), N ⊆ Rad(R).

The proof of (bb) and (bc) of the following theorem uses:

Lemma 1.8. (Nakayama’s lemma) If M is a finitely generated R-module and Rad(R)M = M
them M = 0.

Proof. Assume M 6= 0. Let m1, . . . ,mk be a minimal generating set for M . Since Rad(R)M = M ,

mk =
k∑

i=1

aimi, with ai ∈ Rad(R).
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So (1 − ak)mk =
∑k−1

i=1 aimi. But 1 − ak has a left inverse in R. So mk =
∑k−1

i=1 (1 − ak)−1aimi,
which contradicts the minimality. So M = 0.

Theorem 1.9. Let R be an artinian ring. Then

(a) Rad(R) is the largest nilpotent ideal of R.

(b) If M is a finitely generated R-module then

(ba) M is noetherian and artinian,

(bb) Rad(M) = Rad(R)M ,

(bc) soc(M) = {m ∈ M | Rad(R)m = 0}.
(c) R is noetherian.

Proof. (a) Let n be such that Rad(R)n = Rad(R)2n. If Rad(R)n 6= 0 then there is a minimal
left ideal with Rad(R)nI 6= 0 (since Rad(R)nRad(R)n 6= 0). Let x ∈ I, x 6= 0, be such that
Rad(R)nx 6= 0. By minimality, I = Rad(R)nx = Rad(R)nRad(R)nx. So x = ax, with a ∈ Rad(R).
So (1−a)x = 0. Since 1−a is invertible in R, x = 0. But this is a contradiction. So Rad(R)n = 0.
So Rad(R) is a nilpotent ideal.

(ba) Let Mi = Rad(R)iM . Then, since M is finitely generated and R is artinian, there is a
surjective homomorphism

R⊕ · · · ⊕R −→ M.

Thus M is artinian. So Mi/Mi+1 is artinian and Rad(R) acts by 0. So Mi/Mi+1 is a R/Rad(R)-
module and thus Mi/Mi+1 is a finite direct sum of simple submodules. So, by (a), M has a
composition series and is both noetherian and artinian.

(bb) By Nakayama’s lemma, Rad(R)
(
M/Nmax

)
= 0 for every maximal proper submodule Nmax ⊆

M . So Rad(R)M ⊆ Nmax for every Nmax. So Rad(R)M ⊆ Rad(M).
Since M/M1 is a finite direct sum of simple modules, Rad(M/M1) = 0. So Rad(M) ⊆ M1 =

Rad(R)M .

(bc) The set
N = {m ∈ M | Rad(R)m = 0}

is a submodule of M and Rad(R)N = 0. Since N is artinian, N is a finite direct sum of simple
submodules. So soc(M) ⊇ N .

Nakayama’s lemma implies that if S is a simple module, then Rad(R)S = 0. So Rad(R)soc(M) =
0. So soc(M) ⊆ N .

(c) follows from (ba).

Semisimplicity

Proposition 1.10. Let M be an R-module. Then M has a simple submodule.

Proof.

Proposition 1.11. (Schur’s lemma)
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(a) If Rλ and Rµ are simple R-modules then

HomR(Rλ, Rµ) = 0, if Rλ 6∼= Rµ, and EndR(Rλ) = Dλ is a division ring.

(b) If M =
⊕
λ∈Â

(Rλ)⊕mλ is a finite direct sum of simple modules then

EndR(M) =
⊕
λ∈Â

Mmλ
(Dλ),

where Dλ = EndR(Rλ) are division rings.

Proof. (a) Let φ:Rλ → Rµ be a homomorphism. Then, since Rλ and Rµ are simple, kerφ is either
0 or Rλ, and im φ is either 0 or Rµ. So φ is either 0 or an isomorphism.

(b) If M =
⊕
λ∈Â

mλ⊕
i=1

Rλ,i, with Rλ,i ∼= Rλ, for 1 ≤ i ≤ mλ, then

EndR(M) =
⊕
λ∈Â

mλ⊕
i,j=1

EndR(Rλ,i, Rλ,j) =
⊕
λ∈Â

Mmλ
(Dλ).

Proposition 1.12. Let M be an R-module.

(a) soc(M) = M if and only if for every submodule N ⊆ M there is a submodule N ′ ⊆ M
with M = N ⊕N ′.

(b) Let N be a submodule of M . If soc(M) = M then soc(N) = N and soc(M/N) = M/N .

Proof. (a) ⇐: If soc(M) 6= M then M = soc(M)⊕N ′. Let N be a simple submodule of N ′ (the
existence of N is nontrivial and uses Zorn’s lemma, see Theorem ???). Then soc(M)+N 6= soc(M),
but this is a contradiction to the definition of soc(M).
(a) ⇒: Let N be a submodule of M and let N ′ =

∑
P∩N=0 P be the sum of the simple submodules

P of M such that P ∩N = 0. Then N ∩N ′ = 0 since, for a simple submodule P of M , P ∩N = P
or P ∩N = 0. Since N + N ′ ⊇ soc(M) = M , N + N ′ = M . So M = N ⊕N ′.

Proposition 1.13. The following are equivalent:

(a) M is a finite direct sum of simple submodules.

(b) M is artinian and soc(M) = M .

(c) M is noetherian and soc(M) = M .

(d) M has a finite composition series and soc(M) = M .

(e) M is finitely generated and soc(M) = M .

(f) M is artinian and Rad(M) = 0.

Proof. The implications (a) ⇔ (b), (a) ⇔ (c), (a) ⇔ (d) follow directly from Proposition ??? and
Proposition ???a.
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(a) ⇒ (f) follows directly from the definitions.
(f) ⇒ (a): Let Ni be a finite (by DCC) number of maximal proper submodules such that

Rad(M) =
⋂

Ni = 0.

Then
φ: M −→ M/N1 ⊕ · · · ⊕M/Nk

m 7−→ (m + N1, . . . ,m + Nk)

has ker φ = 0. So M ∼= im(M) which is a submodule of the semisimple module M/N1⊕ · · ·M/Nk.
So M ∼= im(M) is finite length and soc(M) = M . So M is a direct sum of simple submodules.
(c) ⇒ (e) since M is noetherian implies that M is finitely generated.
(e) ⇒ (c): Let N be a submodule of M and let N ′ be a complement. Then N ∼= M/N ′ and
thus, since M is finitely generated, N is finitely generated. Thus every submodule of M is finitely
generated. So M is noetherian.

Theorem 1.14. (Artin-Wedderburn) The following are equivalent:

(a) R is artinian and Rad(R) = 0,
(b) RR is a finite direct sum of simple modules

(c) R ∼=
⊕
λ∈Â

Mdλ
(Dλ), where Â is a finite index set, dλ are positive integers, and Dλ are division

rings.

Proof. (a) ⇔ (b) is a consquence of Proposition ???.
(a) ⇐ (c) is a consquence of the fact that the simple Mdλ

(Dλ) module is Ddλ

λ the vector space of
column vectors of length dλ.
(a) ⇒ (c): The map

Rop −→ EndR(RR)
r 7−→ φr

where φr(x) = xr, for x ∈ R,

is a ring isomorphism. Thus, by Schur’s lemma,

Rop ∼= EndR(RR) ∼=
⊕
λ∈Â

Mdλ
(Dλ), and thus R ∼=

⊕
λ∈Â

Mdλ
(Dλ)

op

∼=
⊕
λ∈Â

Mdλ
(Dλ).

Radicals and finiteness conditions for rings
Let R be a ring.

The ring R is a noetherian if RR is noetherian.
The ring R is a artinian if RR is artinian.
A left ideal of R is a submodule of RR.
An ideal I of R is primitive if I = ann(M) for a simple R-module M .
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Simple and almost simple rings
The ring R is primitive if 0 is a primitive ideal.
The ring R is a semiprimitive if Rad(R) = 0.
The ring R is simple if its only ideals are 0 and R.
The ring R is prime if A,B are ideals with AB = 0 then A = 0 or B = 0.
An ideal P is prime if R/P is a prime ring.
The ring R is semiprime if 0 is the only nilpotent ideal.

Proposition 1.15. Let R be a ring and let Spec(R) be the set of prime ideals of R.

(a) R is semiprime if and only if
⋂

p∈Spec(R)

p = 0.

(b) R is primitive if and only if R is a dense subring of EndD(U) for some D-vector space U .

(c) R is artinian and semiprime if and only if R is artinian and semiprimitive.

(d) R is artinian and primitive if and only if R is artinian and simple.

(e) R is artinian and primitive if and only if R ∼= Mn(D), for some n ∈ Z≥1, D a division ring.

Proof.

Burnside’s theorem and Jacobson density

A subring R of EndD(U) is dense if for every α ∈ EndD(U) and every finitely generated
V ⊆ U there is an r ∈ R with ResU

V (r) = ResU
V (α). Define a topology on EndD(U) by making

U(α, V ) = {β ∈ EndD(U) | ResU
V (β) = ResU

V (α)} open

for each α ∈ EndD(U) and each finitely generated V ⊆ U . Then R is dense in EndD(U) if EndD(U)
is the closure of R, R = EndD(U).

Example. Consider an infinite dimensional vector space U with basis u1, u2, . . .. Then

EndC(U) ∼= M∞(C)
= {infinite matrices with a finite number of nonzero entries in each column}.

Let
I = {finite rank elements of M∞(C)}

= {α ∈ EndC(U) | im α is finite dimensional}.

and let
R = {n · 1 + ` | n ∈ Z, ` ∈ I}.

Then R is a dense subring of EndC(U),

C = EndR(U) and R 6= EndC(U).

Theorem 1.16. Let U be a simple R-module and let Im(R) be the image of R in End(U). Let
D = EndR(U), a division ring.
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(a) Im(R) is a dense subring of EndD(U).
(b) If R is artinian the Im(R) = EndD(U).

Proof. We will show that if x1, . . . , xn ∈ U and α ∈ EndD(U) then there is an r ∈ R with rxi = αxi

for 1 ≤ i ≤ n. The proof is by induction on n using the following lemma:

Lemma 1.17. Let u ∈ U . Then

ann(x1, . . . , xn)u = 0 ⇐⇒ u ∈ D-span{x1, . . . , xn}.

Assume the lemma and assume that x1, . . . , xn ∈ U and α ∈ EndD(U) are given. By the
induction assumption, there is r′ ∈ R such that

r′xi = αxi, for 1 ≤ i ≤ n− 1.

If xn 6∈ D-span{x1, . . . , xn} then, by the lemma, ann(x1, . . . , xn−1)xn 6= 0. Since ann(x1, . . . , xn−1)xn

is a nonzero R-submodule of U and U is simple ann(x1, . . . , xn−1)xn = U. So

`xn = (α− r′)xn, for some ` ∈ ann(x1, . . . , xn−1).

Then
(r′ + `)xi = xi, for 1 ≤ i ≤ n− 1, and (r′ + `)xn = xn.

(b) Let R be artinian and let U be a simple module. Let I be a minimal element of

{ann(x1, . . . , xk) | x1, . . . , xk ∈ U}

and let x1, . . . , xk be the finite subset of U such that I = ann(x1, . . . , xk). Let u ∈ I. If
ann(x1, . . . , xk)u 6= 0 then ann(x1, . . . , xk, u) ⊆ I and ann(x1, . . . , xk, u) 6= I, a contradiction
to the minimality of I. So ann(x1, . . . , xn)u = 0. So u ∈ D-span{x1, . . . , xn}. So U is finite
dimensional. Now (c) follows from (b).

Proof of the lemma. ⇐: trivial.
⇒: Assume ann(x1, . . . , xn)u = 0. The proof is by induction on n.

Case 1. If ann(x1, . . . , xn−1)xn = 0 then xn ∈ span{x1, . . . , xn−1} and so ann(x1, . . . , xn−1)u =
0. So u ∈ span{x1, . . . , xn−1}.

Case 2. If ann(x1, . . . , xn−1)xn 6= 0 then ann(x1, . . . , xn−1)xn = U . Define an R-module
homomorphism

α: U −→ U
`xn 7−→ `u, for ` ∈ ann(x1, . . . , xn−1).

If `xn = κxn then ` − κ ∈ ann(x1, . . . , xn−1) ∩ ann(xn) = ann(x1, . . . , xn). So (` − κ)u = 0 and
`u = κu which shows that α is well defined. So α ∈ D = EndR(U).

Now ann(x1, . . . , xn−1)(u−αxn) = 0 and so, by the induction hypothesis, u−αxn ∈ span{x1, . . . , xn−1}.
So u ∈ span{x1, . . . , xn}.

3. Radicals of algebras
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Let A be an algebra over a field F.
The radical of A is the intersection of the maximal left ideals of A,

Rad(A) =
⋂

Lmax

Lmax.

Proposition 3.1. Assume A satisfies the descending chain condition on left ideals. Then A is
completely reducible if and only if Rad(A) = 0.

Proof.

A nilpotent ideal is an ideal I such that Ik = 0 for some k ∈ Z>0. A nilpotent element is an
element x ∈ A such that xk = 0 for some k ∈ Z>0.

If ~t:A → C is a trace on A then

Rad(~t) = {a ∈ A | ~t(ab) = 0 for all b ∈ A}.

Proposition 3.2.
(e) Rad(A) = Rad(~t), if ~t is the trace of a faithful representation of A.

Proof.
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