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1. Definitions
Finiteness conditions

Let R be a ring with identity and let M be an R-module.
The module M is noetherian if it satisfies ACC on submodules.
The module M is artinian if it satisfies DCC on submodules.

The module M is finitely generated if there is a finite subset {mq,...,my} of M such that
M = span-{my,...,mg}, the submodule generated by {mq,...,ms}.

A composition series of M is a chain of submodules 0 = My C M; C --- C M,, = M such that
Mi/Mi—l-l is simple.

Proposition 1.1. Let N be a submodule of M.

(a) M is noetherian if and only if N and M /N are noetherian.

(b) M is artinian if and only if N and M /N are artinian.

(¢) M has a finite composition series if and only if N and M /N have finite composition series.
(d) If M is finitely generated then M /N is finitely generated.

Proof. 11

Proposition 1.2.

(a) M is noetherian and artinian if and only if M has a finite composition series.
(b) M is noetherian if and only if every submodule of M is finitely generated.
(c) If R is noetherian and M is finitely generated then M is noetherian.
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Proof. (a) follows from Theorem 777, below.

(b) «<: Assume that every submodule of M is finitely generated. Let Ny € Ny C --- be an
ascending chain. Then [J N; is a finitely generated submodule of M Let x1,...,x; be generators
and let fy,...,¢; be such that x; € Ny,. Then z1,...,2, € N, where r = max{/1,...,4;}. So
UN; =N, and N, = N, 41 = Ny for all £ > r. So M is noetherian.

(b) =: Assume that M is noetherian and let N be a submodule of M. Then
{P C N | P is finitely generated}
has a maximal element Ppax. If Ppax # N let £ € N\Ppax. Then P C (Ppax,xz) € N and

(Prax, =) is finitely generated, which is a contradiction to the maximality of Ppax. S0 Ppax = N.
So every submodule of M is finitely generated. I

Theorem 1.3. Let M be an R-module.

(a) Any two series
0OCMiCM;C---CM, =M and O0CM{CM,C---CM. =M

can be refined to have the same length and the same composition factors.

(b) M has a finite composition series if and only if M any series can be refined to a composition
series.

c) If M has a finite composition series then any two composition series for M have the same
D p
length.

Proof. In the series (*) change M; C M;;1 to

M; = (Mg + M;) N My © (M 4 M) N Mgy € -+ C (M + M) N My = Mig,
and change M]’ - M]‘Jrl to

Mj = (Mo + M;) WM ©(My+Mj)NM;,, C--- C (M, +M;)NM;,, =M;,,.
Claim:

(Mj+M;—1 )N M; (M + M;_;)NM;
(M]_, + M;_y) N M;  (My—y +M]_ )N M,

Lemma 1.4. (Modular law) If A, B,C are submodules of M and B C C then

C+(AnB)=(C+A)NB.

Proof. f k+be C+ (ANB)thenk+be (C+A)NB. SoC+ (ANB)C (C+A)NB.

Ifb=k+ac(C+A)NBthenb=k+a=k+(b—k)ecC+(ANB)andso (C+A)NBC
C+(ANnB). 1
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Lemma 1.5. Zassenhaus isomorphism If V C U and V' C U’ are submodules of M then

U+vH)ynu _ unu’ LU +vynu

(V+VHnU  UnV)+U'nV) (V'+V)nU’

Proof. 1

Examples.

(1) Let IF be a field. A finite dimensional vector space is both noetherian and artinian. An infinite
dimensional vector space V has Rad(V') = 0, soc(V') and is neither noetherian or artinian.

(2) Let R = Z. Then every submodule of g R is generated by one element. The ring Z is noetherian
but not artinian: Z 2 pZ D p?Z D - - -.

Rad(Z) = (| Lmax= [ pZ=0.
L

max p prlme

Radicals and socles

If m € M, ann(m) = {r € R | rm = 0}.

The annihilator of M is ann(M) = {r € R | rM = 0}.
The radical of M is

Rad(M) = ﬂ Prax, the intersection of the maximal proper submodules of M.
P

max

The socle of M is

soc(M) = Z Poin, the sum of the simple submodules of M.
Pmin

The head of M is M /Rad(M).

The socle series of M is
0 = soc’(M) C soct (M) C ---

where soct(M) = M and soc?(M) is determined by

The radical series of M is
0 =Rad’(M) D Rad'(M) D --- where Rad’(M) = Rad(Rad'~'(M)).

The socle length of M is the smallest positive integer n such that soc™ (M) = M and soc” (M) #
M.

The radical length of M is the smallest positive integer n such that Rad"™ (M) = 0 and Rad™ ' (M) #
0.
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The socle layers of M are soc*(M)/sock=1(M).
The radical layers of M are Rad"~'(M)/Rad*(M).

Proposition 1.6. If M has socle length n them M has radical length n and

soc/ (M) D Rad™ 7 (M), 0<j<n.
Proof. 1

Proposition 1.7. Let R be a ring.
(a) Rad(R) = m Lyyax, the intersection of the maximal left ideals of R.

Lmax

(b) Rad(R) = ﬂ I'vim, the intersection of the primitive two-sided ideals of R.
Inrim

(c) Rad(R) = {x € R | 1 — axb is invertible for all a,b € R}.

(d) Rad(R) contains all nilpotent ideals.

Proof. (a) This is a restatement of the definition of Rad(R), since the submodules of rR are the
left ideals of R.

(b) If M is a simple R-module and m € M then ann(m) = {r € R | rm = 0} is a maximal left
ideal of R because R/ann(m) = M. The primitive ideal

ann(M) ={re R |rM =0} = m ann(m).
meM

(c) Let s € Rad(R). Then R(1—x) = R since 1 —z is not in any maximal left ideal. So t(1—xz) =1
for some t € R. So 1 —t = —tx € Rad(R). So1— (1 —1t) =t has a left inverse, which must be
1—2. So 1—xz is invertible in R. By (b) Rad(R) is an indeal and so 1 — axb is invertible for every
a,b € R. So Rad(R) = {x € R | 1 — axb is invertible for all a,b € R}

Assume 1—azxb is invertible for all a,b € R. Let L. be a maximal left ideal not containing x.
Then 1 = ax+/fforsomea € R, p € Lijax. S0 1—ax € Lyax. S0 Linax = R which is a contradiction.
So z is an element of every maximal left ideal. So {z € R | 1 — azb is invertible for all a,b € R} C
Rad(R).

(d) Let N be a nilpotent ideal with N¥ = 0. If z € N then z* € N* = 0 and so 2¥ = 0. Then
(1+x+22+ - +2F1) (1 —2)=1and so 1 — x is invertible. Thus, since N is an ideal, 1 — axb
is invertible for every a,b € R. Thus, by (c), N C Rad(R). I

The proof of (bb) and (bc) of the following theorem uses:

Lemma 1.8. (Nakayama’s lemma) If M is a finitely generated R-module and Rad(R)M = M
them M = 0.

Proof. Assume M # 0. Let my, ..., my be a minimal generating set for M. Since Rad(R)M = M,

k
my = Z a;m;, with a; € Rad(R).
i=1
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So (1 —ag)my = Z;:ll a;m;. But 1 — ag has a left inverse in R. So my = Z;:ll(l — ag) " ta;m;,
which contradicts the minimality. So M = 0. 1

Theorem 1.9. Let R be an artinian ring. Then
(a) Rad(R) is the largest nilpotent ideal of R.
(b) If M is a finitely generated R-module then

(ba) M is noetherian and artinian,

(bb) Rad(M) = Rad(R)M,

(bc) soc(M) ={m € M | Rad(R)m = 0}.

(c) R is noetherian.

Proof. (a) Let n be such that Rad(R)" = Rad(R)?>". If Rad(R)™ # 0 then there is a minimal
left ideal with Rad(R)™I # 0 (since Rad(R)"Rad(R)™ # 0). Let x € I, x # 0, be such that
Rad(R)"z # 0. By minimality, I = Rad(R)"z = Rad(R)"Rad(R)"z. So z = ax, with a € Rad(R).
So (1—a)z = 0. Since 1 —a is invertible in R, x = 0. But this is a contradiction. So Rad(R)™ = 0.
So Rad(R) is a nilpotent ideal.

(ba) Let M; = Rad(R)*M. Then, since M is finitely generated and R is artinian, there is a
surjective homomorphism

Ro---®R— M.

Thus M is artinian. So M;/M;; is artinian and Rad(R) acts by 0. So M;/M;+1 is a R/Rad(R)-
module and thus M;/M;; is a finite direct sum of simple submodules. So, by (a), M has a
composition series and is both noetherian and artinian.

(bb) By Nakayama’s lemma, Rad(R) (M /Nmax) = 0 for every maximal proper submodule Ny, ., C
M. So Rad(R)M C Npax for every Npyax. So Rad(R)M C Rad(M).

Since M /M, is a finite direct sum of simple modules, Rad(M/M;) = 0. So Rad(M) C M; =
Rad(R)M.

(bc) The set
N ={me M | Rad(R)m = 0}

is a submodule of M and Rad(R)N = 0. Since N is artinian, IV is a finite direct sum of simple
submodules. So soc(M) DO N.

Nakayama’s lemma implies that if S is a simple module, then Rad(R)S = 0. So Rad(R)soc(M) =
0. So soc(M) C N.

(c) follows from (ba). B

Semisimplicity
Proposition 1.10. Let M be an R-module. Then M has a simple submodule.

Proof. 1

Proposition 1.11. (Schur’s lemma)
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(a) If R* and R* are simple R-modules then
Homp(R*, R*) =0, if R* % R*, and Endg(R*) =Dy is a division ring.

(b) If M = @(R’\)@"“ is a finite direct sum of simple modules then
AeA

Endp(M) = €D M, (D),
AeA

where Dy = Endg(R?) are division rings.

Proof. (a) Let ¢: R* — R be a homomorphism. Then, since R* and R* are simple, ker ¢ is either
0 or R*, and im ¢ is either 0 or R*. So ¢ is either 0 or an isomorphism.

mx
(b) It M = G E R, with RM = R, for 1 < i < my, then
A€A =1

Endgr(M) = €D @ Endg(RM, RM) = @5 My, (D).

Aed i,y=1 AeA

Proposition 1.12. Let M be an R-module.

(a) soc(M) = M if and only if for every submodule N C M there is a submodule N' C M
with M = N & N'.
(b) Let N be a submodule of M. If soc(M) = M then soc(N) = N and soc(M/N) = M/N.

Proof. (a) <: If soc(M) # M then M = soc(M) @ N’'. Let N be a simple submodule of N’ (the
existence of N is nontrivial and uses Zorn’s lemma, see Theorem ???). Then soc(M)+ N # soc(M),
but this is a contradiction to the definition of soc(M).

(a) =: Let N be a submodule of M and let N =", _, P be the sum of the simple submodules
P of M such that PN N = 0. Then NN N’ = 0 since, for a simple submodule P of M, PNN = P
or PNN =0. Since N+ N’ Dsoc(M)=M,N+N' =M.SoM=No&N'". 1

Proposition 1.13. The following are equivalent:
(a) M is a finite direct sum of simple submodules.
(b) M is artinian and soc(M) = M.
(c) M is noetherian and soc(M) = M.
(d) M has a finite composition series and soc(M) = M.
(e) M is finitely generated and soc(M) = M.
(f) M is artinian and Rad(M) = 0.

Proof. The implications (a) < (b), (a) < (c), (a) < (d) follow directly from Proposition 777 and
Proposition 777a.
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(a) = (f) follows directly from the definitions.
(f) = (a): Let N; be a finite (by DCC) number of maximal proper submodules such that

Rad(M) = [|N; =0.

Then

m +—— (m-+ Nyp,...,m+ Ng)
has ker ¢ = 0. So M = im(M) which is a submodule of the semisimple module M /Ny & - - - M /Ny.
So M = im(M) is finite length and soc(M) = M. So M is a direct sum of simple submodules.
(c) = (e) since M is noetherian implies that M is finitely generated.

(e) = (c): Let N be a submodule of M and let N’ be a complement. Then N = M/N’ and
thus, since M is finitely generated, N is finitely generated. Thus every submodule of M is finitely
generated. So M is noetherian. i

Theorem 1.14. (Artin-Wedderburn) The following are equivalent:
(a) R is artinian and Rad(R) = 0,
(b) rR is a finite direct sum of simple modules
(¢c) R @ Mg, (Dy), where A is a finite index set, dy are positive integers, and Dy are division
AeA
rings.
Proof. (a) < (b) is a consquence of Proposition 777?.
(a) <= (c) is a consquence of the fact that the simple My, (Dy) module is D} the vector space of
column vectors of length dy.

(a) = (c): The map

RP? — EndR(RR)

N b where  ¢.(x) = axr, forz € R,

is a ring isomorphism. Thus, by Schur’s lemma,

op

R > Endp(rR) = @) My, (Dy),  andthus R | P My, (D) | =D My, (D).
A€A A€A A€A

Radicals and finiteness conditions for rings
Let R be a ring.

The ring R is a noetherian if p R is noetherian.

The ring R is a artinian if pR is artinian.

A left ideal of R is a submodule of rR.

An ideal I of R is primitive if I = ann(M) for a simple R-module M.
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Simple and almost simple rings

The ring R is primitive if 0 is a primitive ideal.

The ring R is a semiprimitive if Rad(R) = 0.

The ring R is simple if its only ideals are 0 and R.

The ring R is prime if A, B are ideals with AB =0 then A =0 or B =0.
An ideal P is prime if R/P is a prime ring.

The ring R is semiprime if 0 is the only nilpotent ideal.

Proposition 1.15. Let R be a ring and let Spec(R) be the set of prime ideals of R.
(a) R is semiprime if and only if ﬂ p=0.
pESpec(R)
(b) R is primitive if and only if R is a dense subring of Endp(U) for some D-vector space U.
(c) R is artinian and semiprime if and only if R is artinian and semiprimitive.
(d) R is artinian and primitive if and only if R is artinian and simple.

(e) R is artinian and primitive if and only if R = M, (D), for some n € Z>1, D a division ring.

Proof. 1

Burnside’s theorem and Jacobson density

A subring R of Endp(U) is dense if for every a € Endp(U) and every finitely generated
V C U there is an r € R with Res{ (r) = Resy (a). Define a topology on Endp(U) by making

Ula,V) = {8 € Endp(U) | Res¥(8) = Res¥(a)} open
for each o € Endp(U) and each finitely generated V' C U. Then R is dense in Endp(U) if Endp(U)
is the closure of R, R = Endp(U).
Example. Consider an infinite dimensional vector space U with basis uy, ua,.... Then

Endc(U) = M« (C)

= {infinite matrices with a finite number of nonzero entries in each column}.

Let
I = {finite rank elements of M, (C)}

={a € End¢(U) | im « is finite dimensional}.

and let
R={n-14+¢|neZlecl}

Then R is a dense subring of End¢(U),

C =Endr(U) and R # Endc(U).

Theorem 1.16. Let U be a simple R-module and let Im(R) be the image of R in End(U). Let
D = Endg(U), a division ring.
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(a) Im(R) is a dense subring of Endp(U).
(b) If R is artinian the Im(R) = Endp(U).

Proof. We will show that if z1,...,z, € U and o € Endp(U) then there is an r € R with rx; = ax;
for 1 < ¢ < n. The proof is by induction on n using the following lemma:

Lemma 1.17. Letu € U. Then
ann(xy,...,x,)u=>0 — u € D-span{zy,...,x,}.
Assume the lemma and assume that zi,...,z, € U and a € Endp(U) are given. By the
induction assumption, there is ' € R such that
r'x; = owy, for1<i<n-—1.

If x,, & D-span{x1,...,x,} then, by the lemma, ann(z1,...,z,—1)x, # 0. Since ann(z1,...,T,—1)T,
is a nonzero R-submodule of U and U is simple ann(x1,...,2,—1)z, = U. So

lx, = (a—1")z,, for somel € ann(zy,...,Tn_1).

Then
(r'+0x; =25 forl1<i<n-—1, and (r' + )z, = .

(b) Let R be artinian and let U be a simple module. Let I be a minimal element of
{ann(z1,...,2k) | 1,..., 2, € U}

and let x1,...,z be the finite subset of U such that I = ann(xy,...,x;). Let uw € I. If

ann(xy,...,xx)u # 0 then ann(zy,...,zk,u) C I and ann(xy,...,zE,u) # I, a contradiction

to the minimality of I. So ann(zq,...,z,)u = 0. So u € D-span{xi,...,x,}. So U is finite
dimensional. Now (c) follows from (b). 1

Proof of the lemma. <: trivial.

=: Assume ann(xy,...,z,)u = 0. The proof is by induction on n.

Case 1. Ifann(z1,...,2y—1)x, = 0 then x,, € span{xy,...,2,_1}andsoann(zy,...,x,_1)u =
0. So u € span{xy,...,Zp_1}.

Case 2. If ann(zq,...,2p—1)z, # 0 then ann(xy,...,2,-1)z, = U. Define an R-module
homomorphism

au U — U
bx, +—— fu, for ¢ € ann(zq,...,2n-1).

If bx,, = Kxy, then £ — Kk € ann(zy,...,2,-1) Nann(x,) = ann(x,...,x,). So ({ — k)u = 0 and

fu = ku which shows that « is well defined. So a € D = Endg(U).

Now ann(x1,...,z,—1)(u—ax,) = 0 and so, by the induction hypothesis, u—ax,, € span{xy,...,z,_1}.

So u € span{z1,...,zn}. 1

3. Radicals of algebras
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Let A be an algebra over a field F.
The radical of A is the intersection of the maximal left ideals of A,

Rad(A) = () Lmax-
L

max

Proposition 3.1. Assume A satisfies the descending chain condition on left ideals. Then A is
completely reducible if and only if Rad(A) = 0.

Proof. 1
A nilpotent ideal is an ideal I such that I* = 0 for some k € Z~q. A nilpotent element is an
element = € A such that z* = 0 for some k € Zq.
If i: A — C is a trace on A then
Rad(f) = {a € A | t(ab) = 0 for all b € A}.
Proposition 3.2.

(e) Rad(A) = Rad(#), if  is the trace of a faithful representation of A.

Proof. 11
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