Radicals

Arun Ram*
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu

December 26, 2003

1. Definitions

Finiteness conditions

Let R be a ring with identity and let M be an R-module.
The module M is noetherian if it satisfies ACC on submodules.
The module M is artinian if it satisfies DCC on submodules.
The module M is finitely generated if there is a finite subset $\left\{m_{1}, \ldots, m_{k}\right\}$ of M such that $M=\operatorname{span}-\left\{m_{1}, \ldots, m_{k}\right\}$, the submodule generated by $\left\{m_{1}, \ldots, m_{k}\right\}$.
A composition series of M is a chain of submodules $0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{n}=M$ such that M_{i} / M_{i+1} is simple.

Proposition 1.1. Let N be a submodule of M.
(a) M is noetherian if and only if N and M / N are noetherian.
(b) M is artinian if and only if N and M / N are artinian.
(c) M has a finite composition series if and only if N and M / N have finite composition series.
(d) If M is finitely generated then M / N is finitely generated.

Proof.

Proposition 1.2.

(a) M is noetherian and artinian if and only if M has a finite composition series.
(b) M is noetherian if and only if every submodule of M is finitely generated.
(c) If R is noetherian and M is finitely generated then M is noetherian.

[^0]Proof. (a) follows from Theorem ???, below.
$(\mathrm{b}) \Leftarrow$: Assume that every submodule of M is finitely generated. Let $N_{1} \subseteq N_{2} \subseteq \cdots$ be an ascending chain. Then $\bigcup N_{i}$ is a finitely generated submodule of M Let x_{1}, \ldots, x_{k} be generators and let $\ell_{1}, \ldots, \ell_{k}$ be such that $x_{i} \in N_{\ell_{i}}$. Then $x_{1}, \ldots, x_{k} \in N_{r}$ where $r=\max \left\{\ell_{1}, \ldots, \ell_{k}\right\}$. So $\bigcup N_{i}=N_{r}$ and $N_{r}=N_{r+1}=N_{\ell}$ for all $\ell>r$. So M is noetherian.
(b) \Rightarrow : Assume that M is noetherian and let N be a submodule of M. Then

$$
\{P \subseteq N \mid P \text { is finitely generated }\}
$$

has a maximal element $P_{\max }$. If $P_{\max } \neq N$ let $x \in N \backslash P_{\max }$. Then $P \subseteq\left\langle P_{\max }, x\right\rangle \subseteq N$ and $\left\langle P_{\max }, x\right\rangle$ is finitely generated, which is a contradiction to the maximality of $P_{\max }$. So $P_{\max }=N$. So every submodule of M is finitely generated.

Theorem 1.3. Let M be an R-module.
(a) Any two series

$$
0 \subseteq M_{1} \subseteq M_{2} \subseteq \cdots \subseteq M_{r}=M \quad \text { and } \quad 0 \subseteq M_{1}^{\prime} \subseteq M_{2}^{\prime} \subseteq \cdots \subseteq M_{s}^{\prime}=M
$$

can be refined to have the same length and the same composition factors.
(b) M has a finite composition series if and only if M any series can be refined to a composition series.
(c) If M has a finite composition series then any two composition series for M have the same length.

Proof. In the series (${ }^{*}$) change $M_{i} \subseteq M_{i+1}$ to

$$
M_{i}=\left(M_{0}^{\prime}+M_{i}\right) \cap M_{i+1} \subseteq\left(M_{1}^{\prime}+M_{i}\right) \cap M_{i+1} \subseteq \cdots \subseteq\left(M_{s}^{\prime}+M_{i}\right) \cap M_{i+1}=M_{i+1}
$$

and change $M_{j}^{\prime} \subseteq M_{j+1}^{\prime}$ to

$$
M_{j}=\left(M_{0}+M_{j}^{\prime}\right) \cap M_{j+1}^{\prime} \subseteq\left(M_{1}+M_{j}^{\prime}\right) \cap M_{j+1}^{\prime} \subseteq \cdots \subseteq\left(M_{r}+M_{j}^{\prime}\right) \cap M_{j+1}^{\prime}=M_{j+1}^{\prime}
$$

Claim:

$$
\frac{\left(M_{j}^{\prime}+M_{i-1}\right) \cap M_{i}}{\left(M_{j-1}^{\prime}+M_{i-1}\right) \cap M_{i}} \cong \frac{\left(M_{i}+M_{j-1}^{\prime}\right) \cap M_{j}^{\prime}}{\left(M_{i-1}+M_{j-1}^{\prime}\right) \cap M_{j}^{\prime}} .
$$

Lemma 1.4. (Modular law) If A, B, C are submodules of M and $B \subseteq C$ then

$$
C+(A \cap B)=(C+A) \cap B .
$$

Proof. If $k+b \in C+(A \cap B)$ then $k+b \in(C+A) \cap B$. So $C+(A \cap B) \subseteq(C+A) \cap B$.
If $b=k+a \in(C+A) \cap B$ then $b=k+a=k+(b-k) \in C+(A \cap B)$ and so $(C+A) \cap B \subseteq$ $C+(A \cap B)$.

Lemma 1.5. Zassenhaus isomorphism If $V \subseteq U$ and $V^{\prime} \subseteq U^{\prime}$ are submodules of M then

$$
\frac{\left(U+V^{\prime}\right) \cap U^{\prime}}{\left(V+V^{\prime}\right) \cap U^{\prime}} \cong \frac{U \cap U^{\prime}}{\left(U \cap V^{\prime}\right)+\left(U^{\prime} \cap V\right)} \cong \frac{\left(U^{\prime}+V\right) \cap U}{\left(V^{\prime}+V\right) \cap U}
$$

Proof.

Examples.

(1) Let \mathbb{F} be a field. A finite dimensional vector space is both noetherian and artinian. An infinite dimensional vector space V has $\operatorname{Rad}(V)=0, \operatorname{soc}(V)$ and is neither noetherian or artinian.
(2) Let $R=\mathbb{Z}$. Then every submodule of ${ }_{R} R$ is generated by one element. The ring \mathbb{Z} is noetherian but not artinian: $\mathbb{Z} \supseteq p \mathbb{Z} \supseteq p^{2} \mathbb{Z} \supseteq \cdots$.

$$
\operatorname{Rad}(\mathbb{Z})=\bigcap_{L_{\max }} L_{\max }=\bigcap_{p \text { prime }} p \mathbb{Z}=0
$$

Radicals and socles

If $m \in M, \operatorname{ann}(m)=\{r \in R \mid r m=0\}$.
The annihilator of M is $\operatorname{ann}(M)=\{r \in R \mid r M=0\}$.
The radical of M is

$$
\operatorname{Rad}(M)=\bigcap_{P_{\max }} P_{\max }, \quad \text { the intersection of the maximal proper submodules of } M
$$

The socle of M is

$$
\operatorname{soc}(M)=\sum_{P_{\min }} P_{\min }, \quad \text { the sum of the simple submodules of } M
$$

The head of M is $M / \operatorname{Rad}(M)$.
The socle series of M is

$$
0=\operatorname{soc}^{0}(M) \subseteq \operatorname{soc}^{1}(M) \subseteq \cdots
$$

where $\operatorname{soc}^{1}(M)=M$ and $\operatorname{soc}^{i}(M)$ is determined by

$$
\frac{\operatorname{soc}^{i}(M)}{\operatorname{soc}^{i-1}(M)}=\operatorname{soc}\left(\frac{M}{\operatorname{soc}^{i-1}(M)}\right)
$$

The radical series of M is

$$
0=\operatorname{Rad}^{0}(M) \supseteq \operatorname{Rad}^{1}(M) \supseteq \cdots \quad \text { where } \quad \operatorname{Rad}^{i}(M)=\operatorname{Rad}\left(\operatorname{Rad}^{i-1}(M)\right)
$$

The socle length of M is the smallest positive integer n such that $\operatorname{soc}^{n}(M)=M$ and $\operatorname{soc}^{n-1}(M) \neq$ M.

The radical length of M is the smallest positive integer n such that $\operatorname{Rad}^{n}(M)=0$ and $\operatorname{Rad}^{n-1}(M) \neq$ 0.

The socle layers of M are $\operatorname{soc}^{k}(M) / \operatorname{soc}^{k-1}(M)$.
The radical layers of M are $\operatorname{Rad}^{k-1}(M) / \operatorname{Rad}^{k}(M)$.
Proposition 1.6. If M has socle length n them M has radical length n and

$$
\operatorname{soc}^{j}(M) \supseteq \operatorname{Rad}^{n-j}(M), \quad 0 \leq j \leq n .
$$

Proof.

Proposition 1.7. Let R be a ring.
(a) $\operatorname{Rad}(R)=\bigcap_{L_{\max }} L_{\max }$, the intersection of the maximal left ideals of R.
(b) $\operatorname{Rad}(R)=\bigcap_{I_{\text {prim }}} I_{\text {prim }}$, the intersection of the primitive two-sided ideals of R.
(c) $\operatorname{Rad}(R)=\{x \in R \mid 1-a x b$ is invertible for all $a, b \in R\}$.
(d) $\operatorname{Rad}(R)$ contains all nilpotent ideals.

Proof. (a) This is a restatement of the definition of $\operatorname{Rad}(R)$, since the submodules of ${ }_{R} R$ are the left ideals of R.
(b) If M is a simple R-module and $m \in M$ then $\operatorname{ann}(m)=\{r \in R \mid r m=0\}$ is a maximal left ideal of R because $R / \operatorname{ann}(m) \cong M$. The primitive ideal

$$
\operatorname{ann}(M)=\{r \in R \mid r M=0\}=\bigcap_{m \in M} \operatorname{ann}(m) .
$$

(c) Let $s \in \operatorname{Rad}(R)$. Then $R(1-x)=R$ since $1-x$ is not in any maximal left ideal. So $t(1-x)=1$ for some $t \in R$. So $1-t=-t x \in \operatorname{Rad}(R)$. So $1-(1-t)=t$ has a left inverse, which must be $1-x$. So $1-x$ is invertible in R. By (b) $\operatorname{Rad}(R)$ is an indeal and so $1-a x b$ is invertible for every $a, b \in R$. So $\operatorname{Rad}(R)=\{x \in R \mid 1-a x b$ is invertible for all $a, b \in R\}$

Assume $1-a x b$ is invertible for all $a, b \in R$. Let $L_{\max }$ be a maximal left ideal not containing x. Then $1=a x+\ell$ for some $a \in R, p \in L_{\max }$. So $1-a x \in L_{\max }$. So $L_{\max }=R$ which is a contradiction. So x is an element of every maximal left ideal. So $\{x \in R \mid 1-a x b$ is invertible for all $a, b \in R\} \subseteq$ $\operatorname{Rad}(R)$.
(d) Let N be a nilpotent ideal with $N^{k}=0$. If $x \in N$ then $x^{k} \in N^{k}=0$ and so $x^{k}=0$. Then $\left(1+x+x^{2}+\cdots+x^{k-1}\right)(1-x)=1$ and so $1-x$ is invertible. Thus, since N is an ideal, $1-a x b$ is invertible for every $a, b \in R$. Thus, by (c), $N \subseteq \operatorname{Rad}(R)$.

The proof of (bb) and (bc) of the following theorem uses:
Lemma 1.8. (Nakayama's lemma) If M is a finitely generated R-module and $\operatorname{Rad}(R) M=M$ them $M=0$.

Proof. Assume $M \neq 0$. Let m_{1}, \ldots, m_{k} be a minimal generating set for M. Since $\operatorname{Rad}(R) M=M$,

$$
m_{k}=\sum_{i=1}^{k} a_{i} m_{i}, \quad \text { with } a_{i} \in \operatorname{Rad}(R) .
$$

So $\left(1-a_{k}\right) m_{k}=\sum_{i=1}^{k-1} a_{i} m_{i}$. But $1-a_{k}$ has a left inverse in R. So $m_{k}=\sum_{i=1}^{k-1}\left(1-a_{k}\right)^{-1} a_{i} m_{i}$, which contradicts the minimality. So $M=0$.

Theorem 1.9. Let R be an artinian ring. Then
(a) $\operatorname{Rad}(R)$ is the largest nilpotent ideal of R.
(b) If M is a finitely generated R-module then
(ba) M is noetherian and artinian,
(bb) $\operatorname{Rad}(M)=\operatorname{Rad}(R) M$,
(bc) $\operatorname{soc}(M)=\{m \in M \mid \operatorname{Rad}(R) m=0\}$.
(c) R is noetherian.

Proof. (a) Let n be such that $\operatorname{Rad}(R)^{n}=\operatorname{Rad}(R)^{2 n}$. If $\operatorname{Rad}(R)^{n} \neq 0$ then there is a minimal left ideal with $\operatorname{Rad}(R)^{n} I \neq 0\left(\right.$ since $\left.\operatorname{Rad}(R)^{n} \operatorname{Rad}(R)^{n} \neq 0\right)$. Let $x \in I, x \neq 0$, be such that $\operatorname{Rad}(R)^{n} x \neq 0$. By minimality, $I=\operatorname{Rad}(R)^{n} x=\operatorname{Rad}(R)^{n} \operatorname{Rad}(R)^{n} x$. So $x=a x$, with $a \in \operatorname{Rad}(R)$. So $(1-a) x=0$. Since $1-a$ is invertible in $R, x=0$. But this is a contradiction. $\operatorname{So} \operatorname{Rad}(R)^{n}=0$. So $\operatorname{Rad}(R)$ is a nilpotent ideal.
(ba) Let $M_{i}=\operatorname{Rad}(R)^{i} M$. Then, since M is finitely generated and R is artinian, there is a surjective homomorphism

$$
R \oplus \cdots \oplus R \longrightarrow M
$$

Thus M is artinian. So M_{i} / M_{i+1} is artinian and $\operatorname{Rad}(R)$ acts by 0 . So M_{i} / M_{i+1} is a $R / \operatorname{Rad}(R)-$ module and thus M_{i} / M_{i+1} is a finite direct sum of simple submodules. So, by (a), M has a composition series and is both noetherian and artinian.
(bb) By Nakayama's lemma, $\operatorname{Rad}(R)\left(M / N_{\max }\right)=0$ for every maximal proper submodule $N_{\max } \subseteq$ M. So $\operatorname{Rad}(R) M \subseteq N_{\max }$ for every $N_{\max }$. So $\operatorname{Rad}(R) M \subseteq \operatorname{Rad}(M)$.

Since M / M_{1} is a finite direct sum of simple modules, $\operatorname{Rad}\left(M / M_{1}\right)=0$. So $\operatorname{Rad}(M) \subseteq M_{1}=$ $\operatorname{Rad}(R) M$.
(bc) The set

$$
N=\{m \in M \mid \operatorname{Rad}(R) m=0\}
$$

is a submodule of M and $\operatorname{Rad}(R) N=0$. Since N is artinian, N is a finite direct sum of simple submodules. So $\operatorname{soc}(M) \supseteq N$.

Nakayama's lemma implies that if S is a simple module, then $\operatorname{Rad}(R) S=0$. So $\operatorname{Rad}(R) \operatorname{soc}(M)=$ 0 . $\operatorname{So} \operatorname{soc}(M) \subseteq N$.
(c) follows from (ba).

Semisimplicity
Proposition 1.10. Let M be an R-module. Then M has a simple submodule.
Proof.

Proposition 1.11. (Schur's lemma)
(a) If R^{λ} and R^{μ} are simple R-modules then

$$
\operatorname{Hom}_{R}\left(R^{\lambda}, R^{\mu}\right)=0, \quad \text { if } R^{\lambda} \not \not 二 R^{\mu}, \quad \text { and } \quad \operatorname{End}_{R}\left(R^{\lambda}\right)=\mathbb{D}_{\lambda} \quad \text { is a division ring. }
$$

(b) If $M=\bigoplus_{\lambda \in \hat{A}}\left(R^{\lambda}\right)^{\oplus m_{\lambda}}$ is a finite direct sum of simple modules then

$$
\operatorname{End}_{R}(M)=\bigoplus_{\lambda \in \hat{A}} M_{m_{\lambda}}\left(\mathbb{D}_{\lambda}\right)
$$

where $\mathbb{D}_{\lambda}=\operatorname{End}_{R}\left(R^{\lambda}\right)$ are division rings.
Proof. (a) Let $\phi: R^{\lambda} \rightarrow R^{\mu}$ be a homomorphism. Then, since R^{λ} and R^{μ} are simple, ker ϕ is either 0 or R^{λ}, and $\operatorname{im} \phi$ is either 0 or R^{μ}. So ϕ is either 0 or an isomorphism.
(b) If $M=\bigoplus_{\lambda \in \hat{A}} \bigoplus_{i=1}^{m_{\lambda}} R^{\lambda, i}$, with $R^{\lambda, i} \cong R^{\lambda}$, for $1 \leq i \leq m_{\lambda}$, then

$$
\operatorname{End}_{R}(M)=\bigoplus_{\lambda \in \hat{A}} \bigoplus_{i, j=1}^{m_{\lambda}} \operatorname{End}_{R}\left(R^{\lambda, i}, R^{\lambda, j}\right)=\bigoplus_{\lambda \in \hat{A}} M_{m_{\lambda}}\left(\mathbb{D}_{\lambda}\right)
$$

Proposition 1.12. Let M be an R-module.
(a) $\operatorname{soc}(M)=M$ if and only if for every submodule $N \subseteq M$ there is a submodule $N^{\prime} \subseteq M$ with $M=N \oplus N^{\prime}$.
(b) Let N be a submodule of M. If $\operatorname{soc}(M)=M$ then $\operatorname{soc}(N)=N$ and $\operatorname{soc}(M / N)=M / N$.

Proof. (a) \Leftarrow : If $\operatorname{soc}(M) \neq M$ then $M=\operatorname{soc}(M) \oplus N^{\prime}$. Let N be a simple submodule of N^{\prime} (the existence of N is nontrivial and uses Zorn's lemma, see Theorem ???). Then $\operatorname{soc}(M)+N \neq \operatorname{soc}(M)$, but this is a contradiction to the definition of $\operatorname{soc}(M)$.
(a) \Rightarrow : Let N be a submodule of M and let $N^{\prime}=\sum_{P \cap N=0} P$ be the sum of the simple submodules P of M such that $P \cap N=0$. Then $N \cap N^{\prime}=0$ since, for a simple submodule P of $M, P \cap N=P$ or $P \cap N=0$. Since $N+N^{\prime} \supseteq \operatorname{soc}(M)=M, N+N^{\prime}=M$. So $M=N \oplus N^{\prime}$.

Proposition 1.13. The following are equivalent:
(a) M is a finite direct sum of simple submodules.
(b) M is artinian and $\operatorname{soc}(M)=M$.
(c) M is noetherian and $\operatorname{soc}(M)=M$.
(d) M has a finite composition series and $\operatorname{soc}(M)=M$.
(e) M is finitely generated and $\operatorname{soc}(M)=M$.
(f) M is artinian and $\operatorname{Rad}(M)=0$.

Proof. The implications (a) $\Leftrightarrow(\mathrm{b}),(\mathrm{a}) \Leftrightarrow(\mathrm{c}),(\mathrm{a}) \Leftrightarrow(\mathrm{d})$ follow directly from Proposition ??? and Proposition ???a.
(a) \Rightarrow (f) follows directly from the definitions.
$(\mathrm{f}) \Rightarrow(\mathrm{a})$: Let N_{i} be a finite (by DCC) number of maximal proper submodules such that

$$
\operatorname{Rad}(M)=\bigcap N_{i}=0
$$

Then

$$
\begin{aligned}
\phi: & M
\end{aligned} \longrightarrow \quad M / N_{1} \oplus \cdots \oplus M_{/} N_{k}\left(\begin{array}{c}
\\
m
\end{array} \quad \longmapsto \quad\left(m+N_{1}, \cdots, m+N_{k}\right)\right.
$$

has $\operatorname{ker} \phi=0$. So $M \cong \operatorname{im}(M)$ which is a submodule of the semisimple module $M / N_{1} \oplus \cdots M / N_{k}$. So $M \cong \operatorname{im}(M)$ is finite length and $\operatorname{soc}(M)=M$. So M is a direct sum of simple submodules.
$(\mathrm{c}) \Rightarrow(\mathrm{e})$ since M is noetherian implies that M is finitely generated.
(e) $\Rightarrow(\mathrm{c})$: Let N be a submodule of M and let N^{\prime} be a complement. Then $N \cong M / N^{\prime}$ and thus, since M is finitely generated, N is finitely generated. Thus every submodule of M is finitely generated. So M is noetherian.

Theorem 1.14. (Artin-Wedderburn) The following are equivalent:
(a) R is artinian and $\operatorname{Rad}(R)=0$,
(b) ${ }_{R} R$ is a finite direct sum of simple modules
(c) $R \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}\left(\mathbb{D}_{\lambda}\right)$, where \hat{A} is a finite index set, d_{λ} are positive integers, and \mathbb{D}_{λ} are division rings.

Proof. (a) $\Leftrightarrow(\mathrm{b})$ is a consquence of Proposition ???.
$(\mathrm{a}) \Leftarrow(\mathrm{c})$ is a consquence of the fact that the simple $M_{d_{\lambda}}\left(\mathbb{D}_{\lambda}\right)$ module is $\mathbb{D}_{\lambda}^{d_{\lambda}}$ the vector space of column vectors of length d_{λ}.
(a) \Rightarrow (c): The map

$$
\begin{array}{ccc}
R^{\mathrm{op}} & \longrightarrow & \operatorname{End}_{R}\left({ }_{R} R\right) \\
r & \longmapsto & \phi_{r}
\end{array} \quad \text { where } \quad \phi_{r}(x)=x r, \quad \text { for } x \in R
$$

is a ring isomorphism. Thus, by Schur's lemma,

$$
R^{\mathrm{op}} \cong \operatorname{End}_{R}\left({ }_{R} R\right) \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}\left(\mathbb{D}_{\lambda}\right), \quad \text { and thus } \quad R \cong\left(\bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}\left(\mathbb{D}_{\lambda}\right)\right)^{\mathrm{op}} \cong \bigoplus_{\lambda \in \hat{A}} M_{d_{\lambda}}\left(\mathbb{D}_{\lambda}\right)
$$

Radicals and finiteness conditions for rings
Let R be a ring.
The ring R is a noetherian if ${ }_{R} R$ is noetherian.
The ring R is a artinian if ${ }_{R} R$ is artinian.
A left ideal of R is a submodule of ${ }_{R} R$.
An ideal I of R is primitive if $I=\operatorname{ann}(M)$ for a simple R-module M.

Simple and almost simple rings
The ring R is primitive if 0 is a primitive ideal.
The ring R is a semiprimitive if $\operatorname{Rad}(R)=0$.
The ring R is simple if its only ideals are 0 and R.
The ring R is prime if A, B are ideals with $A B=0$ then $A=0$ or $B=0$.
An ideal P is prime if R / P is a prime ring.
The ring R is semiprime if 0 is the only nilpotent ideal.
Proposition 1.15. Let R be a ring and let $\operatorname{Spec}(R)$ be the set of prime ideals of R.
(a) R is semiprime if and only if $\bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}=0$.
(b) R is primitive if and only if R is a dense subring of $\operatorname{End}_{\mathbb{D}}(U)$ for some \mathbb{D}-vector space U.
(c) R is artinian and semiprime if and only if R is artinian and semiprimitive.
(d) R is artinian and primitive if and only if R is artinian and simple.
(e) R is artinian and primitive if and only if $R \cong M_{n}(\mathbb{D})$, for some $n \in \mathbb{Z} \geq 1, \mathbb{D}$ a division ring.

Proof.

Burnside's theorem and Jacobson density
A subring R of $\operatorname{End}_{\mathbb{D}}(U)$ is dense if for every $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ and every finitely generated $V \subseteq U$ there is an $r \in R$ with $\operatorname{Res}_{V}^{U}(r)=\operatorname{Res}_{V}^{U}(\alpha)$. Define a topology on $\operatorname{End}_{\mathbb{D}}(U)$ by making

$$
U(\alpha, V)=\left\{\beta \in \operatorname{End}_{\mathbb{D}}(U) \mid \operatorname{Res}_{V}^{U}(\beta)=\operatorname{Res}_{V}^{U}(\alpha)\right\} \quad \text { open }
$$

for each $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ and each finitely generated $V \subseteq U$. Then R is dense in $\operatorname{End}_{\mathbb{D}}(U)$ if $\operatorname{End}_{\mathbb{D}}(U)$ is the closure of $R, \bar{R}=\operatorname{End}_{\mathbb{D}}(U)$.

Example. Consider an infinite dimensional vector space U with basis u_{1}, u_{2}, \ldots. Then

$$
\begin{aligned}
\operatorname{End}_{\mathbb{C}}(U) & \cong M_{\infty}(\mathbb{C}) \\
& =\{\text { infinite matrices with a finite number of nonzero entries in each column }\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
I & =\left\{\text { finite rank elements of } M_{\infty}(\mathbb{C})\right\} \\
& =\left\{\alpha \in \operatorname{End}_{\mathbb{C}}(U) \mid \operatorname{im} \alpha \text { is finite dimensional }\right\} .
\end{aligned}
$$

and let

$$
R=\{n \cdot 1+\ell \mid n \in \mathbb{Z}, \ell \in I\} .
$$

Then R is a dense subring of $\operatorname{End}_{\mathbb{C}}(U)$,

$$
\mathbb{C}=\operatorname{End}_{R}(U) \quad \text { and } \quad R \neq \operatorname{End}_{\mathbb{C}}(U) .
$$

Theorem 1.16. Let U be a simple R-module and let $\operatorname{Im}(R)$ be the image of R in $\operatorname{End}(U)$. Let $\mathbb{D}=\operatorname{End}_{R}(U)$, a division ring.
(a) $\operatorname{Im}(R)$ is a dense subring of $\operatorname{End}_{\mathbb{D}}(U)$.
(b) If R is artinian the $\operatorname{Im}(R)=\operatorname{End}_{\mathbb{D}}(U)$.

Proof. We will show that if $x_{1}, \ldots, x_{n} \in U$ and $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ then there is an $r \in R$ with $r x_{i}=\alpha x_{i}$ for $1 \leq i \leq n$. The proof is by induction on n using the following lemma:

Lemma 1.17. Let $u \in U$. Then

$$
\operatorname{ann}\left(x_{1}, \ldots, x_{n}\right) u=0 \quad \Longleftrightarrow \quad u \in \mathbb{D}-\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}
$$

Assume the lemma and assume that $x_{1}, \ldots, x_{n} \in U$ and $\alpha \in \operatorname{End}_{\mathbb{D}}(U)$ are given. By the induction assumption, there is $r^{\prime} \in R$ such that

$$
r^{\prime} x_{i}=\alpha x_{i}, \quad \text { for } 1 \leq i \leq n-1
$$

If $x_{n} \notin \mathbb{D}-\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$ then, by the lemma, $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \neq 0$. Since ann $\left(x_{1}, \ldots, x_{n-1}\right) x_{n}$ is a nonzero R-submodule of U and U is simple $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}=U$. So

$$
\ell x_{n}=\left(\alpha-r^{\prime}\right) x_{n}, \quad \text { for some } \ell \in \operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right)
$$

Then

$$
\left(r^{\prime}+\ell\right) x_{i}=x_{i}, \quad \text { for } 1 \leq i \leq n-1, \quad \text { and } \quad\left(r^{\prime}+\ell\right) x_{n}=x_{n}
$$

(b) Let R be artinian and let U be a simple module. Let I be a minimal element of

$$
\left\{\operatorname{ann}\left(x_{1}, \ldots, x_{k}\right) \mid x_{1}, \ldots, x_{k} \in U\right\}
$$

and let x_{1}, \ldots, x_{k} be the finite subset of U such that $I=\operatorname{ann}\left(x_{1}, \ldots, x_{k}\right)$. Let $u \in I$. If $\operatorname{ann}\left(x_{1}, \ldots, x_{k}\right) u \neq 0$ then $\operatorname{ann}\left(x_{1}, \ldots, x_{k}, u\right) \subseteq I$ and $\operatorname{ann}\left(x_{1}, \ldots, x_{k}, u\right) \neq I$, a contradiction to the minimality of I. So $\operatorname{ann}\left(x_{1}, \ldots, x_{n}\right) u=0$. So $u \in \mathbb{D}-\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$. So U is finite dimensional. Now (c) follows from (b).

Proof of the lemma. \Leftarrow : trivial.
\Rightarrow : Assume $\operatorname{ann}\left(x_{1}, \ldots, x_{n}\right) u=0$. The proof is by induction on n.
Case 1. If $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}=0$ then $x_{n} \in \operatorname{span}\left\{x_{1}, \ldots, x_{n-1}\right\}$ and so $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) u=$ 0 . So $u \in \operatorname{span}\left\{x_{1}, \ldots, x_{n-1}\right\}$.

Case 2. If $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) x_{n} \neq 0$ then $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}=U$. Define an R-module homomorphism

$$
\begin{aligned}
\alpha: & \longrightarrow U \\
\ell x_{n} & \longmapsto \ell u, \quad \text { for } \ell \in \operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

If $\ell x_{n}=\kappa x_{n}$ then $\ell-\kappa \in \operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right) \cap \operatorname{ann}\left(x_{n}\right)=\operatorname{ann}\left(x_{1}, \ldots, x_{n}\right)$. So $(\ell-\kappa) u=0$ and $\ell u=\kappa u$ which shows that α is well defined. So $\alpha \in \mathbb{D}=\operatorname{End}_{R}(U)$.

Now $\operatorname{ann}\left(x_{1}, \ldots, x_{n-1}\right)\left(u-\alpha x_{n}\right)=0$ and so, by the induction hypothesis, $u-\alpha x_{n} \in \operatorname{span}\left\{x_{1}, \ldots, x_{n-1}\right\}$. So $u \in \operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$.

3. Radicals of algebras

Let A be an algebra over a field \mathbb{F}.
The radical of A is the intersection of the maximal left ideals of A,

$$
\operatorname{Rad}(A)=\bigcap_{L_{\max }} L_{\max }
$$

Proposition 3.1. Assume A satisfies the descending chain condition on left ideals. Then A is completely reducible if and only if $\operatorname{Rad}(A)=0$.

Proof.

A nilpotent ideal is an ideal I such that $I^{k}=0$ for some $k \in \mathbb{Z}_{>0}$. A nilpotent element is an element $x \in A$ such that $x^{k}=0$ for some $k \in \mathbb{Z}_{>0}$.

If $\overrightarrow{t:} A \rightarrow \mathbb{C}$ is a trace on A then

$$
\operatorname{Rad}(\vec{t})=\{a \in A \mid \vec{t}(a b)=0 \text { for all } b \in A\}
$$

Proposition 3.2.

(e) $\operatorname{Rad}(A)=\operatorname{Rad}(\vec{t})$, if \vec{t} is the trace of a faithful representation of A.

Proof.

6. References

[Bou1] N. Bourbaki, Algebra I, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1990.
[Bou2] N. Bourbaki, Groupes et Algèbres de Lie, Chapitre IV, V, VI, Eléments de Mathématique, Hermann, Paris (1968).

[^0]: * Research supported in part by the National Science Foundation (DMS-0097977).

