Symmetric functions
 Lecture Notes: Schur functions

Arun Ram*
Department of Mathematics University of Wisconsin-Madison

Madison, WI 53706
ram@math.wisc.edu
Version: February 3, 2004

1. Skew polynomials

The polynomial ring
$\mathbb{Z}\left[X_{n}\right]=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \quad$ has basis $\quad\left\{x^{\mu} \mid \mu \in \mathbb{Z}_{\geq 0}^{n}\right\}, \quad$ where $\quad x^{\mu}=x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots x_{n}^{\mu_{n}}$, for $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. The vector space of skew polynomials is

$$
A_{n}=\left\{g \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \mid w g=\operatorname{det}(w) g \text { for all } w \in S_{n}\right\}
$$

If $f \in \mathbb{Z}\left[X_{n}\right]_{n}^{S}$ and $g \in A_{n}$ then $f g \in A_{n}$ and so A_{n} is a $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$-module.
The symmetric group S_{n} acts on $\mathbb{Z}_{\geq 0}^{n}$ by permuting the coordinates. If

$$
\begin{aligned}
\mathbb{Z}^{n} & =\left\{\left(\gamma_{1}, \ldots, \gamma\right) \mid \gamma_{i} \in \mathbb{Z}\right\} \\
P^{+} & =\left\{\left(\gamma_{1}, \ldots, \gamma\right) \in \mathbb{Z}^{n} \mid \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}\right\}, \quad \text { and } \\
P^{++} & =\left\{\left(\gamma_{1}, \ldots, \gamma\right) \in \mathbb{Z}^{n} \mid \gamma_{1}>\gamma_{2}>\cdots>\gamma_{n}\right\},
\end{aligned}
$$

then P^{+}is a set of representatives of the orbits of the S_{n} action on \mathbb{Z}^{n} and the map defined by

$$
\begin{array}{rll}
P^{+} & \longrightarrow & P^{++} \\
\lambda & \longmapsto & \lambda+\rho
\end{array} \quad \text { where } \quad \rho=(n-1, n-2, \cdots, 2,1,0)
$$

is a bijection.
Let

$$
P_{n}^{+}=\left\{\left(\gamma_{1}, \ldots, \gamma\right) \in \mathbb{Z}^{n} \mid \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n} \geq 0\right\}
$$

For each $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ such that $\mu_{n} \geq 0$,

$$
\begin{equation*}
a_{\mu}=\sum_{w \in S_{n}} \operatorname{det}(w) w x^{\mu} \tag{1.1}
\end{equation*}
$$

is a skew polynomial. Since $a_{\mu}=\operatorname{det}(w) a_{w \mu}$ and $a_{\mu}=0$ unless $\mu_{1}>\mu_{2}>\cdots>\mu_{n}$,

$$
\left\{a_{\lambda+\rho} \mid \lambda \in P_{n}^{+}\right\} \quad \text { is a basis of } A_{n}
$$

[^0]and thus
$$
A_{n}=\varepsilon \cdot \mathbb{Z}\left[X_{n}\right], \quad \text { where } \quad \varepsilon=\sum_{w \in S_{n}} \operatorname{det}(w) w .
$$

The skew element

$$
a_{\lambda+\rho}=\operatorname{det}\left(\begin{array}{cccc}
x^{\lambda_{1}+n-1} & x^{\lambda_{2}+n-2} & \cdots & x_{\lambda_{n}}^{\lambda_{n}} \tag{1.2}\\
x_{2}^{\lambda_{1}+n-1} & x_{2}^{\lambda_{2}+n-2} & \cdots & x_{2}^{\lambda_{n}} \\
& \vdots & & \ldots \\
& \vdots \\
x_{n}^{\lambda_{1}+n-1} & x_{n}^{\lambda_{2}+n-2} & \cdots & x_{n}^{\lambda_{n}}
\end{array}\right) \quad \text { is divisible by } \prod_{n \geq j>i \geq 1}\left(x_{j}-x_{i}\right),
$$

since the factors $\left(x_{j}-x_{i}\right)$ in the product on the right hand side are coprime in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and setting $x_{i}=x_{j}$ makes the determinant vanish so that $a_{\lambda+\rho}$ must be divisible by $x_{j}-x_{i}$. When $\lambda=0$, comparing coefficients of the maximal terms on each side shows that the Vandermonde determinant

$$
a_{\rho}=\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1}^{0} \tag{1.3}\\
x_{2}^{n-1} & x_{2}^{n-2} & \cdots & x_{2}^{0} \\
\vdots & & \cdots & \vdots \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n}^{0}
\end{array}\right)=\prod_{n \geq j>i \geq 1}\left(x_{j}-x_{i}\right) .
$$

Since $\left\{a_{\lambda+\rho} \mid \lambda \in P_{n}^{+}\right\}$is a basis of A_{n}, (???) shows that the inverse of the map

$$
\begin{array}{ccc}
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} & \longrightarrow & A_{n} \tag{1.4}\\
f & \longmapsto & a_{\rho} f
\end{array}
$$

is well defined, and thus the map in (???) is an isomorphism of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$-modules.
The Schur polynomials are

$$
s_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}, \quad \text { for } \lambda \in P_{n}^{+},
$$

and since $\left\{a_{\lambda+\rho} \mid \lambda \in P_{n}^{+}\right\}$is a basis of A_{n} and the map in (???) is an isomorphism,

$$
\left\{s_{\lambda} \mid \lambda \in P_{n}^{+}\right\} \quad \text { is a basis of } \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} .
$$

2. Schur functions

Tableaux

Let λ be a partition and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with $\mu_{1} 1 \mathrm{~s}, \mu_{2} 2 \mathrm{~s}, \ldots$, $\mu_{n} n \mathrm{~s}$, such that
(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write $\operatorname{shp}(p)$ and $\operatorname{wt}(p)$ for the shape and the weight of p so that

$$
\begin{aligned}
& \operatorname{shp}(p)=\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad \text { where } \quad \lambda_{i}=\text { number of boxes in row } i \text { of } p \text {, and } \\
& \operatorname{wt}(p)=\left(\mu_{1}, \ldots, \mu_{n}\right), \quad \text { where } \quad \mu_{i}=\text { number of } i \mathrm{~s} \text { in } p .
\end{aligned}
$$

For example,

$$
\text { has } \operatorname{shp}(p)=(9,7,7,4,2,1,0) \text { and }
$$

$$
\operatorname{wt}(p)=(7,6,5,5,3,2,2) .
$$

For a partition λ and a sequence $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$
\begin{align*}
B(\lambda) & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda\}, \\
B(\lambda)_{\mu} & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda \text { and } \operatorname{wt}(p)=\mu\}, \tag{2.1}
\end{align*}
$$

Words

Define $B_{n}=\left\{b_{1}, \ldots, b_{n}\right\}$ and let

$$
B_{n}^{\otimes k}=\left\{b_{i_{1}} \cdots b_{i_{k}} \mid 1 \leq i_{1}, \ldots, i_{k} \leq n\right\}
$$

be the set of words of length k in the alphabet B. For each $1 \leq i \leq n$ define root operators

$$
\tilde{e}_{i}: B_{n}^{\otimes k} \longrightarrow B_{n}^{\otimes k}=\{0\} \quad \text { and } \quad \tilde{f}_{i}: B_{n}^{\otimes k} \longrightarrow B_{n}^{\otimes k}=\{0\}
$$

by the following process. If $b=b_{i_{1}} \cdots b_{i_{k}}$ in $B_{n}^{\otimes k}$ place the value

$$
\begin{aligned}
+1 & \text { over each } b_{i}, \\
-1 & \text { over each } b_{i+1}, \\
0 & \text { over each } b_{j}, j \neq i, i+1
\end{aligned}
$$

Ignoring 0 s read this sequence of ± 1 from left to right and successively remove adjacent ($+1,-1$) pairs until the sequence is of the form

$$
\underbrace{\begin{aligned}
& \text { cogood } \\
& \downarrow \text { good } \\
& \downarrow \\
& \downarrow+1++1
\end{aligned} \underbrace{-1-1 \ldots-1}_{\text {normal nodes }}}_{\text {conormal nodes }}
$$

The -1 s in this sequence are the normal nodes and the +1 s are the conormal nodes. The good node is the leftmost normal node and the cogood node is the right most conormal node. Then

$$
\begin{aligned}
& \tilde{e}_{i}(b)=\text { same as } b \text { except with the cogood node path step changed to } b_{i}, \\
& \tilde{f}_{i}(b)=\text { same as } b \text { except with the good node path step changed to } b_{i},
\end{aligned}
$$

For example, if $n=5, k=30$,

$$
b=b_{4} b_{3} b_{3} b_{1} b_{2} b_{2} b_{4} b_{4} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{4} b_{5} b_{5} b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{4},
$$

and $i=1$, then the parentheses in the table

$$
\begin{array}{cccccccccccccccccccc}
& & & (&) & -1 & & & (&) & & & -1 & (& (&) & & &) & +1 \\
0 & 0 & 0 & +1 & -1 & -1 & 0 & 0 & +1 & -1 & 0 & 0 & -1 & +1 & +1 & -1 & 0 & 0 & -1 & +1 \\
b_{4} & b_{3} & b_{3} & b_{1} & b_{2} & b_{2} & b_{4} & b_{4} & b_{1} & b_{2} & b_{3} & b_{3} & b_{2} & b_{1} & b_{1} & b_{2} & b_{3} & b_{3} & b_{2} & b_{1} \\
& & & & & & & & & & & & & & & & & & & \\
& & & & & & & & +1 & +1 & (& (&) &) & 0 & & & & & \\
& & & & & 0 & 0 & 0 & +1 & +1 & +1 & +1 & -1 & -1 & 0 & & & & & \\
& & & & b_{4} & b_{5} & b_{5} & b_{1} & b_{1} & b_{1} & b_{1} & b_{2} & b_{2} & b_{4} & & & & &
\end{array}
$$

indicate the $(+1,-1)$ pairings and the numbers in the top row indicate the resulting sequence of -1 s and +1 s . Then

$$
\begin{aligned}
& \tilde{e}_{1}(b)=b_{4} b_{3} b_{3} b_{1} b_{2} b_{2} b_{4} b_{4} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{1} b_{2} b_{3} b_{3} b_{2} b_{2} b_{4} b_{5} b_{5} b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{4}, \quad \text { and } \\
& \tilde{f}_{1}(b)=b_{4} b_{3} b_{3} b_{1} b_{2} b_{2} b_{4} b_{4} b_{1} b_{2} b_{3} b_{3} \underline{b_{1}} b_{1} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{4} b_{5} b_{5} b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{4}
\end{aligned}
$$

If λ is a partition of k define an imbedding

$$
\begin{array}{ccc}
B(\lambda) & \longrightarrow & B_{n}^{\otimes k} \\
p & \longmapsto & b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}
\end{array}
$$

where the entries $i_{1} i_{2} \cdots i_{k}$ are the entries of p read in Arabic reading order. The action of \tilde{e}_{i} and \tilde{f}_{i} preserves the image of $B(\lambda)$ in $B_{n}^{\otimes k}$ and so the set $B(\lambda)$ can be viewed as a subcrystal.

If B is a normal crystal and $b \in B$ the i-string of b is the set

$$
\tilde{f}_{i}^{\varphi_{i}(b)} b \stackrel{i}{\longleftrightarrow} \cdots \stackrel{i}{\longleftrightarrow} \tilde{f}_{i}^{2} b \stackrel{i}{\longleftrightarrow} \tilde{f}_{i} b \stackrel{i}{\longleftrightarrow} b \stackrel{i}{\longleftrightarrow} \tilde{e}_{i} b \stackrel{i}{\longleftrightarrow} \tilde{e}_{i}^{2} b \stackrel{i}{\longleftrightarrow} \cdots \stackrel{i}{\longleftrightarrow} \tilde{e}_{i}^{\varepsilon_{i}(b)} b,
$$

and the extra condition for B to be a normal crystal is equivalent to $\left\langle\operatorname{wt}\left(\tilde{e}_{i}^{\varepsilon_{i}(b)} b\right), \alpha_{i}^{\vee}\right\rangle=-\left\langle\operatorname{wt}\left(\tilde{f}_{i}^{\varphi(b)} b\right), \alpha_{i}^{\vee}\right\rangle$ so that every i string in a normal crystal B is a model for a finite dimensional $\mathfrak{s l}_{2}$-module.

If B is a normal crystal define a bijection $s_{i}: B \rightarrow B$ by

$$
s_{i} b=\left\{\begin{array}{ll}
\tilde{f}_{i}^{\left\langle\operatorname{wt}(b), \alpha_{i}^{\vee}\right\rangle} b, & \text { if }\left\langle\operatorname{wt}(b), \alpha_{i}^{\vee}\right\rangle \geq 0, \\
\tilde{e}_{i}^{-\left\langle\operatorname{wt}(b), \alpha_{i}^{\vee}\right\rangle} b, & \text { if }\left\langle\operatorname{wt}(b), \alpha_{i}^{\vee}\right\rangle \leq 0,
\end{array} \quad \text { so that } \quad \operatorname{wt}\left(s_{i} b\right)=s_{i} \operatorname{wt}(b), \quad \text { for all } b \in B .\right.
$$

The map s_{i} flips each i-string in B.
Proposition 2.2. [Kashiwara, Duke 73 (1994), 383-413] Let B be a normal crystal. The maps $s_{i}: B \rightarrow B i \in I$, define an action of W on B.

Proof.

Corollary 2.3. Let B be a crystal. Then, for all $\mu \in P$ and $w \in W, \operatorname{Card}\left(B_{\mu}\right)=\operatorname{Card}\left(B_{w \mu}\right)$.

Theorem 2.4. Let B be a subcrystal of \vec{B} such that B_{μ} is finite for all $\mu \in P$. Then

$$
\sum_{p \in B} e^{\mathrm{wt}(p)}=\sum_{\substack{b \in B \\ b \subseteq C-\rho}} s_{\mathrm{wt}(b)},
$$

where s_{λ} denotes the Weyl character corresponding to $\lambda \in P^{+}$.
Proof. Let χ^{B} be the sum on the left hand side. Then $\chi^{B} \in \mathbb{Z}[P]^{W}$ since the action of W on B defined in (???) satisfies $\operatorname{wt}(w p)=w \mathrm{wt}(p)$ for $w \in W, p \in B$. Thus

$$
\begin{aligned}
\sum_{p \in B} e^{\mathrm{wt}(p)} & =\frac{1}{a_{\rho}} \chi^{B} a_{\rho}=\frac{1}{a_{\rho}} \chi^{B} \epsilon\left(e^{\rho}\right)=\frac{1}{a_{\rho}} \epsilon\left(\chi^{B} e^{\rho}\right) \\
& =\frac{1}{a_{\rho}} \epsilon\left(\sum_{p \in B} e^{p} e^{\rho}\right)=\frac{1}{a_{\rho}} \sum_{p \in B} a_{\mathrm{wt}(p)+\rho}=\sum_{p \in B} s_{\mathrm{wt}(p)+\rho} .
\end{aligned}
$$

Define a bijection

$$
\tilde{\because} B \rightarrow B \quad \text { such that } \quad s_{\mathrm{wt}(\tilde{p})}=-s_{\mathrm{wt}(p)},
$$

for all $p \in B$ that are not highest weight.
Let $p \in B$. If p is not highest weight then there is an $i, 1 \leq i \leq n$, such that the last time p leaves the region $C-\rho$ it leaves it by crossing the wall $H_{\alpha_{i}}$. We want

$$
s_{i} \circ \mathrm{wt}(\tilde{p})=\mathrm{wt}(p) .
$$

Since
$s_{i} \circ \operatorname{wt}(p)=s_{i}(\operatorname{wt}(p)+\rho)-\rho=\operatorname{wt}(p)-\left\langle\operatorname{wt}(p), \alpha_{i}^{\vee}\right\rangle \alpha_{i}+\rho-\alpha_{i}-\rho=\operatorname{wt}(p)-\left\langle\left\langle\operatorname{wt}(p)+\rho, \alpha_{i}^{\vee}\right\rangle\right) \alpha_{i}$,
defining

$$
\tilde{p}=\tilde{f}_{i}^{\left(\operatorname{wt}(p)+\rho, \alpha_{i}^{\vee}\right\rangle} p,
$$

should do what we want. ??????

Corollary 2.5. Let $\lambda \in P^{+}$. Then

$$
s_{\lambda}=\sum_{p \in B(\lambda)} e^{\mathrm{wt}(p)},
$$

so that $s_{\lambda}=\sum_{\mu} K_{\lambda \mu} m_{\mu}$, where $K_{\lambda \mu}=\operatorname{Card}\left(B(\lambda)_{\mu}\right)$.

Cauchy kernels
For a partition $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ of k define

$$
\begin{equation*}
z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots \quad \text { so that } \quad \frac{n!}{z_{\lambda}}=\operatorname{Card}\left(\left\{w \in S_{k} \mid w \text { has cycle type } \lambda\right\}\right) \tag{2.6}
\end{equation*}
$$

is the size of the conjugacy class indexed by λ in the symmetric group S_{k}.

Proposition 2.7. Let $x^{\gamma}=x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}}$ for a sequence for a sequence $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.

$$
\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)=\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}=\sum_{\nu, \gamma} a_{\nu \gamma} x^{\nu} y^{\gamma}=\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y),
$$

where $a_{\nu \gamma}$ is the set of matrices with entries in $\mathbb{Z}_{\geq 0}$ with row sums ν and column sums γ.
Proof. (a)

$$
\begin{aligned}
\prod_{j} \prod_{i} \frac{1}{1-x_{i} y_{j}} & =\prod_{j}\left(\sum_{k_{j} \in \mathbb{Z}_{\geq 0}} h_{j_{k}}(x) y_{j}^{k_{j}}\right) \\
& =\sum_{k_{1}, k_{2}, \ldots}\left(h_{k_{1}}(x) h_{k_{2}}(x) \cdots\right)\left(y_{1}^{k_{1}} y_{2}^{k_{2}} \cdots\right)=\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y) .
\end{aligned}
$$

(b) Recalling that

$$
\ln \left(1-x_{i} y_{j}\right)=\sum_{k \geq 1} \frac{x_{i}^{k} y_{j}^{k}}{k} \quad \text { since } \quad \ln (1-t)=\int \frac{1}{1-t} d t=\int\left(1+t+t^{2}+\cdots\right) d t
$$

we have

$$
\begin{aligned}
\prod_{i, j} \frac{1}{1-x_{i} y_{j}} & =\exp \ln \left(\prod_{i, j} \frac{1}{1-x_{i} y_{j}}\right)=\exp \left(\sum_{i, j} \ln \left(1-x_{i} y_{j}\right)\right)=\exp \left(\sum_{k} \sum_{i, j} \frac{x_{i}^{k} y_{j}^{k}}{k}\right) \\
& =\exp \left(\sum_{k} \frac{p_{k}(x) p_{k}(y)}{k}\right)=\prod_{k} \exp \left(\frac{p_{k}(x) p_{k}(y)}{k}\right)=\prod_{k} \sum_{m_{k} \geq 0}\left(\frac{p_{k}^{m_{k}}(x) p_{k}^{m_{k}}(y)}{\left.k^{m_{k} m_{k}!}\right)}\right. \\
& =\sum_{m_{1}, m_{2}, \ldots}\left(\frac{p_{1}^{m_{1}}(x) p_{2}^{m_{2}}(x) \cdots p_{1}^{m_{1}}(y) p_{2}^{m_{2}}(y) \cdots}{1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots}\right)=\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}
\end{aligned}
$$

(c) Let A be the set of matrices with rows and columns indexed by $\mathbb{Z}_{>0}$ and with entries from $\mathbb{Z}_{\geq 0}$. Then

$$
\prod_{i, j} \frac{1}{1-x_{i} y_{j}}=\left(\sum_{a_{11} \in \mathbb{Z}_{\geq 0}}\left(x_{1} y_{1}\right)^{a_{11}}\right)\left(\sum_{a_{12} \in \mathbb{Z} \geq 0}\left(x_{1} y_{2}\right)^{a_{12}}\right) \cdots=\sum_{a \in A} \prod_{i, j}\left(x_{i} y_{j}\right)^{a_{i j}}=\sum_{\mu, \gamma} a_{\nu \gamma} x^{\nu} y^{\gamma} .
$$

(d) Let $B=\bigsqcup_{\lambda} B(\lambda)$ be the set of column strict tableaux.

$$
\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)=\sum_{\lambda} \sum_{P \in B(\lambda)} \sum_{Q \in B(\lambda)} x^{\mathrm{wt}(P)} y^{\mathrm{wt}(Q)}=\sum_{\substack{P \\ \operatorname{sh}(P) \in B \\ \operatorname{sh}(P)=\operatorname{sh}(Q)}} x^{\mathrm{wt}(P)} y^{w t(Q)} .
$$

Notes and References

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????.

