Symmetric functions
 Lecture Notes

Arun Ram*

Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu
Version: January 29, 2004

1. Symmetric functions

Tableaux

Let λ be a partition and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{>0}^{n}$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with $\mu_{1} 1 \mathrm{~s}, \mu_{2} 2 \mathrm{~s}, \ldots$, $\mu_{n} n \mathrm{~s}$, such that
(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write $\operatorname{shp}(p)$ and $\operatorname{wt}(p)$ for the shape and the weight of p so that

$$
\begin{aligned}
\operatorname{shp}(p) & =\left(\lambda_{1}, \ldots, \lambda_{n}\right), & & \text { where }
\end{aligned} \quad \lambda_{i}=\text { number of boxes in row } i \text { of } p, \quad \text { and }
$$

For example,

$$
\text { has } \quad \operatorname{shp}(p)=(9,7,7,4,2,1,0) \quad \text { and }
$$

$$
\mathrm{wt}(p)=(7,6,5,5,3,2,2)
$$

For a partition λ and a sequence $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$
\begin{align*}
B(\lambda) & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda\} \tag{1.1}\\
B(\lambda)_{\mu} & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda \text { and } \operatorname{wt}(p)=\mu\}
\end{align*}
$$

Define $B_{n}=\left\{b_{1}, \ldots, b_{n}\right\}$ and let

$$
B_{n}^{\otimes k}=\left\{b_{i_{1}} \cdots b_{i_{k}} \mid 1 \leq i_{1}, \ldots, i_{k} \leq n\right\}
$$

[^0]be the set of words of length k in the alphabet B. For each $1 \leq i \leq n$ define root operators
$$
\tilde{e}_{i}: B_{n}^{\otimes k} \longrightarrow B_{n}^{\otimes k}=\{0\} \quad \text { and } \quad \tilde{f}_{i}: B_{n}^{\otimes k} \longrightarrow B_{n}^{\otimes k}=\{0\}
$$
by the following process. If $b=b_{i_{1}} \cdots b_{i_{k}}$ in $B_{n}^{\otimes k}$ place the value
\[

$$
\begin{aligned}
+1 & \text { over each } b_{i} \\
-1 & \text { over each } b_{i+1} \\
0 & \text { over each } b_{j}, j \neq i, i+1
\end{aligned}
$$
\]

Ignoring 0s read this sequence of ± 1 from left to right and successively remove adjacent $(+1,-1)$ pairs until the sequence is of the form

$$
\begin{aligned}
& \begin{array}{r}
\text { cogood } \\
\downarrow \\
\text { conormal nodes }
\end{array} \begin{array}{l}
\text { good } \\
+1+1 \ldots+1
\end{array} \\
& \underbrace{-1-1 \ldots-1}_{\text {normal nodes }}
\end{aligned}
$$

The -1 s in this sequence are the normal nodes and the +1 s are the conormal nodes. The good node is the leftmost normal node and the cogood node is the right most conormal node. Then

$$
\begin{aligned}
& \tilde{e}_{i}(b)=\text { same as } b \text { except with the cogood node path step changed to } b_{i}, \\
& \tilde{f}_{i}(b)=\text { same as } b \text { except with the good node path step changed to } b_{i}
\end{aligned}
$$

For example, if $n=5, k=30$,

$$
b=b_{4} b_{3} b_{3} b_{1} b_{2} b_{2} b_{4} b_{4} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{4} b_{5} b_{5} b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{4}
$$

and $i=1$, then the parentheses in the table

$$
\begin{array}{cccccccccccccccccccc}
& & & (&) & -1 & & & (&) & & & -1 & (& (&) & & &) & +1 \\
0 & 0 & 0 & +1 & -1 & -1 & 0 & 0 & +1 & -1 & 0 & 0 & -1 & +1 & +1 & -1 & 0 & 0 & -1 & +1 \\
b_{4} & b_{3} & b_{3} & b_{1} & b_{2} & b_{2} & b_{4} & b_{4} & b_{1} & b_{2} & b_{3} & b_{3} & b_{2} & b_{1} & b_{1} & b_{2} & b_{3} & b_{3} & b_{2} & b_{1} \\
& & & & & & & & & & & & & & & & & & (& \\
& & & & & & & & & & & 0 & & & & & \\
& & & & & 0 & 0 & 0 & +1 & +1 & +1 & +1 & -1 & -1 & 0 & & & & & \\
& & & & & b_{4} & b_{5} & b_{5} & b_{1} & b_{1} & b_{1} & b_{1} & b_{2} & b_{2} & b_{4} & & & & & \\
& & & & & & & &
\end{array}
$$

indicate the $(+1,-1)$ pairings and the numbers in the top row indicate the resulting sequence of -1 s and +1 s . Then

$$
\begin{aligned}
& \tilde{e}_{1}(b)=b_{4} b_{3} b_{3} b_{1} b_{2} b_{2} b_{4} b_{4} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{1} b_{2} b_{3} b_{3} b_{2} b_{2} b_{4} b_{5} b_{5} b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{4}, \quad \text { and } \\
& \tilde{f}_{1}(b)=b_{4} b_{3} b_{3} b_{1} b_{2} b_{2} b_{4} b_{4} b_{1} b_{2} b_{3} b_{3} \underline{b_{1}} b_{1} b_{1} b_{2} b_{3} b_{3} b_{2} b_{1} b_{4} b_{5} b_{5} b_{1} b_{1} b_{1} b_{1} b_{2} b_{2} b_{4}
\end{aligned}
$$

If λ is a partition of k define an imbedding

$$
\begin{array}{ccc}
B(\lambda) & \longrightarrow & B_{n}^{\otimes k} \\
p & \longmapsto & b_{i_{1}} b_{i_{2}} \cdots b_{i_{k}}
\end{array}
$$

where the entries $i_{1} i_{2} \cdots i_{k}$ are the entries of p read in Arabic reading order. The action of \tilde{e}_{i} and \tilde{f}_{i} preserves the image of $B(\lambda)$ in $B_{n}^{\otimes k}$ and so the set $B(\lambda)$ can be viewed as a subcrystal.

If B is a normal crystal and $b \in B$ the i-string of b is the set

$$
\tilde{f}_{i}^{\varphi_{i}(b)} b \stackrel{i}{\longleftrightarrow} \cdots \stackrel{i}{\longleftrightarrow} \tilde{f}_{i}^{2} b \stackrel{i}{\longleftrightarrow} \tilde{f}_{i} b \stackrel{i}{\longleftrightarrow} b \stackrel{i}{\longleftrightarrow} \tilde{e}_{i} b \stackrel{i}{\longleftrightarrow} \tilde{e}_{i}^{2} b \stackrel{i}{\longleftrightarrow} \cdots \stackrel{i}{\longleftrightarrow} \tilde{e}_{i}^{\varepsilon_{i}(b)} b,
$$

and (3) is equivalent to $\left\langle\operatorname{wt}\left(\tilde{e}_{i}^{\varepsilon_{i}(b)} b\right), \alpha_{i}^{\vee}\right\rangle=-\left\langle\operatorname{wt}\left(\tilde{f}_{i}^{\varphi(b)} b\right), \alpha_{i}^{\vee}\right\rangle$ so that every i string in a normal crystal B is a model for a finite dimensional $\mathfrak{s l}_{2}$-module.

If B is a normal crystal define a bijection $s_{i}: B \rightarrow B$ by

$$
s_{i} b=\left\{\begin{array}{ll}
\tilde{f}_{i}^{\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle} b, & \text { if }\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle \geq 0, \\
\tilde{e}_{i}^{-\left\langle\mathrm{wt}(b), \alpha_{i}^{\vee}\right\rangle} b, & \text { if }\left\langle\operatorname{wt}(b), \alpha_{i}^{\vee}\right\rangle \leq 0,
\end{array} \quad \text { so that } \quad \mathrm{wt}\left(s_{i} b\right)=s_{i} \mathrm{wt}(b), \quad \text { for all } b \in B .\right.
$$

The map s_{i} flips each i-string in B. The equality $\mathrm{wt}\left(s_{i} b\right)=s_{i} \mathrm{wt}(b)$ implies

$$
\chi^{B} \in \mathbb{Z}[P]^{W}, \quad \text { for any normal crystal } B
$$

Proposition 1.2. [Kashiwara, Duke 73 (1994), 383-413] Let B be a normal crystal. The maps $s_{i}: B \rightarrow B i \in I$, define an action of W on B.

Proof.

Theorem 1.3. Let B be a subcrystal of \vec{B} such that B_{μ} is finite for all $\mu \in P$. Then

$$
\chi^{B}=\sum_{\substack{b \in B \\ b \subseteq C-\rho}} s_{\mathrm{wt}(b)},
$$

where s_{λ} denotes the Weyl character corresponding to $\lambda \in P^{+}$.
Proof. Let $\mu \in P^{+}$. Then

$$
\begin{equation*}
\left.\chi^{B} a_{\rho}\right|_{a_{\mu+\rho}}=\left.\left(\sum_{w \in W}(-1)^{\ell(w)} e^{w \rho}\right)\left(\sum_{p \in B} e^{\mathrm{wt}(p)}\right)\right|_{a_{\mu+\rho}}=\left.\sum_{\substack{w \in W \\ p \in B}}(-1)^{\ell(w)} e^{\mathrm{wt}(p)+w \rho}\right|_{e^{\mu+\rho}} \tag{1.4}
\end{equation*}
$$

Let $p \in B$ and $w \in W$ be such that $\operatorname{wt}(p)+w \rho=\mu+\rho$. Let t_{0} be maximal such that there is an $i \in I$ with $w \rho+p\left(t_{0}\right) \in H_{\alpha_{i}}$. If t_{0} does not exist then $p \in C-\rho$ and $w=1$. If t_{0} does exist set

$$
\Phi(p)= \begin{cases}\tilde{f}_{i}^{-\left\langle w \rho, \alpha_{i}^{\vee}\right\rangle} p, & \text { if }\left\langle w \rho, \alpha_{i}^{\vee}\right\rangle<0 \\ \tilde{e}_{i}^{\left\langle w \rho, \alpha_{i}^{\vee}\right\rangle} p, & \text { if }\left\langle w \rho, \alpha_{i}^{\vee}\right\rangle>0\end{cases}
$$

Then $\operatorname{wt}(p)+w \rho=\operatorname{wt}(\Phi(p))+s_{i} w \rho$ and and the pairs (p, w) and $\left(\Phi(p), s_{i} w\right)$ cancel in the sum (???).

The symmetric group S_{n} acts on the vector space

$$
\mathbb{Z}^{n}=\mathbb{Z} \text {-span }\left\{x_{1}, \ldots, x_{n}\right\} \quad \text { by } \quad w x_{i}=x_{w(i)},
$$

for $w \in S_{n}, 1 \leq i \leq n$. This action induces an action of S_{n} on the polynomial ring $\mathbb{Z}\left[X_{n}\right]=$ $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by ring automorphisms. For a sequence $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of nonnegative integers let

$$
x^{\gamma}=x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}}, \quad \text { so that } \quad \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{Z}-\operatorname{span}\left\{x^{\gamma} \mid \gamma \in \mathbb{Z}_{\geq 0}^{n}\right\} .
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}\left[X_{n}\right]^{S_{n}}=\left\{f \in \mathbb{Z}\left[X_{n}\right] \mid w f=f \text { for all } w \in S_{n}\right\} \tag{1.5}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad \text { for } \lambda \in \mathbb{Z}_{\geq 0}^{n},
$$

where $S_{n} \lambda$ is the orbit of λ under the action of S_{n}. Let

$$
\begin{equation*}
P^{+}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \tag{1.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}\left[X_{n}\right]^{S_{n}} . \tag{1.7}
\end{equation*}
$$

2. Skew polynomials

The polynomial ring
$\mathbb{Z}\left[X_{n}\right]=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \quad$ has basis $\quad\left\{x^{\mu} \mid \mu \in \mathbb{Z}_{\geq 0}^{n}\right\}, \quad$ where $\quad x^{\mu}=x_{1}^{\mu_{1}} x_{2}^{\mu_{2}} \cdots x_{n}^{\mu_{n}}$, for $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$. The vector space of skew polynomials is

$$
A_{n}=\left\{g \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \mid w g=\operatorname{det}(w) g \text { for all } w \in S_{n}\right\} .
$$

If $f \in \mathbb{Z}\left[X_{n}\right]_{n}^{S}$ and $g \in A_{n}$ then $f g \in A_{n}$ and so A_{n} is a $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$-module.
The symmetric group S_{n} acts on $\mathbb{Z}_{\geq 0}^{n}$ by permuting the coordinates. If

$$
\begin{aligned}
\mathbb{Z}^{n} & =\left\{\left(\gamma_{1}, \ldots, \gamma\right) \mid \gamma_{i} \in \mathbb{Z}\right\}, \\
P^{+} & =\left\{\left(\gamma_{1}, \ldots, \gamma\right) \in \mathbb{Z}^{n} \mid \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n}\right\}, \quad \text { and } \\
P^{++} & =\left\{\left(\gamma_{1}, \ldots, \gamma\right) \in \mathbb{Z}^{n} \mid \gamma_{1}>\gamma_{2}>\cdots>\gamma_{n}\right\},
\end{aligned}
$$

then P^{+}is a set of representatives of the orbits of the S_{n} action on \mathbb{Z}^{n} and the map defined by

$$
\begin{array}{ccc}
P^{+} & \longrightarrow & P^{++} \\
\lambda & \longmapsto & \lambda+\rho
\end{array} \quad \text { where } \quad \rho=(n-1, n-2, \cdots, 2,1,0)
$$

is a bijection.
Let

$$
P_{n}^{+}=\left\{\left(\gamma_{1}, \ldots, \gamma\right) \in \mathbb{Z}^{n} \mid \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{n} \geq 0\right\} .
$$

For each $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ such that $\mu_{n} \geq 0$,

$$
\begin{equation*}
a_{\mu}=\sum_{w \in S_{n}} \operatorname{det}(w) w x^{\mu} \tag{2.1}
\end{equation*}
$$

is a skew polynomial. Since $a_{\mu}=\operatorname{det}(w) a_{w \mu}$ and $a_{\mu}=0$ unless $\mu_{1}>\mu_{2}>\cdots>\mu_{n}$,

$$
\left\{a_{\lambda+\rho} \mid \lambda \in P_{n}^{+}\right\} \quad \text { is a basis of } A_{n}
$$

and thus

$$
A_{n}=\varepsilon \cdot \mathbb{Z}\left[X_{n}\right], \quad \text { where } \quad \varepsilon=\sum_{w \in S_{n}} \operatorname{det}(w) w
$$

The skew element

$$
a_{\lambda+\rho}=\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{\lambda_{1}+n-1} & x_{1}^{\lambda_{2}+n-2} & \cdots & x_{1}^{\lambda_{n}} \tag{2.2}\\
x_{2}^{\lambda_{1}+n-1} & x_{2}^{\lambda_{2}+n-2} & \cdots & x_{2}^{\lambda_{n}} \\
& \vdots & & \cdots \\
& \vdots \\
x_{n}^{\lambda_{1}+n-1} & x_{n}^{\lambda_{2}+n-2} & \cdots & x_{n}^{\lambda_{n}}
\end{array}\right) \quad \text { is divisible by } \prod_{n \geq j>i \geq 1}\left(x_{j}-x_{i}\right)
$$

since the factors $\left(x_{j}-x_{i}\right)$ in the product on the right hand side are coprime in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and setting $x_{i}=x_{j}$ makes the determinant vanish so that $a_{\lambda+\rho}$ must be divisible by $x_{j}-x_{i}$. When $\lambda=0$, comparing coefficients of the maximal terms on each side shows that the Vandermonde determinant

$$
a_{\rho}=\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{n-1} & x_{1}^{n-2} & \cdots & x_{1}^{0} \tag{2.3}\\
x_{2}^{n-1} & x_{2}^{n-2} & \cdots & x_{2}^{0} \\
\vdots & & \cdots & \vdots \\
x_{n}^{n-1} & x_{n}^{n-2} & \cdots & x_{n}^{0}
\end{array}\right)=\prod_{n \geq j>i \geq 1}\left(x_{j}-x_{i}\right)
$$

Since $\left\{a_{\lambda+\rho} \mid \lambda \in P_{n}^{+}\right\}$is a basis of A_{n}, (???) shows that the inverse of the map

$$
\begin{array}{clc}
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}} & \longrightarrow & A_{n} \tag{2.4}\\
f & \longmapsto a_{\rho} f
\end{array}
$$

is well defined, and thus the map in (???) is an isomorphism of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$-modules.
The Schur polynomials are

$$
s_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}, \quad \text { for } \lambda \in P_{n}^{+}
$$

and since $\left\{a_{\lambda+\rho} \mid \lambda \in P_{n}^{+}\right\}$is a basis of A_{n} and the map in (???) is an isomorphism,
$\left\{s_{\lambda} \mid \lambda \in P_{n}^{+}\right\} \quad$ is a basis of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$.
Theorem 2.5. Let $\lambda \in P_{n}^{+}$. Then

$$
s_{\lambda}=\sum_{p \in B(\lambda)} x^{\mathrm{wt}(p)}
$$

Proof. Since the action of S_{n} on $B(\lambda)$ defined in (???) satisfies $\mathrm{wt}(w p)=w \mathrm{wt}(p)$ for $w \in S_{n}$, $p \in B(\lambda)$, the sum on the right hand side is an element of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$.

Notes and References

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????

