Symmetric functions

Lecture Notes

Arun Ram*

Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu
Version: January 26, 2004

1. Symmetric functions

Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the \mathbb{Z}-basis of $\mathbb{Z}^{n}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in \mathbb{Z}\right\}$ given by $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 in the i th entry, so that

$$
\begin{array}{clrl}
& & \mathbb{Z}^{n} & =\mathbb{Z}-\operatorname{span}\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}, \\
\text { and let } & P^{+} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\}, \tag{1.1}\\
\text { and } & P^{++} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1}>\cdots>\lambda_{n}\right\} .
\end{array}
$$

Then P^{+}is a set of representatives of the orbits of the action of the symmetric group S_{n} on \mathbb{Z}^{n} given by permuting the coordinates,

$$
\begin{equation*}
w \varepsilon_{i}=\varepsilon_{w(i)}, \quad \text { for } w \in S_{n}, 1 \leq i \leq n . \tag{1.2}
\end{equation*}
$$

There is a bijection

$$
\begin{array}{clc}
P^{+} & \longrightarrow & P^{++} \tag{1.3}\\
\lambda & \longmapsto & \rho+\lambda
\end{array} \quad \text { where } \quad \rho=(n-1) \varepsilon_{1}+(n-2) \varepsilon_{2}+\cdots+\varepsilon_{n-1} .
$$

Let

$$
\begin{equation*}
\mathbb{Z}[X]=\mathbb{Z} \text {-span }\left\{x^{\lambda} \mid \lambda \in \mathbb{Z}^{n}\right\} \quad \text { with } \quad x^{\lambda} x^{\mu}=x^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in \mathbb{Z}^{n} . \tag{1.4}
\end{equation*}
$$

For $1 \leq i \leq n$ write

$$
x_{i}=x^{\varepsilon_{i}} \quad \text { so that } \quad x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \quad \text { for } \lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n},
$$

and $\mathbb{Z}[X]=\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. The action of S_{n} on \mathbb{Z}^{n} induces an action of S_{n} on $\mathbb{Z}[X]$ given by

$$
\begin{equation*}
w x^{\lambda}=x^{w \lambda}, \quad \text { for } w \in S_{n}, \lambda \in \mathbb{Z}^{n} . \tag{1.5}
\end{equation*}
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}[X]^{S_{n}}=\left\{f \in \mathbb{Z}[X] \mid w f=f \text { for all } w \in S_{n}\right\}, \tag{1.6}
\end{equation*}
$$

[^0]Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad \text { for } \lambda \in P^{+},
$$

where $S_{n} \lambda$ is the orbit of λ under the action of S_{n}. Then

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[X]^{S_{n}} . \tag{1.7}
\end{equation*}
$$

Partitions

A partition is a collection μ of boxes in a corner where the convention is that gravity goes up and to the left. As for matrices, the rows and columns of μ are indexed from top to bottom and left to right, respectively.

$$
\begin{array}{ll}
\text { The parts of } \mu \text { are } & \mu_{i}=(\text { the number of boxes in row } i \text { of } \mu), \\
\text { the length of } \mu \text { is } & \ell(\mu)=(\text { the number of rows of } \mu) \tag{1.8}\\
\text { the size of } \mu \text { is } & |\mu|=\mu_{1}+\cdots+\mu_{\ell(\mu)}=(\text { the number of boxes of } \mu) .
\end{array}
$$

Then μ is determined by (and identified with) the sequence $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of positive integers such that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{\ell}>0$, where $\ell=\ell(\mu)$. For example,
$(5,5,3,3,1,1)=$

A partition of k is a partition λ with k boxes. Make the convention that $\lambda_{i}=0$ if $i>\ell(\lambda)$. The dominance order is the partial order on the set of partitions of k,

$$
P^{+}(k)=\{\text { partitions of } k\}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \mid \lambda_{1} \geq \cdots \geq \lambda_{\ell}>0, \lambda_{1}+\ldots+\lambda_{\ell}=k\right\},
$$

given by

$$
\lambda \geq \mu \quad \text { if } \quad \lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{i} \quad \text { for all } 1 \leq i \leq \max \{\ell(\lambda), \ell(\mu)\} .
$$

PUT THE PICTURE OF THE HASSE DIAGRAM FOR $k=6$ HERE.

Tableaux

Let λ be a partition and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{>0}^{n}$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with $\mu_{1} 1 \mathrm{~s}, \mu_{2} 2 \mathrm{~s}, \ldots$, $\mu_{n} n \mathrm{~s}$, such that
(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If T is a column strict tableau write $\operatorname{shp}(T)$ and $\mathrm{wt}(T)$ for the shape and the weight of T so that

$$
\begin{aligned}
& \operatorname{shp}(T)=\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad \text { where } \quad \lambda_{i}=\text { number of boxes in row } i \text { of } T, \quad \text { and } \\
& \operatorname{wt}(T)=\left(\mu_{1}, \ldots, \mu_{n}\right), \quad \text { where } \quad \mu_{i}=\text { number of } i \text { in } T .
\end{aligned}
$$

For example,
has $\quad \operatorname{shp}(T)=(9,7,7,4,2,1,0) \quad$ and
$\mathrm{wt}(T)=(7,6,5,5,3,2,2)$.

For a partition λ and a sequence $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$
\left.\begin{array}{rl}
B(\lambda) & =\{\text { column strict tableaux } T \mid \operatorname{shp}(T) \tag{1.9}
\end{array}=\lambda\right\}, ~=\{\text { column strict tableaux } T \mid \operatorname{shp}(T)=\lambda \text { and } \mathrm{wt}(T)=\mu\},
$$

2. Symmetric functions: Take 2

A lattice is a free \mathbb{Z}-module. Let P be a lattice with a (\mathbb{Z}-linear) action of a finite group W so that P is a module for the group algebra $\mathbb{Z} W$. Extending coefficients, define

$$
\mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \otimes_{\mathbb{Z}} P \quad \text { and } \quad \mathfrak{h}^{*}=\mathbb{C} \otimes_{\mathbb{R}} \mathfrak{h}_{\mathbb{R}}^{*}
$$

so that $\mathfrak{h}_{\mathbb{R}}^{*}$ and \mathfrak{h}^{*} are vector spaces which are modules for the group algebras $\mathbb{R} W$ and $\mathbb{C} W$, respectively.

Assume that the action of W on $\mathfrak{h}_{\mathbb{R}}^{*}$ has fundamental regions???, and fix a fundamental region C in $\mathfrak{h}_{\mathbb{R}}^{*}$. Define

$$
P^{+}=P \cap \bar{C} \quad \text { and } \quad P^{++}=P \cap C
$$

so that P^{+}is a set of representatives of the orbits of the action of W on P. Assume???? that P^{+} is a cone in P (a module for the monoid $\mathbb{Z}_{\geq 0}$). A set of fundamental weights is a set of $\omega_{1}, \ldots, \omega_{n}$ generators of (the $\mathbb{Z}_{\geq 0}$-module) P^{+}which also form a \mathbb{Z}-basis of P. There is a bijection

$$
\begin{array}{clc}
P^{+} & \longrightarrow & P^{++} \tag{2.1}\\
\lambda & \longmapsto & \rho+\lambda
\end{array} \quad \text { where } \quad \rho=\omega_{1}+\ldots+\omega_{n}
$$

Let $\langle\rangle:, \mathfrak{h}_{\mathbb{R}}^{*} \times \mathfrak{h}_{\mathbb{R}}^{*} \rightarrow \mathbb{R}$ be a W-invariant symmetric bilinear form on $\mathfrak{h}_{\mathbb{R}}^{*}$ (such that the restriction to P is a perfect pairing??? with values in \mathbb{Z} ???). The simple coroots are $\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}$ the dual basis to the fundamental weights,

$$
\begin{equation*}
\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j} \tag{2.2}
\end{equation*}
$$

Define

$$
\begin{equation*}
\overline{C^{\vee}}=\sum_{i=1}^{n} \mathbb{R}_{\leq 0} \alpha_{i}^{\vee} \quad \text { and } \quad C^{\vee}=\sum_{i=1}^{n} \mathbb{R}_{<0} \alpha_{i}^{\vee} \tag{2.3}
\end{equation*}
$$

The dominance order is the partial order on $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\begin{equation*}
\lambda \geq \mu \quad \text { if } \quad \mu \in \lambda+\overline{C^{\vee}} \tag{2.4}
\end{equation*}
$$

The group algebra of the abelian group P is

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z}-\operatorname{span}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in P \tag{2.5}
\end{equation*}
$$

The action of W on P induces an action of W on $\mathbb{Z}[P]$ given by

$$
\begin{equation*}
w X^{\lambda}=X^{w \lambda}, \quad \text { for } w \in W, \lambda \in P \tag{2.6}
\end{equation*}
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}[P]^{W}=\{f \in \mathbb{Z}[P] \mid w f=f \text { for all } w \in W\} \tag{2.7}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in W \lambda} X^{\gamma}, \quad \text { for } \lambda \in P^{+}
$$

where $W \lambda$ is the orbit of λ under the action of W. Then

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[P]^{W} \tag{2.8}
\end{equation*}
$$

3. Type $S p_{2 n}(\mathbb{C})$

Let $W=W C_{n}$ be the group of $n \times n$ matrices with
(a) exactly one nonzero entry in each row and each column,
(b) the nonzero entries are ± 1.

Then $W=W C_{n}=O_{n}(\mathbb{Z})$, the group of orthogonal matrices with entries in \mathbb{Z}. Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the \mathbb{Z}-basis of $\mathbb{Z}^{n}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in \mathbb{Z}\right\}$ given by $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 in the i th entry, so that

$$
\begin{array}{rlrl}
P & =\mathbb{Z}^{n} & =\mathbb{Z}-\operatorname{span}\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\} \\
\text { and let } \quad P^{+} & =\{\lambda & \left.=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right\} \tag{3.1}\\
\text { and } \quad P^{++} & =\left\{\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n} \in \mathbb{Z}^{n} \mid \lambda_{1}>\cdots>\lambda_{n}>0\right\} .
\end{array}
$$

Then P^{+}is a set of representatives of the orbits of the action of the natural action of W on P. There is a bijection

$$
\begin{align*}
& P^{+} \longrightarrow \tag{3.2}\\
& P^{++} \\
& \lambda \longmapsto \\
& \rho+\lambda
\end{align*} \quad \text { where } \quad \rho=n \varepsilon_{1}+(n-1) \varepsilon_{2}+\cdots+2 \varepsilon_{n-1}+\varepsilon_{n}
$$

Let

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z}-\operatorname{span}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in P \tag{3.3}
\end{equation*}
$$

For $1 \leq i \leq n$ write

$$
x_{i}=X^{\varepsilon_{i}} \quad \text { so that } \quad X^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \quad \text { for } \lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}
$$

and $\mathbb{Z}[P]=\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. The action of W on P induces an action of W on $\mathbb{Z}[P]$ given by

$$
\begin{equation*}
w X^{\lambda}=X^{w \lambda}, \quad \text { for } w \in W, \lambda \in P \tag{3.4}
\end{equation*}
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}[P]^{W}=\{f \in \mathbb{Z}[P] \mid w f=f \text { for all } w \in W\} \tag{3.5}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in W \lambda} X^{\gamma}, \quad \text { for } \lambda \in P^{+}
$$

where $W \lambda$ is the orbit of λ under the action of W. Then

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[P]^{W} . \tag{3.6}
\end{equation*}
$$

4. Type $S L_{n}(\mathbb{C})$

Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ be the \mathbb{R}-basis of $\mathbb{R}^{n}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{i} \in \mathbb{R}\right\}$ given by $\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, with the 1 in the i th entry. The symmetric group S_{n} acts on \mathbb{R}^{n} by permuting the coordinates and, by restriction, S_{n} acts on

$$
\mathfrak{h}_{\mathbb{R}}^{*}=\left\{\gamma=\gamma_{1} \varepsilon_{1}+\cdots+\gamma_{n} \varepsilon_{n} \mid \gamma_{i} \in \mathbb{R}, \gamma_{1}+\cdots+\gamma_{n}=0\right\} .
$$

Let

$$
\omega_{n}=\varepsilon_{1}+\cdots+\varepsilon_{n}
$$

Then S_{n} acts also on the \mathbb{Z}-submodule of $\mathfrak{h}_{\mathbb{R}}^{*}$ given by

$$
\begin{align*}
P & =\left\{\left.\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}-\frac{|\lambda|}{n} \omega_{n} \right\rvert\, \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\} . \\
\text { Let } \quad P^{+} & =\left\{\lambda \in P \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \tag{4.1}\\
\text { and } \quad P^{++} & =\left\{\lambda \in P \mid \lambda_{1}>\cdots>\lambda_{n}\right\} .
\end{align*}
$$

Then P^{+}is a set of representatives of the orbits of the action of the natural action of S_{n} on P. There is a bijection

$$
\begin{array}{clc}
P^{+} & \longrightarrow & P^{++} \tag{4.2}\\
\lambda & \longmapsto & \rho+\lambda
\end{array} \quad \text { where } \quad \rho=(n-1) \varepsilon_{1}+(n-2) \varepsilon_{2}+\cdots+\varepsilon_{n-1}-\left(\frac{n-1}{2}\right) \omega_{n}
$$

Let

$$
\begin{equation*}
\mathbb{Z}[P]=\mathbb{Z}-\operatorname{span}\left\{X^{\lambda} \mid \lambda \in P\right\} \quad \text { with } \quad X^{\lambda} X^{\mu}=X^{\lambda+\mu}, \quad \text { for } \lambda, \mu \in P \tag{4.3}
\end{equation*}
$$

For $1 \leq i \leq n$ write

$$
x_{i}=X^{\varepsilon_{i}-\frac{1}{n} \omega_{n}} \quad \text { so that } \quad X^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}} \quad \text { for } \lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}-\frac{|\lambda|}{n} \omega_{n} \in P
$$

Then $\mathbb{Z}[P]$ is the quotient of the Laurent polynomial ring $\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ by the ideal generated by the element $x_{1} \cdots x_{n}-1$,

$$
\mathbb{Z}[P]=\frac{\mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]}{\left\langle x_{1} \cdots x_{n}-1\right\rangle}
$$

The action of S_{n} on P induces an action of S_{n} on $\mathbb{Z}[X]$ given by

$$
\begin{equation*}
w x_{i}=x_{w(i)}, \quad \text { for } w \in S_{n} \text { and } 1 \leq i \leq n \tag{4.4}
\end{equation*}
$$

and the ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}[P]^{S_{n}}=\left\{f \in \mathbb{Z}[P] \mid w f=f \text { for all } w \in S_{n}\right\} \tag{4.5}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} X^{\gamma}, \quad \text { for } \lambda \in P^{+}
$$

where $S_{n} \lambda$ is the orbit of λ under the action of S_{n}. Then

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}[P]^{S_{n}} \tag{4.6}
\end{equation*}
$$

3. The path model

The path model of highest weight λ is

$$
B(\lambda)=\left\{f_{i_{1}} \ldots f_{i_{k}} b_{\lambda}^{+}\right\}
$$

the set of paths obtained by applying root operators to the highest weight path b_{λ}^{+}in all possible ways.

There is an action of W on $B(\lambda)$ given by flipping the i-strings in $B(\lambda)$.
Define

$$
s_{\lambda}=\sum_{b \in B(\lambda)} X^{\mathrm{wt}(p)}
$$

Proposition 3.1. Let $\lambda \in P^{+}$. Then

$$
\sum_{b \in B(\lambda)} X^{\mathrm{wt}(p)} \in \mathbb{Z}[P]^{W}
$$

Proof. If $p \in B(\lambda)$ and $w \in W$ then $w p \in B(\lambda)$ and $\operatorname{wt}(w p)=w \operatorname{wt}(p)$.

Theorem 3.2. Let $\lambda \in P^{+}$. Then

$$
s_{\lambda}=\sum_{b \in B(\lambda)} X^{\mathrm{wt}(p)}
$$

Proof.

Another proof: The Demazure operator is

$$
\tilde{T}_{i} f=\frac{f-s_{i} f}{1-X^{-\alpha_{i}}}, \quad \text { for } f \in \mathbb{Z}[X]
$$

Then

$$
\tilde{T}_{i}^{2}=\tilde{T}_{i}, \quad \text { and } \quad T_{i} T_{j} T_{i} \cdots=T_{j} T_{i} T_{j} \cdots .
$$

Furthermore

Notes and References

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????.

