Taylor's theorem and the limit formula

Arun Ram

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu
Version: May 20, 2004

The derivative of f with respect to x is $\frac{d f}{d x}$. It is common to write $f^{\prime}(x)$ in place of $\frac{d f}{d x}$.

$$
f^{\prime}(x)=\frac{d f}{d x} .
$$

The second derivative of f with respect to x is

$$
f^{\prime \prime}(x)=\frac{d^{2} f}{d x^{2}}=\frac{d}{d x}\left(\frac{d f}{d x}\right),
$$

the derivative of the derivative of f. Both $\frac{d^{2} f}{d x^{2}}$ and $f^{\prime \prime}(x)$ are notations for the same thing, the second derivative of f.
The third derivative of f with respect to x is

$$
f^{\prime \prime \prime}(x)=\frac{d^{3} f}{d x^{3}}=\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right),
$$

the derivative of the second derivative of f. Use the notations $\frac{d^{3} f}{d x^{3}}$ and $f^{\prime \prime \prime}(x)$ interchangably for the third derivative of f.
The fourth derivative of f with respect to x is

$$
f^{(4)}(x)=\frac{d^{4} f}{d x^{4}}=\frac{d}{d x}\left(\frac{d^{3} f}{d x^{3}}\right),
$$

the derivative of the third derivative of f.
Let a be a number. Then f evaluated at a is

$$
f(a)=\left.f\right|_{x=a}=c_{0}+c_{1} a+c_{2} a^{2}+c_{3} x^{3}+\cdots,
$$

if $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots$. Use both notations, $f(a)$ and $\left.f\right|_{x=a}$, interchangably, for f evaluated at a.

Example: If $f(x)=7 x^{3}+3 x^{2}+5 x+12$ and $a=3$ then

$$
\begin{aligned}
& f(3)=7 \cdot 3^{3}+3 \cdot 3^{2}+5 \cdot 3+12=8 \cdot 3^{3}+27=9 \cdot 3^{3}=3^{5}, \\
& \left.f\right|_{x=3}=7 \cdot 3^{3}+3 \cdot 3^{2}+5 \cdot 3+12=8 \cdot 3^{3}+27=9 \cdot 3^{3}=3^{5} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{d f}{d x} & =21 x^{2}+6 x+5, & \left.\frac{d f}{d x}\right|_{x=3} & =21 \cdot 3^{2}+6 \cdot 3+5=189+23=202, \\
f^{\prime} & =21 x^{2}+6 x+5, & f^{\prime}(3) & =21 \cdot 3^{2}+6 \cdot 3+5=189+23=202, \\
\frac{d^{2} f}{d x^{2}} & =42 x+6, & \left.\frac{d^{2} f}{d x^{2}}\right|_{x=3} & =42 \cdot 3+6=132, \\
f^{\prime \prime} & =42 x+6, & f^{\prime \prime}(3) & =42 \cdot 3+6=132, \\
\frac{d^{3} f}{d x^{3}} & =42, & \left.\frac{d^{3} f}{d x^{3}}\right|_{x=3} & =42, \\
f^{\prime \prime \prime} & =42, & f^{\prime \prime \prime}(3) & =42,
\end{aligned}
$$

$$
\frac{d^{4} f}{d x^{4}}=0
$$

$$
\left.\frac{d^{4} f}{d x^{4}}\right|_{x=3}=0
$$

$$
f^{(4)}=0,
$$

$$
f^{(4)}(3)=0
$$

Taylor's and Macluarin's theorems and the limit formula for the derivative

$$
\text { If } \quad f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+c_{5}(x-a)^{5}+\cdots
$$

then

$$
f(a)=c_{0}
$$

$$
\begin{aligned}
&\left.\frac{d f}{d x}\right|_{x=a}=\left.\left(c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+5 c_{5}(x-a)^{4}+\cdots\right)\right|_{x=a}=c_{1}, \\
&\left.\frac{d^{2} f}{d x^{2}}\right|_{x=a}=\left.\left(2 c_{2}+3 \cdot 2 c_{3}(x-a)+4 \cdot 3 c_{4}(x-a)^{2}+5 \cdot 4 c_{5}(x-a)^{3}+\cdots\right)\right|_{x=a}=2 c_{2}, \\
&\left.\frac{d^{3} f}{d x^{3}}\right|_{x=a}=\left.\left(3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4}(x-a)+5 \cdot 4 \cdot 3 c_{5}(x-a)^{2}+6 \cdot 5 \cdot 4 c_{6}(x-a)^{3}+\cdots\right)\right|_{x=a}=3 \cdot 2 c_{3}, \\
&\left.\frac{d^{4} f}{d x^{4}}\right|_{x=a}=\left.\left(4 \cdot 3 \cdot 2 c_{4}+5 \cdot 4 \cdot 3 \cdot 2 c_{5}(x-a)+6 \cdot 5 \cdot 4 \cdot 3 c_{4}(x-a)^{2}+\cdots\right)\right|_{x=a}=4 \cdot 3 \cdot 2 c_{4},
\end{aligned}
$$

and we can continue this process to find

$$
\left.\frac{d^{k} f}{d x^{k}}\right|_{x=a}=k!c_{k}, \quad \text { for } k=1,2,3, \ldots
$$

Dividing both sides by k ! gives

$$
c_{k}=\frac{1}{k!}\left(\left.\frac{d^{k} f}{d x^{k}}\right|_{x=a}\right)
$$

So

$$
f(x)=f(a)+\left(\left.\frac{d f}{d x}\right|_{x=a}\right)(x-a)+\frac{1}{2!}\left(\left.\frac{d^{2} f}{d x^{2}}\right|_{x=a}\right)(x-a)^{2}+\frac{1}{3!}\left(\left.\frac{d^{3} f}{d x^{3}}\right|_{x=a}\right)(x-a)^{3}+\cdots,
$$

or, equivalently,

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\frac{1}{4!} f^{(4)}(a)(x-a)^{4}+\cdots
$$

Now subtract $f(a)$ from both sides:

$$
f(x)-f(a)=f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\frac{1}{4!} f^{(4)}(a)(x-a)^{4}+\cdots
$$

Divide both sides by $x-a$.

$$
\frac{f(x)-f(a)}{x-a}=f^{\prime}(a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{2}+\frac{1}{4!} f^{(4)}(a)(x-a)^{3}+\cdots .
$$

Evaluate both sides at $x=a$.

$$
\left.\frac{f(x)-f(a)}{x-a}\right|_{x=a}=f^{\prime}(a)+0+0+0+0+\cdots
$$

So $\quad f^{\prime}(a)=\left.\frac{f(x)-f(a)}{x-a}\right|_{x=a}$.
Let $x=a+h$. Then $\quad f^{\prime}(a)=\left.\frac{f(a+h)-f(a)}{a+h-a}\right|_{a+h=a}$.
So $\left.\quad \frac{d f}{d x}\right|_{x=a}=\left.\frac{f(a+h)-f(a)}{h}\right|_{h=0}$.
Another way to write this is

$$
\left.\frac{d f}{d x}\right|_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Example: Suppose you want to know what f I'm thinking of and I refuse to tell you.

You ask me what $f(0)$ is and I say " 6 ".
You ask me what $f^{\prime}(0)$ is and I say " 10 ".
You ask me what $f^{\prime \prime}(0)$ is and I say " 31 ".
You ask me what $f^{\prime \prime \prime}(0)$ is and I say " 5 ".
You ask me what $f^{(4)}(0)$ is and I say " 7 ".
You ask me what $f^{(5)}(0)$ is and I say " 0 ".
You ask me what $f^{(6)}(0)$ is and I say " 0 ".
You ask me what $f^{(7)}(0)$ is and I say " 0 , they are all coming out to 0 now.".
At this point you win because you know that

$$
\begin{aligned}
f(x)= & f(0)+f^{\prime}(0)(x-0)+\frac{1}{2!} f^{\prime \prime}(0)(x-0)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0)(x-0)^{3}+\cdots \\
= & 6+10(x-0)+\frac{1}{2!} 31(x-0)^{2}+\frac{1}{3!} 5(x-0)^{3}+\frac{1}{4!} 7(x-0)^{4} \\
& \quad+\frac{1}{5!} \cdot 0(x-0)^{5}+\frac{1}{6!} \cdot 0(x-0)^{6}+\frac{1}{7!} \cdot 0(x-0)^{7}+0+0+\cdots \\
& =6+10 x+\frac{31}{2} x^{2}+\frac{5}{6} x^{3}+\frac{7}{24} x^{4}
\end{aligned}
$$

and so you have found out what f is.

Example: Suppose you want to know what f I'm thinking of and I refuse to tell you.
You ask me what $f(0)$ is and I say "I won't tell you, but $f(3)=4$ ".
You ask me what $f^{\prime}(0)$ is and I say "I won't tell you, but $\left.\frac{d f}{d x}\right|_{x=3}=2$ ".
You ask me what $f^{\prime \prime}(0)$ is and I say "I won't tell you, but $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=3}=5$ ".
You ask me what $f^{\prime \prime \prime}(0)$ is and I say
"I won't tell you, but $\left.\frac{d^{3} f}{d x^{3}}\right|_{x=3}=0$ and all the rest of the $\left.\frac{d^{k} f}{d x^{k}}\right|_{x=3}$ are coming out to 0 ".
At this point you win because you know that

$$
\begin{aligned}
f(x) & =\left.f\right|_{x=3}+\left(\left.\frac{d f}{d x}\right|_{x=3}\right)(x-3)+\frac{1}{2!}\left(\left.\frac{d^{2} f}{d x^{2}}\right|_{x=3}\right)(x-3)^{2}+\frac{1}{3!}\left(\left.\frac{d^{3} f}{d x^{3}}\right|_{x=3}\right)(x-3)^{3}+\cdots \\
& =2+5(x-3)+\frac{1}{2!} 5(x-3)^{2}+\frac{1}{3!} \cdot 0(x-3)^{3}+0+0+\cdots \\
& =2+5 x-15+\frac{5}{2}\left(x^{2}-6 x+9\right)+0+0+\cdots \\
& =-13+5 x+\frac{5}{2} x^{2}-15 x+\frac{45}{2} \\
& =\frac{5}{2} x^{2}-10 x+\frac{19}{2}
\end{aligned}
$$

and so you know what f is.

