Notes: Toroidal Hecke algebras

Arun Ram*
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu
Version: February 19, 2004

1. Grading toroidal Hecke algebras

The toroidal Hecke algebra ${ }_{X} H_{Y}$ is the algebra given by generators

$$
T_{0}, \ldots, T_{n}, \quad X^{\lambda}, \quad \lambda \in P, \quad \text { and } \quad \Omega,
$$

with relations

$$
\begin{array}{ll}
\left(T_{i}-t_{i}^{\frac{1}{2}}\right)\left(T_{i}+t_{i}^{\frac{1}{2}}\right)=0, & \text { for } 0 \leq i \leq n, \\
\underbrace{T_{i}}_{m_{i j} T_{j} T_{i} \cdots}=\underbrace{T_{j} T_{i} T_{j} \cdots}_{m_{i j} \text { factors }}, & \\
g_{r} T_{i} g_{r}^{-1}=T_{j}, & \text { if } g_{r}\left(\alpha_{i}\right)=\alpha_{j}, \\
T_{i} X^{\lambda} T_{i}=X^{\lambda-\alpha_{i}}, & \text { if }\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=1, \\
T_{i} X^{\lambda}=X^{\lambda} T_{i}, & \text { if }\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=0, \\
g_{r} X^{\lambda} g_{r}^{-1}=X_{g_{r} \lambda}=X^{u_{r}^{-1} \lambda} q^{\left\langle\omega_{r}, \lambda\right\rangle}, & \text { for } r \in P / Q,
\end{array}
$$

Additional relations/definitions are

$$
\langle\mu+j \delta, \lambda\rangle=\langle\mu, \lambda\rangle, \quad q_{\alpha}=q^{\langle\alpha, \alpha\rangle / 2}, \quad t_{\alpha}=q_{\alpha}^{c_{\alpha}}
$$

and

$$
X^{\lambda+j \delta}=X^{\lambda} q^{j}, \quad \text { and } \quad Y^{\lambda+j \delta}=Y^{\mu} q^{-j}
$$

and

$$
u_{r}=g_{r}^{-1} \omega_{r}, \quad u_{r^{*}}=u_{r}^{-1}, \quad \pi_{r^{*}}=\pi_{r}^{-1}, \quad \text { for } r \in P / Q
$$

For $\lambda \in P$ define

$$
Y^{\lambda}=\prod_{i=1}^{n} Y_{i}^{\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle}, \quad \text { where } \quad Y_{i}=T_{\omega_{i}}
$$

for $1 \leq i \leq n$. Then, for $\lambda \in P$ and $1 \leq i \leq n$,

$$
\begin{aligned}
T_{i}^{-1} Y^{\lambda} T_{i}^{-1} & =Y^{\lambda-\alpha_{i}}, \quad \text { if }\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=1, \quad \text { and } \\
T_{i} Y^{\lambda} & =Y^{\lambda} T_{i}, \quad \text { if }\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=0 .
\end{aligned}
$$

[^0]Inside H let

$$
\begin{aligned}
Y^{\alpha_{0}} & =q^{-1} Y^{-\phi} \\
\Phi_{i} & =T_{i}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{1}{Y^{-\alpha_{i}}-1}, \quad \text { for } 1 \leq i \leq n \\
\Phi_{0} & =X^{\phi} T_{s_{\phi}}-\left(t_{0}^{1 / 2}-t_{0}^{-1 / 2}\right) \frac{1}{Y^{\alpha_{0}}-1}, \\
\gamma_{i} & =t_{i}^{1 / 2}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{1}{Y^{-\alpha_{i}}-1}, \quad \text { for } 0 \leq i \leq n
\end{aligned}
$$

and let

$$
s_{i}=\Phi_{i} \gamma_{i}^{-1}, \quad \text { and } \quad g_{r}=X^{\omega_{r}} T_{u_{r}^{-1}}
$$

Then, amazingly, the $s_{0}, s_{1}, \ldots, s_{n}$ and the g_{r} generate a copy of \tilde{W} inside ${ }_{X} H_{Y}$.
The graded toroidal Hecke algebra ${ }_{X} H_{y}$
The graded toroidal Hecke algebra ${ }_{x} H_{y}$ is the algebra generated by

$$
\mathbb{C}[\tilde{W}] \quad \text { and } \quad y_{1}, \ldots, y_{n}
$$

with relations

$$
\begin{aligned}
s_{j} y_{\lambda}-y_{s_{j} \lambda} s_{j} & =-c_{\alpha_{j}}\left\langle\lambda, \alpha_{j}^{\vee}\right\rangle, \quad \text { for } 0 \leq j \leq n, \\
g_{r} y_{\lambda} & =y_{g_{r} \lambda} g_{r}, \quad \text { for } r \in P / Q
\end{aligned}
$$

where $\left\langle\lambda, \alpha_{0}^{\vee}\right\rangle=-\left\langle\lambda, \phi^{\vee}\right\rangle$, for $\lambda \in P$. If we set

$$
q=e^{\xi}, \quad Y^{\lambda}=e^{-\xi y_{\lambda}}
$$

then ${ }_{X} H_{y}$ is the $\xi \rightarrow 0$ limit of ${ }_{X} H_{Y}$ and

$$
y_{\lambda+j \delta}=j+\sum_{i=1}^{n}\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle y_{i}
$$

The graded graded toroidal Hecke algebra ${ }_{x} H_{y}$
The graded graded toroidal Hecke algebra is the algebra generated by $\mathfrak{h}, \mathfrak{h}^{*}$, and W, with relations

$$
\begin{gathered}
w x=w(x) w, \quad w y=w(y) w, \quad x_{1} x_{2}=x_{2} x_{1}, \quad y_{1} y_{2}=y_{2} y_{1} \\
y x-x y=\langle y, x,\rangle-\sum_{\alpha \in R^{+}} c_{\alpha}\langle y, \alpha\rangle\left\langle\alpha^{\vee}, x\right\rangle s_{\alpha}
\end{gathered}
$$

for $x_{1}, x_{2}, x \in \mathfrak{h}^{*}, y_{1}, y_{2}, y \in \mathfrak{h}$ and $w \in W$. If

$$
X^{\lambda}=e^{s x_{\lambda}} \quad \text { then } \quad{ }_{x} H_{y}=\lim _{s \rightarrow 0} H_{y}
$$

If we set

$$
q=e^{h}, \quad Y^{\lambda}=e^{-\sqrt{h} y_{\lambda}}, \quad \text { and } \quad X^{\lambda}=e^{\sqrt{h} x_{\lambda}}
$$

then

$$
{ }_{x} H_{y}=\lim _{h \rightarrow 0}{ }_{X} H_{Y} .
$$

The polynomial representation
Let

$$
\alpha_{0}=-\phi+\delta \quad \text { and } \quad \rho_{c}=\frac{1}{2} \sum_{\alpha \in R^{+}} c_{\alpha} \alpha
$$

Let

$$
H_{Y} \text { be the subalgebra of } H \text { generated by } T_{i}, 1 \leq i \leq n, \text { and } Y^{\lambda}, \lambda \in P
$$

There is a one dimensional H_{Y} module 1 given by

$$
\text { 1: } \begin{array}{rlc}
H_{Y} & \longrightarrow & \mathbb{C} \\
T_{i} & \longmapsto & t_{i}^{1 / 2} \\
Y^{\omega_{i}} & \longmapsto t_{i}^{1 / 2} ? ? ? ?,
\end{array}
$$

Then the induced module ${ }_{x} H_{Y} \otimes_{H_{Y}} \mathbf{1}$ is the vector space $\mathbb{C}[X]=\mathbb{C}-\operatorname{span}\left\{X^{\lambda} \mid \lambda \in P\right\}$ with H-action given by

$$
\begin{aligned}
& T_{i}=t_{i}^{1 / 2} s_{i}+\left(t_{i}^{1 / 2}-t_{i}^{-1 / 2}\right) \frac{1}{X^{\alpha_{i}}-1}\left(s_{i}-1\right), \quad \text { for } 0 \leq i \leq n \\
& T_{0}=t_{0}^{1 / 2} s_{0}+\left(t_{0}^{1 / 2}-t_{0}^{-1 / 2}\right) \frac{1}{q X^{-\phi}-1}\left(s_{0}-1\right)
\end{aligned}
$$

where

$$
s_{0}\left(X^{\lambda}\right)=X^{\lambda-\left\langle\lambda, \phi^{\vee}\right\rangle \phi} q^{\langle\lambda, \phi\rangle}
$$

for $\lambda \in P$. The trigonometric difference Dunkl operators are the

$$
\begin{aligned}
\Theta^{\lambda}: \mathbb{C}[X] & \longrightarrow \mathbb{C}[X] \\
f & \longrightarrow Y^{\lambda} f, \quad \text { for } \lambda \in P .
\end{aligned}
$$

Define operators $\partial_{\lambda}: \mathbb{C}[X] \rightarrow \mathbb{C}[X], \lambda \in P$, by

$$
\partial_{\lambda}\left(X^{\mu}\right)=\langle\lambda, \mu\rangle X^{\mu}, \quad \text { for } \mu \in P
$$

Then $w\left(\partial_{\lambda}\right)=\partial_{w \lambda}$ for $\lambda \in P$ and $w \in W$ and the operator $\mathcal{D}_{\lambda}: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ given by

$$
\mathcal{D}_{\lambda}=\lim _{h \rightarrow 0} \Theta^{\lambda}=\partial_{\lambda}+\sum_{\alpha \in R^{+}} \frac{c_{\alpha}\left\langle\lambda, \alpha^{\vee}\right.}{1-X^{-\alpha}}\left(1-s_{\alpha}\right)-\left\langle\lambda, \rho_{c}\right\rangle
$$

is the limit of $\Theta^{\lambda}: \mathbb{C}[X] \rightarrow \mathbb{C}[X]$ at $h \rightarrow 0$.
Define operators $d_{\mu}: \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ by

$$
d_{\mu}\left(x_{\lambda}\right)=\langle\mu, \lambda\rangle x_{\lambda}, \quad \text { for } \lambda, \mu \in \mathfrak{h}^{*}
$$

so that

$$
d_{\mu}=\lim _{s \rightarrow 0} s \partial_{\mu} \quad \text { under the substitution } X^{\lambda}=e^{s x_{\lambda}}
$$

Then

$$
\begin{equation*}
D_{\lambda}=\lim _{s \rightarrow 0} s \mathcal{D}_{\lambda}=d_{\lambda}+\sum_{\alpha \in R^{+}} \frac{c_{\alpha}\left\langle\lambda, \alpha^{\vee}\right\rangle}{x_{\alpha}}\left(1-s_{\alpha}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{D}_{\lambda}=\frac{1}{s} D_{\lambda}-\left\langle\rho_{c}, \lambda\right\rangle+\sum_{\alpha \in R^{+}} c_{\alpha}\langle\lambda, \alpha\rangle \sum_{m \in \mathbb{Z}_{\geq 0}} \frac{B_{m}}{m!}\left(-s x_{\alpha}\right)^{m}\left(1-s_{\alpha}\right) \tag{1.2}
\end{equation*}
$$

where B_{m} are the Bernoulli numbers defined by

$$
\frac{x}{e^{x}-1}=\sum_{m \in \mathbb{Z}_{\geq 0}} \frac{B_{m}}{m!}
$$

2. Graded toroidal Hecke algebras

Let W be a real reflection group with reflection representation \mathfrak{h}. Let R^{+}be the set of reflections in W. Let \hat{W} be a index set for the irreducible W-modules and let W^{λ} denoe the simple W-module indexed by $\lambda \in \hat{W}$. Fix a W-invariant function

$$
\begin{array}{clc}
c: R^{+} & \longrightarrow & \mathbb{C} \\
\alpha & \longmapsto & c_{\alpha}
\end{array}
$$

The Casimir element of $\mathbb{C} W$ is

$$
\kappa_{c}=\sum_{\alpha} c_{\alpha}\left(1-s_{\alpha}\right) \quad \in Z(\mathbb{C} W)
$$

For each $\lambda \in \hat{W}$ let $\kappa_{c}(\lambda)$ be the constant such that

$$
\kappa_{c} \text { acts as } \kappa_{c}(\lambda) \cdot \operatorname{Id} \text { on } W^{\lambda}
$$

The toroidal Hecke algebra \mathbb{H}_{c} is the algebra generated by $\mathfrak{h}, \mathfrak{h}^{*}$, and W, with relations

$$
\begin{gathered}
w x=w(x) w, \quad w y=w(y) w, \quad x_{1} x_{2}=x_{2} x_{1}, \quad y_{1} y_{2}=y_{2} y_{1} \\
y x-x y=\langle y, x,\rangle-\sum_{\alpha \in R^{+}} c_{\alpha}\langle y, \alpha\rangle\left\langle\alpha^{\vee}, x\right\rangle s_{\alpha}
\end{gathered}
$$

for $x_{1}, x_{2}, x \in \mathfrak{h}^{*}, y_{1}, y_{2}, y \in \mathfrak{h}$ and $w \in W$. The "PBW"-theorem for \mathbb{H}_{c} is that, as vector spaces,

$$
\left.\begin{array}{rlrl}
\mathbb{H}_{c} & =\mathbb{C}[\mathfrak{h}] \otimes \mathbb{C} W \otimes \mathbb{C}\left[\mathfrak{h}^{*}\right], & \text { where } & \mathbb{C}[\mathfrak{h}]
\end{array}=\left(\text { the subalgebra generated by } x \in \mathfrak{h}^{*}\right) \quad \text { and }\right)
$$

The principal $\mathfrak{s l}_{2}$
Let
$\left\{x_{i}\right\}$ be a basis of \mathfrak{h}^{*},
$\left\{y_{i}\right\}$ be the basis of \mathfrak{h} dual to $\left\{x_{i}\right\}$,
$\left\{x_{i}^{*}\right\}$ be the basis of \mathfrak{h}^{*} dual to $\left\{x_{i}\right\}$ with respect to \langle,$\rangle ,$
$\left\{x_{i}\right\}$ be the basis of \mathfrak{h} dual to $\left\{y_{i}\right\}$ with respect to $\langle\rangle,$,

Then the elements

$$
e=\sum_{i} x_{i} x_{i}^{*}, \quad f=\sum_{i} y_{i} y_{i}^{*}, \quad h=\frac{1}{2} \sum_{i} x_{i} y_{i}+y_{i} x_{i}
$$

form an $\mathfrak{s l}_{2}$-triple in \mathbb{H}_{c}.
The spherical Hecke algebra
Let

$$
\mathbf{1}=\frac{1}{|W|} \sum_{w \in W} w \quad \text { and } \quad \epsilon=\frac{1}{|W|} \sum_{w \in W} \operatorname{det}(w) w
$$

be the minimal idempotents in $\mathbb{C} W$ corresponding to the trivial and the det representations, respectively.

The spherical Hecke algebra is $\mathbf{1} \mathbb{H}_{c} \mathbf{1}$ and the det-spherical Hecke algebra is $\epsilon \mathbb{H}_{c} \epsilon$. Since $\mathbb{H}_{c} \epsilon$ is an $\left(\mathbb{H}_{c}, \epsilon \mathbb{H}_{c} \epsilon\right)$ there are functors

$$
\begin{array}{clcclcc}
\mathbb{H}_{c}-\bmod & \longrightarrow & \epsilon \mathbb{H}_{c} \epsilon-\bmod & \text { and } & \epsilon \mathbb{H}_{c} \epsilon-\bmod & \longrightarrow & \mathbb{H}_{c}-\bmod \\
M & \longmapsto & \epsilon M & N & \longmapsto & \mathbb{H}_{c} \epsilon \otimes_{\epsilon \mathbb{H}_{c} \epsilon} N
\end{array}
$$

Let

$$
\theta_{c}: \mathbf{1} \mathbb{H}_{c-1} \mathbf{1} \longrightarrow \operatorname{End}(\mathbb{C}[\mathfrak{h}]) \quad \text { and } \quad \Theta_{c}^{-}: \epsilon \mathbb{H}_{c} \epsilon \longrightarrow \operatorname{End}(\mathbb{C}[\mathfrak{h}])
$$

be the spherical and the antispherical Harish-Chandra isomorphisms, respectively. (Should the constant function 1 be called ρ here???? or ρ^{\vee} ???)

Theorem 2.1. (Shift isomorphism) The map

$$
\Theta_{c}^{-1} \circ \Theta_{c}^{-}: \epsilon \mathbb{H}_{c} \epsilon \xrightarrow{\sim} \mathbf{1} \mathbb{H}_{c-1} \mathbf{1}
$$

is a well defined algebra isomorphism.

The category \mathcal{O}_{c}
The category \mathcal{O}_{c} is the category of \mathbb{H}_{c}-modules M such that
(a) For each $m \in M, \mathbb{C}\left[\mathfrak{h}^{*}\right] m$ is finite dimensional,
(b) If $p \in \mathbb{C}\left[f h^{*}\right]^{W}$ then $p-p(0)$ acts locally nilpotently on M (What??? does this mean???).

Let \hat{W} be a index set for the irreducible W-modules and let W^{λ} denoe the simple W-module indexed by $\lambda \in \hat{W}$. The standard modules are

$$
M_{c}(\lambda)=\mathbb{H}_{c} \otimes_{\mathbb{C}\left[\mathfrak{h}^{*}\right] \otimes \mathbb{C} W} W^{\lambda}, \quad \text { for } \lambda \in \hat{W}
$$

where teh $\mathbb{C}\left[\mathfrak{h}^{*}\right] \otimes \mathbb{C} W$ action on W^{λ} is given by

$$
p w \cdot m=p(0) w m, \quad \text { for } p \in \mathbb{C}\left[\mathfrak{h}^{*}\right], w \in W, m \in W^{\lambda}
$$

Theorem 2.2. (Berest-Etingof-Ginzburg)
(a) $M_{c}(\lambda)$ has a unique simple quotient $L_{c}(\lambda)$.
(b) $\left\{L_{c}(\lambda) \mid \lambda \in \hat{W}\right\}$ are the simple objects in \mathcal{O}_{c}.
(c) Every object in \mathcal{O}_{c} has finite length.

2. Gordon's results

By an old theorem of Steinberg?? (exercise in Bourbaki) the $\wedge^{i} \mathfrak{h}, 0 \leq i \leq n$ are nonisomorphic irreducible representations of W. As a $\mathbb{C}[\mathfrak{h}] \otimes \mathbb{C} W$-module

$$
M_{c}\left(\wedge^{i} \mathfrak{h}\right) \cong \mathbb{C}[\mathfrak{h}] \otimes \wedge^{i} \mathfrak{h}
$$

The graded W-character of $M_{c}\left(\wedge^{i} \mathfrak{h}\right)$ (with respect to which grading??? there are two that coming from h-eigenspaces and the other coming from \mathbb{H}_{c} as a deformation of $\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] * W$, how do these two gradings relate, I'm totally confused???) is

$$
\begin{equation*}
\operatorname{ch}\left(M_{c}\left(\wedge^{i} \mathfrak{h}\right) ; w, t\right)=\frac{t^{\kappa_{c}\left(\wedge^{i} \mathfrak{h}\right)} \operatorname{ch}\left(\wedge^{i} \mathfrak{h}, t\right)}{\operatorname{det}(1-t w)} \tag{2.1}
\end{equation*}
$$

Let $m \in \mathbb{Z}_{\geq 0}$ and

$$
\text { assume } \quad c=\frac{1+m h}{h}, \quad \text { where } \quad h=\frac{2 \operatorname{Card}\left(R^{+}\right)}{\operatorname{dim}(\mathfrak{h})}
$$

is the Coxeter number. Then
(a) If $\lambda \neq \mu$ and there is a nonzero \mathbb{H}_{c}-module homomorphism

$$
M_{c}(\lambda) \rightarrow M_{c}(\mu) \quad \text { then } \quad \lambda=\wedge^{i} \mathfrak{h} \quad \text { and } \quad \mu=\wedge^{j} \mathfrak{h}
$$

for some i and j.
(b) If $M_{c}(\lambda)$ is not simple then $W^{\lambda} \cong \wedge^{i} \mathfrak{h}$ for some $0 \leq i \leq n$,
(c) If $L_{c}(\lambda)$ is finite dimensional then $W^{\lambda} \cong \wedge^{i} \mathfrak{h}$ for some $0 \leq i \leq n$,
(d) $\left[M_{c}\left(\wedge^{i} \mathfrak{h}\right): L_{c}\left(\wedge^{j} \mathfrak{h}\right)\right]=\left[\epsilon M_{c}\left(\wedge^{i} \mathfrak{h}\right): \epsilon L_{c}\left(\wedge^{j} \mathfrak{h}\right)\right]$,
(e) the Hilbert series of $M_{c}\left(\wedge^{i} \mathfrak{h}\right)$ with respect to the h-eigenspaces is

$$
P\left(\epsilon M_{c}\left(\wedge^{i} \mathfrak{h}\right), t\right)=\frac{t^{-m \mid R^{+}} \mid+i(m h+1)}{\prod_{j=1}^{n}\left(1-t^{d_{i}}\right)} e_{n-i}\left(t^{e_{1}}, \ldots, t^{e_{n}}\right)
$$

where d_{1}, \ldots, d_{n} are the degrees of $W, e_{i}=d_{i}-1$ are the exponents of W and $e_{r}\left(x_{1}, \ldots, x_{n}\right)$ is the r th elementary symmetric function.
(f) $\epsilon L_{c}\left(\wedge^{i} \mathfrak{h}\right) \neq 0$,

Now

$$
\text { assume } \quad c=\frac{1+h}{h} .
$$

Then
(a) there is a 1 -dimensional $\epsilon \mathbb{H}_{c} \epsilon$-module ϵ_{1},
(b) $L_{c}\left(\wedge^{0} \mathfrak{h}\right)=\mathbb{H}_{c} \epsilon \otimes_{\epsilon \mathbb{H}_{c} \epsilon} \epsilon_{1}$,
(c) $L_{c}\left(\wedge^{9} \mathfrak{h}\right)=\sum_{i=0}^{n}(-1)^{i} M_{c}\left(\wedge^{i} \mathfrak{h}\right)$.
(d) The Hilbert series of $L_{c}\left(\wedge^{0} \mathfrak{h}\right)$ is

$$
P\left(L_{c}\left(\wedge^{0} \mathfrak{h} ; t\right)=t^{-\left|R^{+}\right|}\left(1+t+t^{2}+\cdots+t^{h}\right)^{n} .\right.
$$

(e) The graded character of $L_{c}\left(\wedge^{0} \mathfrak{h}\right)$ is

$$
\operatorname{ch}\left(L_{c}\left(\wedge^{0} \mathfrak{h} ; w, t\right)=t^{-\left|R^{+}\right|} \frac{\operatorname{det}\left(1-t^{h+1} w\right)}{\operatorname{det}(1-t w)}\right.
$$

and, by putting $t=1$, the W-character of $L_{c}\left(\wedge^{0} \mathfrak{h}\right)$ is

$$
\operatorname{ch}\left(L_{c}\left(\wedge^{0} \mathfrak{h} ; w\right)=h^{\operatorname{dim} \operatorname{ker}(1-w)},\right.
$$

and thus, by comparison with Sommers [ref??],

$$
L_{c}\left(\wedge^{0} \mathfrak{h}\right) \cong \frac{Q}{(h+1) Q}, \quad \text { as } W \text {-modules },
$$

when W is a Weyl group and Q is the root lattice of W.

The connection to diagonal harmonics
The filtration on \mathbb{H}_{c} given by

$$
\operatorname{deg}(x)=1, \quad \operatorname{deg}(y)=1, \quad \operatorname{deg}(w)=0, \quad x \in \mathfrak{h}^{*}, y \in \mathfrak{h}, w \in W,
$$

has associated graded

$$
\operatorname{gr}\left(\mathbb{H}_{c}\right)=\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] * W,
$$

the "semidirect" product of $\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right]$ and $\mathbb{C} W$. Let

$$
c=\frac{1+h}{h} \quad \text { and } \quad L=L_{c}\left(\wedge^{0} \mathfrak{h}\right)=\mathbb{H}_{c} \epsilon \otimes_{\epsilon \mathbb{H}_{c} \epsilon} \epsilon_{1} .
$$

Then the surjection

$$
\left(\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] * W\right) \epsilon \otimes_{\epsilon\left(\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] * W\right) \epsilon} \epsilon_{1} \longrightarrow \operatorname{gr}(L)
$$

and the graded $\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] * W$ isomorphisms

$$
\begin{array}{lll}
\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] \otimes \epsilon & \xrightarrow{\sim} & \left(\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] * W\right) \epsilon=\operatorname{gr}\left(\mathbb{H}_{c} \epsilon\right),
\end{array} \quad \text { and }
$$

provide a graded surjection

$$
\frac{\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right]}{\left\langle\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right]_{+}^{W}\right\rangle} \cong \mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right] \otimes_{\mathbb{C}\left[\mathfrak{h} \oplus \mathfrak{h}^{*}\right]^{W}} \epsilon_{1} \longrightarrow \operatorname{gr}(L) \otimes \epsilon .
$$

The KZ-connection

There is an injective algebra homomorphism

$$
\mathbb{H}_{c} \longrightarrow D\left(\mathfrak{h}^{\mathrm{reg}}\right) \otimes \mathbb{C} W
$$

and a corresponding localization functor

$$
\begin{array}{clc}
\mathbb{H}_{c} \text {-mod } & \longrightarrow & \left\{W \text {-equivariant } D \text {-modules on } \mathfrak{h}^{\text {reg }}\right\} \\
M & \longmapsto & \left.M\right|_{\mathfrak{h}^{\text {reg }}}
\end{array}
$$

The KZ-connection with values in W^{λ} is the flat connection on

$$
\left.M_{c}(\lambda)\right|_{\mathfrak{h}^{\mathrm{reg}}}=\left(\text { trivial vector bundle } \mathbb{C}\left[\mathfrak{h}^{\mathrm{reg}}\right] \otimes W^{\lambda}\right)
$$

The corresponding monodromy representation (in a fiber over a point in $\mathfrak{h}^{\text {reg }} / W$), $\operatorname{Mon}_{c}(\lambda)$, of the braid group, $\pi_{1}\left(\mathfrak{h}^{\text {reg }} / W\right)$, factors through the Hecke algebra $H_{W}\left(e^{2 \pi i c}\right)$.

6. References

[Go] I. Gordon, On the quotient ring by diagonal invariants, Invent. Math. ?? (2003), ???-???
[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????.

