Symmetric functions
 Lecture Notes

Arun Ram*
Department of Mathematics
University of Wisconsin-Madison
Madison, WI 53706
ram@math.wisc.edu
Version: January 26, 2004

1. Symmetric functions

The symmetric group S_{n} acts on the vector space

$$
\mathbb{Z}^{n}=\mathbb{Z}-\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\} \quad \text { by } \quad w x_{i}=x_{w(i)},
$$

for $w \in S_{n}, 1 \leq i \leq n$. This action induces an action of S_{n} on the polynomial ring $\mathbb{Z}\left[X_{n}\right]=$ $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by ring automorphisms. For a sequence $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ of nonnegative integers let

$$
x^{\gamma}=x_{1}^{\gamma_{1}} \cdots x_{n}^{\gamma_{n}}, \quad \text { so that } \quad \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{Z}-\operatorname{span}\left\{x^{\gamma} \mid \gamma \in \mathbb{Z}_{\geq 0}^{n}\right\} .
$$

The ring of symmetric functions is

$$
\begin{equation*}
\mathbb{Z}\left[X_{n}\right]^{S_{n}}=\left\{f \in \mathbb{Z}\left[X_{n}\right] \mid w f=f \text { for all } w \in S_{n}\right\} \tag{1.1}
\end{equation*}
$$

Define the orbit sums, or monomial symmetric functions, by

$$
m_{\lambda}=\sum_{\gamma \in S_{n} \lambda} x^{\gamma}, \quad \text { for } \lambda \in \mathbb{Z}_{\geq 0}^{n}
$$

where $S_{n} \lambda$ is the orbit of λ under the action of S_{n}. Let

$$
\begin{equation*}
P^{+}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda_{1} \geq \cdots \geq \lambda_{n}\right\} \tag{1.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\{m_{\lambda} \mid \lambda \in P^{+}\right\} \quad \text { is a } \mathbb{Z} \text {-basis of } \mathbb{Z}\left[X_{n}\right]^{S_{n}} . \tag{1.3}
\end{equation*}
$$

Partitions

[^0]A partition is a collection μ of boxes in a corner where the convention is that gravity goes up and to the left. As for matrices, the rows and columns of μ are indexed from top to bottom and left to right, respectively.

$$
\begin{array}{ll}
\text { The parts of } \mu \text { are } & \mu_{i}=(\text { the number of boxes in row } i \text { of } \mu) \\
\text { the length of } \mu \text { is } & \ell(\mu)=(\text { the number of rows of } \mu) \tag{1.4}\\
\text { the size of } \mu \text { is } & |\mu|=\mu_{1}+\cdots+\mu_{\ell(\mu)}=(\text { the number of boxes of } \mu) .
\end{array}
$$

Then μ is determined by (and identified with) the sequence $\mu=\left(\mu_{1}, \ldots, \mu_{\ell}\right)$ of positive integers such that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{\ell}>0$, where $\ell=\ell(\mu)$. For example,

A partition of k is a partition λ with k boxes. Write $\lambda \vdash k$ if λ is a partition of k. Make the convention that $\lambda_{i}=0$ if $i>\ell(\lambda)$. The dominance order is the partial order on the set of partitions of k,

$$
P^{+}(k)=\{\text { partitions of } k\}=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) \mid \lambda_{1} \geq \cdots \geq \lambda_{\ell}>0, \lambda_{1}+\ldots+\lambda_{\ell}=k\right\}
$$

given by

$$
\lambda \geq \mu \quad \text { if } \quad \lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{i} \quad \text { for all } 1 \leq i \leq \max \{\ell(\lambda), \ell(\mu)\}
$$

PUT THE PICTURE OF THE HASSE DIAGRAM FOR $k=6$ HERE.

Tableaux

Let λ be a partition and let $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with $\mu_{1} 1 \mathrm{~s}, \mu_{2} 2 \mathrm{~s}, \ldots$, $\mu_{n} n \mathrm{~s}$, such that
(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write $\operatorname{shp}(p)$ and $\operatorname{wt}(p)$ for the shape and the weight of p so that

$$
\begin{aligned}
\operatorname{shp}(p) & =\left(\lambda_{1}, \ldots, \lambda_{n}\right), & \quad \text { where } \quad \lambda_{i}=\text { number of boxes in row } i \text { of } p, \quad \text { and } \\
\operatorname{wt}(p) & =\left(\mu_{1}, \ldots, \mu_{n}\right), & \text { where } \quad \mu_{i}=\text { number of } i \text { s in } p .
\end{aligned}
$$

For example,

$$
\begin{array}{ll}
\text { has } & \operatorname{shp}(p)=(9,7,7,4,2,1,0) \quad \text { and } \\
& \operatorname{wt}(p)=(7,6,5,5,3,2,2)
\end{array}
$$

For a partition λ and a sequence $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$
\begin{align*}
B(\lambda) & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda\} \tag{1.5}\\
B(\lambda)_{\mu} & =\{\text { column strict tableaux } p \mid \operatorname{shp}(p)=\lambda \text { and } \operatorname{wt}(p)=\mu\},
\end{align*}
$$

Elementary symmetric functions

Define symmetric functions $e_{r}, 0 \leq r \leq n$, via the generating function

$$
\prod_{i=1}^{n}\left(1-x_{i} z\right)=\sum_{r=0}^{n}(-1)^{r} e_{r} z^{r}
$$

Then $e_{0}=1$ and, for $0 \leq r \leq n$,

$$
e_{r}=m_{\left(1^{r}\right)}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}=\sum_{\operatorname{shp}(p)=\left(1^{r}\right)} x^{\mathrm{wt}(p)},
$$

where the last sum is over all column strict tableaux p of shape $\left(1^{r}\right)$.
If $f(t)$ is a polyomial in t with roots $\gamma_{1}, \ldots, \gamma_{n}$ then

$$
\text { the coefficient of } t^{r} \text { in } f(t) \text { is }(-1)^{n-r} e_{r}\left(\gamma_{1}, \ldots, \gamma_{n}\right)
$$

If A is an $n \times n$ matrix with entries in \mathbb{F} with eigenvalues $\gamma_{1}, \ldots, \gamma_{n}$ then the trace of the action of A on the $r^{\text {th }}$ exterior power of the vector space \mathbb{F}^{n} is

$$
\operatorname{tr}\left(A, \bigwedge^{r} \mathbb{F}^{n}\right)=e_{r}\left(\gamma_{1}, \ldots, \gamma_{n}\right), \quad \text { so that } \quad \operatorname{Tr}(A)=e_{1}\left(\gamma_{1}, \ldots, \gamma_{n}\right), \quad \operatorname{det}(A)=e_{n}\left(\gamma_{1}, \ldots, \gamma_{n}\right),
$$

and the characteristic polynomials of A is

$$
\operatorname{char}_{t}(A)=\sum_{r=0}^{n}(-1)^{n-r} e_{n-r}\left(\gamma_{1}, \ldots, \gamma_{n}\right) t^{r}
$$

Proposition 1.6. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a partition. Then

$$
e_{\lambda^{\prime}}=\sum_{\mu \leq \lambda} a_{\lambda^{\prime} \mu} m_{\mu},
$$

where $a_{\lambda^{\prime} \mu}$ is the number of matrices with entries from $\{0,1\}$ with row sums λ^{\prime} and column sums μ. Furthermore, $a_{\lambda^{\prime} \lambda}=1$ and $a_{\lambda^{\prime} \mu}=0$ unless $\mu \leq \lambda$.

Proof. If A is an $\ell \times n$ matrix with entries from $\{0,1\}$ let

$$
x^{A}=\prod_{i=1}^{n}\left(x_{i}\right)^{a_{i j}}
$$

and define

$$
\begin{aligned}
& r s(A)=\left(\rho_{1}, \ldots, \rho_{n}\right), \\
& c s(A)=\left(\gamma_{1}, \ldots, \gamma_{n}\right),
\end{aligned} \quad \text { where } \quad \rho_{i}=\sum_{j=1}^{\ell} a_{i j} \quad \text { and } \quad \gamma_{j}=\sum_{i=1}^{n} a_{i j},
$$

so that $r s(A)$ and $c s(A)$ are the sequences of row sums and column sums of A, respectively. If $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{\ell}^{\prime}\right)$ then

$$
e_{\lambda^{\prime}}=\prod_{j=1}^{\ell} e_{\lambda_{j}^{\prime}}=\sum_{r s(A)=\lambda^{\prime}} x^{A}=\sum_{\gamma \in \mathbb{Z}_{\geq 0}^{n}} \sum_{\substack{r s(A)=\lambda^{\prime} \\ c s(A)=\gamma}} x^{\gamma}=\sum_{\mu} a_{\lambda^{\prime} \mu} m_{\mu} .
$$

Since there is a unique matrix A with $r s(A)=\lambda^{\prime}$ and $c s(A)=\lambda, a_{\lambda^{\prime} \lambda}=1$. If A is a 0,1 matrix with $r s(A)=\lambda^{\prime}$ and $c s(A)=m u$ then $\mu_{1}+\cdots+\mu_{i} \leq \lambda_{1}+\cdots+\lambda_{i}$ since there are at most $\lambda_{1}+\cdots+\lambda_{i}$ nonzero entries in the first i columns of A. Thus $a_{\lambda^{\prime} \mu}=0$ unless $\mu \leq \lambda$.

Corollary 1.7.

(a) The set $\left\{e_{\lambda} \mid \ell\left(\lambda^{\prime}\right) \leq n\right\}$ is a basis of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$.
(b) $\mathbb{Z}\left[X_{n}\right]^{S_{n}}=\mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]$.

Complete symmetric functions

Define symmetric functions $h_{r}, r \in \mathbb{Z}_{\geq 0}$, via the generating function

$$
\prod_{i=1}^{n} \frac{1}{1-x_{i} z}=\sum_{r \in \mathbb{Z}_{\geq 0}} h_{r} z^{r}
$$

Then $h_{0}=1$ and, for $r \in \mathbb{Z}_{>0}$,

$$
h_{r}=\sum_{\lambda \vdash r} m_{\lambda}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}=\sum_{\operatorname{sh}(p)=(r)} x^{\mathrm{wt}(p)},
$$

where the last sum is over all column strict tableaux p of shape (r).
Proposition 1.8. There is an involutive automorphism ω of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$ defined by

$$
\omega: \mathbb{Z}\left[X_{n}\right]^{S_{n}} \longrightarrow \mathbb{Z}\left[X_{n}\right]^{S_{n}}
$$

Proof. Comparing coefficients of z^{k} on each side of

$$
1=\left(\prod_{i=1}^{n}\left(1-x_{i} z\right)\right)\left(\prod_{i=1}^{n} \frac{1}{1-x_{i} z}\right) \quad \text { yields } \quad 0=\sum_{r=1}^{k}(-1)^{r} e_{r} h_{n-r} .
$$

Corollary 1.9.

(a) The set $\left\{h_{\lambda} \mid \ell\left(\lambda^{\prime}\right) \leq n\right\}$ is a basis of $\mathbb{Z}\left[X_{n}\right]^{S_{n}}$.
(b) $\mathbb{Z}\left[X_{n}\right]^{S_{n}}=\mathbb{Z}\left[h_{1}, \ldots, h_{n}\right]$.

Theorem 1.10. The monomials in $\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}} \mid 0 \leq \epsilon_{i} \leq n-i\right\}$ form a basis of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ as an $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ module.

Proof. Let $I=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ be the ideal in $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ generated by e_{1}, \ldots, e_{n}. Since ($1-$ $\left.x_{1} t\right) \cdots\left(1-x_{n} t\right)=0 \bmod I$,

$$
\left(1-x_{i+1} t\right) \cdots\left(1-x_{n} t\right)=\frac{1}{\left(1-x_{1} t\right) \cdots\left(1-x_{i} t\right)} \quad \bmod I
$$

and so

$$
\sum_{r=0}^{n-i}(-1)^{r} e_{r}\left(x_{i+1}, \ldots, x_{n}\right) t^{r}=\sum_{\ell \geq 0} h_{\ell}\left(x_{1}, \ldots, x_{i}\right) t^{\ell} \quad \bmod I
$$

Comparing coefficients of t^{n-i+1} on each side gives that, for all $1 \leq i \leq n$,

$$
0=h_{n-i+1}\left(x_{1}, \ldots, x_{i}\right)=\sum_{r=0}^{n-i+1} x_{i}^{n-i+1-r} h_{r}\left(x_{1}, \ldots, x_{i-1}\right) \quad \bmod I
$$

and thus

$$
\begin{equation*}
x_{i}^{n-i+1}=-\sum_{r=1}^{n-i+1} x_{i}^{n-i+1-r} h_{r}\left(x_{1}, \ldots, x_{i-1}\right) \quad \bmod I \tag{1.11}
\end{equation*}
$$

This identity shows (by induction on i) that x_{i}^{n-i+1} can be rewritten, mod I, as a linear combination of monomials in x_{1}, \ldots, x_{i} with the exponent of x_{i} being $\leq n-i$. In particular,

$$
0=h_{n-1+1}\left(x_{1}\right)=x_{1}^{n} \quad \bmod I
$$

and it follows that any polynomial can be written, $\bmod I$, as a linear combination of monomials

$$
\begin{equation*}
x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}} \quad \text { with } \quad 0 \leq \epsilon_{i} \leq n-i \tag{1.12}
\end{equation*}
$$

If S^{k} is the set of homogeneous degree k polynomials in $S=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $\left(S^{W}\right)^{k}$ is the set of homogeneous degree k polynomials in $S^{W}=\mathbb{Z}\left[e_{1}, \ldots, e_{n}\right]=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ the the Poincaré series of S and S^{W} are

$$
\frac{1}{(1-t)^{n}}=\sum_{k \geq 0} \operatorname{dim}\left(S^{k}\right) t^{k} \quad \text { and } \quad \prod_{i=1}^{n}\left(\frac{1}{1-t^{i}}\right)=\sum_{k \geq 0} \operatorname{dim}\left(\left(S^{W}\right)^{k}\right) t^{k}
$$

Then the Poincaré series of S / I is

$$
\prod_{i=1}^{n} \frac{1-t^{i}}{1-t}=[n]!=1 \cdot(1+t) \cdots\left(1+t+\cdots t^{n-1}\right)
$$

There are $n(n-1) \cdots 2 \cdot 1=n$! monomials in (???) and thus the monomials in $\left(^{*}\right)$ form a basis of S as an S^{W} module. The relations (???) provide a way to expand any polynomial in terms of this basis (with coefficients in S^{W}).

2. The groups $G_{r, p, n}$

Let r and n be postive integers. The group $G_{r, 1, n}$ is the group of $n \times n$ matrices with
(a) exactly one non zero entry in each row and each column,
(b) the nonzero entries are $r^{\text {th }}$ roots of 1.

Let p be a positive integer (not necessarily prime) such that p divides r. The group $G_{r, p, n}$ is defined by the exact sequence

$$
\{1\} \longrightarrow G_{r, p, n} \longrightarrow G_{r, 1, n} \xrightarrow{\phi} \mathbb{Z} / p \mathbb{Z} \longrightarrow\{1\}, \quad \text { where } \quad \phi(g)=\left(\prod_{g_{i j} \neq 0} g_{i j}\right)^{p}
$$

is the $p^{\text {th }}$ power of the product of the nonzero entries of g, and $\mathbb{Z} / p \mathbb{Z}$ is identified with the group of $p^{\text {th }}$ roots of unity. Thus $G_{r, p, n}=\operatorname{ker} \phi$ is a normal subgroup of $G_{r, 1, n}$ of index p. Examples are
(a) $G_{1,1, n}=S_{n}=W A_{n-1}$ is the symmetric group (the Weyl group of type A_{n-1}),
(b) $G_{2,1, n}=O_{n}(\mathbb{Z})=W B_{n}$ is the hyperoctahedral group of orthogonal matrices with entries in \mathbb{Z} (the Weyl group of type B_{n}),
(c) $G_{2,2, n}=W D_{n}$ is the group of signed permutations with an even number of negative signs (the Weyl group of type D_{n}),
(d) $G_{r, 1,1}=\mathbb{Z} / r \mathbb{Z}$ is the cyclic group of order r of $r^{\text {th }}$ roots of unity, and
(e) $G_{r, r, 2}=W I_{2}(r)$ is the dihedral group of order $2 r$.

Let $\xi=e^{2 \pi i / r}$ be a primitive r th root of unity and let $\mathfrak{o}=\mathbb{Z}[\xi]$. If x_{1}, \ldots, x_{n} is a basis of \mathfrak{o}^{n} then the natural action of $G_{r, p, n}$ extends uniquely to an action of $G_{r, p, n}$ on the polynomial ring $\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]$ by ring automorphisms. The invariant ring is

$$
\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]^{G_{r, p, n}}=\left\{f \in \mathfrak{o}\left[x_{1}, \ldots, x_{n}\right] \mid w f=f \text { for all } w \in G_{r, p, n}\right\}
$$

Proposition 2.1. Let

$$
\begin{aligned}
f_{i}\left(x_{1}, \ldots, x_{n}\right) & =e_{i}\left(x_{1}^{r}, \ldots, x_{n}^{r}\right), \quad \text { for } 1 \leq i \leq n-1 \quad \text { and } \\
f_{n}\left(x_{1}, \ldots, x_{n}\right) & =e_{n}\left(x_{1}^{r / p}, \ldots, x_{n}^{r / p}\right)
\end{aligned}
$$

(a) $\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]^{G_{r, p, n}}=\mathfrak{o}\left[f_{1}, \ldots, f_{n}\right]$.
(b) $\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]$ is a free $\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]^{G_{r, p, n}}$-module with basis

$$
\left\{x_{1}^{\epsilon_{1}} x_{2}^{\epsilon_{2}} \cdots x_{n}^{\epsilon_{n}} \mid 0 \leq \epsilon_{1} \leq r / p-1 \text { and } 0 \leq \epsilon_{i} \leq i r-1, \text { for } 2 \leq i \leq n\right\}
$$

Proof. To show: f_{1}, \ldots, f_{n} generate $\mathfrak{o}\left[X_{n}\right]^{W}$ and they are algebraically independent.

Each element $w \in G_{r, 1, n}$ can be written uniquely in the form

$$
w=t_{1}^{\gamma_{1}} \cdots t_{n}^{\gamma_{n}} \sigma, \quad \text { where } \quad t_{i}=\operatorname{diag}(1, \ldots, 1, \xi, 1, \ldots, 1), \quad \sigma \in S_{n}, \quad 0 \leq \gamma_{i} \leq r-1
$$

so that t_{i} is the diagonal matrix with 1 s on the diagonal except for ξ in the $i^{\text {th }}$ diagonal entry. The element

$$
w \in G_{r, p, n} \quad \text { if } \quad \gamma_{1}+\cdots+\gamma_{n}=0 \quad \bmod p
$$

and thus

$$
G_{r, p, n}=\left\{w=t_{1}^{\gamma_{1}} \cdots t_{n}^{\gamma_{n}} \sigma \mid \sigma \in S_{n}, 0 \leq \gamma_{n} \leq r / p-1, \text { and } 0 \leq \gamma_{i} \leq r-1 \text { for } 1 \leq i \leq n-1\right\}
$$

For each $w \in G_{r, p, n}$ define a monomial

$$
x_{w}=\left(\prod_{j=1}^{n}\left(x_{\sigma(1)} \cdots x_{\sigma(j)}\right)^{\gamma_{j}}\right)\left(\prod_{\substack{i \text { suchthat } \\ \sigma(i)>\sigma(i+1)}}\left(x_{\sigma(1)} \cdots x_{\sigma(i)}\right)\right) .
$$

Proposition 2.2. The polynomial ring $\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]$ is a free $\mathfrak{o}\left[x_{1}, \ldots, x_{n}\right]^{G_{r, p, n}}$-module with basis

$$
\left\{x_{w} \mid w \in G_{r, p, n}\right\}
$$

Proof.

3. General W

Theorem 3.1. Let V be a finite dimensional vector space over a field \mathbb{F}. Let W be a finite subgroup of $G L(V)$. If $S(V)^{W}$ is a polynomial algebra then W is generated by reflections.

Proof. Let

$$
I=\left\langle f \in S(V)^{W} \mid f(0)=0\right\rangle
$$

be the ideal in $S(V)$ generated by polynomials without constant term. Let e_{1}, \ldots, e_{r} be homogeneous generators of I (which exist, by Hilbert).
Step 1. Every $f \in S(V)^{W}$ is a polynomial in e_{1}, \ldots, e_{r}.
Proof. The proof is by induction on the degree of f. Assume f is homogeneous and $\operatorname{deg}(f)>0$. Since $f \in I$,

$$
f=\sum_{i=1}^{r} p_{i} e_{i}, \quad \text { with } p_{i} \in S(V)
$$

and so

$$
f=\frac{1}{|W|} \sum_{w \in W} w f=\sum_{i=1}^{r}\left(\frac{1}{|W|} \sum_{w \in W} w p_{i}\right) e_{i}
$$

and since the internal sum has lower degree it can be written as a polynomial in e_{1}, \ldots, e_{r}.
Step 2. $r=\operatorname{dim}(V)$.
Proof. Let $n=\operatorname{dim}(V)$, let x_{1}, \ldots, x_{n} be a basis of V and let $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ be the field of fractions of $S(V)=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Since x_{i} is a root of

$$
m_{i}(t)=\prod_{w \in W}\left(t-w x_{i}\right) \quad \in S(V)^{W}[t],
$$

the variable x_{i} is algebraic over $\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)$ the field of fractions of $S(V)^{W}$. Thus

$$
0=\operatorname{trdeg}\left(\frac{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right.}{\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)}\right)=\operatorname{trdeg}\left(\frac{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)}{\mathbb{C}}\right)-\operatorname{trdeg}\left(\frac{\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)}{\mathbb{C}}\right)=n-r .
$$

Step 3. The Jacobian of a map

$$
\begin{aligned}
\varphi: \begin{array}{l}
V \\
x
\end{array} \longrightarrow\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right) \quad \text { is } \quad J_{\varphi}(x)=\operatorname{det}\left(\frac{\partial \varphi_{i}}{\partial x_{j}}\right) .
\end{aligned}
$$

If φ is linear then there are $\phi_{i j} \in \mathbb{C}$ such that

$$
\phi_{i}(x)=\sum_{j=1}^{n} \phi_{i j} x_{j} \quad \text { and } \quad J_{\varphi}=\operatorname{det}\left(\phi_{i j}\right) .
$$

The chain rule is the identity

$$
J_{\theta \circ \varphi}=J_{\theta}(\varphi x) J_{\varphi}(x) .
$$

Let

$$
\left.\begin{array}{ccccccc}
\theta: & V & \longrightarrow & V \\
& x & \longrightarrow & \left(e_{1}(x), \ldots, e_{n}(x)\right)
\end{array} \quad \text { and } \quad w: \begin{array}{cc}
V & \longrightarrow \\
& x
\end{array}\right] w x
$$

for $w \in W$. Then $\theta \circ w=\theta$ and so

$$
J_{\theta}(x)=J_{\theta \circ w}(x)=J_{\theta}(w x) J_{w}(x)=J_{\theta}(w x) \operatorname{det}(w)=\operatorname{det}(w)\left(w^{-1} J_{\theta}\right)(x) .
$$

Thus J_{θ} is W-alternating and so J_{θ} is divisible by

$$
\Delta=\prod_{\alpha \in R^{+}} \alpha^{r_{\alpha}-1} . \quad \text { Since } \quad \operatorname{deg}\left(J_{\theta}\right)=\sum_{i=1}^{n}\left(d_{i}-1\right)=\operatorname{Card}\left(R^{+}\right),
$$

and so $J_{\theta}=\lambda \cdot \Delta$ for some $\lambda \in \mathbb{C}$.
Step 4. The polynomials e_{1}, \ldots, e_{n} are algebraically independent if and only if $J_{\theta} \neq 0$.
Proof. \Rightarrow : Assume e_{1}, \ldots, e_{r} are algebraically independent.
Then x_{i} are algebraic over $\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)$.

$$
\operatorname{trdeg}\left(\frac{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right.}{\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)}\right)=\operatorname{trdeg}\left(\frac{\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)}{\mathbb{C}}\right)-\operatorname{trdeg}\left(\frac{\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)}{\mathbb{C}}\right) \geq n-r .
$$

So x_{1}, \ldots, x_{n} are algebraic over $\mathbb{C}\left(e_{1}, \ldots, e_{r}\right)$ if and only if $0 \geq n-r$, that is, if and only if $n=r$.
Let $m_{i}(t) \in S(V)^{W}[t]$ be the minimal polynomial of x_{i} over $\mathbb{C}\left(e_{1}, \ldots, e_{n}\right)$, the field of fractions of $S(V)^{W}$. Then

$$
\frac{\partial m_{i}}{\partial x_{k}}=\sum_{j=1}^{r} \frac{\partial m_{i}}{\partial e_{j}} \frac{\partial e_{j}}{\partial x_{k}}+\frac{\partial m_{i}}{\partial t} \frac{\partial t}{\partial x_{k}}
$$

and

$$
0=\frac{\partial m_{i}\left(x_{i}\right)}{\partial x_{k}}=\sum_{j=1}^{r} \frac{\partial m_{i}}{\partial e_{j}}\left(x_{i}\right) \frac{\partial e_{j}}{\partial x_{k}}+m_{i}^{\prime}\left(x_{i}\right) \delta_{i k} .
$$

Thus

$$
\operatorname{det}\left(\frac{\partial m_{i}}{\partial e_{j}}\left(x_{i}\right)\right) \cdot J_{\theta}=\operatorname{det}\left(-\operatorname{diag}\left(m_{1}^{\prime}\left(x_{1}\right), \ldots, m_{n}^{\prime}\left(x_{n}\right)\right)=(-1)^{n} \prod_{i=1}^{r} m_{i}^{\prime}\left(x_{i}\right)\right.
$$

Since $m_{i}(t)$ is the minimal polynomial of x_{i}, each factor $m_{i}^{\prime}\left(x_{i}\right) \neq 0$ and, thus, $J_{\theta} \neq 0$.
\Leftarrow : Assume $e_{1} \ldots, e_{n}$ are algebraically dependent. Let $f\left(y_{1}, \ldots, y_{n}\right)$ be of minimal degree such that $f\left(e_{1}, \ldots, e_{n}\right)=0$. Then

$$
\frac{\partial f}{\partial y_{i}} \neq 0 \quad \text { for some } y_{i}, \quad \text { and so } \quad g_{i}=\frac{\partial f}{\partial y_{i}}\left(e_{1}, \ldots, e_{n}\right) \neq 0 \quad \text { for some } i .
$$

But

$$
0=\frac{\partial f\left(e_{1}, \ldots, e_{n}\right)}{\text { partialx }_{j}}=\sum_{i=1}^{n} \frac{\partial f}{\partial y_{i}}\left(e_{1}, \ldots, e_{n}\right) \frac{\partial e_{i}}{\partial x_{j}}, \quad \text { and so } \quad \sum_{i=1}^{n} g_{i} \frac{\partial e_{i}}{\partial x_{j}}=0
$$

So g_{i} is a solution to the equation $\left(g_{1}, \ldots, g_{n}\right)\left(\partial e_{i} / \partial x_{j}\right)=0$ and so $J_{\theta}=0$.

Notes and References

[Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.

[^0]: * Research supported in part by National Science Foundation grant DMS-??????.

