Symmetric functions Lecture Notes

Arun Ram* Department of Mathematics University of Wisconsin-Madison Madison, WI 53706 ram@math.wisc.edu Version: January 26, 2004

1. Symmetric functions

The symmetric group S_n acts on the vector space

$$\mathbb{Z}^n = \mathbb{Z}$$
-span $\{x_1, \dots, x_n\}$ by $wx_i = x_{w(i)},$

for $w \in S_n$, $1 \leq i \leq n$. This action induces an action of S_n on the polynomial ring $\mathbb{Z}[X_n] = \mathbb{Z}[x_1, \ldots, x_n]$ by ring automorphisms. For a sequence $\gamma = (\gamma_1, \ldots, \gamma_n)$ of nonnegative integers let

 $x^{\gamma} = x_1^{\gamma_1} \cdots x_n^{\gamma_n}, \quad \text{so that} \quad \mathbb{Z}[x_1, \dots, x_n] = \mathbb{Z}\text{-span}\{x^{\gamma} \mid \gamma \in \mathbb{Z}_{\geq 0}^n\}.$

The ring of symmetric functions is

$$\mathbb{Z}[X_n]^{S_n} = \{ f \in \mathbb{Z}[X_n] \mid wf = f \text{ for all } w \in S_n \},$$
(1.1)

Define the orbit sums, or monomial symmetric functions, by

$$m_{\lambda} = \sum_{\gamma \in S_n \lambda} x^{\gamma}, \quad \text{for } \lambda \in \mathbb{Z}^n_{\geq 0}.$$

where $S_n \lambda$ is the orbit of λ under the action of S_n . Let

$$P^{+} = \{\lambda = (\lambda_{1}, \dots, \lambda_{n}) \in \mathbb{Z}_{\geq 0}^{n} \mid \lambda_{1} \geq \dots \geq \lambda_{n}\}$$
(1.2)

so that

$$\{m_{\lambda} \mid \lambda \in P^+\}$$
 is a \mathbb{Z} -basis of $\mathbb{Z}[X_n]^{S_n}$. (1.3)

Partitions

^{*} Research supported in part by National Science Foundation grant DMS-??????.

A. RAM

A partition is a collection μ of boxes in a corner where the convention is that gravity goes up and to the left. As for matrices, the rows and columns of μ are indexed from top to bottom and left to right, respectively.

The <i>parts</i> of μ are	$\mu_i = (\text{the number of boxes in row } i \text{ of } \mu),$	
the <i>length</i> of μ is	$\ell(\mu) = (\text{the number of rows of } \mu),$	(1.4)
the <i>size</i> of μ is	$ \mu = \mu_1 + \dots + \mu_{\ell(\mu)} = (\text{the number of boxes of } \mu).$	

Then μ is determined by (and identified with) the sequence $\mu = (\mu_1, \ldots, \mu_\ell)$ of positive integers such that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_\ell > 0$, where $\ell = \ell(\mu)$. For example,

A partition of k is a partition λ with k boxes. Write $\lambda \vdash k$ if λ is a partition of k. Make the convention that $\lambda_i = 0$ if $i > \ell(\lambda)$. The dominance order is the partial order on the set of partitions of k,

$$P^+(k) = \{ \text{partitions of } k \} = \{ \lambda = (\lambda_1, \dots, \lambda_\ell) \mid \lambda_1 \ge \dots \ge \lambda_\ell > 0, \ \lambda_1 + \dots + \lambda_\ell = k \},\$$

given by

$$\lambda \ge \mu \quad \text{if} \quad \lambda_1 + \lambda_2 + \dots + \lambda_i \ge \mu_1 + \mu_2 + \dots + \mu_i \quad \text{for all } 1 \le i \le \max\{\ell(\lambda), \ell(\mu)\}.$$

PUT THE PICTURE OF THE HASSE DIAGRAM FOR k = 6 HERE.

Tableaux

Let λ be a partition and let $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with μ_1 1s, μ_2 2s, ..., μ_n ns, such that

- (a) the rows are weakly increasing from left to right,
- (b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight of p so that

$$shp(p) = (\lambda_1, \dots, \lambda_n),$$
 where $\lambda_i =$ number of boxes in row *i* of *p*, and
wt(*p*) = (μ_1, \dots, μ_n), where $\mu_i =$ number of *i* s in *p*.

For example,

$$p = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 2 & 3 & 3 & 4 \\ 3 & 3 & 3 & 4 & 4 & 4 & 5 \\ 4 & 5 & 5 & 6 \\ \hline 6 & 7 \\ \hline 7 \end{bmatrix}$$
 has $shp(p) = (9, 7, 7, 4, 2, 1, 0)$ and $wt(p) = (7, 6, 5, 5, 3, 2, 2).$

For a partition λ and a sequence $\mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$B(\lambda) = \{ \text{column strict tableaux } p \mid \text{shp}(p) = \lambda \},$$

$$B(\lambda)_{\mu} = \{ \text{column strict tableaux } p \mid \text{shp}(p) = \lambda \text{ and wt}(p) = \mu \},$$
(1.5)

Elementary symmetric functions

Define symmetric functions e_r , $0 \le r \le n$, via the generating function

$$\prod_{i=1}^{n} (1 - x_i z) = \sum_{r=0}^{n} (-1)^r e_r z^r.$$

Then $e_0 = 1$ and, for $0 \le r \le n$,

$$e_r = m_{(1^r)} = \sum_{1 \le i_1 < i_2 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r} = \sum_{\operatorname{shp}(p) = (1^r)} x^{\operatorname{wt}(p)}$$

where the last sum is over all column strict tableaux p of shape (1^r) .

If f(t) is a polyomial in t with roots $\gamma_1, \ldots, \gamma_n$ then

the coefficient of
$$t^r$$
 in $f(t)$ is $(-1)^{n-r}e_r(\gamma_1,\ldots,\gamma_n)$.

If A is an $n \times n$ matrix with entries in \mathbb{F} with eigenvalues $\gamma_1, \ldots, \gamma_n$ then the trace of the action of A on the r^{th} exterior power of the vector space \mathbb{F}^n is

$$\operatorname{tr}(A, \bigwedge^r \mathbb{F}^n) = e_r(\gamma_1, \dots, \gamma_n), \text{ so that } \operatorname{Tr}(A) = e_1(\gamma_1, \dots, \gamma_n), \quad \det(A) = e_n(\gamma_1, \dots, \gamma_n),$$

and the characteristic polynomials of A is

$$\operatorname{char}_t(A) = \sum_{r=0}^n (-1)^{n-r} e_{n-r}(\gamma_1, \dots, \gamma_n) t^r.$$

Proposition 1.6. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be a partition. Then

$$e_{\lambda'} = \sum_{\mu \le \lambda} a_{\lambda'\mu} m_{\mu},$$

where $a_{\lambda'\mu}$ is the number of matrices with entries from $\{0,1\}$ with row sums λ' and column sums μ . Furthermore, $a_{\lambda'\lambda} = 1$ and $a_{\lambda'\mu} = 0$ unless $\mu \leq \lambda$.

Proof. If A is an $\ell \times n$ matrix with entries from $\{0, 1\}$ let

$$x^A = \prod_{i=1}^n (x_i)^{a_{ij}}$$

and define

$$rs(A) = (\rho_1, \dots, \rho_n),$$

$$cs(A) = (\gamma_1, \dots, \gamma_n),$$
 where $\rho_i = \sum_{j=1}^{\ell} a_{ij}$ and $\gamma_j = \sum_{i=1}^{n} a_{ij},$

so that rs(A) and cs(A) are the sequences of row sums and column sums of A, respectively. If $\lambda' = (\lambda'_1, \ldots, \lambda'_{\ell})$ then

$$e_{\lambda'} = \prod_{j=1}^{\ell} e_{\lambda'_j} = \sum_{rs(A)=\lambda'} x^A = \sum_{\gamma \in \mathbb{Z}^n_{\geq 0}} \sum_{\substack{rs(A)=\lambda'\\ cs(A)=\gamma}} x^\gamma = \sum_{\mu} a_{\lambda'\mu} m_{\mu'}$$

Since there is a unique matrix A with $rs(A) = \lambda'$ and $cs(A) = \lambda$, $a_{\lambda'\lambda} = 1$. If A is a 0,1 matrix with $rs(A) = \lambda'$ and cs(A) = mu then $\mu_1 + \cdots + \mu_i \leq \lambda_1 + \cdots + \lambda_i$ since there are at most $\lambda_1 + \cdots + \lambda_i$ nonzero entries in the first i columns of A. Thus $a_{\lambda'\mu} = 0$ unless $\mu \leq \lambda$.

Corollary 1.7.

(a) The set $\{e_{\lambda} \mid \ell(\lambda') \leq n\}$ is a basis of $\mathbb{Z}[X_n]^{S_n}$. (b) $\mathbb{Z}[X_n]^{S_n} = \mathbb{Z}[e_1, \dots, e_n]$.

Complete symmetric functions

Define symmetric functions $h_r, r \in \mathbb{Z}_{>0}$, via the generating function

$$\prod_{i=1}^{n} \frac{1}{1 - x_i z} = \sum_{r \in \mathbb{Z}_{\ge 0}} h_r z^r.$$

Then $h_0 = 1$ and, for $r \in \mathbb{Z}_{>0}$,

$$h_r = \sum_{\lambda \vdash r} m_\lambda = \sum_{1 \le i_1 \le i_2 \le \dots \le i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r} = \sum_{\operatorname{sh}(p) = (r)} x^{\operatorname{wt}(p)},$$

where the last sum is over all column strict tableaux p of shape (r).

Proposition 1.8. There is an involutive automorphism ω of $\mathbb{Z}[X_n]^{S_n}$ defined by

$$\begin{array}{cccc} \omega \colon & \mathbb{Z}[X_n]^{S_n} & \longrightarrow & \mathbb{Z}[X_n]^{S_n} \\ & e_k & \longmapsto & h_k \end{array}$$

Proof. Comparing coefficients of z^k on each side of

$$1 = \left(\prod_{i=1}^{n} (1 - x_i z)\right) \left(\prod_{i=1}^{n} \frac{1}{1 - x_i z}\right) \qquad \text{yields} \qquad 0 = \sum_{r=1}^{k} (-1)^r e_r h_{n-r}.$$

4

Corollary 1.9.

(a) The set $\{h_{\lambda} \mid \ell(\lambda') \leq n\}$ is a basis of $\mathbb{Z}[X_n]^{S_n}$. (b) $\mathbb{Z}[X_n]^{S_n} = \mathbb{Z}[h_1, \dots, h_n]$.

Theorem 1.10. The monomials in $\{x_1^{\epsilon_1}x_2^{\epsilon_2}\cdots x_n^{\epsilon_n} \mid 0 \leq \epsilon_i \leq n-i\}$ form a basis of $\mathbb{Z}[x_1,\ldots,x_n]$ as an $\mathbb{Z}[x_1,\ldots,x_n]^{S_n}$ module.

Proof. Let $I = \langle e_1, \ldots, e_n \rangle$ be the ideal in $\mathbb{Z}[x_1, \ldots, x_n]$ generated by e_1, \ldots, e_n . Since $(1 - x_1t) \cdots (1 - x_nt) = 0 \mod I$,

$$(1 - x_{i+1}t) \cdots (1 - x_n t) = \frac{1}{(1 - x_1 t) \cdots (1 - x_i t)} \mod I,$$

and so

$$\sum_{r=0}^{n-i} (-1)^r e_r(x_{i+1}, \dots, x_n) t^r = \sum_{\ell \ge 0} h_\ell(x_1, \dots, x_i) t^\ell \mod I.$$

Comparing coefficients of t^{n-i+1} on each side gives that, for all $1 \le i \le n$,

$$0 = h_{n-i+1}(x_1, \dots, x_i) = \sum_{r=0}^{n-i+1} x_i^{n-i+1-r} h_r(x_1, \dots, x_{i-1}) \mod I,$$

and thus

$$x_i^{n-i+1} = -\sum_{r=1}^{n-i+1} x_i^{n-i+1-r} h_r(x_1, \dots, x_{i-1}) \mod I.$$
(1.11)

This identity shows (by induction on *i*) that x_i^{n-i+1} can be rewritten, mod *I*, as a linear combination of monomials in x_1, \ldots, x_i with the exponent of x_i being $\leq n-i$. In particular,

$$0 = h_{n-1+1}(x_1) = x_1^n \mod I$$

and it follows that any polynomial can be written, mod I, as a linear combination of monomials

$$x_1^{\epsilon_1} x_2^{\epsilon_2} \cdots x_n^{\epsilon_n}$$
 with $0 \le \epsilon_i \le n-i.$ (1.12)

If S^k is the set of homogeneous degree k polynomials in $S = \mathbb{Z}[x_1, \ldots, x_n]$ and $(S^W)^k$ is the set of homogeneous degree k polynomials in $S^W = \mathbb{Z}[e_1, \ldots, e_n] = \mathbb{Z}[x_1, \ldots, x_n]^{S_n}$ the poincaré series of S and S^W are

$$\frac{1}{(1-t)^n} = \sum_{k \ge 0} \dim(S^k) t^k \quad \text{and} \quad \prod_{i=1}^n \left(\frac{1}{1-t^i}\right) = \sum_{k \ge 0} \dim((S^W)^k) t^k.$$

Then the Poincaré series of S/I is

$$\prod_{i=1}^{n} \frac{1-t^{i}}{1-t} = [n]! = 1 \cdot (1+t) \cdots (1+t+\cdots t^{n-1}).$$

A. RAM

There are $n(n-1)\cdots 2\cdot 1 = n!$ monomials in (???) and thus the monomials in (*) form a basis of S as an S^W module. The relations (???) provide a way to expand any polynomial in terms of this basis (with coefficients in S^W).

2. The groups $G_{r,p,n}$

Let r and n be postive integers. The group $G_{r,1,n}$ is the group of $n \times n$ matrices with

- (a) exactly one non zero entry in each row and each column,
- (b) the nonzero entries are r^{th} roots of 1.

Let p be a positive integer (not necessarily prime) such that p divides r. The group $G_{r,p,n}$ is defined by the exact sequence

$$\{1\} \longrightarrow G_{r,p,n} \longrightarrow G_{r,1,n} \xrightarrow{\phi} \mathbb{Z}/p\mathbb{Z} \longrightarrow \{1\}, \quad \text{where} \quad \phi(g) = \left(\prod_{g_{ij} \neq 0} g_{ij}\right)^p$$

is the p^{th} power of the product of the nonzero entries of g, and $\mathbb{Z}/p\mathbb{Z}$ is identified with the group of p^{th} roots of unity. Thus $G_{r,p,n} = \ker \phi$ is a normal subgroup of $G_{r,1,n}$ of index p. Examples are

- (a) $G_{1,1,n} = S_n = WA_{n-1}$ is the symmetric group (the Weyl group of type A_{n-1}),
- (b) $G_{2,1,n} = O_n(\mathbb{Z}) = WB_n$ is the hyperoctahedral group of orthogonal matrices with entries in \mathbb{Z} (the Weyl group of type B_n),
- (c) $G_{2,2,n} = WD_n$ is the group of signed permutations with an even number of negative signs (the Weyl group of type D_n),
- (d) $G_{r,1,1} = \mathbb{Z}/r\mathbb{Z}$ is the cyclic group of order r of r^{th} roots of unity, and
- (e) $G_{r,r,2} = WI_2(r)$ is the dihedral group of order 2r.

Let $\xi = e^{2\pi i/r}$ be a primitive rth root of unity and let $\mathfrak{o} = \mathbb{Z}[\xi]$. If x_1, \ldots, x_n is a basis of \mathfrak{o}^n then the natural action of $G_{r,p,n}$ extends uniquely to an action of $G_{r,p,n}$ on the polynomial ring $\mathfrak{o}[x_1, \ldots, x_n]$ by ring automorphisms. The *invariant ring* is

$$\mathfrak{o}[x_1,\ldots,x_n]^{G_{r,p,n}} = \{ f \in \mathfrak{o}[x_1,\ldots,x_n] \mid wf = f \text{ for all } w \in G_{r,p,n} \}.$$

Proposition 2.1. Let

$$f_i(x_1, \dots, x_n) = e_i(x_1^r, \dots, x_n^r), \text{ for } 1 \le i \le n-1 \text{ and}$$

 $f_n(x_1, \dots, x_n) = e_n(x_1^{r/p}, \dots, x_n^{r/p}).$

(a) $\mathfrak{o}[x_1,\ldots,x_n]^{G_{r,p,n}} = \mathfrak{o}[f_1,\ldots,f_n].$

(b) $\mathfrak{o}[x_1,\ldots,x_n]$ is a free $\mathfrak{o}[x_1,\ldots,x_n]^{G_{r,p,n}}$ -module with basis

$$\{x_1^{\epsilon_1}x_2^{\epsilon_2}\cdots x_n^{\epsilon_n} \mid 0 \le \epsilon_1 \le r/p-1 \text{ and } 0 \le \epsilon_i \le ir-1, \text{ for } 2 \le i \le n\}.$$

Proof. To show: f_1, \ldots, f_n generate $\mathfrak{o}[X_n]^W$ and they are algebraically independent.

Each element $w \in G_{r,1,n}$ can be written uniquely in the form

$$w = t_1^{\gamma_1} \cdots t_n^{\gamma_n} \sigma, \quad \text{where} \quad t_i = \text{diag}(1, \dots, 1, \xi, 1, \dots, 1), \quad \sigma \in S_n, \quad 0 \le \gamma_i \le r - 1,$$

so that t_i is the diagonal matrix with 1s on the diagonal except for ξ in the i^{th} diagonal entry. The element

$$w \in G_{r,p,n}$$
 if $\gamma_1 + \dots + \gamma_n = 0 \mod p$,

and thus

$$G_{r,p,n} = \{ w = t_1^{\gamma_1} \cdots t_n^{\gamma_n} \sigma \mid \sigma \in S_n, \ 0 \le \gamma_n \le r/p - 1, \ \text{and} \ 0 \le \gamma_i \le r - 1 \ \text{for} \ 1 \le i \le n - 1 \}.$$

For each $w \in G_{r,p,n}$ define a monomial

$$x_w = \left(\prod_{j=1}^n (x_{\sigma(1)} \cdots x_{\sigma(j)})^{\gamma_j}\right) \left(\prod_{\substack{i \text{ such that} \\ \sigma(i) > \sigma(i+1)}} (x_{\sigma(1)} \cdots x_{\sigma(i)})\right).$$

Proposition 2.2. The polynomial ring $\mathfrak{o}[x_1, \ldots, x_n]$ is a free $\mathfrak{o}[x_1, \ldots, x_n]^{G_{r,p,n}}$ -module with basis

$$\{x_w \mid w \in G_{r,p,n}\}.$$

Proof.

3. General W

Theorem 3.1. Let V be a finite dimensional vector space over a field \mathbb{F} . Let W be a finite subgroup of GL(V). If $S(V)^W$ is a polynomial algebra then W is generated by reflections.

Proof. Let

$$I = \langle f \in S(V)^W \mid f(0) = 0 \rangle,$$

be the ideal in S(V) generated by polynomials without constant term. Let e_1, \ldots, e_r be homogeneous generators of I (which exist, by Hilbert).

Step 1. Every $f \in S(V)^W$ is a polynomial in e_1, \ldots, e_r .

Proof. The proof is by induction on the degree of f. Assume f is homogeneous and $\deg(f) > 0$. Since $f \in I$,

$$f = \sum_{i=1}^{r} p_i e_i, \quad \text{with } p_i \in S(V),$$

and so

$$f = \frac{1}{|W|} \sum_{w \in W} wf = \sum_{i=1}^{r} \left(\frac{1}{|W|} \sum_{w \in W} wp_i \right) e_i,$$

and since the internal sum has lower degree it can be written as a polynomial in e_1, \ldots, e_r .

Step 2. $r = \dim(V)$.

Proof. Let $n = \dim(V)$, let x_1, \ldots, x_n be a basis of V and let $\mathbb{C}(x_1, \ldots, x_n)$ be the field of fractions of $S(V) = \mathbb{C}[x_1, \ldots, x_n]$. Since x_i is a root of

$$m_i(t) = \prod_{w \in W} (t - wx_i) \quad \in S(V)^W[t],$$

the variable x_i is algebraic over $\mathbb{C}(e_1,\ldots,e_r)$ the field of fractions of $S(V)^W$. Thus

$$0 = \operatorname{trdeg}\left(\frac{\mathbb{C}(x_1, \dots, x_n)}{\mathbb{C}(e_1, \dots, e_r)}\right) = \operatorname{trdeg}\left(\frac{\mathbb{C}(x_1, \dots, x_n)}{\mathbb{C}}\right) - \operatorname{trdeg}\left(\frac{\mathbb{C}(e_1, \dots, e_r)}{\mathbb{C}}\right) = n - r.$$

Step 3. The Jacobian of a map

$$\begin{array}{cccc} \varphi & V & \longrightarrow & V \\ x & \longmapsto & (\varphi_1(x), \dots, \varphi_n(x)) \end{array} \quad \text{is} \quad J_{\varphi}(x) = \det\left(\frac{\partial \varphi_i}{\partial x_j}\right). \end{array}$$

If φ is linear then there are $\phi_{ij} \in \mathbb{C}$ such that

$$\phi_i(x) = \sum_{j=1}^n \phi_{ij} x_j$$
 and $J_{\varphi} = \det(\phi_{ij}).$

The *chain rule* is the identity

$$J_{\theta \circ \varphi} = J_{\theta}(\varphi x) J_{\varphi}(x).$$

Let

for $w \in W$. Then $\theta \circ w = \theta$ and so

 θ :

$$J_{\theta}(x) = J_{\theta \circ w}(x) = J_{\theta}(wx)J_w(x) = J_{\theta}(wx)\det(w) = \det(w)(w^{-1}J_{\theta})(x).$$

Thus J_{θ} is W-alternating and so J_{θ} is divisible by

$$\Delta = \prod_{\alpha \in R^+} \alpha^{r_\alpha - 1}. \qquad \text{Since} \quad \deg(J_\theta) = \sum_{i=1}^n (d_i - 1) = \operatorname{Card}(R^+),$$

and so $J_{\theta} = \lambda \cdot \Delta$ for some $\lambda \in \mathbb{C}$.

Step 4. The polynomials e_1, \ldots, e_n are algebraically independent if and only if $J_{\theta} \neq 0$.

Proof. \Rightarrow : Assume e_1, \ldots, e_r are algebraically independent.

Then x_i are algebraic over $\mathbb{C}(e_1,\ldots,e_r)$.

$$\operatorname{trdeg}\left(\frac{\mathbb{C}(x_1,\ldots,x_n)}{\mathbb{C}(e_1,\ldots,e_r)}\right) = \operatorname{trdeg}\left(\frac{\mathbb{C}(x_1,\ldots,x_n)}{\mathbb{C}}\right) - \operatorname{trdeg}\left(\frac{\mathbb{C}(e_1,\ldots,e_r)}{\mathbb{C}}\right) \ge n - r.$$

So x_1, \ldots, x_n are algebraic over $\mathbb{C}(e_1, \ldots, e_r)$ if and only if $0 \ge n - r$, that is, if and only if n = r. Let $m_i(t) \in S(V)^W[t]$ be the minimal polynomial of x_i over $\mathbb{C}(e_1, \ldots, e_n)$, the field of fractions of $S(V)^W$. Then

$$\frac{\partial m_i}{\partial x_k} = \sum_{j=1}^r \frac{\partial m_i}{\partial e_j} \frac{\partial e_j}{\partial x_k} + \frac{\partial m_i}{\partial t} \frac{\partial t}{\partial x_k}$$

and

$$0 = \frac{\partial m_i(x_i)}{\partial x_k} = \sum_{j=1}^r \frac{\partial m_i}{\partial e_j}(x_i)\frac{\partial e_j}{\partial x_k} + m'_i(x_i)\delta_{ik}.$$

Thus

$$\det\left(\frac{\partial m_i}{\partial e_j}(x_i)\right) \cdot J_{\theta} = \det\left(-\operatorname{diag}(m_1'(x_1),\ldots,m_n'(x_n)\right) = (-1)^n \prod_{i=1}^r m_i'(x_i)$$

Since $m_i(t)$ is the minimal polynomial of x_i , each factor $m'_i(x_i) \neq 0$ and, thus, $J_\theta \neq 0$. \Leftarrow : Assume $e_1 \dots, e_n$ are algebraically dependent. Let $f(y_1, \dots, y_n)$ be of minimal degree such that $f(e_1, \dots, e_n) = 0$. Then

$$\frac{\partial f}{\partial y_i} \neq 0$$
 for some y_i , and so $g_i = \frac{\partial f}{\partial y_i}(e_1, \dots, e_n) \neq 0$ for some i .

But

$$0 = \frac{\partial f(e_1, \dots, e_n)}{partial x_j} = \sum_{i=1}^n \frac{\partial f}{\partial y_i}(e_1, \dots, e_n) \frac{\partial e_i}{\partial x_j}, \quad \text{and so} \quad \sum_{i=1}^n g_i \frac{\partial e_i}{\partial x_j} = 0.$$

So g_i is a solution to the equation $(g_1, \ldots, g_n) (\partial e_i / \partial x_j) = 0$ and so $J_{\theta} = 0$.

NOTES AND REFERENCES

[Mac] I.G. MACDONALD, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.