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Abstract. Generalized Hall-Littlewood polynomials (Macdonald spherical functions) and gener-
alized Kostka-Foulkes polynomials (g-weight multiplicities) arise in many places in combinatorics,
representation theory, geometry, and mathematical physics. This paper attempts to organize
the different definitions of these objects and prove the fundamental combinatorial results from
“scratch”, in a presentation which, hopefully, will be accessible and useful for both the nonexpert
and researchers currently working in this very active field. The combinatorics of the affine Hecke
algebra plays a central role. The final section of this paper can be read independently of the
rest of the paper. It presents, with proof, Lascoux and Schiitzenberger’s positive formula for the
Kostka-Foulkes poynomials in the type A case.

0. Introduction

The classical theory of Hall-Littlewood polynomials and the Kostka-Foulkes polynomials ap-
pears in the monograph of I.G. Macdonald [Mac|. The Hall-Littlewood polynomials form a basis of
the ring of symmetric functions and the Kostka-Foulkes polynomials are the entries of the transition
matrix between the Hall-Littlewood polynomials and the Schur functions.

This theory enters in many different places in algebra, geometry and combinatorics. Many of
these connections appear in [Mac]:

(a) [Mac, Ch. II] explains how this theory describes the structure of the Hall algebra of finite
o-modules, where o is a discrete valuation ring.

(b) [Mac, Ch. IV] explains how the Hall-Littlewood polynomials enter into the representation
theory of GL, (F,) where Fy is a finite field with ¢ elements.

(c) [Mac, Ch, V] shows that the Hall-Littlewood polynomials arise as spherical functions for
GL,(Qp) where Q, is the field of p-adic numbers.

Research partially supported by the National Science Foundation (DMS-0097977) the National Security Agency (MDA904-
01-1-0032) and by EPSRC Grant GR K99015 at the Newton Institute for Mathematical Sciences.

Keywords: symmetric functions, representation theory, affine Hecke algebras, Kazhdan-Lusztig polynomials.


http://de.arxiv.org/abs/math/0401298v1

2 K. NELSEN AND A. RAM

(d) [Mac, Ch. III §6 Ex. 6] explains how the Kostka-Foulkes polynomials relate to the inter-
section cohomology of unipotent orbit closures for GL,, (C) and [Mac, Ch. III §8 Ex. 8]
explains how the Kostka-Foulkes polynomials describe the graded decomposition of the
representations of the symmetric groups S,, on the cohomology of Springer fibers.

(e) [Mac, Ch. App. A §8 and Ch. III §6] gives that the Kostka-Foulkes polynomials are
g-analogues of the weight multiplicities for representations of G L, (C).

(f) [Mac, Ch. III (6.5)] explains how the Kostka-Foulkes polynomials encode a subtle statistic
on column strict Young tableaux.

Macdonald [Mac2, (4.1.2)] showed that there is a formula for the spherical functions for the
Chevalley group G(Q,) which generalizes the formula for Hall-Littlewood symmetric functions.
This combinatorial formula is in terms of the root system data of the Chevalley group G. In [Lu]
Lusztig showed that Macdonald’s spherical function formula can be seen in terms of the affine Hecke
algebra and that the “g-weight multiplicities” or generalized Kostka-Foulkes polynomials coming
from these spherical functions are Kazhdan-Lusztig polynomials for the affine Weyl group. Kato
[Kt] proved the “partition function formula” for the g-weight multiplicities which was conjectured
by Lusztig. The partition function formula has led to continuing analysis of the connection between
the g-weight multiplicities, functions on nilpotent orbits, filtrations of weight spaces by the kernels
of powers of a regular nilpotent element, and degrees in harmonic polynomials (see [JLZ] and the
references there).

The connection between Hall-Littlewood polynomials and o-modules has seen generalizations
in the theory of representations of quivers, the classical case being the case where the quiver is a
loop consisting of one vertex and one edge. This theory has been generalized extensively by Ringel,
Lusztig, Nakajima and many others and is developing quickly; fairly recent references are [Nak1]
and [Nak2].

The connection to Springer representations of Weyl groups and the representations of Cheval-
ley groups over finite fields has been developed extensively by Lusztig, Shoji and others; a good
survey of the current theory is in [Shjl] and the recent papers [Shj2] show how this theory is
beginning to extend its reach outside Lie theory into the realm of complex reflection groups.

Since the theory of Macdonald spherical functions (the generalization of Hall-Littlewood poly-
nomials) and ¢-weight multiplicities (the generalization of Kostka-Foulkes polynomials) appears in
so many important parts of mathematics it seems appropriate to give a survey of the basics of
this theory. This paper is an attempt to collect together the fundamental combinatorial results
analogous to those which are found for the type A case in [Mac|. The presentation here centers
on the role played by the affine Hecke algebra. Hopefully this will help to illustrate how and why
these objects arise naturally from a combinatorial point of view and, at the same time, provide
enough underpinning to the algebra of the underlying algebraic groups to be useful to researchers
in representation theory.

Using the terms Hall-Littlewood polynomial and Macdonald spherical function interchange-
ably, and using the words Kostka-Foulkes polynomial and q-weight multiplicity interchangeably,
the results that we prove in this paper are:

(1) The interpretation of the Hall-Littlewood polynomials as elements of the affine Hecke
algebra (via the Satake isomorphism),

(2) Macdonald’s spherical function formula,

(3) The expansion of the Hall Littlewood polynomial in terms of the standard basis of the
affine Hecke algebra,

(4) The triangularity of transition matrices between Macdonald spherical functions and other
bases of symmetric functions,
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(5) The straightening rules for Hall-Littlewood polynomials,
(6) The orthogonality of Macdonald spherical functions,
(7)
(8)

7
8
(9) The identification of the Kostka-Foulkes polynomial as a Kazhdan-Lusztig polynomial.

The raising operator formula for Kostka-Foulkes polynomials,

The partition function formula for g-weight multiplicities,

All of these results are proved here in general Lie type. They are all previously known, spread
throughout various parts of the literature. The presentation here is a unified one; some of the
proofs may (or may not) be new.

Section 4 is designed so that it can be read independently of the rest of the paper. In Section 4
we give the proof of Lascoux-Schiitzenberger’s positive combinatorial formula [LS] (see also [Mac,
Ch. IIT (6.5)]) for Kostka-Foulkes polynomials in type A. Versions of this proof have appeared
previously in [Sch] and in [Bt]. This proof has a reputation for being difficult and obscure. After
finally getting the courage to attack the literature, we have found, in the end, that the proof is not
so difficult after all. Hopefully we have been able to explain it so that others will also find it so.

Acknowledgements. A portion of this paper was written during a stay of A. Ram at the Newton
Institute for the Mathematical Sciences at Cambridge University. A. Ram thanks them for their
hospitality and support during Spring 2001. The preparation of this paper has been greatly aided by
handwritten lecture notes of I.G. Macdonald from lectures he gave at the University of California,
San Diego, in Spring 1991. In several places we have copied rather unabashedly from them. Over
many years Professor Macdonald has generously given us lots of handwritten notes. We cannot
thank him enough, these notes have opened our eyes to many beautiful things and shown us the
“right way” many times when we were going astray.

1. Weyl groups, affine Weyl groups, and the affine Hecke algebra

This section sets up the definitions and notations. Good references for this preliminary mate-
rial are [Bou], [St] and [Mac4].

The root system and the Weyl group

Let by be a real vector space with a nondegenerate symmetric bilinear form (, ). The basic
data is a reduced irreducible root system R (defined below) in hj. Associated to R are the weight
lattice

2
P={X\eb;| (N\aY)€eZforall a € R} where oV = —=

) (1.1)
and the Weyl group

Sa- h]l*k I h?& (1‘2)

W = (so | @ € R) generated by the reflections A o A= aY)a

in the hyperplanes
H, = {z by | (x,a") =0}, a € R. (1.3)
With these definitions R is a reduced irreducible root system if it is a subset of b such that
(a) R is finite, 0 € R and hi = R-span(R),
(b) W permutes the elements of R, i.e. wa € R for w € W and a € R,
(c) W is finite,
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(d) RC P,
(e) if @ € R then the only other multiple of o in R is —a,
(f) b is an irreducible W-module.

The choice of a fundamental region C for the action of W on by is equivalent to a choice of positive
roots Rt of R,

Rt ={a€R| (z,a¥)>0forall z € C} and C={ze€b;|(x,a”)>0forall ac R}

Example 1.4. If % = R? with orthonormal basis e; = (1,0) and 3 = (0,1), P = Z-span{e1, 2},
and W = {1, s1, 82, 152, 8281, $15281, $25152, S1525152} is the group of order 8 generated by the
reflections s; and sg in the hyperplanes H,, and H,,, respectively, where

_ vV o_
a1 = 2¢eq, a) = e,

a9 = 9 — &1, oY = a, then R ={+tay, tas, £(a; + as), (a1 + 2a2)}.

SQC

Hal +2as

$981592C 5251C

818281520 5152510

This is the root system of type Cs. I

For each o € R define the raising operator Ry: P — P by Ropu = p + «. The dominance
order on P is given by
<A if A= Rg, - Rg,p (1.5)

for some sequence of positive roots 31,...,3;, € RT.
The various fundamental chambers for the action of W on b% are the w™'C, w € W. The
tnversion set of an element w € W is

R(w) = {a € R" | H, is between C' and w=1C} and l(w) = Card(R(w)) (1.6)
is the length of w. f R~ = —RT = {—a | « € R™} then

R=RTUR~ and R(w) ={a € Rt | wa € R™}, for w e W.
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The weight lattice, the set of dominant integral weights, and the set of strictly dominant
integral weights, are

P ={xebi | (N\aY)eZforall a € R},
PT=PnC={)ebi|(\aY)€Zsforalla € RT}, (1.7)
Pt =PnC={ ebi | (\,aY) €Zso for all a € R},

where C = {x € b}, | (x,a¥) >0 for all @ € R} is the closure of the fundamental chamber C.
The simple roots are the positive roots o, . .., a,, such that the hyperplanes H,,, 1 < ¢ < n, are
the walls of C. The fundamental weights, wy, ... ,w, € P, are given by (w;, 04}/> =0;;, 1 <i,j <n,
and . . .
P=> Tuw, Pt =) Zsow, and  PTT=>"7Z.w;. (1.8)
i=1

=1 i=1

The set P is an integral cone with vertex 0, the set P™T is a integral cone with vertex

n + ++
p= Zwi =1 Z a, and the map P)\ : )I\:L p (1.9)
i=1

a€ERT

is a bijection. In Example 1.4, with the root system of type C5, the picture is

H c H ¢
o ‘HaQ o [ ] [ ] [ ] [ ] _. Ha2
e o o o e o o o
51C e o o 510 o o o
o o o o
slsgC b SQC 81820 p. SQC
w2 o1 e
s08182C 8081 C s08182C s081C
318231320 3182810 - 818281820 5182810
The set Pt The set P+

The simple reflections are s; = s,,, for 1 < ¢ < n. The Weyl group W has a presentation by
generators sy, ..., s, and relations

8?:1, for1 <i<mn,
$iSjSj = SjSiS;j s i # 7, (1.10)
—_——

m;; factors m;; factors

where 7/m;; is the angle between the hyperplanes H,, and H,,. A reduced word for w € W is
an expression w = s;, -+ 8;, for w as a product of simple reflections which has p minimal. The
following lemma describes the inversion set in terms of the simple roots and the simple reflections
and shows that if w = s;, --- s;, is a reduced expression for w then p = £(w).
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Lemma 1.11. [Bou VI §1 no. 6 Cor. 2 to Prop. 17] Let w = s;, -+ - s;, be a reduced word for w.
Then

R(w) = {ai,, $i, iy, yseees8iy 0 Sip iy |

The Bruhat order, or Bruhat-Chevalley order, (see [St, §8 App., p. 126]) is the partial order on W
such that v < w if there is a reduced word for v, v = s;, --- 55, , which is a subword of a reduced

word for w, w = s;, --- 5, (ie. 55,...,5;, is a subsequence of the sequence s;,,...,s; ).
The affine Weyl group
For A\ € P, the translation in X is
ta: bf& - h]l*Q (1.12)

r — x4+ A\
The extended affine Weyl group W is the group
W = {wty | we W, e P}, (1.13)
with multiplication determined by the relations
Aty = tatu, and Wty = tyaW, (1.14)
for \,u € P and w € W. The group W is the group of transformations of br generated by the
Sq, @ € RT and ty, A\ € P. The affine Weyl group W,g is the subgroup of W generated by the
reflections
Sa.k: bR — bR in hyperplanes Hyp={x € by | (z,a") =k}, a€ R keZ (1.15)
The reflections s, ; can be written as elements of W via the formula
Sak = thavSa = Sat—kav- (1.16)
The highest root of R is the unique element ¢ € RT such that the fundamental alcove
A=Cn{zeby| (z,9’) <1} (1.17)

is a fundamental region for the action of Wag on hp. The various fundamental chambers for the
action of W on b are w™' A, w € Wag. The inversion set of w € W is

R(w) = {Ha | Hox is between A and w!A} and l(w) = Card(R(w))

is the length of w. If w € W and A € P then

Lwty) = > 1A aY) + x(wa), (1.18)

a€eRt

where, for a root 3 € R, set x(8) =0,if 3 € RT, and x(3) =1,if B € R™.
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Continuing Example 1.4, we have the picture

Hw — Haitar Hal HOzQ,O = HOéQ
- - Ha1+2a2,3
HOélJrOtz,*l AN
AN AN
A= — — - — =k HO&1+2@272
: | N / | | AN 7 *
Hay 5 LNV LNV
H _ 7N /N
arfaz, =2 (| 1/ NN
K — 7 N T — 7F - - _/l\_ a;+2as,l
Ha2,4 : N /o
HOélJrOtz,*?)
Ha1+2&2,0 Hal+26¥2
Hag,S
Ha1+a2,—4
______ HOélJrQOtz,*l
HQQ,Q
Ha1+a2,—5
| Ha1+2a2,—2
H s N
a2,1 HO&1+0271 = H%O = HOto
oA o~ o Hav2ae, -3
Let
Hy,y=Hg, and 50 = Sp,1 = lyvSy = Sgt_gv, (1.19)
and let H,,,...,H,, and sq1,...,s, be as in (1.10). Then the walls of A are the hyperplanes
H.,,H,,,...,H,, and the group W,g has a presentation by generators sg, 51, ..., s, and relations
5?2 =1, for 0 < ¢ <mn,
8iSjSj 1 = 8jSiSj -, i # J, (1.20)
~—— N——
m;; factors my; factors

where 7/m;; is the angle between the hyperplanes H,, and H,,.
Let wp be the longest element of W and let w; be the longest element of the subgroup W,,, =
{w e W | ww; =w;}. Let ¥ =cr1ay + -+ cpa,). Then (see [Bou, VI §2 no. 3 Prop. 6])
Q={ge W | £(g) =0} ={g; | ;i =1}, where gi = tu, wiwp. (1.21)

Each element g € 2 sends the alcove A to itself and thus permutes the walls H,,, H,,, ..., H,, of
A. Denote the resulting permutation of {0,1,...,n} also by g. Then

gsig~ " =S4y,  for0<i<n, (1.22)

and the group W is presented by the generators sg, s1,...,s, and g €  with the relations (1.18)
and (1.20).
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The affine Hecke algebra

Let K = Z[q,q!]. The affine Hecke algebra H is the algebra over K given by generators 73,
1 <i<mn,and z*, X € P, and relations

T = TyLT; for all i # j,
m;; factors mij ;;ctors
T? = (q—q¢ T+ 1, forall 1 <i<n,
(1.23)

g et = g = g A for all \, u € P,

xA _ xSiA

;cAT,;:T,-;csMquq*l)ﬁ, forall 1 <i<mn, A€ P.
J— xi k2

An alternative presentation of H is by the generators T}, w € W, and relations
T, Twy = Twyws, if E(wlwg) = E(wl) + E(wg),

T, Tw = (¢ — ¢ T, + Tsws if {(s;w) <Ll(w) (0<i<n).

With notations as in (1.12-1.20) the conversion between the two presentations is given by the
relations

T, =TT, if w e Wag and w = s;, -+ 5;, is a reduced word,
Ty, =a*iTyt, for g; € Q as in (1.19),
(1.24)
2 =T, T, " if A\ = u — v with Pt
— Lttt = | M7V€ )
T,, = Ts¢x*¢v, where ¢ is the highest root of R,

The Kazhdan-Lusztig basis

The algebra H has bases
(e M, |lweW,AXe P} and  {T,z"|weW,\e P}

The Kazhdan-Lusztig basis {C, | w € W} is another basis of H which plays an important role. It
is defined as follows. } o 3
The bar involution on H is the Z-linear automorphism :H — H given by

G=q ! and T, = Tu;ll, for w e W.

For 0 <i <mn, T, = TZ-_1 =T, — (¢ — g~ ') and the bar involution is a Z-algebra automorphism of
H. If w= s ---s;, is a reduced word for w then, by the definition of the Bruhat order (defined
after Lemma 1.11),

T ...T

ip

- (Tll - (q - qil)) e (Tip - (q - qil)) = Tw + Z avava

v<<w

_ 1 -1
=T "'Ti,,
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with a,, € Z[(g —q71)].
Setting 7; = ¢T; and t = ¢?, the second relation in (1.21)

T2 =(q—q¢ HT; +1 becomes 77 = (t —1)7; + L. (1.25)
The Kazhdan-Lusztig basis {C', | v € W} of H is defined [KL] by

Cp=C,, and C,=t""21N"P,7|, (1.26)

y<w

Nl

subject to Py, € Z[t3,t73], Py, =1, and deg,(Py,) < 3(£(w) —£(y) — 1).

If
Py = g~ LD p (1.27)
then
Ol = gt Z Puwq"™T, = Z Pyq~ U=t = Zpway, (1.28)
y<w y<w y<w
with
Pyw €Z[¢,47Y], pww=1, and  py, € ¢ 'Z[g7], (1.29)

since degq(wa(q)q_(e(“’)_g(y))) <l(w)—L(y) —1— (L(w) — £(y)) = —1. The following proposition
establishes the existence and uniqueness of the C;, and the py,,.

Proposition 1.30. Let (W <) be a partially ordered set such that for any u,v € W the interval
[u,0] = {z €W | u <z < v} is finite. Let M be a free Z[q,q~']-module with basis {T,, | w € W}
and with a Z-linear involution :M — M such that

-1

q=q and T_w:Tw+Zavav

v<w
Then there is a unique basis {C!, |w € W} of M such that
(a) Cl, =C,,,
(b) C!, =T, + Z Powls, With pyy € ¢~ Z[g7 "] for v < w.

v<<w
Proof. The py, are determined by induction as follows. Fix v,w € W with v < w. If v = w
then pyw = pww = 1. For the induction step assume that v < w and that p,,, are known for all
v<z<w.
The matrices A = (ayy) and P = (pyy) are upper triangular with 1’s on the diagonal. The

equations
:T = E avw v E auvavw u and

ZpuwT —C/ C/ _vawT —vawauv U

imply AA =1Id and P = AP. Then

Z auz]_)zw = ((A - I)F)uw = (AF - P)uw = (P - P)uw = Puw — ﬁuwa

u<z<w
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is a known element of Z[q, ¢~ '];

f=Y fed" suchthat  f= (puw — Puw) = Puw — Puw = — /-
keZ

Hence fir = —f_j for all k € Z and p,,, is given by py., = Z fqu. ]
k€Z<o

The finite Hecke algebra H and the group algebra of P are the subalgebras of H given by
H = (subalgebra of H generated by T1,...,Ty), and

R (1.31)
K[P] = K-span {z" | A € P}, where K = Z[q, ¢ 1],
respectively. The Weyl group W acts on K[P] by
wf = Z curt, forw e W and f = Z cpxt € K[P]. (1.32)

ner pnepP

Theorem 1.33. The center of the affine Hecke algebra is the ring
Z(H) =K[P]Y = {f e K[P] | wf = f for all w € W}

of symmetric functions in K[P].
Proof. If z € K[P]" then by the fourth relation in (1.23) T;z = (s;2)T; + (q—q 1)(1 —2=%) "1 (2 -
s;z) = 2T; + 0, for 1 <4 <n, and by the third relation in (1.23) 2o = x*z, for all A € P. Thus z
commutes with all the generators of H and so z € Z(H).

Assume

z= Z et Ty € Z(H).
AePweW

Let m € W be maximal in Bruhat order subject to ¢, ,,, # 0 for some v € P. If m # 1 there exists
a dominant p € P such that ¢y4,—mu,m = 0 (otherwise ¢4 —mu,m 7 0 for every dominant p € P,
which is impossible since z is a finite linear combination of 2*T,). Since z € Z(H) we have

z=x Hzzt = Z c;hwa*“wa“.
NEPwEW
Repeated use of the third relation in (1.21) yields
Tw,l?“ = Z du,vaTv
vePveW
where d,, ,, are constants such that d., . =1, dy ., = 0 for v # wp, and d,, = 0 unless v < w. So
z = Z c>\7wx>‘Tw = Z Z cA7de7vx>‘_“+”Tv
AeP,weW AeP,weW vePveW

and comparing the coefficients of 27T}, gives ¢y m = ¢yt p—mpm@mp,m- Since cyiy—muym = 0 it
follows that ¢, = 0, which is a contradiction. Hence z = Y, p caz™ € K[P)].
The fourth relation in (1.23) gives

2Ty =Tz = (s;2)T; + (g — g )7

where 2’ € K[P]. Comparing coefficients of z* on both sides yields 2’ = 0. Hence 2T; = (s;2)T5,
and therefore z = s,z for 1 <i <n. So z € K[P]". 1§
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2. Symmetric and alternating functions and their g-analogues

Let 19 and g be the elements of the finite Hecke algebra H which are determined by

12=1g and Tilo = qlo, for all 1 <i <mn,
ed=¢o and Tieo = (—q~Y)eg, forall 1 <i<n.

In terms of the basis {T}, | w € W} of H these elements have the explicit formulas

1
Wo(q?)

1
Z qf(w)Tw, and €0 = 37 7 o Z (7q)_€(w)Tw ; (21)

1o = —
wew Wo(a=2) weW

where Wo(t) =3, i t9*). (To define these elements one should adjoin the element Wy(g%)~! to
K or to H.) The elements 1¢ and ¢( are g-analogues of the elements in the group algebra of W
given by

1 1
1=— w and €= — (—1)4®y, (2.2)
"2 " 2

and the vector spaces 10ﬁ 15 and and EOI:I 1, are g-analogues of the vector spaces (more precisely,
free K = Z[q, ¢~ ']-modules) of symmetric functions and alternating functions,

K[P]W = {f e K[P] | wf = f forall w € W} = 1-K[P],

(2.3)
A={feK[P]|wf= (-1 fforall we W} =e-K[P],

respectively.
For p € Plet Wpu = {wp | w € W} be the orbit of g and W, = {w € W | wp = p} the
stabilizer of p and define

1
my, = Z x) = W 12", a, = Z(fl)g(w)wx“zs-x“,
YEW 1 weWw (24)
MN = 10.’13“’10, AN = 60.’1}“10 .

Theorem 2.7 below shows that the elements in (2.4) which are indexed by elements of P+ and
P+ form bases (over K) of K[P]", A, 10H1y, and egH1,. This will be a consequence of the
following straightening rules. The straightening law for the M,, given in the following Proposition
is a generalization of [Mac, III §2 Ex. 2].

Proposition 2.5. For v € P let m,, a, M., and A, be as defined in (2.4). Let o; be a simple
root and let u € P be such that d = (u, ) > 0. Then
Mg, = My, Ay = —0y, and Ag,p = —Au.

Letting t = q~2, M, = M,,,, if d =0, and if d > 0 then

ld/2—1]

- — 1)t2=10, ifd is even
M, ,=tM ( 2Ny o .a.) (t p—(d/2)a;» ,
o= Mt (D (=D Mg, ) + 0, if d is odd.

j=1
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Proof. The first two equalities follow from the definitions of my and a, and the fact that £(s;) = 1.
Let g € P such that d = (u, ) > 0. Since x* + x5 is in the center of the tiny little affine
Hecke algebra generated by T; and the 7, ye P,

A+ Ag, =0zt +2%H)1y = q teo(zt + 2Tyl
= q teoT)(z" + 2%5H)1g = —q 2eo(a" + 2%)1g = —q (A, + As,p)-

Thus A, + As,,, = 0 which establishes the third statement.

If d = 0 then s;u = p and the fourth relation in (1.23) is z%#T; — T;x* = 0. Multiplying
by 1p on both the left and the right (and dividing by ¢) gives 1oz*#1g — 1gz#1g as desired. If
d > 0 then multiplying the fourth relation in (1.23) by 1 on both the left and the right (and then
multiplying by ¢=1) gives

) _ _ xSt — gk
Lo(z*# — ") 1o = q (g —q )10 <W) 1o.

Subtracting the same relation with p replaced by p — «; gives

, . . L _ TSt — ph — gpSitt | pp
Lo(a®# — 2#)1p — Lo(a® " — 2~ *) 1 = (1 — ¢~ ?)1g < 1 — g > ’

=(1- q_z)lo(—xsi“+ai — M) 1.

So
lo,ISi'u]_O = q_z]_()l"u]_o - ]_Ol"u_ai]_g + q_210$siu+ai10.

Inductively applying this relation yields the result. The first cases are

M,Lu <:ua O‘;/> =0,
q72M,u> <:ua O‘;/> =1,
Msiu = q_QM,u + (q_2 - 1)M,u—ai> < aa;/> =2,
q_QMu + (q_4 - 1)Mufo¢i7 < ,Ck;/> =3,
q_2MN + (q_4 - 1)Mufo¢i + q_2(q_2 - I)MM7204¢7 <l’['7 Ct;/> =4. 1
Proposition 2.5 implies that, for all u € P and w € W,
Mup =My, Gy = (1) @a,,  and  A,, = (-1)"™A4A,. (2.6)
Theorem 2.7. Let K = Z[q,q™']. As free K-modules
K[P]W has basis {my | A € P}, 10H1, has basis {My | A € PT},
A has basis {a, | p€ P}, eoH1g has basis {A, | pe€ Pt}

Proof. Since {z"T,, | u € P,w € W} form a basis of H the elements M, =19zl = g {121 T, 10,
w € P, span 10H1,. By Proposition 2.5, if x4 is on the negative side of a hyperplane H,,, i.e. if
(1, > < 0, then M, can be rewritten as a linear combination of M, such that all terms have
on the nonnegative 51de of H,,. By repeatedly applying the relatlon in Proposition 2.5 M, can
be rewritten as a linear combination of M, such that all terms have v on the nonnegative side of
HeypyoooyHy, , ie. vy € PT=PNC, where C = {z € R" | (z,a)) >0 for all 1 <i < n}.
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The proof for the cases of m,,, a, and A, is easier, it follows directly from (2.6), the fact that
C={zeR"| (x,a)) >0 forall 1 <i<n}isa fundamental chamber for the action of W, and
that if p € PT\P*" then (y,)) = 0 and a, = —as,,, = —a,, in which case a, = 0 (similarly for
Au)-

For A € P define the Schur function, or Weyl character, by

a)\+p 1
S = — h = 3 . 28
A 2 where p=73 E ! (2.8)
aERT

The straightening law for a,, in (2.6) implies the following straightening law for the Schur functions.
If p € P and w € W then, by (2.6) and the definition of s,

—1 £(w) a _
(*1)5(10)8“ — ( ) Au+p _ w(pu+p)—p+p = Swops where w op= w(/‘ +,0) —p. (29)
a a,
The dot action of the Weyl group W on b which is appearing here, wo pu = t_,wt,p = (t;l)wtp,u,
is the ordinary action of W on h except with the “center” shifted to —p. For the root system of
type Cs, see Example 1.4, the picture is

) s:1C C H,, ) H,

2

Hal+20¢2

818281820 8182810

the orbit Wp the orbit W o0

The following proposition shows that the Weyl characters s are elements of K[P]". The
equality in part (a) is the Weyl denominator formula, a generalization of the factorization of the
Vandermonde determinant det(z; ’) = [],<; j<,(z; — ;). In the remainder of this section we

3

shall abuse language and use the term “vector space” in place of “free K = Z[q, ¢~ '] module”.

Proposition 2.10. Let P, P** K[P]" and A be as in (1.8) and (2.4) and let p be as in (1.9).
(a) If f € A then f is divisible by a, and

(b) The set {sx | A € P} is a basis of K[P]V.
(c) The maps
pt . ptt

A — A+p and / — af
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are a bijection and a vector space isomorphism, respectively.

Proof. Since s; takes a; to —c; and permutes the other elements of R,
p—(p,a) Vo = s;p=p — a, and so (p,a)) =1, foralll<i<n.

Thus the map PT — P*T given by A\ — X + p is well defined and it is a bijection since it is
invertible.

Let d = 2 [[ cps (1 —27%) = [[,cps (/2 —27/2). Since s; takes a; to —a; and permutes
the other elements of R*, s;d = —d for all 1 <i < n and so wd = (—1)*™)d for all w € W. Thus
d is an element of A.

Ifa€e RT and f = Zcux“ € A then

pnepP

Z cprt = f=—s.f= Z —cpaiet, and so f= Z cu(ah — atet).

nepP nepr (n,a¥)>0

Since (1 — z= (")) ig divisible by (1 — %) it follows that a# — z%i# = g#(1 — g~ (e Da) jg
divisible by (1 —2z~%) and thus that f is divisible by (1 —z~%) for all &« € R*. Since the elements
(1 — z—%) are relatively prime in the Laurent polynomial ring K[P] and z” is a unit in K[P], f is
divisible by d. Since both f and d are in A, the quotient f/d is an element of K[P]".

The monomial z” appears in a, with coefficient 1 and it is the unique term z* in a, with
p € PT. Since d has highest term a” with coefficient 1 and a, is divisible by d it follows that
a,/d = 1. Thus a, = d, the inverse of the map ® in (c) is well defined, and ® is an isomorphism.

Since {axy, | A € Pt} is a basis of A and the map ® is an isomorphism it follows that
{sx | A € PT} is a K-basis of K[P]. 11

The Satake isomorphism

The following theorem establishes a g-analogue of the isomorphism & from Proposition 2.10(c).
The map ®; in the following theorem is the Satake isomorphism. We shall continue to abuse
language and use the term “vector space” in place of “free K = Z[q,¢~'] module”.

Theorem 2.11. The vector space isomorphism ® in Proposition 2.10(c) generalizes to a vector
space isomorphism

i’: Z(ﬁ) = K[P]W ﬂ) Z(f:]—)]_o = 10ﬁ10 & €0ﬁ10
f — f1o — A, flo
S\ — 5)\]_0 | A)\+p.

Proof. Using the third equality in (2.6),

8061/\10 =& < Z (_I)Z(w)xw)\> 10 = Z (—l)g(w)Aw)\ = ‘W‘ A)\.

weW weW

By Proposition 2.10(c) and Theorem 1.33, s) € K[P]" = Z(H), and so

1 1 , 1
ApS)\]_O = ngaplos)\lo = WSQGPS)\]_O = WSQCL)\_H)]_O = A)\_H,.
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Since {s) | A € P*} is a basis of K[P]" = Z(H) and {Ay;, | A € Pt} is a basis of egH1, the

composite map _ ) _ _ ) _

Z(H) =2 Z(H) 10 — 10H10 N €0H10

o — flg = flg o A, f1g
—

s = s\l sxlo = Axg,

is a vector space isomorphism. I
If p e P let

W,={weW |wp=p} and W, (t) = Z W), (2.12)
weW,

In particular, if 4 = 0, then Wy = W and Wy(t) is the polynomial that appears in (2.1).
The Hall-Littlewood polynomials, or Macdonald spherical functions, are defined by

1 1 -tz
. = K _—
P,(x;t) "0 wge w(x 6| R|+ = ), for p e P. (2.13)

Then m,, = P,(z;1) and, using the Weyl denominator formula,

xPxt 1 a
Py(x;0) = w( ) = — Y (—1)HWpphte = TEEL — (2.14)
{0 = 2 o e =) ~ 4, 2, o "

and so, conceptually, the spherical functions P, (z;t) interpolate between the Schur functions s,
and the monomial symmetric functions m,,.

The double cosets in W\W /W are Wt\W, A € PT. If A\ € PT let ny and m, be the maximal
and minimal length elements of Wt,\W, respectively. Theorem 2.22 below will show that under
the Satake isomorphism the Weyl characters sy correspond to Kazhdan Lusztig basis elements C, |
and the polynomials P, (z, q~?) correspond to the elements M, = loxt1y. More precisely, we have
the following diagram:

®,:  Z(H)=K[PW — Z(H)1,=10H1,

/ — f1o
2.15
q—é(wo)WO(q2) S — CT/LA ( )
W,.(q?) )
Wg(q*Q) P,(z;q77) +— M,

where wy is the longest element of W. The following three lemmas (of independent interest) are
used in the proof of Theorem 2.22.

Lemma 2.16. Let t,, o € RT, be commuting variables indexed by the positive roots. For
A € PT let Py(x;t) be as in (2.13), Wy as in (2.12), and define

Ra(zita) = Zw(x/\ I1 %) and  Wi(ta)= > (I ta),

weWw aERT weWi  acR(w)
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where, as in (1.6), R(w) = {a € RT | wa < 0} is the inversion set of w. Then

a) Rx(z;ty) UnuSy, With uy, € Zlty], ux, =0 unless u < A, and uxy = Wi (ta)-
wSu I w
pneEP+
(b) P\(x;t) = Z CapSp, Wwith ey, € Z[t], cxy =0 unless p < A\, and cyy = 1.
peP+

Proof. (a) If E C RT let

thl_[tCY and ozE:Zoz,

acE ack

and let a,, be as defined in (2.4). Using the Weyl denominator formula, Proposition 2.10(a),

—tax @ 2P [T peps (1 —toz™®
N syt

weWw aERT weWw
1
D I (w ITa- taxa)>
p weWw aERT
1
D L D S SIE TN
U wew ECR+
1
= (I_ Z (71)|E|tEa)\+p—aE = Z (71)|E|tE5)\+p—aE,
P BCR* ECR+

which shows that Ry is a symmetric function and uy,, € Z[t,].
By the straightening law for Weyl characters (2.9), sx1p—ap = 0 0T Sx1p_ap = (—1) s, 1,
with
veW and u € Pt such that p+p=v"'(A+p—ag).

Let E¢ denote the complement of E in RT. Since v permutes the elements of RT,

v A+ p—ag)=v A+0! (— DS )

ackc ack
:Ul)\—i—(%Za——Z )zvl)\—i-p—ozF,
acFe aEFR

for some subset /' C Rt (which could be determined explicitly in terms of F and v). Hence
p=v" " N+p—ar—p=vA—ap <v A< (%)

This proves that uy, = 0 unless 1 < A.
In (x), u=Aonlyifv™*A=Xand p=p—ar =v"(p— ap) in which case

p—aE:U<%Za>:p— Z et and  E=R(v).

aERT a€ER(v)

Thus

uxa(t Z LR(v)-

v=leWy
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(b) By applying (a) to A =0,
1—t,x™¢
o) = 3w T1 A5 ) = it g
weW a€ERT

Let W* be a set of minimal length coset representatives of the cosets in W/Wy. Every element
w € W can be written uniquely as w = uv with u € W* and v € Wy, (see [Bou, IV §1 Ex. 3]). Let

Z(\) ={aeR"| (X a") =0},

and let Z(\)¢ be the complement of Z()\) in R*. Then v € W) permutes the elements of Z(\)®
among themselves and so

Ra(z:ta) = Z I H 11—_txxa0‘ Z ( H 1—_25;3:‘)

ueWwA a€Z(N\)e veEW) a€Z(N)
1—tox™°
A a
=D ulst [ =Mt ],
ueW a€Z(N)e

where the last equality follows from (x). Thus there is an element Py(x;t,) € F[P] where F is the
field of fractions of Z[t,] such that

1—tyx™¢
Ra(wita) = Wilta) Y w2 ] e = Wi(ta) Pr(w;ta).
ueWwA a€Z(N)e

Since Ry is a symmetric polynomial, i.e. an element of Z[t,][P]V, P\(z;t.) € F[P]". Since the
t, occur only in the numerators of the terms in the sum defining Py in fact Py is a symmetric
polynomial with coefficients in Z[t,]. It follows that all the uy, appearing in part (a) are divisible
by Wi(t,) and
1
= CruSu, where ¢y, = Uy
Ol) ;; nep 1 Wk(ta) 2

are polynomials in Z[t,] such that ¢y = 1 and ¢y, = 0 unless u < X. The result in (b) now follows
by specializing t, =t for all « € R*. I

Lemma 2.16 has the following interesting (and useful) corollary, see [Mac3].

Corollary 2.17. Let p and o" be as in (1.9) and (1.1), respectively and let Wy(t) be as defined
in (2.12).

1 —tx™®
W 3w I ) - me
weWw a€ERT
1— t(p,av)—l-l

(b) H T Wo(t).

a€RT
Proof. (a) follows from Lemma 2.16 part (a) by setting A = 0 and specializing t, = t for all
a€RT.
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(b) Applying the homomorphism

Z[P) —  Z[t
e>‘ — t<_p7>‘>

to both sides of the identity (c) for the root system RY = {a" | o € R} gives
1 _ tloway+1
WO(t) = Z H 1 _ {pwaY) : (*)
weW aeR*

fweW,w#1l,andw =s;, -, is areduced word for w then w™ (—ay;,) = (s, w) oy, € R(w)
and so

there is an a € RT such that wa¥ = —a;’.
Then
11 1 — ¢lowa) 41 _ylemad)+l 1 — powaY)+1
—HlowaY) (p—ay — fpwa’y
we R+ 1 — tlpwa 1 — ¢lp—ai)) it 1 — t{pwaY)
wa;éfocil
1— ¢t 1 — tlpwa)+1
T 1t H 1— tlpwaY)y — 0.
aeRT

wcx;éfcxil

Thus the only nonzero term on the right hand side of (x) occurs for w = 1. 1

Lemma 2.18. For A\ € P et t) € W be the translation in A and let ny be the maximal length
element in the double coset Wt\W. Let My = 192*1¢, as in (2.4). Then

qfawo)WO(qz).M.MA: S @t
Wia™2) CEW AW "

in the affine Hecke algebra H.

Proof. Let A € P*. Let W, = Stab()) and let wy and w) be the maximal length elements in W
and Wy, respectively. Let m, (resp. ny) be the minimal (resp. maximal) length element in the
double coset Wt\W. For each positive root « the hyperplanes H, ;, 1 <i < (A, «"), are between
the fundamental alcove A and the alcove ¢y A and so

0ty) = Z A oYy =2(\pY), where p' =1 Z a, (2.19)

a€RT a€Rt
and since ny = tyawe and my = tx(wrwy),

(my) = L(ty) — L(wowy) = L(tx) — (L(wg) — L(wy)), and

O(ny) = £(ty) + L(wo) = £(my) + €(wo) — £(wy) + £(wp). (2.20)

For example, in the setting of Example 1.4, if A = 2wy in type Cy, then Wy = {1,s1}, wy = s1,
wo = $1828182, L(tx) = 6, £(my) = 4, and £(ny) = 10. Labeling the alcove wA by the element w
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the double coset Wit W consists of the elements in the four shaded diamonds.

HO&1+0271 = H%O = HOto

The double coset Wt W

Then

19219 = 1074, 10 = 10Ty wows Lo = 10Tm, Twows 1o = qz(wo)*e(w*)10TmA 1,

qf(WO)—f(wA)—f(mA)

- £(w) £(max)
= q\""Ty | q Ty 1g.
W(q?) w;V b "

Let W* be a set of minimal length coset representatives of the cosets in W/Wy. Every element
w € W has a unique expression w = uv with v € W» and v € W). If v € Wy, then

vmy, = vt wawg = txvwywy = mx(wawg)  Tvwawy = mA(walwglvawo).

Since conjugation by w)y (resp. conjugation by wy) is an automorphism of Wy (resp. W) which
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takes simple reflections to simple reflections, £(v) = £(wy 'wy 'vwywp). Thus

qE(wo)—e(wx)—E(mA)

A E £(u) E £(v) £(mx)
19271y = Wo(q2) q T, q Tq g TmA 1o
ueW vEW
2€(wo) —2€(wx)—£(tA)
q u m v
- ol E ¢"1, ¢4 A)TmA E ¢, | 1,
0 ueW vEWY w "Wawawo
—2£(wx)—L(tx)
_q Z £(u) 2(my) 2
- — q Tu q Tm W)\(q )10
Wo(q=2) iy *

q72£(’lU)\)7Z(t)\)W>\( 2)

— q E(u) t((mx) tw)
Wo(g®)Wo(g2) 2 aTu | T | D d T

u€EWX weW

"W ¢
— E @)1,
q
Wo(@)Wola™?) 57w

_ q—e(tx)'*‘e(”k)W,\(q_ ) Z qZ(x)*Z(nA)T
Wo(@Wola~) x

zeWit W
_ q“wo) Wy (q72?) Z ECRCNG I
Wo(g®) Wola™2) \ 5w

Lemma 2.21. Let wg be the longest element of W and let A\ € P.
(a) o> = Tz T, L.
(b) ]__0 = 10 and%: €0-
(c) If z € Z|P]V then z = z.

(d) g7t Ay, = g ) Ay,
Proof. (a) If X € PT then woty = tyawo, L(woty) = (wo)+L(ty) and £(twoa)wo) = £(twea)+£(wo)-
Thus,

Two Tty = Twoty = Trpyrwo = Ttygr Lo for A € PT.

Let A € P and write A\ = y — v with pu,v € P*. Since —wou € PT and —wgv € PT,
at = TtuTt:l = TtiiTtﬂ/ = Tonti}uouTt* T_ - TwO (x_wOA) 1T_ TwoxWOAT_

wov T WO wo YT

(b) For 1 < i <mn,

&
[
=
o

[\

and T1o =T, 1o = ¢~ "1 = ¢1o,

2 1

and Tigo = T} eo = —q20 = —¢"'%0.

Skl
Do
I
3

(=)

These are the defining properties (2.1) of 1¢ and ¢ and so 1y = 1y and &y = .
() Ifz=3 cpcuat € Z[P]W, then, since ¢, € Z, ¢, = ¢, and, by (a),

= — — woprp—1 _ wo -1 _ -
= E cprh = g CuLwo ™M, = Ty, E cux Ty =Tw szO,

neprP pnepP nerP
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since z € Z[P]" is W-invariant. Finally, since Z[P]"V C Z(H), z is central, and Z = T}, 2Tt =z
(d) By (a), (b) and the third equality in (2.6),

m P S qé(wo)goTwawo(A+p)Tgol 1

_ qg(wo)(_q—l)e(wo)ggxwo(A-l-p)10q—€(w0) _ (_q—l)f(wo)Awo(A-&-ﬂ)

— q—e(wo)AAer‘ ]

The following theorem is due to Lusztig [Lu]. Part (a) was originally proved in a different,
but equivalent, formulation by Macdonald [Mac2, (4.1.2)].
Theorem 2.22. If i1 € P let W, be the stabilizer of 1 and let W, (t) be as in (2.12).

(a) Let p € P. Let P,(z;t) be the Macdonald spherical function defined in (2.13) and define
M, = 1921y as in (2.4). In the affine Hecke algebra H,

Wala™?)

P71y = M,.
Wo(q2) a2 Lo g

(b) For A € Pt let ty € W be the translation in \ and let ny be the maximal length element in
the double coset Wt \W. Let s) be the Weyl character and let C’{u be the Kazhdan-Lusztig

basis element as defined in (2.8) and (1.28), respectively. In the affine Hecke algebra H,

¢ COW,(¢?) - sa1p = C!

ny*

Proof. (a) By Theorem 2.11 there is an element P, € K[P]" such that P31 = 192*1,. To find
P, first do a rank 1 calculation,

) x}\ _ xsi)\
@1+1kahw=<qlxk+x&&n+<qq%(——————))lo

1— g
1 q_1x>‘(1 —x” %)+ quM(l — .
=1 _ .o 0
1 — i +q$)\ . qxsi)\ o q—lx)\ + q—lxsi)\

— (1 . xfai)fl(iqflx)\foti o qxsiz\fozi + qx)\ + qflxsi)\)lo

_ (1 . mfozi)fl(m)\(q . qfleai) _i_msi)\(qfl . q.%‘iai))lo

—1,.—a; —a; —1,.05
_(4—qg T " N, T " G4 TG s
_< 1z +x—0‘i zor —1 >10

1. .—a
— x K2
= (1 + Si) <% .QIA) 1p.

Since 1 is a linear combination of products of 7T; it can also be written as a linear combination of
products of ¢~ + T;. Thus 192 1y can be written as a linear combination of terms of the form

_ —1,.—o; _ —1,.—a;
(1+&J(2_1_5_:)”41+&”<2_g_%:1>xy

1 — % 1—ax %

Thus B -
1021y = Py1o, where P, = Z " Mwey,,
weWw
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and the ¢,, are some linear combinations of products of terms of the form (¢ —¢~'z*)/(1 — z*) for
roots a € R. Since P is an element of K[P]V,

p)\ = Z U}((Ewkoocwo),
weWw

where wy is the longest element of W. The coefficient wyc,,, comes from the highest term in the
expansion of

1

o= —
0 Wo(q?)

(q%(wo)TwO + lower terms)

in terms of linear combination of products of the (¢~ +T3). If wy = s;, - - - si, is a reduced word
for wg then

e — qZ(wo) N q— qfleozil . q— qfleon'p
0%wo = Wo(q2) " 1—ax % A T
q _ q_lx_sip”'sléail q _ q_lx_sip"'sisaQ q _ q—lx—aip
= 52-1 e Sip 1 — xfsip---sizail 1 — xfsip---siQOziQ e W
e(wo) —-1,.—« 22(11)0) -2,.—«

— 1—
=i e =

aERtT a€ERt

by Lemma 1.11 and the fact that £(wg) = Card(R*). Thus, since ¢~ 2(“0) Wy (¢?) = Wo(q~2),

P T (2 ).

wEW a€ERt

(b) Since Wy (¢~ 2) = ¢~ 2“0 W, (¢?), Lemma 2.21 gives

g~ @O Wy (g2)sx1o = ¢“ I Wy (¢~ ?)5x10 = ¢ I Wy (¢*)sa10.

By Lemma 2.16(b),

S\ = Z K)\y,(t)P,u(x7t)>

peP+

where K, (t) € Z[t], Kx,(t) = 0 unless pr < X and K, (¢) = 1. Thus, by part (a) and Lemma 2.18

q—L’(wO)WO(q2)S/\10 = Z q_e(wo)WD(qz)KAu(q_z)Pu(x?q_2)10
pneP+

= Z Z qg(x)_e("“)KM(q_z)Tx,

pnePt+ zeWt, W

where the polynomials Ky,(¢72) € Z[g™?] are 0 unless u < X and K)\(¢~%) = 1. Hence
g ') (¢?)sa1p is a bar invariant element of H such that its expansion in terms of the ba-
sis {T, | w € W} is triangular with coefficient of T,,, = 1 and all other coefficients in ¢~'Z[g~"].
These are the defining properties (1.28-9) of Cj, . 1I
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3. Orthogonality and formulas for Kostka-Foulkes poylnomials

Let K=Z[t]. It f =3 cp fuzh € K[P] let

f= Z fux™H, and [f]1 = fo = (coefficient of 1 in f). (3.1)
pnepP

Define a symmetric bilinear form

1 1—x“
:K|P] x K| P K b =—|fg . 2
(KPP =K by () = [ngl_ma] (32)
aER 1
“Specializing” ¢ at the values 0 and 1 gives inner products (, )o: K[P] x K[P] — K and (, )o: K[P] x
K[P] — K with

1 1
<fvg>0: IR 741 fg 1—a® and <fvg>1: —[fg]l (33)
w |77 11 "
1
Proposition 3.4. Let A\ and y € PT. Then
1 1

<m)\amu>1 5)\/u <5)\7 5u>0 = 5/\u7 and <P/\7 Pu

- = = — &y,
A A TNORY

Proof. The first equality follows from

W, » 1%
Wal{ma, my) = 'W;" > b ]1:%&% > 1=
YEW A ~YEW A

veWpn
If \,u € PT,
1 1
(7, 8u)0 = W[apsz\apsu]l = W[akﬂ)auﬂ)]l
N |—V:Il/| Z (1)) (1)) [grA+p) pmwlptr))
v, weW
1 v v
g > (=D (=) =6y,
veW

giving the second statement.

By Lemma 2.16(b) the matrix K ! given by the values (K1), in the equation

Py(x;t) = Z(Kﬁl)kusw

m

has entries in Z[t] and is upper triangular with 1’s on the diagonal, i.e. (K~')y\y = 1land (K~1),, =
0 unless ;1 < A. Since Py(z;1) = m, the matrix £~! describing the change of basis

mx = Z(kil)kusw

o
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is the specialization of K~! at t = 1 and so k~! has entries in Z and is upper triangular with 1’s
on the diagonal. Hence the matrix A = K ~'k~! giving the change of basis

PA({B; t) = Z A/\um;u (35)
v<A

has Ay, € Z[t], Axy =1, and Ay, = 0 unless p < .
Let QT be the set of nonnegative integral linear combinations of positive roots.

Pt (] o) = S w ("” 11 115;)

a€R weWw a€ERT

=> w (;w ITa+d e te- 1)xm)>
weW aERT r>0

=Y w( Y e =Y . (z ) |
weW veQt veQt weW

where ¢, € Z[t] and ¢y = 1. Hence
1—2z*
P (2 t)W,u(t) H 1 t0o (Wlmy + Z Buymy = Z Bynymy, (%)
a€R Y>p YZp

with B,,, € Z[t] and B, = |W,|.
Assume that A < p if A and p are comparable. Then, by using (3.5) and (x),

(Py,P); = m <PA,PMWN(1€) I1 11__;;> = Wj(t) <Z Axym, ZBMm7> .

acR v<A >

Since Axy =1 and By, = |W,| the result follows from (my,m,)1 = [Wx| 165, 11

The following theorem shows that the spherical functions Py (z,t) are uniquely determined by
the triangularity in (3.5) and the orthogonality in the third equality of Proposition 3.4.

Theorem 3.6. Let K = Z[t]. The spherical functions Py(x;t) are the unique elements of K[P]W
such that
(a) Py=mj)+ Z AA#mu,

<A
(b) (Px,Pu)e =0 if X # pu.
Proof. Assume that the P, are determined for ¢ < A. Then the condition in (a) can be rewritten
as

PA:mA+ZCApPNa

<A

for some constants C,,. Take the inner product on each side with P,, v < A, and use property (b)
to get the system of equations

0= <m)\>Pu>t + Z C)\,u<P,u>PV>t = <m)\>Pu>t + C)\V<PV>PV>t-

n<A
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Hence
- <m)\a Pl/>t

C)\V = <Py,Py>t ;

for each v < A,

and this determines Py. I

Remark 3.7. (a) The inner product (,); arises naturally in the context of p-adic groups. Let
Sl ={z € C| |zl =1} and view the 2*, A\ € P, as characters of

2 T — C*

s —  s(A). (3.8)

T =Hom(P,S')  via
Let ds be the Haar measure on 7T" normalized so that
(x, zh) = / 2 (s)xk(s)ds = Sx,- (3.9)
T

Letting @, be the field of p-adic numbers, Macdonald [Mac2, (5.1.2)] showed that the Plancherel
measure for the p-adic Chevalley group G(Q,) corresponding to the root system R is given by

du(s) = W“)g;‘ ) I1 - ip _”f;(jgs). (3.10)

aER

The corresponding inner product is

P%@]Mﬁmpl=Lj®EGMM$, for f,g € C(T),

where C(T') is the vector space of continuous functions on 7.

(b) The inner product (, ) arises naturally in another representation theoretic context. The com-
plex semisimple Lie algebra g corresponding to the root system R acts on S(g*), the ring of
polynomials on g, by the (co-)adjoint action and as graded g-modules the characters of S(g*) and
the subring of invariants S(g*)? are

grch(S(g")) = (H %) (H 0 lma> and
Tz‘:l aGTR ) ; (3.11)
o 1 1—t¢ 1 1 1

where r is the rank of g and dq,...,d, are the degrees of the Weyl group W. Let H denote the
vector space of harmonic polynomials. An important theorem of Kostant [Ks, Theorem 0.2] gives

that
1

1 —txe’

S(g") = S(g")?*®@H, and thus, grch(H) = Wy (t) H

aER

If L()\) denotes the finite dimensional irreducible g-module of highest weight A\ € PT then L(\)
has character s, and using the notation of (3.2),

(3.12)

Zdim(Homg(L()\)7L(M) © H)t* = <S/\’ suWo(t) H 1 —1tm°‘>
k>0 ach 0 (3.13)

1—x“
=%@F$HfﬁglﬂWmem
a€ER 1
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where HF is the vector space of degree k harmonic polynomials.

Formulas for Kostka-Foulkes polynomials

For A € P let sy denote the Weyl character, as defined in (2.8). The Kostka-Foulkes polyno-
mials, or g-weight multiplicities, Ky, (t), A, u € P, are defined by the change of basis formula

sx= Y Kxu(t)Pu(x;t), (3.14)

pneP+

where the Macdonald spherical functions P,(z;t) are as in (2.13).
For each oo € R define the raising operator R,: P — P by

R, A= X+aq, and define (Rp, --- Rg,)sx = SRy, R, \s (3.15)
for any sequence f31, ..., B¢ of positive roots. Using the straightening law for Weyl characters (2.9),
su= (—1) sy, where  wop=uw(u+p)—p,
any s, is equal to 0 or to £s) with A € P*. Composing the action of raising operators on
Weyl characters should be avoided. For example, if «; is a simple root then (since (p, ) = 1)
S_a; = —Ss;0(—ai) = —Ss;(p—ai)—p = —S—a; giving that s_,, =0 and so

Ry, (Ra,;$—20;) = Ra;5—a;, = Ra, -0 =0, whereas (R, R, )S—24, = S0 = 1.

Let QT be the set of nonnegative integral linear combinations of positive roots. Define the
q-analogue of the partition function F(v;t), v € P, by

1 .
OéGI%+ 7€Q+

Theorem 3.17. Let \,u € P*. Let t,, be the translation in p as defined in (1.12) and let n, be
the longest element of the double coset Wt,W. Let W,(t) be as in (2.12), P,(x;t) as in (2.13)

and let {,); be the inner product defined in (3.2). For y,w € W let P,, € Z[t*3] denote the
Kazhdan-Lusztig polynomial defined in (1.28-9) and let p¥ = £ 3 _pi aV.

(a) Kxu(t) = Wu(t) (sx, Bu(@; 1))

. . 1
(b) Kx,(t) = coefficient of sy in ( EIL = tRa> Sp-

(¢) Kou(t) = Y (-1 ™ F(w(X+p) — (u+ p)st).
weW
(d) Kyu(t) =tP=me 0P, (t71), for any = € Wt,W.
Proof. (a) This follows from the third equality in Proposition 3.4 and the definition of K, ().
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(b) Since
1 1—tz™@ 1
st [ = 5 v (o 115250 1T s
a€ER weW aeRt aER
1
— w [ zhte >
PIRICe e
1 , 1
= — -1 (w) ( ) ntp .
> (11 ()
weW aERT
Then
K, (t) = (coefficient of P,(x;t) in sy) = (sx, W, (t)Py(z;t)):
1
- <3A,Wu(t)PN(m;t) 11 - ma>
a€ER 0
= coefficient of sy in 1 Z (—=1)5 )y H <;)m“+p
a, 1—tzx~
weW aERT
. . 1
= coefficient of s, in ( H T tRa> Sy
a€RT
()

— ; : i _1\4(w) 1 ptp
K, (t) = coefficient of sy in - Z( 1) w( H (l—txa)x

P wew €Rt

= coeflicient of ay4, in Z (—1) @)y ( Z F(~; t)x'y)x““’
weEW veQ+

= coefficient of 227 in Z (—1) )y Z F(ry;t)grtrte
weW yeQt
= > (D)™ Fw+p) = (n+ p)it),
weW
since w (v + (1 + p)) = A+ p implies v = w(A + p) — (1 + p).
(d) Let A € P*. By Theorem 2.22 and Lemma 2.18

> U p, L ()T = C = g7 W (g?)sa 1o

rz<ny

= ¢ "OWo(¢*) Y Kula ™) Pulria ) 1o

p<A
—t(w o Wol(g™?)
= ¢ "IWo(¢*) Y Kaulg Q)hMu
19 uid

:ZKW(Q_Q) Z gt @t

p<X zeWt, W

27
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Hence, for p < A and z € Wt,W,

Fu(g™?) = ¢" ")~ Py ().
By (2.19) and (2.20),

() — L(na) = £(t,) + E(wo) — (£(tx) + E(wo)) = 2{u, p*) — 2(X, p¥),
and the result follows by replacing t = ¢*. I

With notations as in Remark 3.7(b), Theorem 3.17(a) together with the fact that so = Py(x;t)
give the following important formula for the Kostka-Foulkes polynomial in the case that u = 0,

K o(t) = Wo(t)(sx, Po(w;))e = Wo(t)(sx, so)e = »_ dim(Homg (L(), H* )t (3.18)
k>0

4. The positive formula

In the type A case Lascoux and Schiitzenberger [LS]| have used the theory of column strict
tableaux to give a positive formula for the Kostka-Foulkes polynomial. In this section we give a
proof of this formula. Versions of this proof have appeared previously in [Sch] and in [Bt].

The starting point is the formula for K, (t) in Theorem 3.17(a). To match the setup in [Mac]
we shall work in a slightly different setting (corresponding to the Weyl group W and the weight
lattice of the reductive group GL, (C)). In this case the vector space hi = R™ has orthonormal
basis €1, ...,&,, where ¢; = (0,...,0,1,0,...,0) with the 1 in the ith spot, the Weyl group is the
symmetric group S, acting on R" by permuting the coordinates, the weight lattice P is replaced
by the lattice

Z" ={(m1,---s7m) | 7 €Z} and J0=(Mm—-1,n-2,...,2,1,0) (4.1)

replaces the element p. The positive roots are given by RT = {¢; —¢; | 1 < i < j < n} and
the Schur functions (defined as in (2.8)) are viewed as (Laurent) polynomials in the variables
T1,...,%n, where r; = 2% and the symmetric group S, acts by permuting the variables. If w € S,
then (—1)“®) = det(w) is the sign of the permutation w and the straightening law for Schur
functions (see (2.9) and [Mac, I paragraph after (3.1)]) is

s, = (fl)e(“’)swou, where wopu=w(u+9d) -4, (4.2)
for w € S, and u € Z". The set of partitions
P={(A,...; ) €Z" | My >--->)X, >0} (4.3)

takes the role played by the set P*. Conforming to the conventions in [Mac] so that gravity goes
up and to the left, each partition p = (u1,...,u,) € P is identified with the collection of boxes
in a corner which has p; boxes in row i, where, as for matrices, the rows and columns of u are
indexed from top to bottom and left to right, respectively. For example,

(57 57 37 37 17 1) =
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For each pair 1 <1i < j < n define the raising operator R;;j: Z" — Z" (see (3.15) and [Mac, I
§1 (1.14)]) by

Rij,u, =ut+e— €j and define (Ri1j1 s Rieje)su = SRiljl"'Rieje“’ (44)

for a sequence of pairs i; < ji,...,i¢ < j¢. Using the straightening law (4.2) any Schur function
s, indexed by p € Z"™ with pq +--- 4 pp, > 0 is either equal to 0 or to £sy for some A € P.
Composing the action of raising operators on Schur functions sy should be avoided. For example,
if n = 2 and s; denotes the transposition in the symmetric group S, then, by the straightening

law, $(0,1) = =S5 ((0,1)4(1,0) = (1,00 = —S5(1,1)=(1,0) = —5(0,1) 8lving that s(g,1) =0 and so
Ria(R125(-1,2)) = Ri25(0,1) = R12- 0= 0, whereas (R%Q)s(_m) = 8(1,0) = T1 + T2.

With notation as in (4.2) and (4.4) we may define the Hall-Littlewood polynomials for this
type A case by (see Theorem 3.17(b) and [Mac, III (4.6)])

1
Q, = H T | 5 for all p € Z™, (4.5)
1<i<j<n t

and the Kostka-Foulkes polynomials Kx,(t), A\, € P, by

Qu=>_ Kx(t)sx. (4.6)

AEP

Insertion and Pieri rules

Let A and p = (u1,-..,pn) be partitions. A column strict tableau of shape A and weight p is
a filling of the boxes of A with py 1s, puo 2s, ..., uy ns, such that

(a) the rows are weakly increasing from left to right,

(b) the columns are strictly increasing from top to bottom.
If T is a column strict tableau write shp(7") and wt(7T') for the shape and the weight of 7" so that

shp(T) = (A1, -, An), where \; = number of boxes in row i of T, and

wt(T) = (1, .-, fn), where p; = number of is in 7.

For example,

|11 1]2]2]

T= [2]2]2][2]3]3]4
313341445 has shp(T)=(9,7,7,4,2,1,0) and
4]5]5]6 wt(T) = (7,6,5,5,3,2,2).
6|7
7

For partitions A and p and, more generally, for any two sets S, W C P write

B()\) = {column strict tableaux T" | shp(T') = A},
B(\), = {column strict tableaux T" | shp(T') = X and wt(7T") = u}, (4.7)
B(S)yy = {column strict tableaux T' | shp(T') € S and wt(T') € W}.
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Let A and 7 be partitions such that v C A (as collections of boxes in a corner, i.e. 7; < \;
for 1 < i <mn). The skew shape A/~ is the collection of boxes of A which are not in . The jeu de
taquin reduces a column strict filling of a skew shape A\/v to a column strict tableau of partition
shape. At each step “gravity” moves one box up or to the left without violating the column strict
condition (weakly increasing in rows, strictly increasing in columns). The jeu de taquin is most
easily illustrated by example:

C [1]1]2]2] D [t]1]2]2] T[] ]2] 2]
C1]2]3 U123 . 1| [2]3
T [3]4]4 2[3]4]4 2]3]4]4
2]
T [1]1]2] 2] T[] 2] 2] T[] 2] 2]
- 2| [3 . 1[2]3 . 2374
2[3]4]4 2[3]4]4 2[3]4
Tl Ji]2]2] T T[] T2]2] T Ti]1]2] 2]
. 1[2]3]4 . 1]2]3]4 . 1[2]3]4
2|34 2[3]4 2[3]4
-
1[1]2]2 1J1]1]2]2 1[1]1]2]2
. 1[2]3]4 . 2[3]4 . [2]2]3]4
2[3]4 2[3]4 3|4
1[1]1]2]2 1J1]1]2]2
. 2]2]3]4 . [2]2]3]4
4 3

The result of the jeu de taquin is independent of the choice of order of the moves ([Fu, §1.2 Claim
2] which is proved in [Fu, §2 and §3]).
The plactic monoid is the set B(P) of column strict tableaux with product given by

| T,

T1 * Ty = jeu de taquin reduction of

Ty

This is an associative monoid ([Fu, §1.1 Claim 1] which is proved in [Fu, §2 and §3]).
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If z is a “letter”, i.e. a column strict tableau of shape (1) =0, then

x * T is the column insertion of x into T, and (4.8)

T x x is the row insertion of x into T'.

The shape A of P =T * z differs from the shape v of T' by single box and so if v and P are given
then the pair (T, z) can be recovered by “uninserting” the box A/~ from P. The tableaux P and
T differ by at most one entry in each row. The entries where P and T differ form the bumping
path of x. The bumping path begins with x in the first row of P and ends at the entry in the box
A/7y. For example,

1j1]1]1]1]2]
1f1]1]1]2]2] IR
2/3]3]4 _
NORE g 2445 ’
R O

where the bold face entries form the bumping path.
The monoid of words is the free monoid B* generated by {1,2,...,n}. The weight wt(w) of
a word w = wy - - - w, is

wt(w) = wt(wy -+ wn) = (U1, -y fn) where i is the number of i’s in w.
For example, w = 3214566532211 is a word of weight wt(w) = (3,3,2,1,2,2). The insertion map
B* — B(P)

Wi+ Wy — W1 * - % Wy

(4.9)

is a weight preserving homomorphism of monoids.
A horizontal strip is a skew shape which contains at most one box in each column. The length
of a horizontal strip A/ is the number of boxes in A\/~. The boxes containing x in the picture

XXX XXX

= 2
A SEAEAEd form a horizontal strip A/7 of length 11.

X

For a partitions p and v and a nonnegative integer r let
v ® (r) = (r) ® v = {partitions A\ | A/ is a horizontal strip of length r},
(B(r)®@ B(v)), ={pairs v®T | v e B(r),T € B(y) such that wt(v) + wt(T) = p},  (4.10)
(B(y)® B(r)), = {pairs T ®v | v € B(r),T € B(v) such that wt(v) + wt(T") = u}.
The following lemma gives tableau versions of the Pieri rule [Mac, I (5.16)]. The second bijection

of the lemma is proved in [Fu, §1.1 Proposition] and the proof of the first bijection is similar (see
also [Bt, Propositions 2.3.4 and 2.3.11]).

Lemma 4.11. Let v,u, 7 € P be partitions and let r,s € Z>o. There are bijections

(B(r)© B(Y))u «— BOye@), . (BO)eB@s): «—— Blya(s):
v®T — vxT TRu — T *xu
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Let B(P)> = | ] B(P);, where

1<i<n

L : Wt(b) = (:U’la s nun) has
B(P)>; = {column strict tableaux b == = Oand > > >0 [

Let i* = be the unique column strict tableau of shape (k) and weight (0,...,%,0,...,0),
where the k appears in the i th entry. Charge is the function ch: B(P)> — Z>¢ such that

(a) ch(0) =0,

(b) if T'€ B(P)>(i+1) and T xi** € B(P)>; then ch(T * i#¢) = ch(T),

(¢) if T € B(P)>; and z is a letter not equal to i then ch(x * T') = ch(T * z) + 1.

The proof of the existence and uniqueness of the function ch is presented beautifully in [Ki].

Theorem 4.12. (Lascoux-Schiitzenberger [LS], [Sch]) For partitions A and p,

bEB(N),

where the sum is over all column strict tableaux b of shape A and weight p.

Proof. The proof is by induction on n. Assume that the statement of the theorem holds for
all partitions p = (p1,...,1n). We shall prove that, for all partitions (uo, 1) = (fos 1y - -5 fin),
@ (0,u) has an expansion

Quowy = >, 7P, (4.13)

PEB(V) (g, u)

Beginning with the expression (4.5),

n

1 1 1
Quoun) = H 1—tR;; S(po,p) = Hl—tRoj H 1—tR;; S(po,m)-

0<i<j<n j=1 1<i<j<n
By the definition of the Kostka-Foulkes polynomials (4.6) this is equal to

n

1
Quou) = Hm A;DKAu(t)SwO,A)

Jj=1
_ r k1 kn
= Z K)\u(t) Z t Z ROl e ROnS(IJ«07>\)
AEP r€Zl>o Fises kn€Zx>q

ki4-dknp=r

= ZK/\u(t) Z t" Z S(potrA—(k1sesikn))

AEP TEZZO LI REE kn€Z>q

Let v = A—(k1, ..., kyn) be such that A/~ is not a horizontal strip (usually 7 isn’t even a partition).
Let m be the first place a violation to being a horizontal strip occurs, i.e.

let m be minimal such that A, — kp, < Amt1.
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For example, in the followng picture, v = X — (3,1,2,2,1,0) and m = 3.

X[ XX

—T
X m
! |

]

Let s,,, be the simple transposition in the symmetric group which switches m and m+ 1 and define

V= 8m o7, so that S(po+ryy) = TS(potrA)-

Then 4 = X — (k1,...,k,) with \; — k; = \; — ky, for i # m,m + 1, and

M =k = Amat —kma1 — 1, and Mgt — Emg1 = Am — ki + 1.

Thus ¥ = Amt1 — kma1 — 1 < Apa1 and so A/# is not a horizontal strip. This pairing v < ¥
provides a cancellation in the expression for (), ) and thus

Q(uo,u) = Z Z trKAu(t) Z S(po+r,y) :Z Z trKAu(t)S(uo+rﬁ)>

A Z YEP ;1 AEP
€Pr&lzo Aer®(r) T e

where v ® () is as defined in (4.10). By the induction assumption this is equal to

Qpow) = Z Z tTtCh(b)S(qurrﬁ) = Z Z tHCh(b)S(uoHﬁ)’

reP
v,r )\e~/6®(7‘) bEB(N) ¥ bEB(YR (1))

with B(y ® (r)),, as in (4.7). By the first bijection in Lemma 4.11 this can be rewritten as

Q(HOM) — Z Z tT+Ch(v*T)S(p,0+T‘,’y)

7 v@TE(B(r)QB(v))

h(vxT*0H*0
=y > e D8 (uortr) (4.14)
VT vQTE(B(r)®B(v))u

— Z Z tch(T*Oﬂo *v))s(uo-l-v",’y)?

7 v@TE(B(r)QB(v))

where the last two equalities come from the defining properties of the charge function ch.
Let v@ T € (B(r) ® B(7)), and let

p=Tx*0" xv and v = shp(T * 01° % v).

Let d be such that
po+r+d>uvyy and po+r+d—1<vs 1,

where, by convention, vy = pug + 7. If d > 1 define 4 and 7 by

:y:(717'-'77d727/’['0+7q+d_1776[7"'77”) and /’[’0+7Z+d_1:fyd717
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so that, if s; denotes the transposition (i,7 + 1) in the symmetric group, then (ug + 7,5) =

(S0 84-354—254-3""" S0)

S(potry) = (—

Mo+ 7 |

© (:U’O + T, 7)7 and

><|><|><

Note that ¥ = v and 7 =
Case 1: d > 1 and (pg

Case 2: d > 1 and (M0+7“ ’y)#(u

veEY® (o +T)

- T
11

1)2(d-3)+1

and

po+7,y) —

—S(po+7,7) -

(4.15)

v

><|><|><

veEY® (1o + 7).

7,%).  In this case (4.15) implies s(,,4) = 0.
7,7).  Then

Row uninserting the horizontal strips v/ and v/4 from p, i.e. using the second bijection in Lemma

4.11, produces pairs

TRu=T® (0" xv) € (B(v) ®B(to + 7)) (4o

and

T® € (B(A)® B(tto + 7)) (uop)»

respectively. Consider the £ = pg + » bumping paths in the tableau p which arise from T * w.

These begin with the letters u; <.

. < uy of u and end at the boxes of the horizontal strip v/~.

Similarly, there are (= o+ 17 bumpmg paths in p arising from T * @. Note that

(a) since u = 0"° x v begins with pg 0s the leftmost pg bumping paths in T * u travel vertically,

directly down the first pg columns of p, and

(b) in rows numbered > d the bumping paths for T * @ coincide exactly with the bumping paths
for T u, since the horizontal strips v/~ and v/4 coincide exactly in rows > d and these paths
are obtained by uninserting the boxes in this portion of the horizontal strip.

010 I

<[]

A — row d — 1

. )
Tt

bumping paths in T x u

Uy |u2

L[]

/

A — rowd -1

ATTE

k

bumping paths in T %

Suppose there are k bumping paths which end in rows > d. The picture above has k¥ = 6 and
corresponds to Case 2b below.

Case 2a: If pug + 7 > po + r then the k& bumping paths which end in rows > d are the same or
slightly “more left” in T @ than in T % u. Since the first o bumping paths cannot be
any “more left” than vertical, this forces that the first pg entries of @ are 0, i.e. that
@ = 00 % ¢ for some v € B(T).

Case 2b: If j10+7 < po+r then the k bumping paths which end in rows > d are the same or slightly
“more right” in T % @ than in 7" * u. There are k 4+ r — ¥ bumping paths of T" * u passing



KOSTKA-FOULKES POLYNOMIALS 35

through the first pg+7—(d—1) squares of row d— 1, namely, the k£ bumping paths of T xu
which end in rows > d and the (ug + 7) — (o + 7) bumping paths of 7"« u which end in
row d — 1 and which do not appear as bumping paths for T * . The first po of these paths
pass through the squares in positions (d — 1,1),...,(d — 1, o) and the last » — 7 of them
pass through the squares in positions (d — 1, ug+7+d—1+1),...(d— 1, pug+r+d—1).
Since the remaining number of paths,

k+r—7—po—(po+r—po—7)=k—po<po+7—po<po+7+(d—1)— po,

there must be a box in position (d — 1, j) for some pg < j < po + 7+ (d — 1) which does
not have a bumping path for 7" * v passing through it. All the bumping paths of T x u
which pass through row d — 1 to the left of this box remain the same as bumping paths
for T * @ and the first po of these begin at an entry 0 in the first row of p. Thus, as in
Case 2a, the first po entries of @ are 0, i.e. @ = 0" % ¢ for some v € B(T).

So,
Toi=T 0" *3), with 60T € (B(F) @ B{))u,

and the terms in the last line of (4.14) corresponding to the pairs v ® T and ¥ ® T cancel each
other because )
T*0M sy =Tx%0" %79 and S(notry) = —S(uo+7,7)-

Case 8: d=1.  Since o +r+1> vy and v € y® (o + ) the horizontal strip v/ has its boxes
in each of the first pg + r columns, i.e.

V= (V07V17"'7Vn) - (M0+T7’717"'7’7n) = (MO""T,"}/).

Row uninsertion of the horizontal strip v/~ from the column strict tableau p, i.e. using the second
bijection in Lemma 4.11, recovers the pair T'® (0#° x v) and shows that 0"° % v is the first row of p.

In conclusion, in the last line of (4.14) the terms corresponding to Case 1 vanish, the terms
corresponding to Case 2 cancel off and the remaining Case 3 terms give formula (4.13), as desired.
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