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0. Introduction

A centerpiece of representation theory is the Schur-Weyl duality, which says that,

(a) the general linear group GL,,(C) and the symmetric group Sy both act on tensor space

Vet V...V, with  dim(V) = n,

k factors

(b) these two actions commute and
(c) each action generates the full centralizer of the other, so that

(d) as a (GL,(C), Sk)-bimodule, the tensor space has a multiplicity free decomposition,

VR 2B Lar, (V) @ Sp, (0.1)
A

where the Lgy, (A) are irreducible GL,,(C)-modules and the S} are irreducible Sx-modules.

The decomposition in (0.1) essentially makes the study of the representations of GL, (C) and the
study of representations of the symmetric group Sy two sides of the same coin.
The group GL, (C) has interesting subgroups,

and corresponding centralizer algebras,

which are combinatorially defined in terms of the “multiplication of diagrams” (see Section 1) and
which play exactly analogous “Schur-Weyl duality” roles with their corresponding subgroup of
GL,(C). The Brauer algebras CBy(n) were introduced in 1937 by R. Brauer [Bra]. The partition
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algebras CAg(n) arose in the early 1990s in the work of P. Martin [Mal-4] and later, independently,
in the work of V. Jones [Jo]. Martin and Jones discovered the partiton algebra as a generalization
of the Temperley-Lieb algebra and the Potts model in statistical mechanics. The partition algebras
CApy1(n) apear in [Mad] and [MR], and their existence and importance was pointed out to us
by C. Grood [Gr]|. In this paper we follow the method of [Ma4] and show that if the algebras
CAp11(n) are given the same stature as the algebras Ay (n), then well-known methods from the
theory of the “basic construction” (see Section 4) allow for easy analysis of the whole tower of

algebras
CAp(n) € CAr(n) € CAy(n) SCAys(n) S+,

all at once.

Let £ € %ZZO. In this paper we prove:
(a) A presentation by generators and relations for the algebras CAy(n).
(b) CAy(n) has

(CA[(TL)
CI g(n)

such that CI,(n) is isomorphic to a “basic construction” (see Section 4). Thus the structure
of the ideal CIy(n) can be analyzed with the general theory of the basic construction and the
structure of the quotient CAy(n)/(CI,(n)) follows from the general theory of the representa-
tions of the symmetric group.

an ideal Cly(n), with =~ CSy,

(¢) The algebras CAy(n) are in “Schur-Weyl duality” with the symmetric groups S,, and S,,_1 on
Vek,

(d) The general theory of the basic construction provides a construction of “Specht modules” for
the partition algebras, i.e. integral lattices in the (generically) irreducible CAy(n)-modules.

(e) Except for a few special cases, the algebras CAy(n) are semisimple if and only if £ < (n+1)/2.

(f) There are “Murphy elements” M; for the partition algebras that play exactly analogous roles
to the classical Murphy elements for the group algebra of the symmetric group. In particular,
the M; commute with each other in CAy(n), and when CAy(n) is semisimple each irreducible
CAy(n)-module has a unique, up to constants, basis of simultaneous eigenvectors for the M;.

The primary new results in this paper are (a) and (f). There has been work towards a
presentation theorem for the partition monoid by Fitzgerald and Leech [FL], and it is possible
that by now they have proved a similar presentation theorem. The statement in (b) has appeared
implicitly and explicitly throughout the literature on the partition algebra, depending on what one
considers as the definition of a “basic construction”. The treatment of this connection between the
partition algebras and the basic construction is explained very nicely and thoroughly in [Ma4]. We
consider this connection an important part of the understanding of the structure of the partition
algebras. The Schur-Weyl duality for the partition algebras CAg(n) appears in [Mal], [Ma4], and
[MR] and was one of the motivations for the introduction of these algebras in [Jo]. The Schur-Weyl
duality for CA; 1(n) appears in [Mad] and [MW]. Most of the previous literature (for example
[Ma3], [MW1-2], [DW]) on the partition algebras has studied the structure of the partition algebras
using the “Specht” modules of (d). Our point here is that their existence follows from the general
theory of the basic construction. This is a special case of the fact that quasi-hereditary algebras
are iterated sequences of basic constructions, as proved by Dlab and Ringel [DR]. The statements
about the semsimplicity of CAy(n) have mostly, if not completely, appeared in the work of Martin
and Saleur [Ma3], [MS]. The Murphy elements for the partition algebras are new. Their form was
conjectured by Owens [Ow], who proved that the sum of the first & of them is a central element in
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CAg(n). Here we prove all of Owens’ theorems and conjectures (by a different technique than he
was using). We have not taken the next natural step and provided formulas for the action of the
generators of the partition algebra in the “seminormal” representations. We hope that someone
will do this in the near future.

The “basic construction” is a fundamental tool in the study of algebras such as the partition
algebra. Of course, like any fundamental construct, it appears in the literature and is rediscovered
over and over in various forms. For example, one finds this construction in Bourbaki [Boul, Ch.
2, §4.2 Remark 1], in [Brol-2], in [GHJ, Ch. 2], and in the wonderful paper of Dlab and Ringel
[DR] where it is explained that this construction is also the algebraic construct that “controls”
the theory of quasi-hereditary algebras, recollement and highest weight categories [CPS] and some
aspects of the theory of perverse sheaves [MiV].

Though this paper contains new results in the study of partition algebras we have made a
distinct effort to present this material in a “survey” style so that it may be accessible to nonexperts
and to newcomers to the field. For this reason we have included, in Sections 4 and 5, expositions,
from scratch, of

(a) the theory of the basic construction (see also [GHJ, Ch. 2]), and
(b) the theory of semisimple algebras, in particular, Maschke’s theorem, the Artin-Wedderburn
theorem and the Tits deformation theorem (see also [CR, §3B and §68]).

Here the reader will find statements of the main theorems which are in exactly the correct form
for our applications (generally difficult to find in the literature), and short slick proofs of all the
results on the basic construction and on semisimple algebras that we need for the study of the
partition algebras.
There are two sets of results on partition algebras that we have not had the space to treat in
this paper:
(a) The “Frobenius formula,” “Murnaghan-Nakayama” rule, and orthogonality rule for the irre-
ducible characters given by Halverson [Ha] and Farina-Halverson [FH], and
(b) The cellularity of the partition algebras proved by Xi [Xi] (see also Doran and Wales [DW]).

The techniques in this paper apply, in exactly the same fashion, to the study of other diagram
algebras; in particular, the planar partition algebras CPg(n), the Temperley-Lieb algebras CTy(n),
and the Brauer algebras CBy(n). It was our original intent to include in this paper results (mostly
known) for these algebras analogous to those which we have proved for the algebras CAy(n), but
the restrictions of time and space have prevented this. While perusing this paper, the reader should
keep in mind that the techniques we have used do apply to these other algebras.

1. The Partition Monoid

For k € Z~g, let

Ay = {set partitions of {1,2,...,k, 1’,2’,...,k’}}, and
A1 = {d € Apt1 | (k+1) and (k+ 1)’ are in the same block} .

The propagating number of d € Ay, is

the number of blocks in d that contain both an element) (1.2)

pn(d) = <Of {1,2,...,k} and an element of {1’,2" ... k'}

For convenience, represent a set partition d € Ay by a graph with k vertices in the top row, labeled
1,...,k left to right, and k vertices in the bottom row, labeled 1’,..., k" left to right, with vertex
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i and vertex j connected by a path if ¢ and j are in the same block of the set partition d. For
example,

1 2 3 45 6 7 8

[ ]
w I represents  {{1,2,4,2',5'},{3},{5,6,7,3',4',6',7'},{8,8'}, {1'} },
[ ]

17203 4 5 6 7 8
and has propagating number 3. The graph representing d is not unique.
Define the composition d; o do of partition diagrams di,ds € Ai to be the set partition

dy o dy € Ay obtained by placing d; above ds and identifying the bottom dots of dy with the top
dots of ds, removing any connected components that live entirely in the middle row. For example,

it g = AN A g, % then
o« & « o e ° 0

L N
‘:::::: ° °
i iny

Diagram multiplication makes Ay into an associative monoid with identity, 1 = I I I The

d10d2:

propagating number satisfies
pn(dy o dz) < min(pn(di), pn(d)). (1.3)

A set partition is planar [Jo] if it can be represented as a graph without edge crossings inside
of the rectangle formed by its vertices. For each k € %Z>0, the following are submonoids of the
partition monoid Ayg:

Sy =4{de€ A | pn(d) =k}, Ir={dec Ay |pn(d) <k}, P,={de Ay]|displanar},
(1.4)
By, = {d € Ay | all blocks of d have size 2}, and Ty = Py N By.

Examples are

PR en DR cn

3K K e
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For k € %Z>0, there is an isomorphism of monoids

P L5 Ty, (1.5)

which is best illustrated by examples. For k = 7 we have
o » PR, COQ_08Q_ORQ Q3 CAS._O80 Qe L Q2P
o o beG DG Deo TEL Ve D8O TED o O g
and for k =6+ % we have

NKNT - ISR -y

Let k € Z~o. By permuting the vertices in the top row and in the bottom row each d € Ay
can be written as a product d = oqtog, with 01,09 € S} and t € Py, and so

A, = S, P, Sy For example, % = . ‘4::1 _ - (1.6)

For ¢ € Z~¢, define

the Bell number, B(¢) = (the number of set partitions of {1,2,...,¢}),
1 [2f 24 2/
= — = —_ 1'7
the Catalan number, C(0) ) <€> <€> <€+ 1), (1.7)

@O0 =(20—1)-(20—3)---5-3-1, and O=0-((—1)---2-1,

with generating functions (see [Sta, 1.24f, and 6.2]),

2t . 1—-v1—-4z

ZB(Z)E = exp(e® — 1), Y C-1)st = —

£>0 >0 (1 8)

2t 1—+1—-2z 2t 1 ’

— n-_ - - - - 1= =

> @ N . , > o =T

£>0 £>0

Then
for k € $Zo, Card(Ag) = B(2k)  and  Card(P:) = Card(T) = C(2k),
(1.9)

for k € Zo, Card(By) = (2k)!, and Card(Sk) = k.
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Presentation of the Partition Monoid

In this section, for convenience, we will write
didy = dq o ds, for dy,dy € Ay

Let k € Z~g. For 1 <i<k—1and 1< j <k, define

i i+l J
[ ]
per=1 11111 n=l1°11
[ ]
(1.10)
i i+l i i+1
o_»
sl 11 w11 1]
o e
Note that e; = Pi 1DiDi+1Diy L -
Theorem 1.11.
(a) The monoid Ty, is presented by generators ey, ...,er_1 and relations
e? = e, €i€it1€; = €4, and eje; = eje;, for|i—j| > 1.
(b) The monoid Py is presented by generators PL,D1,D2s-- - Pk and relations
P} =pi,  piPieipi =pi,  and  pipj = ppi, for |i —j| >1/2.
(c) The group Sy, is presented by generators sy, ..., S,—1 and relations
S? = 1, SiSi+1S; = Si+1SiSi+1, and 5i8j = 5584, for |’L *]| > 1.
(d) The monoid Ay, is presented by generators sy, ...,S,—1 and PL,D1,P%;s- - Pk and relations in
(b) and (c) and
S$iPiPi+1 = PiPi+15i = PiPi+1, SiPitl = Pit 18 = Pig 1, 8iPiSi = Pi+1,
8i8i41Di4 1 5i415: = Piy 3, and 8ipj = PjSi, forj#i—%,i,i—i—%,i—i—l,i—i—%.

Proof. Parts (a) and (c) are standard. See [GHJ, Prop. 2.8.1] and [Bou2, Ch. IV §1.3, Ex. 2],
respectively. Part (b) is a consequence of (a) and the monoid isomorphism in (1.5).

(d) The right way to think of this is to realize that Ay, is defined as a presentation by the generators
d € Aj and the relations which specify the composition of diagrams. To prove the presentation
in the statement of the theorem we need to establish that the generators and relations in each of
these two presentations can be derived from each other. Thus it is sufficient to show that

(
(

(3) Any product d; o dy can be computed using the relations in Theorem (1.11).

1) The generators in (1.10) satisfy the relations in Theorem (1.11).
2) Every set partition d € A can be written as a product of the generators in (1.10).

(1) is established by a direct check using the definition of the multiplication of diagrams. (2) follows
from (b) and (c) and the fact (1.6) that Ay = Sk P;Sk. The bulk of the work is in proving (3).
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Step 1. First note that the relations in (a—d) imply the following relations:
(el) Pipl18i-1Pi1 Ll = Piy18iSi—1Pi4 1 = Pi418iSi—1DPi18i-158i8iSi—1
=P 1Pi418i8i-1 = P 1P 18i-1 = Py 1P 18i—1 = Piy 1P 1.
(€2) pisipi = SiSiPiSiPi = SiPit1Di = Piy1Pi-
(f1) PiPi 1Di+1 = PiPiy15iPi+1 = PiPi4- 1PiSi = PiSi-
(f2) Pit1Piy 1Pi = Pit18iDiy LPi = SiPiPiy 1Pi = Sibi-
Step 2. Analyze how elements of Py can be efficiently expressed in terms of the generators.

Let t € P,. The blocks of ¢ partition {1,...,k} into top blocks and partition {1’,...,k’} into
bottom blocks. In t, some top blocks are connected to bottom blocks by an edge, but no top block
is connected to two bottom blocks, for then by transitivity the two bottom blocks are actually a
single block. Draw the diagram of ¢, such that if a top block connects to a bottom block, then it
connects with a single edge joining the leftmost vertices in each block. The element ¢t € Pj, can be
decomposed in block form as

with 7 € Sk, 11 <ig < -+ <y, J1 < Jo < v+ < Jg, b1 <l <o < Lpp,and 7y <19 < -+ < Ty
The left product of p;s corresponds to the top blocks of ¢, the right product of p;s corresponds to
the bottom blocks of ¢t and the permutation 7 corresponds to the propagation pattern of the edges
connecting top blocks of ¢ to bottom blocks of t. For example,

[[alssl ‘s
RSN L P Saeh 4
L. 11 :

*—oe

*—o0—0

*—oe
—00—00—00—00—0

= (P21 P31 P61 ) (P3P4P6P7)T(P2P3Pap7) (P11P21 ),

= (PQ%P?,%PG% )(P3Pap6p7)52535554(P2P3pap7) (Py iP21 ),

The dashed edges of 7 are “non-propagating” edges, and they may be chosen so that they do not
cross each other. The propagating edges of 7 do not cross, since t is planar.

Using the relations (f1) and (£2), the non-propagating edges of 7 can be “removed”, leaving
a planar diagram which is written in terms of the generators p; and p,, 1. In our example, this
process will replace 7 by P21 P2P31P3P51P5P41 P4, SO that

113

I I_:_: I :_: I (Pzépsépﬁé)(;@smmm)
NI % ?.ﬁ % % b
1t 11°1 - (popappr) (P11 o).
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Step & If t € P, and o1 € Sy which permutes the the top blocks of the planar diagram ¢, then
there is a permutation oo of the bottom blocks of ¢ such that otos is planar. Furthermore, this
can be accomplished using the relations. For example, suppose

T Ty
A~ N =
-9 o o
t= = (P11P21)(P2p3) (P61 ) (P7) Paps5 S5 (P2p3P4) (P11 P21P31) (PeP7) (P51P61)
oo N—— e ——
B Bo T Ty B B>

is a planar diagram with top blocks 71 and 75 connected respectively to bottom blocks B; and By

and
T, Ty
agsens e
[ 2N )
o] = so that oit=Yes £ =t
BQ

then transposition of By and B, can be accomplished with the permutatlon
TQ’ T
09 — :%: so that Jlt(fg = t/UQ %: f
1

is planar. It is possible to accomplish these products using the relations from the statement
of the theorem. In our example, with 01 = $9515352545355525456515355528453 and with oy =
548556535455525354515283,

01Ty Ty paps 55 B1 Baoy = (01T1 Ta paps 07 ') (018502) (05 ' By Baoa) = ToT{ p3ps s4 B4 B,

where T5T] = (p11p2) (P51 P61 P6P7) and By By = (p2pspy 121 ) (PsPeP7Ps1Ps1 P61 )-
Step 4: Let t,b € P, and let # € Si. Then tnb = txoc where x € P, and o € S, and this
transformation can be acccomplished using the relations in (b), (c¢) and (d).

Suppose T is a block of bottom dots of ¢ containing more than one dot and which is connected,
by edges of 7, to two top blocks By and By of b. Using Step 3 find permutations ;1,72 € Sk and
01,09 € Sy, such that

t, = ’ylt’}’Q and b, = Ulbdg
are planar diagrams with 7" as the leftmost bottom block of t' and By and By as the two leftmost
top blocks of &’. Then

teb =y g tmo T oyt = A (gt D oyt =y (g tre DY ot = tmoy oy

where b” is a planar diagram with fewer top blocks than b has. This is best seen from the followmg
picture, where tmb equals
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and the last equality uses the relations p, 1= p? 1 and fourth relation in (d) (multiple times).
2

Then trb = vy 'y, tnoy 10 oyt = tn'b" oy b, where /' = moy L.

By iteration of this process it is sufficient to assume that in proving Step 4 we are analyzing t7b
where each bottom block of ¢ connects to a single top block of b. Then, since 7 is a permutation,
the bottom blocks of ¢ must have the same sizes as the top blocks of b and 7 is the permutation
that permutes the bottom blocks of ¢ to the top blocks of b. Thus, by Step 1, there is o € Si such
that x = mbo~! is planar and

trb = t(nbo~Y)o = txo.

Completion of the proof: If dy,dy € Ay then use the decomposition Ay = Sy PS; (from (1.6)) to
write d; and dy in the form

di = mitmy and dgza'lba'g, with t,bGPk,Tﬁ,TFQ,O'l,O'Q GSk,

and use (b) and (c) to write these products in terms of the generators. Let m = mo0y. Then Step
4 tell us that the relations give o € Sy and x € Py such that

dldg = 7T1t7T20’1b02 = 7T1t7TbO’2 = 7T1t$00’2,
Using Step 2 and that Ap = Sk PSk, this product can be identified with the product diagram
dids. Thus, the relations are sufficient to compose any two elements of Ax. I
2. Partition Algebras

For k € %Z>0 and n € C, the partition algebra CAy(n) is the associative algebra over C with
basis Ay,

CAg(n) = Cspan-{d € A}, and multiplication defined by dydy = n*(dy o dy),

where, for dy,ds € Aj, di o ds is the product in the monoid A, and /¢ is the number of blocks
removed from the the middle row when constructing the composition d; o ds. For example,

g SRR g NS NS e
e & o« o e ° .

o a e a0
_:\f/\:\vﬁ\vz n? SEA AL O (2.1)
didy = ¢ ¢ _a_» e_a_s o
i

since two blocks are removed from the middle row. There are inclusions of algebras given by

CAk_% — CAk CAk—l — CAk—%
1 k 1 k and 1 k—1 1 k (2.2)
oo 00000 oo00-000 oo00-00 o000 00
; - s o - ]
éboo00000 éoo000-00 o0o00-0-0 600000

For dq,dy € Ay, define

dy < ds, if the set partition ds is coarser than the set partition d,
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ie., ¢ and j in the same block of d; implies that ¢ and j are in the same block of dy. Let
{zq € CAg|d € AL} be the basis of CA, uniquely defined by the relation

d= Y g, foraldec Ay (2.3)

Under any linear extension of the partial order < the transition matrix between the basis {d | d €
Ay} of CAg(n) and the basis {x4 | d € A} of CAi(n) is upper triangular with 1s on the diagonal
and so the x4 are well defined.

The maps £1: CAy — CAy_y, e5:CAy_y — CAg_y and try: CAp — C

Let k € Z~. Define linear maps

1
E% CA, — (CAk_% €2 : CAkf% — CA,_4
1 k 1 k and —1
000000 000008 cooooo 00000
6000000 é0o00-0-0- tooooo 6.;;..

so that €1 (d) is the same as d except that the block containing k and the block containing k" are

combined, and e2 (d) has the same blocks as d except with k and k' removed. There is a factor of
n in 2 (d) if the removal of k and &’ reduces the number of blocks by 1. For example,

() AR
S10=obd b= B ()= 20 Rr—=2¢

The map 7 is the composition (CAk_% s CA,—5CAg_;. The composition of €1 and €2 is the
map

and

IS CA; s CA,_4
1 k 1 k-1, (2.4)
oo 00000 o000 00
s = 4 )
6000000 o000 00

By drawing diagrams it is straightforward to check that, for k € Z~,

e1(arbas) = are

N|= N
N|= =

(b)ag, foraj,as € A,%%,b € Ay
(b)az, for ay,as € Ak:—la be Ak—% (25)
61(a1ba2) = (1181(17)(12, for ai,as € Ak—l; be Ak

9 (albag) = a1¢

and
Prysbprry =e3(0)ppys = ppyren(b), forbe Ay

prbpr, = €2 (b)pr, = pre? (b), forbe Ay, (2.6)
erber, = sl(b)ek = 6k61(b), for b € Ay.

N|=

Define try: CAp, — C and tr),_1:CA;_1 — C by the equations

try(b) = trj_1(e2(b)), forbe Ay, and ir,_1(b) = trk,l(aé(b)), forbe Ap_1, (2.7)



PARTITION ALGEBRAS 11
so that
tre(b) = e¥(b), for b€ Ay, and tre_1(b) = eh=le3(b), forbe At (2.8)

Pictorially ¢ri(d) = n® where ¢ is the number of connected components in the closure of the
diagram d,

tri(d) = , for d € Ay. (2.9)
The ideal CIy(n)
For k € %ZZO define
Cli(n) = C-span{d € Ij}. (2.10)
By (1.3),
ClIk(n) is an ideal of CAg(n) and  CAg(n)/Cly(n) = CS, (2.11)

since the set partitions with propagating number k are exactly the permutations in the symmetric
group Sy, (by convention Sy, 1 = Sy for £ € Zo, see (2.2)).

View CIi(n) as an algebra (without identity). Since CAg(n)/CI = CSy and CS}, is semisim-
ple, Rad(CAk(n)) C ClIg(n). Since CIx(n)/Rad(CAk(n)) is an ideal in CAg(n)/Rad(CAg(n))
the quotient CIx(n)/Rad(CAg(n)) is semisimple. Therefore Rad(CIx(n)) € Rad(CAg(n)). On
the other hand, since Rad(CAg(n)) is an ideal of nilpotent elements in CAg(n), it is an ideal of
nilpotent elements in CI(n) and so Rad(CIg(n)) 2 Rad(CAg(n)). Thus

Rad(CAg(n)) = Rad(ClIk(n)). (2.12)
Let k € Z>¢. By (2.5) the maps

ey :CAy — CAy 1 and 2 :CAp_y — CApy

1
2

are (CA,_ 1 CA,_ 1 )-bimodule and (CAy_1, CAg_1)-bimodule homomorphisms, respectively. The
corresponding basic constructions (see Section 4) are the algebras

(CAk(n) ®(CAk7%(n) CAk(n) and (CAk_% (n) ROCAr_1(n) (CAk_% (n) (2.13)
with products given by
(bl & bg)(bg X b4) =h® 6%(()2[)3)[)4, and (Cl &® CQ)(Cg &® 04) =1 ® 6%(0203)64, (214)

for by,ba,b3,bs € CAk(n), and for c¢1,co,c3,¢4 € (CAkf%(n)
Let k € 2Z~¢. Then, by the relations in (2.6) and the fact that

every d € I} can be written as d = diprda, with di,ds € Akf@ (2.15)

the maps
CA_1(n) @cay_y(n) CAx_1(n) — Cli(n)
(2.16)
b1 ® by > bipiba
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are algebra isomorphisms. Thus the ideal CIx(n) is always isomorphic to a basic construction (in
the sense of Section 4).

Representations of the symmetric group

A partition A is a collection of boxes in a corner. We shall conform to the conventions in [Mac]
and assume that gravity goes up and to the left, i.e.,

Numbering the rows and columns in the same way as for matrices, let

A; = the number of boxes in row ¢ of A,
N; = the number of boxes in column j of A, and (2.17)

|A| = the total number of boxes in .

Any partition A can be identified with the sequence A = (A1 > Ay > ...) and the conjugate partition
to A is the partition X = (A}, AL, ...). The hook length of the box b of A is

h(b) = (\i —i) + (N; —j) +1, if bis in position (i, 5) of \. (2.18)

Write A = n if X is a partition with n boxes. In the example above A = (553311) and A F 18.
See [Mac, §1.7] for details on the representation theory of the symmetric group. The irreducible
CSi-modules S; are indexed by the elements of

~ |
Sp={\Fn} and  dim(S}) = w (2.19)
I1»®
beA
For A € S’k, and u € S'k,l,
Resgr (Sp)= € Sy.y  and  Ind (SE_ )= P Sp. (2.20)
A/v=0O v/p=0

where the first sum is over all partitions v that are obtained from A by removing a box, and the
second sum is over all partitions v which are obtained from p by adding a box (this result follows,
for example, from [Mac, §1.7 Ex. 22(d)]).

The Young lattice is the graph S given by setting

vertices on level k: Sk = {partitions \ with k£ boxes}, and

an edge A\ — u, A € Sk, JTRS Sk+1 if 4 is obtained from A by adding a box. (2.21)
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It encodes the decompositions in (2.20). The first few levels of S are given by

k=0: 0
k=1: O
k=2

\ | \
NS

k=4: [N EFD HE‘ H:l E

For y € Sy define

Si = {T = (7O, 7MW . T®)

7O = 0, T®) =y, and, for each ¢, )
TW € Sy and TY — TUHD is an edge in S

so that S‘;j is the set of paths from @) € Sy to JTRS S in the graph S. In terms of the Young lattice
dim(S¥) = Card(S%). (2.22)

This is a translation of the classical statement (see [Mac, §1.7.6(ii)]) that dim(S%) is the number
of standard Young tableaux of shape A (the correspondence is obtained by putting the entry ¢ in
the box of A which is added at the fth step T~ — T of the path).

Structure of the algebra CAg(n)

Build a graph A by setting

vertices on level k: A = {partltlonb wlk—|pl € Zso},
vertices on level k + 3: Ak+1 — Ay, = {partitions p | k — |u| € Z>o},
an edge A\ — u, A € Ak, € Ak+% if A = p or if u is obtained from A\ by removing a box,

an edge t — A\, pu € Ak+%a A€ Ak+1, if A= p or if A is obtained from p by adding a box.
(2.23)
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The first few levels of A are given by
k=0: 0

AN .

k=3: 0 m| m HD:DEPB

The following result is an immediate consequence of the Tits deformation theorem, Theorems
5.12 and 5.13 in this paper (see also [CR (68.17)]).

Theorem 2.24.
(a) For all but a finite number of n € C the algebra CAy(n) is semisimple.
(b) If CAi(n) is semisimple then the irreducible CAy(n)-modules,

A" are indexed by elements of the set A}, = { partitions ju | k — || € Zso}, and
dim(A}) = (number of paths from () € Ay to p € Ay in the graph A).

Let

AZ:{T:(T(O),T(%),...,T(’f—%),T(k)) T® =, T® =y, and, for each (, }

T € Ay and T — TU+3) is an edge in A

so that AZ is the set of paths from 0 € Ay to p € Ay, in the graph A. If € S), then pu € A;, and
ue flk +1 and, for notational convenience in the following theorem,

identify P=(pPO pt) ph)y¢ S’,‘: with the corresponding
p=(pO pO pl) p) phk-1) pk=-1) pk) c A¥ and
P= (P(O) pO pl) p) pk=1) p(k=1) p(k) p(k)) e AZ )
) ) ) PR ) ) ) +§ N

For ¢ € %Zzo and n € C such that CAy(n) is semisimple let Xff;[(ny w € Ay, be the irreducible

characters of CAy(n). Let tr;: CAy(n) — C be the traces on CAy(n) defined in (2.8) and define
constants try (n), p € Ay, by

try = Z tr?(n)xie(n). (2.25)
HEA,
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Theorem 2.26.
(a) Let n € C and let k € 1Z>(. Assume that

tr)(n) # 0, forall \ € Ay, € € 1750, L < k.
Then the partition algebras
CA¢(n) are semisimple for all £ € $Z>¢,¢ < k. (2.27)
For each { € %Zzo, L<k-— %, define

try 1 (n) N " N
eﬁ = % for each edge p — X\, p € Ap_1, N € A,_1, in the graph A.
try_;(n) 2

Inductively define elements in CA;(n) by
1

oo T g
€pQ = = Cp-TPtrq->
T
\/EREL

whereT = PU=3) v = QU=3) R~ = (R, ... R %) for R=(R©,..., R 3) R®) c A
and T is an element of /1’;_1 (the element ej\gQ does not depend on the choice of T'). Then
define

for pe Ay, |u| <t—1, P,Q e A¥, (2.28)

eéQ =(1- z)séQ, for A€ Sy, P,Qe S, where z = Z Z e p (2.29)
REA, Pc Ak
|| <e—1 ¢
and {5%\’62 | A € S.,P,Q € S’g\} is any set of matrix units for the the group algebra of the
symmetric group CS,. Together, the elements in (2.28) and (2.29) form a set of matrix units
in CAy(n).
(b) Let n € Zxo and let k € 1Z~( be minimal such that try(n) = 0 for some X € Ay. Then
CAj11(n) is not semisimple.
(c) Let n € Z>o and k € 3Z~q. If CAy(n) is not semisimple then CAy;(n) is not semisimple for
j € Z>0.

Proof. (a) Assume that CA,—1(n) and CA,_,(n) are both semisimple and that try_,(n) # 0 for
all € Apy. T X € A,y then ) # 0 if and only if tr)_, (n) # 0, and, since the ideal CIy(n)

-4

is isomorphic to the basic construction CA,_1(n) ®ca, ,(n) CAy_1(n) (see (2.13)) it then follows
from Theorem 4.28 that CI,(n) is semisimple if and only if tr) , (n) # 0 for all X € /Alg_%. Thus,

-4

by (2.12), if CAg—1(n) and CA,_1(n) are both semisimple and try_,(n) # 0 for all p € Ay_y then

CAy(n) is semisimple if and only if  tr) ,(n) #0 for all A € /Algfé. (2.30)

Nl

By Theorem 4.28, when tr} , (n) # 0 for all A fle_%, the algebra Cly(n) has matrix units given
2

by the formulas in (2.28). The element z in (2.29) is the central idempotent in CA;(n) such that

CI;(n) = 2CAy(n). Hence the complete set of elements in (2.28) and (2.29) form a set of matrix

units for CAy(n). This completes the proof of (a) and (b) follows from Theorem 4.28(b).
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(c) Part (g) of Theorem 4.28 shows that if CA,;_;(n) is not semisimple then CA,(n) is not semisim-
ple. 1

Specht modules
Let A be an algebra. An idempotent is a nonzero element p € A such that p?> = p. A
minimal idempotent is an idempotent p which cannot be written as a sum p = p; + po with
p1p2 = pop1 = 0. If p is an idempotent in A and pAp = Cp then p is a minimal idempotent of A
since, if p = p1 + p2 with p? = p1, p3 = p2 and p1pa = pap1 = 0 then pp1p = kp for some constant p
and so kp1 = kpp1 = pp1pp1 = p1 giving that either p; = 0 or kK = 1, in which case p; = pp1p = p.
Let p be an idempotent in A. Then the map

(pAp)°? =5 End4(Ap)

by by 0 Vhere Ppbp(ap) = (ap)(pbp) = apbp, for ap € Ap, (2.31)

is a ring isomorphism.

If p is a minimal idempotent of A and Ap is a semisimple A-module then Ap must be a
simple A-module. To see this suppose that Ap is not simple so that there are A-submodules V;
and V5 of Ap such that Ap = Vi @ V. Let ¢1, 02 € Enda(Ap) be the A-invariant projections on
Vi and V,. By (2.31) ¢1 and ¢9 are given by right multiplication by p; = ppip and ps = ppap,
respectively, and it follows that p = p1 + p2, Vi = Ap1, Vo = Aps, and Ap = Ap; & Aps. Then
pi = ¢1(p) = 6i(p) = pr and pip2 = 2(p1) = ¢2(¢1(p)) = 0. Similarly p3 = py and pap1 = 0.
Thus p is not a minimal idempotent.

If p is an idempotent in A and Ap is a simple A-module then

pAp = End4(Ap)®® =C(p-1-p) = Cp,

by (2.31) and Schur’s lemma (Theorem 5.3).
The group algebra of the symmetric group Sy over the ring Z is

Sk:,Z = 7Sy and CS, =C®g Sk:,Z, (2.32)

where the tensor product is defined via the inclusion Z < C. Let A = (A1, A2, ..., A7) be a partition
of k. Define subgroups of S by

S)\:SA1 X---XSA[ and SA’:SA’l X-"XS)\IT, (233)
where X' = (A}, \), ..., A\) is the conjugate partition to A, and let
Li=> w and  ev= Y (-1 (2.34)
U)ES)\ TUES)\/

Let 7 be the permutation in Sy, that takes the row reading tableau of shape A to the column reading
tableau of shape A. For example for A = (553311),

1[2]3[4[5] [1][7[11[15[17

6[7]8]9]i0] [2]8]12[16]18
T=(2,7,8,12,9,16,14,4,15,10,18,6)(3,11)(5,17), since 7 -[1112]13 =|3]9/13

14[1516 4[10[14

17] 15 |

18] 6]
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The Specht module for Sy is the ZS;-module

S,?,Z =1im Vg, = (ZSk)px, where py = 1)\7e) 71, and (2.35)

where g, is the ZSj-module homomorphism given by

\Ifg’

P

(ZSk)l)\ 5 7.5y, SN (Zsk)TE,\/T_l
(2.36)
b1, — bly, +— bl,\’i‘E,\/’i‘f1
By induction and restriction rules for the representations of the symmetric groups, the CSg-modules
(CSk)1y and (CSg)Ten 7! have only one irreducible component in common and it follows (see
[Mac,81.7, Ex. 15]) that

Sp=C®zSpy  is the irreducible CSy-module indexed by A, (2.37)

once one shows that ¥g, is not the zero map.
Let k € 3Z~¢. For an indeterminate z, define the Z[z]-algebra by

Ak:,Z = Z[x]—span{d S Ak} (238)
with multiplication given by replacing n with z in (2.1). For each n € C,

evy: Zlx]

C
x n

CAr(n) = C ®z[y) Ak,z, where the Z-module homomorphism : (2.39)

is used to define the tensor product. Let A be a partition with < k boxes. Let b ®p§(k_w) denote
the image of b € A}y z under the map given by

Az — Az
S * . Yy if k£ is an integer, and
b b , )
[ T * [ TS o0 o °
k—|A|

Ansiz  — Az
.b) — .b)::: o _H, if k— % is an integer.
[ J— [ TS oo —0—e

N———

k=133

For k € %Z>0, define an Ay, z-module homomorphism

P P
Ua: Apzth — Apzsy — Apz/Inz

i
(2.40)
bt)\ — bt)\s,\/ — bt,\S)\/ y
where [}y 7 is the ideal

I\ z = Zlz]-span { d € A, | d has propagating number < |A| }

and ty, sy € Ay z are defined by

ty = 1)\ ®p?(k—\)\|) and Sy = 7'6)\/7'71 ®p%(k_|/\‘). (2-41)
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The Specht module for CAy(n) is the Ay z-module

AQZ =im ¥y, = (image of A zey in Ak,z/fm,z), where ex = px ®p?(k_‘>‘|). (2.42)

Proposition 2.43. Let k € %Z>0, and let A be a partition with < k boxes. If n € C such that
CAg(n) is semisimple, then

Ap(n) =C®gy) Apz s the irreducible CAy,(n)-module indexed by A,
where the tensor product is defined via the Z-module homomorphism in (2.39).

Proof. Let r = |\|. Since
CA,(n)/CI.(n) = CS,

and py is a minimal idempotent of CS,., it follows from (4.20) that e, the image of ey in
(CAk(n))/(CI.(n)), is a minimal idempotent in (CAg(n))/(CI,(n)). Thus

<(%;1f((:))> e is a simple (CAg(n))/(CI.(n))-module.

Since the projection CAg(n) — (CAk(n))/(CI.(n)) is surjective, any simple (CAg(n))/(CIL.(n))-
module is a simple CA(n)-module. I
3. Schur-Weyl Duality for Partition Algebras
Let n € Z~¢ and let V' be a vector space with basis v1,...,v,. Then the tensor product

VO —V@V®---®V  hasbasis {wv, @ - @uv, | 1<i1,...,ix<n}.

k factors
For d € Ay and values i1,..., 0k, i1/, ...,9 € {1,...,n} define
(d)ii = 1, if4, =15 when r and s are in the same block of d, (3.1)
NI 0, otherwise. )
For example, viewing (d):*>" """ as the diagram d with vertices labeled by the values i1, ..., and
K K 175005 pet
i1y ..., , we have
i1 9 i3 14 15 Ig 17 i
[ J
[ J
’ill ’i2/ ’i3/ ’i4/ ’i5/ ’i6/ ’i7/ igl
With this notation, the formula
_ 11,0000k
dvy, @ - Q) = E (d)iﬂ,___’ik/vil, R @, (3.2)

1Si1’ 7...ik/ Sn



PARTITION ALGEBRAS 19

defines actions
Oy : CAp — End(V®*)  and @1 : CAyyy — End(VE) (3.3)

of CAj and CA,H% on V@ where the second map <I>k+% comes from the fact that if d € Ak+%>
then d acts on the subspace

Vo 2 yek gy, = C-span{v;, @ --- @ v;, @ vy | 1 <iy,...,0, <n} C yek+l), (3.4)

In other words, the map @, 1 is obtained from ®;_; by restricting to the subspace V®* ® v,, and
identifying V®* with V& @ v,.
The group G L, (C) acts on the vector spaces V and V&F by

n
gui = Zgjivj7 and  g(vi; ® Vi, @ BV ) = guiy, @ Gui, @ - @ GUyy, (3.5)
j=1

for g = (9i;) € GL,(C). View S,, € GL,(C) as the subgoup of permutation matrices and let

Endg, (V®F) = {be End(V®*) | bov = obv for all 0 € S, and v € V®k} )

Theorem 3.6. Let n € Z~( and let {xq | d € Ay} be the basis of CAy(n) defined in (2.3). Then
(a) @) : CAx(n) — End(V®*) has

im ®;, = Endg, (V) and ker ®;, = C-span{z, | d has more than n blocks}, and

(b) @)1 :CApys(n) — End(V®F) has

im @, 1 = Endg,_, (VEF) and ker ®; 1 = C-span{xz4 | d has more than n blocks}.

Proof. (a) As a subgroup of GL,(C), S,, acts on V via its permutation representation and S,, acts
on V® by
U(Uz’l QUi @+ ® Uz’k) = Vg (i) X Vo (i) XX Vo (i) - (3.7)

Then b € Endg, (V®*) if and only if 0~ 'bo = b (as endomorphisms on V®*) for all & € S,,. Thus,
using the notation of (3.1), b € Endg, (V®¥) if and only if

’il,...,ik _ -1 7;17~~~77;k _ O'(il) ..... O'(Zk)
bi1/7...7ik/ = (o bg)ilu---,ik/ = ba(ill) ..... (i)’ for all 0 € S,,.
It follows that the matrix entries of b are constant on the S,,-orbits of its matrix coordinates. These

orbits decompose {1,...,k,1’,... k’'} into subsets and thus correspond to set partitions d € Ay.
It follows from (2.3) and (3.1) that for all d € Ay,

(3.8)

-----

(Op(z ))nzk |1, if4, =1, if and only if r and s are in the same block of d,
RATA) Jiys i 0, otherwise.

Thus P (x4) has 1s in the matrix positions corresponding to d and Os elsewhere, and so b is a linear
combination of ®(z4),d € Ay. Since x4,d € Ay, form a basis of CAy, im ®, = Endg, (V®*).
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If d has more than n blocks, then by (3.8) the matrix entry (®(z4)): " =0 for all indices

(ZTETERY 37
01,0k, 917, . .., g, since we need a distinct i; € {1,...,n} for each block of d. Thus, x4 € ker ®y,.
If d has < n blocks, then we can find an index set i1,...,4x,%1/,...,% with (@k(xd));i/’“_'_’_sz, =

simply by choosing a distinct index from {1,...,n} for each block of d. Thus, if d has < n blocks
then x4 & ker @y, and so ker ®;, = C-span{z4|d has more than n blocks}.
(b) The vector space V& @ v, C V@K +1 is a submodule both for CAjqr € CApyq and

CS,—1 CCS,. If o € S,,_1, then 0(v;, ® - - @ v, ® V) = Vy(5;) ®** D V(i) ® Vn. Then as above
b € Endg, , (V®F) if and only if

z:l ..... i;?,n _ o(i1),...,0(ik),n
L1ty T G'(’L'll),...,a'(ik/)ﬂ”“

foralloc € 5,,_1.

The S,_1 orbits of the matrix coordinates of b correspond to set partitions d € A; 1 that is
vertices ix41 and i(;41), must be in the same block of d. The same argument as part (a) can be
used to show that ker @, , 1 s the span of x4 with d € A, 1 having more than n blocks. We always

choose the index n for the block containing k& + 1 and (k+1)". &

The maps ey : End(VE*) — End(V®*) and £2 : End(V®*) — End(Ve*-1)

If b € End(V®F) let b;;”’“ € C be the coeflicients in the expansion

----- Lyt

blvi, ® - @vi,) = > b 0, @@y, (3.9)

lgil/ ,...ik,/ STL
Define linear maps

: End(V®*) — End(V®F) and 7 End(V®*) — End(V®k-1) by

€1
2
n
T yeney ik _ B yenny ik o 1 B yeeesll—1 _ B yeeeyll—1,5]
E% (b)il/,...,ik/ - bil/,...,ik/(szk‘zk/ and 62(b)i1/,...,i<k71>/ - Z bil/V"'7i(k—l)/,£. (310)
jye=1

The composition of € 1 and £7 is the map

e1: End(VE) — End(VEFY) - given by ea(0); 0t =D 0 (3.10)
j=1
and

Tr(b) = £5(b), for b € End(V®*). (3.12)

The relation between the maps €72, €1 in (3.10) and the maps =7 €1 in Section 2 is given by

b)), for b € CA_1(n), and (3.13)
) for b € CAi(n),

where, on the right hand side of the middle equality b is viewed as an element of CAy via the
natural inclusion (CAk_%(n) C CAk(n). Then

Tr(®x (b)) = 5 (Px (b)) = Ro(e1 (b)) = €5 (b) = trx(b), (3.14)
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and, by (3.4), if b € CA;_1(n) then

Te(@y_y (5)) = Tr(@b) | poiengy, ) = & Tr(@r(b)) = L tr(b) = L tr_y (1), (3.15)

The representations (IndnglResngl)k(ln) and Resgzi1 (IndnglRengfl)k(ln)

Let 1,, = Sq(ln) be the trivial representation of S,, and let V' = C-span{vs,...,v,} be the
permutation representation of S,, given in (3.5). Then

V 2Ind3" Resy (1) (3.16)
More generally, for any S,-module M,

Indg" Resg” (M) =Indg"  (Resy” (M)®1,-1)

-1

> Indg"  (Resy" (M) ®Resg” (1)) (3.17)

-1

~ Sn Shn ~
= M ®Indg" Resg” (1,) =M@V,
where the third isomorphism comes from the “tensor identity,”

Indg"  (Resg" (M)®N) — M@Indg" N (3.18)
g® (men) =  gm®(gen)’ ’

for g € S,,, m € M, n € N, and the fact that Indgzil(W) =CS,, ®g,_, W. By iterating (3.17) it
follows that

(Indﬁ:ilResgzil)k(l) >~ Ok and Resé:i1 (Indﬁ:ilResgzil)k(l) >~ ok (3.19)

as Sp-modules and S, _;-modules, respectively.
If

A= ()\1,)\2,...,)\@) define )\>1 = ()\2,...,)\@) (320)

to be the same partition as A except with the first row removed. Build a graph A(n) which encodes
the decomposition of VE* k€ Zsq, by letting

vertices on level k: Ap(n) ={AFn | k—|As1| € Zso},
vertices on level k + : Ak+%(n) ={A\Fn—-1|k—|As1| €Z>0}, and
an edge A — p, if p € Ak—&—% (n) is obtained from A € Ay (n) by removing a box, (3.21)

an edge ;1 — A, if A € Agy1(n) is obtained from p € Ak+% (n) by adding a box.
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For example, if n = 5 then the first few levels of A(n) are

k=0: @OIIOd

N[

]
N,
E

k=1+%: o o

e

o oo

k=2+3: IO BZEI%EL;H]
Ny
k=3: OO o gH H:D BE‘ Ej

The following theorem is a consequence of Theorem 3.5 and the Centralizer Theorem, Theorem
5.4, (see also [GW, Theorem 3.3.7]).

/

k=2: [EE RN

N\

/.

Theorem 3.22. Let n,k € Z>o. Let S denote the irreducible S,-module indexed by \.
(a) As (CS,,,CAg(n))-bimodules,

Vek = B S} @ Ap(n),
€A (n)
where the vector spaces Aj(n) are irreducible CAg(n)-modules and
dim(A(n)) = (number of paths from (n) € Ag(n) to A € A(n) in the graph A(n)).
(b) As (CSy—1,CAy 1 (n))-bimodules,
V®k = @ Sﬁfl ®Ag+%(n)7
NGAH%(H)

“w

where the vector spaces A,
2

(n) are irreducible CAy, 1 (n)-modules and

dim(A*

.1(n)) = (number of paths from (n) € Ag(n) to p € flkJr% (n) in the graph A(n)).

Determination of the polynomials tr*(n)
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Let n € Z~q. For a partition A, let
As1 = (Agy ey o),y if A= (A1, A2, 0, ),
i.e., remove the first row of A to get As1. Then, for n > 2k, the maps

Ap(n) — A

I\ Ay are bijections (3.23)

which provide an isomorphism between levels 0 to n of the graphs A(n) and A.

Proposition 3.24. For k € %Zzo and n € C such that CAg(n) is semisimple, let sz(n), pe Ay,
be the irreducible characters of CAy(n) and let try: CAx(n) — C be the trace on CAg(n) defined
in (2.25). Use the notations for partitions in (2.17). For k > 0 the coefficients in the expansion

]

tre= Y w0y, are  t(n (Hh )H = Il = (= 9))-

nEA

Ifn € C is such that CA 1 (n) is semisimple then for k > 0 the coefficients in the expansion

||
(n) = (beﬂuﬁ) e T2 b= 5 = )

— p 7
try 1 = Z tr% (n)XAH% (n)? are tr
HEA

v~ =

k+ %

Proof. Let A be a partition with n boxes. Beginning with the vertical edge at the end of the first
row, label the boundary edges of A sequentially with 0,1,2...,n. Then the

vertical edge label for row i = (number of horizontal steps) 4+ (number of vertical steps)
=M-N)+@E—-1)=N—-1)— N\ —1), and the
horizontal edge label for column j = (number of horizontal steps) 4+ (number of vertical steps)
=M —J+ D+ D= -1+ —j)+1.
Hence
{L2,...onf={M -1 =N =H+1]1<j<MPu{ M —1) =N —d) [ 2<i<n— A\ +1}
={h(®)|bisinrow Lof A\JU{( A1 —1)— (N —19) |2<i<n—A +1}.

For example, if A\ = (10,7,3,3,1) I 24, then the boundary labels of A and the hook numbers in the
first row of X\ are

14)12[11] 8 [ 7]6[5]3]2[1]o
3 2 1

12 11

14
15
16
17
18
19
20
21
22
23
24
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Thus, since \y = n — [Asq],

[As1]+1
dim(52) = Hb@ 0 <b£[1hb) 1‘[2 (n—s1l = (A= (i-1)).  (3.25)

Let n € Z~¢ and let Xgn denote the irreducible characters of the symmetric group S,. By
taking the trace on both sides of the equality in Theorem 3.22,

Tr(b, VE) = > xa, (Dxam®) = > dm(S)xa,m (),  for b€ CAg(n).
A€AL(n) A€AL(n)

Thus the equality in (3.25) and the bijection in (3.23) provide the expansion of try for all n € Z>q
such that n > 2k. The statement for all n € C such that CAy(n) is semisimple is then a consequence
of the fact that any polynomial is determined by its evaluations at an infinite number of values of
the parameter. The proof of the expansion of tr; 1 is exactly analogous. |

Note that the polynomials tr#(n) and try (n) (of degrees |u| and |u| + 1, respectively) do not
2
depend on k. By Proposition 3.24,
{roots of tr (n) | p € Ay} = {0},
2
{roots of tr(n) | p € A} = {1},
%(n) | MGAI%}:{(LQ}’ and
{roots of tr'(n) | p € Ay} = {0,1,...,2k — 1}, for k € 1Z>o, k > 2.

(3.26)
{roots of tr!

For example, the first few values of tr* and tr} are
2

trf(n) = 1, trg (n)=n

tr%(n) =n — 1, trﬂé(n) =n(n—2),

tr7(n) = in(n — 3), tr‘?(n) = in(n—1)(n—4),

trf(n) = $(n —1)(n —2), tIE%(n) = 1n(n—2)(n—3),

1™ (n) = gn(n —1)(n—5), tr‘?(n) = tn(n—1)(n—2)(n—6),
trP(n) = tn(n — 2)(n — 4), trE;(n) = in(n—1)(n—3)(n—5),
trﬁ(n) =t(n—1)(n—2)(n-3), tﬁl (n) = gn(n—2)(n—3)(n—4),

Theorem 3.27. Let n € Z>5 and k € %ZZO. Then

CAy(n) is semisimple  if and only if k < %EL.

Proof. By Theorem 2.26(a) and the observation (3.26) it follows that CAg(n) is semisimple if
n>2k—1.
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Suppose n is even. Then Theorems 2.26(a) and 2.26(b) imply that

CAy 1(n) is semisimple and CAzyi(n) is not semisimple,

since (n/2) € A%+% and tr&n/g)(n) = 0. Since (n/2) € A%H(n), the Az ;(n)-module A(n/g)(n) +

PR
0. Since the path (0,...,(n/2),(n/2),(n/2)) € A(%nﬁ) does not correspond to an element of
AL (),

Card(AY'[}) # Card(AY(7 (n)).

Thus, Tits deformation theorem (Theorem 5.13) implies that CA=z 11(n) is cannot be semisimple.

Now it follows from Theorem Theorem 2.26(c) that CAy(n) is not semisimple for k > % + 1.
If n is odd then Theorems 2.26(a) and 2.26(b) imply that

CAyy1(n) is semisimple and CAsz.q(n) is not semisimple,

n __
2

since (n/2) € A%Jr% and tr?(n) = 0. Since (%
1
2

1) € A%H(n), the Az y(n)-module
A7 (n) # 0. Since the path (0,..., (2 — 3), (2 +4),(2 - 5

(n_1
) € A(%Hz) does not correspond

A(n_1
to an element of A(ﬂzﬂz)(n), and since
2

Card(AF?) # Card(AF 17 (n)

the Tits deformation theorem implies that CAz1(n) is not semisimple. Now it follows from
Theorem 2.26(c) that CAy(n) is not semisimple for k > 2 + 1. I

Murphy elements for CAg(n)
Let k5, be the element of CS,, given by

Fp = Z Stm s (3.28)

1<l<m<n

where sy, is the transposition in S,, which switches ¢ and m. Let S C {1,2,...,k} and let
I CSUSYS'. Define bg,d; € Ag by

bg = {S U S,, {f,f,}ggs} and d[gs = {I, IC, {f, El}ggs}. (329)

For example, in Ay, if S ={2,4,5,8} and I = {2,4,4’,5,8} then

o] DA T i weee] SHSHS ]

For S C{1,2,...,k} define

pszz

I

(—1)#ULLIED#nIEr) g (3.30)

N =
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where the sum is over I C SU S’ such that I # 0, I # SUS’, I # {{,¢'} and I # {{,¢'}°. For
S C{l,...,k+1} such that K+ 1 € S define

- 1 ! ’ (&
Ps = Y S(-)FUEIEDTHALOCI g, (3.31)
I

where the sum is over all I C SU S’ such that {k+1,(k+ 1)} C T or {k+1,(k+1)} C I
I#SUS I#{k+1,(k+1)}and I#{k+1,(k+1)}
Let Z1 =1 and, for k € Z~1, let

k
I = (2) + Y pst >, (n—k+[SD)(=1) s, (3.32)
SC{1,....k} SC{1,...,k}
[S1=1 |S|>2

View Zy, € CAy, € CAy, 1 using the embedding in (2.2), and define Z; =1 and

Zipr =k+ 2+ Y Ps+ (n—(k+1)+[S)(~1)"bg, (3.33)

[S]>2
k+1lesS

where the sum is over S C {1,...,k+ 1} such that £+ 1 € S and |S| > 2. Define

M =1, and My =Zy — Z,_y, forke 3Z0. (3.34)

N

For example, the first few Z; are

Zo=1, Z

I o S PP aaetup o]

P{1} P2} P{1,2} bi,2y

and the first few M} are

My=1, M

AN UELS SERTHES 3 S50 She 20 o
A S St o SR o
My =21 114 4L+ ST 11+ ] ST - 0] T+ - DB

(OO SO0 &3 S &b ) SN EpE Sule g S ab
LT I A -

Part (a) of the following theorem is well known.
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Theorem 3.35.
(a) For n € Z>, Ky, is a central element of CS,,. If X is a partition with n boxes and S, is the
irreducible S,-module indexed by the partition A,

Kn = Z c(b), as operators on S)\.
bex

(b) Let n,k € Z>q. Then, as operators on V& where dim(V') = n,

Zyp = Ky, — <Z> + kn, and Zk+% = Kp_1 — (Z) + (k+1)n—1.

(c) Let n € C, k € Z>o. Then Zj, is a central element of CAy(n), and, if n € C is such that
CAg(n) is semisimple and A\ = n with |A~1| < k boxes then

n
7 = kn — (2) + %c(b), as operators on A3,

where A} is the irreducible C Ay (n)-module indexed by the partition \. Furthermore, L1
is a central element of CAy 1 (n), and, if n is such that CA, 1 (n) is semisimple and A - n is
a partition with |[A~1| < k boxes then

Zpyr =knt+n—1- (Z) —i—Zc(b), as operators on A2+§’
beA

where Ang , Is the irreducible CAy 1 (n)-module indexed by the partition A.

2

Proof. (a) The element k,, is the class sum corresponding to the conjugacy class of transpositions
and thus r, is a central element of CS,. The constant by which k,, acts on S; is computed in
[Mac, Ch. 1 §7 Ex. 7].

(c) The first statement follows from parts (a) and (b) and Theorems 3.6 and 3.22 as follows. By
Theorem 3.6, CAg(n) = Endg, (V®*) if n > 2k. Thus, by Theorem 3.22, if n > 2k then Zj, acts
on the irreducible CAg(n)-module A2 (n) by the constant given in the statement. This means that
Zy is a central element of CAy(n) for all n > k. Thus, for n > 2k, dZ;, = Zyd for all diagrams
d € Aj. Since the coefficients in dZy (in terms of the basis of diagrams) are polynomials in n, it
follows that dZ;, = Z.d for all n € C.

If n € C is such that CAy(n) is semisimple let x3 Ap(n) De the irreducible characters. Then
Z) acts on A}(n) by the constant XéAk(n)(Zk)/dim(Ag(n)). If n > k this is the constant in the
statement, and therefore it is a polynomial in n, determined by its values for n > 2k.

The proof of the second statement is completely analogous using CA, 1, Sn_1, and the second

statement in part (b).

(b) Let s;; = 1 so that

26p+n=n+2 Z —anﬁL Z (8ij + s5i) ZZSij+ZSij=ZSij-

1<i<j<n 1<i<j<n i=j i#£j i,j=1
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Then

n
(260 +n)(vi, @+ ®v;,,) = Z sij | (viy @ @0) = D sijvi, @+ @ 8550,
i,7=1 4,j=1

= Z (1-Ey — Ej; + BEij + Ej)vy, @ --- @ (1 — By — Ejj + Eij + Eji)vg,
ij=1

and expanding this sum gives that (2x,, +n)(vi;, ® --- @ v;,) is equal to

> ¥ ¥ (o)

SC{1,...,k} i1/ yemips 6,j=1 \LeSe

(3.36)
Z (—1)#({Z’ZI}QI)+#({Z’£/}QIC) (H 52g2> <H 5”]) Uzl/ - ® Uik/)
ICSus’ lel lele
where S¢ C {1,...,k} corresponds to the tensor positions where 1 is acting, and where I C SU S’

corresponds to the tensor positions that must equal ¢ and I° corresponds to the tensor positions
that must equal j.
When |S] = 0 the set I is empty and the term corresponding to S in (3.36) is

S>3 I i) wiy @ @w,) =nP(v, @ @ vi,).

t,j=14y/,..00  L€{1,...,k}

Assume |S| > 1 and separate the sum according to the cardinality of I. Note that the sum for I
is equal to the sum for I¢, since the whole sum is symmetric in ¢ and j. The sum of the terms in
(3.36) which come from I =S US’ is equal to

> nZ(H 5) 'S'< 11 5) viy @@ uy,) = n(=1) g (v, @ - @ vy,).

L1/ yennylpyt =1 LeSe LesSus’

We get a similar contribution from the sum of the terms with I = ().
If |S| > 1 then the sum of the terms in (3.36) which come from I = {¢,¢'} is equal to

Z Z ( H 5“1 ’) ‘S‘(SZN(SW’Z H 57'7"]57' 1J (Uill Q- Uik’)

197 5eny i 5,j=1 \rese r#£l
— (_1)|S|bsf{£}(vi1 R ® 'Uik)-

and there is a corresponding contribution from I = {¢,¢'}¢. The remaining terms can be written
as

> Z I 6ien) Do (PSSO (T 5,0) ([T 6is) (vi,) @ 03,,)

i17 ey =1 LESE 1C5US’ tel tere
= 2ps(vi, ® -+ @ v;,).
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Putting these cases together gives that 2k,, +n acts on v;; ® --- ® v;, the same way that

P+ > (2n(-1)'bs +2ps) + > <2n(f1)2bs+2pS+Z(f1)22bs_{g})

|1S|=0 1S|=1 1S|=2 tes
+ 3 (2n 1)!8bs + 2ps + Y (—1)5125. {e})
|S|>2 Les

acts on v;, ® - -- ®@v;, . Note that bg =1 if |S| = 1. Hence 2k,, +n acts on v;, ® - - - ® v;, the same
way that

n?+ ) (—2n+2ps)+ > (2nbs+2+2pg)+ (( 1)1512nbg + 2ps + Y (—1)¥12b5_ {€}>

|S|=1 |S|=2 |S|>2 Les
k
— 2 _ _ _1)I8I
=n 2nk—|—2<2> + > 25+ > 20n—k+[8))(—1)5bg
|S|>1 |S|>2

acts on vy, ® -+ ®v;,, and 80 Zx = ky, + (n — n? + 2nk)/2 as operators on V®*. This proves the
first statement.

For the second statement, since (1 — &;,,)(1 — 0;,,) = { 0, ifi=mnorj=n,

1, otherwise,
(2kn—1 4+ —1))(vi, @ @V, @vy) = Z sij | (i, @+ ®@ v, @ vy)

n

= | D si(1=8m)(1 = 6jn) | (v, ® - @ vy, @ vy)

,j=1

n
= Z 8ijVis R X 8ijVsy X (1 — 5zn)(1 — 5jn)vn7
ij=1

= Z (1 - Ey — Ejj + Eij + Ejij)vy, @ --- @ (1 — By — Ejj + Egj + Eji)vg,

® (1= Eii — Ejj + EiiEjj)vn
= (D sij)(vi, @ @vi,) ® vy
i
+ Z 1= By — Ejj+ Eij + Eji)vi, @ - @ (1 = By — Ejj + Eij + Ej)vi, @ (—Eiyi — Ejj)op

711

+ Z (1—Ei — Ejj + Eij + Eji)vi, @ -+ @ (1 = By — Ejj + Eij + Eji)vi, ® Eii Ejjon,
i,j=1
The first sum is known to equal (2k,, + n)(v;;, ® --- @ v;,) by the computation proving the first
statement, and the last sum has only one nonzero term, the term corresponding to i = j = n.
Expanding the middle sum gives

Y Y Y (o)

SC{l ----- k+1} B1lyenny i 4,j=1 LES

LS (—n)EUBOED T <H5> (H %) Vi, ® - ®ui,)

1 Lel lele
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where the inner sum is over all I C {1,...,k+1} such that {k+1,(k+1)"} CTor {k+1,(k+1)'} C
I¢. As in part (a) this sum is treated in four cases: (1) when |S| = 0, (2) when I = SU S’ or
I=0,(3) when I = {£,0'} or I = {¢,0'}¢, and (4) the remaining cases. Since k + 1 € S, the first
case does not occur, and cases (2), (3) and (4) are as in part (a) giving

> —2n+ > (2nbs+2ps+2)+ Y <2n(—1)‘s‘bs+2ps+22(—1)‘s‘bs,{g}).

|S]=1 |S|=2 |S]>2 Les
k+les k+les k+1€s

Combining this with the terms (2k, +n)(v;, @ --- @ v;, ) ® v, and 1 ® (v;; ® -+ V@ vV;, @ vy,) gives
that 2k,-1 + (n —1) acts on v;, ® --- @ v;, as

(260 +1) +1=2n+2k+ > 2hg +2(n— (k+1) +[S])(~1)%bs.

[S]>2
k+1lesS

Thus k,—1 — Ky actson v;, ® --- V v;, as

1
5= +1-2n+2+ > 2g+2(n— (k+1)+[S)(-1)5lbs |,

5122

k+1es
so, as operators on V®* we have Zk+% = k+Zp+(kn_1—kn)—14n—k = Zp+(kn_1—kn)+n—1. By
the first statement in part (c) of this theorem we get Zy 1 = (kn — (5) +kn)+ (Kn—1—ky)+n—1=
Kp—1 — (g) +kn+n—1.1

Theorem 3.37. Let k € %ZZO and let n € C.
(a) The elements My, My, ..., My_ 1, My, all commute with each other in CAg(n).

(b) Assume that CAy(n) is semisimple. Let ju € Ay, so that p is a partition with < k boxes, and let
Al'(n) be the irreducible CAy(n)-module indexed by pi. Then there is a unique, up to multiplication
by constants, basis {vr | T € A%} of A¥(n) such that, for all T = (T, TG) ... T®) ¢ A% and
¢ € Z>¢ such that { <k,

TO )T D )pp, i TO/TED) =1
M, = C( T, ) .
o { (n— TNy, i TO =73,
and 1 1
(n — c(T(e)/T(f—&-g)))UT7 if T(@)/T(e-i-E) -0,
My, 1o = ' o s
: ’T()”UTa IfT():T( +2)7

where A/ denotes the box where A and p differ.

Proof. (a) View ZO,Z%,...,Zk € CAg. Then Zy, € Z(CAy), so ZyZy = ZyZy, for all 0 < ¢ < k.
Since My = Z; — Ze—%> we see that the M, commute with each other in CAy.

(b) The basis is defined inductively. If k = 0,1 or 1, then dim(Aj(n)) = 1, so up to a constant

there is a unique choice for the basis. For k > 1, we consider the restriction Resgﬁ’“(nl) (n)(Aﬁ(n)).
k=3

The branching rules for this restriction are multiplicity free, meaning that each CA;,_ 1 (n)-irreducible
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that shows up in Ag(n) does so exactly once. By induction, we can choose a basis for each
CAj_1(n)-irreducible, and the union of these bases forms a basis for A}(n). For ¢ < k, M, €

(CA,%% (n), so My acts on this basis as in the statment of the theorem. It remains only to check

the statement for M. Let k be an integer, and let A F n and v = (n — 1) such that A\s; = T*)
and ys1 = T(*=2). Then by Theorem 3.35(¢c), My = Z) — Zj,— 1 acts on vy by the constant,

(Zc(b) - <Z> +/-m> [ - <’;> YEhn—1] =c(\/y)+1,

beX bey

and My 1 = Z; 1 — Zk acts on vy € A2+%(n) by the constant

S e(b) - <;‘> Ykndn—1| - <Zc(b)— <Z> +/-m> = —c(\7)+n—1

bey bex
The result now follows from (3.23) and the observation that

o(T® ) Th=3)) — 1, if T*) = Tk+3) 4
n—|T®| -1, if T(F) = T(k+3),

) = {

4. The Basic Construction

In this section we shall assume that all algebras are finite dimensional algebras over an alge-
braically closed field F. The fact that F is algebraically closed is only for convenience, to avoid the
division rings that could arise in the decomposition of A just before (4.8) below.

Let A C B be an inclusion of algebras. Then B ®p B is an (A, A)-bimodule where A acts
on the left by left multiplication and on the right by right multiplication. Fix an (A, A)-bimodule
homomorphism

e:Bey B — A (4.1)

The basic construction is the algebra B ® 4 B with product given by
(b1 ® ba)(bs @ by) = by @ e(ba @ b3 )by, for by, b, b3,by € B. (4.2)
More generally, let A be an algebra and let L be a left A-module and R a right A-module. Let
e:L®r R — A, (4.3)
be an (A, A)-bimodule homomorphism. The basic construction is the algebra R® 4 L with product

given by
(7“1 ®€1)(T2 ®€2) =17 ®6(€1®T2)€2, for r1,79 € R and ¢1,¢5 € L. (44)

Theorem 4.18 below determines, explicitly, the structure of the algebra R ®4 L.
Let N = Rad(A) and let

A=A/N, L=L/NL, and R=R/RN (4.5)
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Define an (A, A)-bimodule homomorphism

. LegR — A
(4.6)

(@F +— e(l®r)

where / = (+ NL, 7 =r+ RN, and @ = a+ N, for £ € L,r € R and a € A. Then by basic
tensor product relations [Boul, Ch. II §3.3 Cor. to Prop. 2 and §3.6 Cor. to Prop. 6], the surjective
algebra homomorphism

m: R®aqaL — j?@?AAZ
B has ker(m) = R®a NL. (4.7)
re — rel

The algebra A is a split semisimple algebra (an algebra isomorphic to a direct sum of matrix
algebras). Fix an algebra isomorphism

A 5 P M, F)
MGA
aby Epg

where A is an index set for the components and E;Q is the matrix with 1 in the (P, Q) entry of
the pth block and 0 in all other entries. Also, fix isomorphisms

E%EBZ)M@)L“ and R = EBR“@ZM (4.8)
pEA pEA

where A" , € A, are the simple left A-modules, a" , € A, are the simple right A-modules, and
L* RF e A are vector spaces. The practical effect of this setup is that if R" is an index set for
a ba81s {TY]Y € R"} of R*, L* is an index set for a basis {£%|X € L*} of L*, and A" is an index
set for bases

@l | Qe At} of A" and @l | Pe Ar} of A" (4.9)
such that

a3 @ @y =0adrQadly and @hayr = drOps Tl (4.10)
then

L has basis {@/ @0 | nc A, Pc A" X € L"} and
B R R R (4.11)
R has basis {ry ® @ | p € A,Q € AMY € RM}.

With notations as in (4.9) and (4.11) the map & : L ®p R — A is determined by the constants
ehey € F given by
e(@oH @l @1y ® Th) =cyyapp (4.12)

and e’y does not depend on @ and P since
(@@ @) @ Th) = elagoTo @k @18 ® Thapy)
= aSQa( a Q @y @7k @ Th)ak, (4.13)

_ N S R
= 5>\HQSQ6XYCLQPQPT =E&xylgr-



PARTITION ALGEBRAS 33

For each p € A construct a matrix
£ = (hey) (4.14)

and let D" = (D%;) and C* = (C%y,) be invertible matrices such that D*E*CH is a diagonal
matrix with diagonal entries denoted e,

DHEFCH = diag(ely). (4.15)

In practice D* and C* are found by row reducing £# to its Smith normal form. The &% are the
invariant factors of EF. B B
For pe A, X € R*)Y € L*, define the following elements of R® 7 L,

My =rk@ahoah oy, and Ay = Y Ch (Diomb o (4.16)
Q1,Q>

Since
(ry®@ @y @ Ty l) =3 aTpapy ® Th )
= (1Y@ Tp @ apy Th @ 04) (4.17)

= 5/\M5WZ(7“§ ® 7?‘3 ® Wf‘g ® E%)

the element ', does not depend on P and {m’%, | p € A, X € R*,Y € L*} is a basis of R® 7 L.

The following theorem determines the structure of the algebras R ®4 L and R ® 4 L. This
theorem is used by W.P. Brown in the study of the Brauer algebra. Part (a) is implicit in [Bro1,§2.2]
and part (b) is proved in [Bro2].

Theorem 4.18. Let m: R 4L — R® ;L be as in (4.7) and let {k;} be a basis of ker(r) = R NL.
Let

nyp € R®a L be such that w(nk,) = iy,
where the elements ly.. € R ® ;5 L are as defined in (4.16).

(a) The sets {m'yy | p € A X € R)Y € L'} and {i%y | p € A, X € R*)Y € L'} (see (4.16))
are bases of R ® ;z L, which satisfy

A B =l A Sl Iy
MsrMop = OAuETQMsp and Nsriigp = OAudTQET s s

where ef., and €. are as defined in (4.12) and (4.15).
(b) The radical of the algebra R ® 4 L is

Rad(R ®4 L) = F-span{k;,nk-r | € = 0 or e, = 0}

and the images of the elements

M ey 1) o m
1 = T for e\, # 0 and €%, # 0,
T

are a set of matrix units in (R ®4 L)/Rad(R®4 L).
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Proof. The first statement in (a) follows from the equations in (4.17). If (C~1)* and (D~1)* are
the inverses of the matrices C* and D* then

Z(C_l)ljgs(D_l)l%yﬁXY: Z (C_l)l;(scglmeleD#/Qg(D_l)lfy
ny X7Y7Q17Q2

= Y 650.0quTMl, o, = Mr,
Q1,Q2
and so the elements m‘éT can be written as linear combinations of the fify,-. This establishes the
second statement in (a). By direct computation, using (4.10) and (4.12),
mgpmpyp = (r§ ® Ty @ Ty @ 0)(rh @ T @ aly @ 1)

=ry®@ Ay Qe(Ty @ @1y @ Wh)aly @ 1

= Sul(rs ® Ty ® gy, Ty @ 63)

= Ouero(rd ® Ty @ iy ® ) = SruepgMmisp,
and

A A A TR Y "
NsrNyvy = Z CleDTszQleCQsUDVQ4mQ3Q4
Q1,Q2,Q3,Q4

— A A H H Iy )
- Z 5/\NCQ1SDTQ26Q2Q3CQ3UDVQ4mQ1Q4
Q1,Q2,Q3,Q4
=0 D IruehCl s Do, mig,q, = Sndruehify.
Q1,Q4

(b) Let N = Rad(A) as in (4.5). If r; ® n1l1, 70 @nols € R®4 NL with ny € N? for some i € Z~
then

(T‘l (024 nlfl)(rg & n2£2) =T & E(Tllfl (024 7“2)’02(2 =T X n16(€1 (024 7"2)”2[2 € R ®A NH_IL.

Since N is a nilpotent ideal of A it follows that ker(7) = R ®4 NL is a nilpotent ideal of R ®4 L.
So ker(m) C Rad(R®4 L).

Let

I = F-span{k;,nf. | e, = 0 or i, = 0}.

The multiplication rule for the nyr implies that 7(I) is an ideal of R ®; L and thus, by the
correspondence between ideals of R ® ;5 L and ideals of R ® 4 L which contain ker(w), I is an ideal
of R®y L.

If 2y 1 Ay, s Py, p, € {yp | €y = 0 or e, = 0} then

T Y Bo—p o [N
Ny o,y = 5T1Y25Y2”Y1T2”Y3T3 = 5T1Y25T2Y35Y25T2”Y1T3 =0,

since e§. = 0 or ¢/, = 0. Thus any product nj. . n§. ~ n§. - of three basis elements of I is in
2 2 141 242 313

ker(7). Since ker(7) is a nilpotent ideal of R® 4 L it follows that I is an ideal of R ®4 L consisting

of nilpotent elements. So I C Rad(R®4 L).

Since
11 1
A PN A N A
eyreyy = —x p Ny TNUy = Oa0TU 5 ETNy Y = OaudTUeyy mod I,
% ETEY

the images of the elements €3 in (4.7) form a set of matrix units in the algebra (R®4 L)/I. Thus
(R®4 L)/I is a split semisimple algebra and so I O Rad(R®4 L). 1
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Basic constructions for A C B

Let A C B be an inclusion of algebras. Let e1 : B — A be an (A, A) bimodule homomorphism
and use the (A, A)-bimodule homomorphism

e: BB — A

4.19
b1 ®b2 — Sl(blbz) ( )

and (4.2) to define the basic construction B ® 4 B. Theorem 4.28 below provides the structure of
B ®4 B in the case that both A and B are split semisimple.
Let us record the following facts,

(4.20a) If pe A and pAp =Fp then (p®1)(B®a B)(p®1)=F-(p®1),

(4.20b) If p is an idempotent of A and pAp = Fp then ,(1) € F,

(4.20c) If p € A, pAp = Fp and if £1(1) # 0, then ﬁ(p@ 1) is a minimal idempotent in B® 4 B,
which are justified as follows. If p € A and pAp = Fp and by,bs € B then (p®1)(b1 @b2)(p®1) =
(p®e1(b1)b2)(p®1) = pRe1(b1)e1(bap) = pe1(b1)e1(b2)p®1 = {p®1, for some constant & € F. This
establishes (a). If p is an idempotent of A and pAp = Fp then pe;(1)p = e1(p?) = &1(1-p) = e1(1)p
and so (b) holds. If p € A and pAp = Fp then (p ® 1)? = &1(1)(p ® 1) and so, if £1(1) # 0, then
Tll)(p ® 1) is a minimal idempotent in B ®4 B.

Assume A and B are split semisimple. Let
A be an index set for the irreducible A-modules A*,
B be an index set for the irreducible B-modules B, and let
A# = { p—p } be an index set for a basis of the simple A-module A*,

for each p € A (the composite P—pu is viewed as a single symbol). We think of AH as the set of
“paths to ©” in the two level graph

Tr with vertices on level A: 121, vertices on level B: B , and (4.21)
m), edges p1 — X if A* appears with multiplicity m; in Resh (B). ’
For example, the graph T" for the symmetric group algebras A = CS3 and B = CS} is
If A € B then
A={pop—A|lpeA popeA* and yp — X is an edge in I'} (4.22)

is an index set for a basis of the irreducible B-module B*. We think of B* as the set of paths to
A in the graph I'. Let

{apq | 1€ A Py, p € A"} and {bpo | A€ B,P—pu— \,q-v — A e B}, (4.23)
0 [

A
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be sets of matrix units in the algebras A and B, respectively, so that

(lp'uQ(lST = (Suy(sQSCLF/;T and b]:ngT = 5)\0'5QS(5’YTbI;T’ (424)
A o A

and such that, for all p € /1, P,Q e /1“,

§ A
n A u)\u

where the sum is over all edges ;¢ — A in the graph T,

Though is not necessary for the following it is conceptually helpful to let C = B ® 4 B, let
C = A and extend the graph I' to a graph I’ with three levels, so that the edges between level B
and level C are the reflections of the edges between level A and level B. In other words,

A

T has vertices on level C: R C’, ~and R R (4.26)
an edge A\ — u, A€ B, u € C, for each edge u — A\, u € A, A € B. ’

For each v € C define

~ A A _ A'u,
peANeB vel, popc i %ﬂd}, (4.27)

¢ :{P_)MH)\HV uw— Xand A — v are edges in T’

so that CV is the set of “paths to v” in the graph I. Continuing with our previous example, I is
o1 ﬁ

¢: Tm g

A:

N

B :

Theorem 4.28. Assume A and B are split semisimple, and let the notations and assumption be
as in (4.21-4.25).

(a) The elements of B ® 4 B given by

bpr @bro
oy v v
A o

do not depend on the choice of T—vy € A" and form a basis of B® 4 B.
(b) For each edge u — X in I' define a constant 62 eF by

€1 <bpp) =) app (4.29)
Mo M
A
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Then 62 is independent of the choice of P—p € A and

(brr @ bro) (bax @ bxs) = G1x00rdurdspeS (bpr @ brs).
,u)\’y ’yay Tpﬂ' ﬂ'nf ﬂ:yﬂf 'an

Rad(B ®4 B) has basis {pr ®brq | 5;} =0ore) = O},
ny v
A o

and the images of the elements

1
epQ = <—U> (pr ® bTQ), such that Eﬁ # 0 and €9 # 0,

Hv €y By Y
Ao A o
v

form a set of matrix units in (B ®4 B)/Rad(B ®4 B).
(c) Let trg : B— F and trs : A — F be traces on B and A, respectively, such that

tra(e1(b)) = trp(b), for all b € B. (4.30)

Let X%, n € A, and X% A€ B, be the irreducible characters of the algebras A and B,
respectively. Define constants tr'y, u € A, and try, \ € B, by the equations

trg = Z trix’y  and  trp = Z X, (4.31)
HEA \eB

respectively. Then the constants 62 defined in (4.29) satisfy
try = 52 try.

(d) In the algebra B ®4 B,

I®l= Z bpp ®bpp
pio
v A v

n

AT >y

(g) By left multiplication, the algebra B 4 B is a left B-module. If Rad(B® 4 B) is a B-submodule
of By B and 1: B — (B®a B)/Rad(B ®4 B) is a left B-module homomorphism then

WoE
gl
Proof. By (4.11) and (4.25),
B = PAer B =~ Pred”
peA d veA 4.32
bPQ N 7p ® eHQ an bPQ N rIVD ® %Q ( )
['B% 1% I nv I'%% v

A A A A
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as left A-modules and as right A-modules, respectively. Identify the left and right hand sides of
these isomorphisms. Then, by (4.17), the elements of C' = B ® 4 B given by

me :7“73 ®<ET®7T®€’YQ :bPT®bTQ (433)
K wy v v Yv By yv
O by o A o
P

do not depend on T7— € A7 and form a basis of B ®4 B.
(b) By (4.12), the map e: B ®p B — A is determined by the values

ehg €F given by erQapp :E(E’p®€“T®r5 ®ap). (4.34)
YT yr M H ey T I
Ao Ao A o
1 p

Since
5;QQPP = 6(bPT ® bQP) =e1 (bPT ® bQP)
A ny o oTh ny o oTp
Ao A o A o
m
= orqe1(bpp) = 0rqe1(bppbpp) = 67qe's pap p.
YT R YT o YT oppp o K
Ao A Ao A A Ao AN

the matrix £* given by (4.14) is diagonal with entries 62 given by (4.15) and, by (4.17), 62 is
independent of p—p € A*. By Theorem 4.18(a),

MpQMRs = OyrEQRMP S = 0yr0Q RESMP 5
pv  TE vt MHE v T nE
AO pn o p AN ap AN
Y s vy Y Y

in the algebra C. The rese of the statements in part (b) follow from Theorem 4.18(b).
(c) Evaluating the equations in (4.31) and using (4.29) gives

try = trp(bpp) = tra(e1(bpp)) = eptralapp) = eptry, (4.35)
o o p
A A

(d) Since
1= Z bpp in the algebra B,
P u)\u

it follows from part (b) and (4.16) that

1®1= < Z bPP> ® < Z bQQ) = Z 5PQ5W(bPP ®bQQ) = Z m
Pou=r ' Q-v—y 5T pme N P
/'u\

A Y

giving part (d).
(e) By left multiplication, the algebra B ® 4 B is a left B-module. If 5;\ # 0 and €7 # 0 then

1 1
brsepq = <—0> bRS(bPT ®bTQ> = (7) 5SP<bRT ®bTQ> = 05 PERQ-
TB My €y TBN By Yv €5 Bu N Ty Yv Br TUv
T ANO ™ A o TA A o TN TO

Y Y
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Thus, if 1: B — (B ®4 B)/Rad(B ®4 B) is a left B-module homomorphism then

L<bRs> :L<bRs) 1=bgrs Z epp = Z dsperp = ZeRs- i

PP
T T T [ [T T
ﬂﬁ 7r18 7rﬁ P—p—A—y A\ P—p—A—y f)\ ™A = wg
0l 0l 2l

5. Semisimple Algebras

Let R be a integral domain and let Az be an algebra over R, so that Ar has an R-basis
{b1,...,bq},

d
Ap = Respan{by,...,bg}  and bib; = > rliby, with r¥ € R,
k=1

making Ag a ring with identity. Let F be the field of fractions of R, let F be the algebraic closure
of F and set - B
A=F®pr Ar = F-span{by,..., b4},

with multiplication determined by the multiplication in Ag. Then A is an algebra over F.
A trace on A is a linear map t: A — F such that

Ralag) = 'F((Iz(ll), for all a1, as € A.
A trace t on A is nondegenerate if for each b € A there is an a € A such that t(ba) # 0.

Lemma 5.1. Let A be a finite dimensional algebra over a field F, let t be a trace on A. Define a
symmetric bilinear form (,): A x A — F on A by (a1, as) = t(a1as), for all a1, as € A. Let B be a
basis of A. Let G = ({(b,b')) be the matrix of the form (,) with respect to B. The following

are equivalent:

b,b’eB

(1) The trace t is nondegenerate.
(2) detG # 0.
(3) The dual basis B* to the basis B with respect to the form (,) exists.

Proof. (2) < (1): The trace tis degenerate if there is an element a € A, a # 0, such that t(ac) = 0
for all ¢ € B. If a; € F are such that

a= Z apb, then 0= (a,c)= Z ap (b, c)

beB beB

for all ¢ € B. So a exists if and only if the columns of G are linearly dependent, i.e. if and only if
G is not invertible.

(3) & (2): Let B* = {b*} be the dual basis to {b} with respect to (,) and let P be the change
of basis matrix from B to B*. Then

d*=> Pgpb, and Gy =(b,d") =D Pulb,c)=(GP)..
beB deB

So P!, the transpose of P, is the inverse of the matrix G. So the dual basis to B exists if and only
if G is invertible, i.e. if and only if det G # 0. 1
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Proposition 5.2. Let A be an algebra and let t be a nondegenerate trace on A. Define a symmetric
bilinear form (,): Ax A — F on A by (a1,as) = t{aias), for all a,ay € A. Let B be a basis of A
and let B* be the dual basis to B with respect to ( , ).

(a) Let a € A. Then

[a] = Z bab* is an element of the center Z(A) of A
beB

and [a] does not depend on the choice of the basis B.
(b) Let M and N be A-modules and let ¢ € Homg (M, N) and define

6] = beb*.

beB

Then [¢p] € Homy (M, N) and [¢] does not depend on the choice of the basis B.

Proof. (a) Let ¢ € A. Then

cla] = Z cbab™ = Z Z(cb, d*)dab™ = Z da Z(d*c, b)b* = Z dad*c = [a]c,

beB beB deB deB  beB deB
since (cb, d*) = t{cbd*) = t(d*cb) = (d*c,b). So [a] € Z(A).

Let D be another basis of A and let D* be the dual basis to D with respect to (,). Let
P = (de) be the transition matrix from D to B and let P! be the inverse of P. Then

d= Z Pypb and d" = Z(P_l)l;dl;*’

beB beB
since
(d,d*) = <Z Pasb, Z<P1>acz5*> = Y Pa(P )30 = buq-
beB beB b,beB
So

> dad* =" Pubad (P7V)pb" = > bab*dy; = bab".

deD deD beB beB bﬁeB beB

So [a] does not depend on the choice of the basis B.
The proof of part (b) is the same as the proof of part (a) except with a replaced by ¢. 1

Let A be an algebra and let M be an A-module. Define
Enda(M)={T € End(M) | Ta = aT for all a € A}.

Theorem 5.3. (Schur’s Lemma) Let A be a finite dimensional algebra over an algebraically closed
field F.

(1) Let A* be a simple A-module. Then Enda(A*) = F - Id 4x.
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(2) If A* and A" are nonisomorphic simple A-modules then Hom(A*, A*) = 0.

Proof. Let T: A — A* be a nonzero A-module homomorphism. Since A* is simple, ker 7' = 0 and
so T is injective. Since A" is simple, imT = A* and so T is surjective. So T is an isomorphism.
Thus we may assume that T: A* — A*.

Since F is algebraically closed T has an eigenvector and a corresponding eigenvalue o € F.
Then T — « - Id € Homa(A*, A*) and so T — « - Id is either 0 or an isomorphism. However,
since det(T' — a - Id) = 0, T — « - Id is not invertible. So T'— «a-Id = 0. SoT = «a - Id. So
Endy(AY) =F - Id. 1

Theorem 5.4. (The Centralizer Theorem) Let A be a finite dimensional algebra over an al-
gebraically closed field F. Let M be a semisimple A-module and set Z = Ends(M). Suppose

that
M= G (ANFm™,
AEM

where M is an index set for the irreducible A-modules A which appear in M and the m, are
positive integers.

(a) 22 P My, (F).
xeM
(b) As an (A, Z)-bimodule
M= A2
AEM

where the Z*, \ € M, are the simple Z-modules.
Proof. Index the components in the decomposition of M by dummy variables € so that we may
write
m
M = EB @ AN ® eg\.
e =1

For each A\ € M, 1<14,7 <m, let (b;-\j: AN ® € — A* ® €; be the A-module isomorphism given by
gbg\j(m@e;‘):m@ef‘, for m € A*.

By Schur’s Lemma,
Enda(M) = Homa(M, M) = Homy [ P A 0}, P A" @ ¢!
A 7 o i

o EBEB(S)‘“HOHIA(A/\ ® 6;‘,14“ ® €el') = @ éné Ffﬁg\]

A 4, X d,=1
Thus each element z € End4 (M) can be written as

mx
_ PYSY AT
z = g g EATONE for some 27, € F,
AeM BI=1
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and identified with an element of @, M, (F). Since qbg\j P, = Oau0jk 07 it follows that

Enda(M) = € M, (F).

(b) As a vector space Z* = span{e!' | 1 <i < m,} is isomorphic to the simple @, M,,, (F)
module of column vectors of length m,,. The decomposition of M as A ® Z modules follows since

(a®¢f}-)(m®e£):5,\M5jk(a®€f)a forall m € A*, a € A, I

If A is an algebra then A°P is the algebra A except with the opposite multiplication, i.e.
AP ={a® |a€ A}  with  ajPas® = (a2a1)?, for all a;,as € A.

The left reqular representation of A is the vector space A with A action given by left multiplication.
Here A is serving both as an algebra and as an A-module. It is often useful to distinguish the two
roles of A and use the notation A for the A-module, i.e. A is the vector space

A={b|be A} with A-action ab = ab, forallae A, be A

Proposition 5.5. Let A be an algebra and let A be the regular representation of A. Then

-,

Ends(A) = A°P. More precisely,

End4(A) = {¢p | be A}, where ¢y, is given by ¢y(@) = ab, for all @ € A.

—,

Proof. Let ¢ € End4(A) and let b € A be such that ¢(1) = b. For all @ € A,

-, -,

6(@) = 9(a- 1) = ag(1) = ab = ab,

and so ¢ = ¢p. Then End4(A) = A°P since

(¢b1 o ¢b2)(6) = ab;bl = ¢b2b1 (C_’:)?
for all by,by € Aand @€ A. B

Theorem 5.6. Suppose that A is a finite dimensional algebra over an algebraically closed field F
such that the regular representation A of A is completely decomposable. Then A is isomorphic to
a direct sum of matrix algebras, i.e.

A= @ Ma, (F)>

A€A

for some set A and some positive integers dy, indexed by the elements of A.

Proof. 1f Ais completely decomposable then, by Theorem 5.4, FEnd A(/_f) is isomorphic to a direct
sum of matrix algebras. By Proposition 5.5,

AP = (B My, (F),

AeA
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for some set A and some positive integers dy, indexed by the elements of A. The map

(@AGA de(F))op - @/\EA iwdx(ﬁ?)

a — a’,

where a' is the transpose of the matrix a, is an algebra isomorphism. So A is isomorphic to a

direct sum of matrix algebras. I

If A is an algebra then the trace tr of the regular representation is the trace on A given by
tr(a) = Tr(A(a)), for a € A,

where ff(a) is the linear transformation of A induced by the action of a on A by left multiplication.

Proposition 5.7. Let A = @, 4 Ma, (F). Then the trace tr of the regular representation of A is
nondegenerate.

Proof. As A-modules, the regular representation

A= e,

AcA

where A* is the irreducible A-module consisting of column vectors of length dy. For a € A let
A*(a) be the linear transformation of A* induced by the action of a. Then the trace tr of the
regular representation is given by

A — F

A
A XA:
tr = E drxx", where a Tr(ANa)) ,

A€A

where Xﬁ are the irreducible characters of A. Since the d) are all nonzero the trace tr is nonde-
generate. i

Theorem 5.8. (Maschke’s theorem) Let A be a finite dimensional algebra over a field F such that
the trace tr of the regular representation of A is nondegenerate. Then every representation of A is
completely decomposable.

Proof. Let B be a basis of A and let B* be the dual basis of A with respect to the form (,): AxA — F
defined by
(a1,a2) = tr(aias), for all ai,as € A.

The dual basis B* exists because the trace tr is nondegenerate.
Let M be an A-module. If M is irreducible then the result is vacuously true, so we may
assume that M has a proper submodule N. Let p € End(M) be a projection onto N, i.e. pM = N

and p? = p. Let
[p)=> bpb*, and e=) bb".
beB beB

For all a € A,
tr(ea) = Z tr(bb*a) = Z(ab, b*) = Z ab|b = tr(a),

beB beB beB
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So tr((e — 1)a) = 0, for all a € A. Thus, since ¢r is nondegenerate, e = 1.

Let m € M. Then pb*m € N for all b € B, and so [pjm € N. So [p|M C N. Let n € N. Then
pb*n = b*n for all b € B, and so [pjn =en =1-n=n. So [p|M = N and [p]? = [p], as elements of
End(M).

Note that [1 —p] =[1] —[p] =e—[p] =1 —[p]. So

M =[p]M & (1—[p)M =N a1-plM,

and, by Proposition 5.2b, [1 — p|M is an A-module. So [1 — p]M is an A-submodule of M which
is complementary to M. By induction on the dimension of M, N and [1 — p|M are completely
decomposable, and therefore M is completely decomposable. 1

Together, Theorems 5.6, 5.8 and Proposition 5.7 yield the following theorem.

Theorem 5.9. (Artin-Wedderburn theorem) Let A be a finite dimensional algebra over an al-
gebraically closed field F. Let {by,...,b;} be a basis of A and let tr be the trace of the regular
representation of A. The following are equivalent:

(1) Every representation of A is completely decomposable.
(2) The regular representation of A is completely decomposable.
(3) A= @, 4 My, (F) for some finite index set A, and some dy € Zy.

(4) The trace of the regular representation of A is nondegenerate.
(5) det(tr(b;b;)) # 0.

Remark. Let R be an integral domain, and let Ag be an algebra over R with basis {by,...,bs}.
Then det(tr(b;b;)) is an element of R and det(tr(b;b;)) # 0 in F if and only if det(tr(b;b;)) # 0 in
R. In particular, if R = C[z], then det(tr(b;b;)) is a polynomial. Since a polynomial has only a
finite number of roots, det(tr(b;b;))(n) = 0 for only a finite number of values n € C.

Theorem 5.10. (Tits deformation theorem) Let R be an integral domain, F, the field of fractions
of R, F the algebraic closure of F, and R, the integral closure of R in F. Let Ar be an R-algebra
and let {b1,...,bq} be a basis of Ar. For a € Ap let /Y(a) denote the linear transformation of Ag
induced by left multiplication by a. Let t1,...,t; be indeterminates and let

plt1, .. tg;x) = det(z - Id — (1 A(by) + - - - t4A(ba))) € Rlt1, . . ., tq][z],

so that p is the characteristic polynomial of a “generic” element of Ag.
(a) Let AF = F (2973 AR- If
AF = @ de (F),

AEA
then the factorization of p(ty, ... ,tq, ) into irreducibles in F[ty,. .., tq, x| has the form
F= @,  with P E€R[t,... te,x]  and  dy=deg().

A€A

If xMty,...,tq) € R[t1,...,t4) is given by

ﬁk(t17' . ,td,.’l}') = md)\ - XA(tl, . ,td)md)‘il -+ .- -,
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then

G A —F -
A €4
arby + -+ agby — xMaa,...,aq),
are the irreducible characters of Ag.
(b) Let K be a field and let K be the algebraic closure of K. Let v: R — K be a ring homomorphism
and let 3: R — K be the extension of v. Let x*(t1,...,tq) € R[t1,...,tq] be as in (a). If Ag =
K ®pr AR is semisimple then

R Ag — K

Ap = My, (K), and K
K @ d)\( ) o1by + - Fagby — (’_}/XA)(al,...,de),

AeA
for A € A, are the irreducible characters of Ag.

Proof. First note that if {0/, ..., )} is another basis of Ar and the change of basis matrix P = (P;;)
is given by
b, = Z P;;b;  then the transformation ¢, = Z Pjjt;,

defines an isomorphism of polynomial rings R[t1,...,tq] = R[t},...,t}]. Thus it follows that if the
statements are true for one basis of Ap (or Az) then they are true for every basis of Ar (resp. Ag).

(a) Using the decomposition of Ag let {e}}, u € A,1 <i,j < dy} be a basis of matrix units in Az
and let t“ be corresponding variables. Then the decomposition of Az induces a factorization

A\d A
pth, =) = H(p IR where  pM(th;2) = det(z — Z ti; A% (eiz)) (5.11)
AeA Wi d
The polynomial §* (¢ T x) is irreducible since specializing the variables gives
74 (tﬁl ;= = 1,47, =t,t; ; = 0 otherwise; z) = ™ —t, (5.12)

which is irreducible in R[t; z]. This provides the factorization of 7’ and establishes that deg(p?) = d.
By (5.11)
) =0 A e
My,

which establishes the last statement. -

Any root of p(ty,...,tq,x) is an element of R[t1,...,ts] = Rlt1,...,tq]. So any root of
PMt1, ..., tg,x) is an element of R[t1,...,ts] and therefore the coefficients of Pty ... tg,x) (sym-
metric functions in the roots of p*) are elements of R[t1, ..., ).

(b) Taking the image of the equation (5.11) give a factorization of v(p),

@) = [[+@H*.,  mK,... tea].

AcA

For the same reason as in (5.12) the factors v(p*) are irreducible polynomials in K[t1, ..., ts,].
On the other hand, as in the proof of (a), the decomposition of Ag induces a factorization of
v(p) into irreducibles in K[t1,. .., t4, z]. These two factorizations must coincide, whence the result.
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Applying the Tits deformation theorem to the case where R = Clz] (so that F = C(x)) gives

the following theorem. The statement in (a) is a consequence of Theorem 5.6 and the remark which
follows Theorem 5.9.

Theorem 5.13. Let CA(n) be a family of algebras defined by generators and relations such that
the coefficients of the relations are polynomials in n. Assume that there is an o € C such that
CA(a) is semisimple. Let A be an index set for the irreducible CA(a)-modules A*(«). Then

(a) CA(n) is semisimple for all but a finite number of n € C.

(b) Ifn € C is such that CA(n) is semisimple then A is an index set for the simple CA(n)-modules

AMn) and dim(A*(n)) = dim(A*(«)) for each X € A.

(c) Let x be an indeterminate and let {by,...,bs} be a basis of C[z]A(z). Then there are poly-

[Boul]
[Bou2]
[Bra]

[Brol]
[Bro2]
[CPS]

[CR]

nomials x*(t1,...,tq) € Clty,...,tq,z], A € A, such that for every n € C such that CA(n) is
semisimple,

Xﬁ(n): CA(n) - C Ae A,
Ctlb1+"'+04dbd — XA(Oél,...,Ctd,n),

are the irreducible characters of CA(n).
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