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Abstract. This paper introduces calibrated representations for affine Hecke algebras and classifies
and constructs all finite dimensional irreducible calibrated representations. The primary technique
is to provide indexing sets for controlling the weight space structure of finite dimensional modules
for the affine Hecke algebra. Using these indexing sets we show that (1) irreducible calibrated
representations are indexed by skew local regions, (2) the dimension of an irreducible calibrated
representation is the number of chambers in the local region, (3) each irreducible calibrated repre-
sentation is constructed explicitly by formulas which describe the action of the generators of the
affine Hecke algebra on a specific basis in the representation space. The indexing sets for weight
spaces are generalizations of standard Young tableaux and the construction of the irreducible cal-
ibrated affine Hecke algebra modules is a generalization of A. Young’s seminormal construction
of the irreducible representations of the symmetric group. In this sense Young’s construction has
been generalized to arbitrary Lie type.

0. Introduction

The classical representation theory of the symmetric group, as developed by G. Frobenius and
A. Young [Yg1,2], has the following features:

(a) The irreducible representations Sλ of the symmetric group Sn are indexed by partitions λ
with n boxes,

(b) The dimension of Sλ is the number of standard tableaux of shape λ,

(c) The Sn-module has an elegant explicit construction: Sλ is the span of a basis {vT } parametrized
by standard tableaux T and the action of each generator of Sn is given by a simple formula,

sivT =
1

c(T (i))− c(T (i + 1))
vT +

(

1 +
1

c(T (i))− c(T (i + 1))

)

vsiT .

In this paper we prove analogous results for representations of affine Hecke algebras.

(A) The irreducible calibrated representations H̃(t,J) of the affine Hecke algebra H̃ are indexed by
skew local regions (t, J),

(B) The dimension of H̃(t,J) is the number of chambers in the local region (t, J),
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(C) The H̃-module H̃(t,J) has an elegant explicit construction: H̃(t,J) is the span of a basis
{vw | w ∈ F

(t,J)} parametrized by chambers in the local region and the action of each generator
of H̃ is given by a simple formula,

Xλvw = q〈λ,wγ〉vw,

Tivw =
q − q−1

1− t(Xw−1αi)
+

(

q−1 +
q − q−1

1− t(Xw−1αi)

)

vsiw.

In fact, the classical theory of standard Young tableaux and partitions is a special case of our theory
of chambers and local regions; this is proved in Sections 5 and 6 of this paper. Section 1 serves to
fix notations and fundamental data in the form which will need it. The bulk of this material can
be found in [Bou, Ch. IV-VI] and Steinberg’s Yale Lecture Notes [Sb1]. Two known results which
are included in Section 1 are: (a) the determination of the center of the affine Hecke algebra, and
(b) the Pittie-Steinberg theorem, which provides a nice basis for the affine Hecke algebra over its
center. In each case we have given an elementary proof, which, hopefully, illustrates the beautiful
simplicity of these powerful results. Section 2 treats the notion of weight spaces for affine Hecke
algebra representations and shows how certain combinatorially defined indexing sets F (t,J) give
explicit information about the weight space structure of affine Hecke algebra modules. Section 3
classifies and constructs all irreducible calibrated affine Hecke algebra modules (for any q such that
q2 6= ±1, including roots of unity). Section 4 gives the main results about the structure of the
labeling sets F (t,J) and defines a conjugation involution on them. Sections 5 and 6 show that the
classical theory of standard Young tableaux is very special case of the analysis of the combinatorial
structure of the sets F (t,J). Section 7 works out the generalized standard Young tableaux in the
type A, root of unity case. The resulting objects are ℓ-periodic standard Young tableaux. Section
8 describes how the generalized standard Young tableaux look in the type C, non root of unity
case. In this case the objects are negative rotationally symmetric standard Young tableaux. It
should not be difficult to work out similar explicit tableaux in terms of fillings of boxes in the other
classical types.

Let us put these results into perspective.

(1) p-adic groups and affine Hecke algebras.

The affine Hecke algebra was introduced by Iwahori and Matsumoto [IM] as a tool for studying the
representations of a p-adic Lie group. In some sense, all irreducible principal series representations
of the p-adic group can be determined by classifying the representations of the corresponding affine
Hecke algebra. Kazhdan and Lusztig [KL] (see also [CG]) gave a geometric classification of all irre-
ducible representations of the affine Hecke algebra. This classification is a q-analogue of Springer’s
construction of the irreducible representations of the Weyl group on the cohomology of unipotent
varieties. In the q-case, K-theory takes the place of cohomology and the irreducible representa-
tions of the affine Hecke algebra are constructed as quotients of the K-theory of the Steinberg
varieties. It is difficult to obtain combinatorial information from this geometric construction. So
the combinatorial approach in this paper gives new information.

(2) The theory of Young tableaux.

The word “Young tableau” is commonly used for three very different objects in representation
theory:

(1a) partitions with n boxes, which index representations of the symmetric group Sn,

(1b) partitions with ≤ n rows, which index the polynomial representations of GLn(C),

(2) standard tableaux, which label the basis elements of an irreducible representation of Sn,
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(3) column strict tableaux, which label the basis elements of an irreducible polynomial repre-
sentation of GLn(C).

The partitions in (1b) were generalized to all Lie types by H. Weyl in 1926, who showed that
finite dimensional irreducible representations of compact Lie groups are indexed by the dominant
integral weights. There was much important work generalizing the column strict tableaux in (3) to
other Lie types, for a survey of this work see [Su]. The problem of generalizing the column strict
tableaux in (3) to all Lie types was finally solved by the path model of Littelmann [Li1-2]. This
paper provides a generalization of the partitions of (1a) and the standard tableaux of (2) which are
valid for all Lie types. For important earlier work in this direction see [Mac, I App. B], Hoefsmit
[Ho], and Ariki and Koike [AK].

This paper is a revised, expanded, and updated version of the preprints [R2] and [R3].
The original preprints will not be published since the results there are contained in and ex-
panded in this paper. Those preprints will remain available at http://www.math.wisc.edu/~

ram/preprints.html.

Acknowledgements

During this work I have benefited from conversations with many people, including, but not
limited to, G. Benkart, H. Barcelo, P. Deligne, S. Fomin, T. Halverson, F. Knop, R. Macpherson,
R. Simion, L. Solomon, J. Stembridge, M. Vazirani, D.-N. Verma, and N. Wallach. I sincerely
thank everyone who has let me tell them my story. Every one of these sessions was helpful to me
in solidifying my understanding. I thank A. Kleshchev for thrilling energetic conversations which
pushed me to work the examples out carefully for type A root of unity case and I thank J. Olsson
for his wonderful gift to me of A. Young’s collected papers [Yg1].

1. The affine Hecke algebra

Though we shall never really use the data (G,B, T ) it is conceptually useful to note that there
is an affine Hecke algebra associated to each triple (G ⊇ B ⊇ T ) where

G is a connected reductive complex algebraic group,

B is a Borel subgroup,

T is a maximal torus.

An example of this data is when G = GLn(C), B is the subgroup of upper triangular invertible
matrices, and T is the subgroup of invertible diagonal matrices.

The reason that we can avoid the data (G ⊇ B ⊇ T ) is that it is equivalent to a different data
(W,C,L) where

W is a finite real reflection group with reflection representation h∗
R
,

C is a fixed fundamental chamber for the W -action,

L is a W -invariant lattice in h∗
R
.

This will be our basic data. In the example where G = GLn(C) and B and T are the upper
triangular and diagonal matrices, respectively,

W = Sn, h∗
R = R

n =

n∑

i=1

Rεi, C =
{

µ =

n∑

i=1

µiεi

∣
∣
∣ µ1 ≤ · · · ≤ µn

}

, L =

n∑

i=1

Zεi, (1.1)

where W = Sn is the symmetric group, acting on h∗
R

= Rn by permuting the orthonormal basis
ε1, . . . , εn. This example will be treated in depth in Sections 5, 6 and 7. We shall show that the
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labeling sets F (t,J) for weight spaces of affine Hecke algebra representations that are introduced
in (2.18) and Corollary 2.19 and used for the classification in Theorem 3.6 are generalizations of
standard Young tableaux.

The components W and L in the data (W,C,L) are obtained from (G ⊇ B ⊇ T ) by

W = N(T )/T, X = Hom(T, C∗) = {Xλ | λ ∈ L},

where N(T ) is the normalizer of T in G and Hom(T, C∗) is the set of algebraic group homo-
morphisms from T to C∗. The notation is designed so that the multiplication in the group X
is

XλXµ = Xλ+µ = XµXλ, for µ, λ ∈ L, (1.2)

see [CSM, III §8]. The reflection (or defining) representation of the group W is given by its action
on h∗

R
= R⊗Z L ∼= Rn and with respect to a W -invariant inner product 〈, 〉 on h∗

R
the group W is

generated by reflections sα in the hyperplanes

Hα = {x ∈ h∗
R | 〈x, α〉 = 0}, α ∈ R+. (1.3)

See the picture which appears just before Theorem 1.17. The chambers are the connected com-
ponents of h∗

R
−
(⋃

α∈R+ Hα

)
and these are the fundamental regions for the action of W on h∗

R
.

Fixing a choice of a fundamental chamber C corresponds to the choice of the set R+ of positive
roots, which corresponds to the choice of B in G.

In our formulation we may view the set R+ as a labeling set for the reflecting hyperplanes Hα

in h∗
R

so that

C = {x ∈ h∗
R | 〈x, α〉 > 0 for all α ∈ R+}. (1.4)

For a root α ∈ R, the positive side of the hyperplane Hα is the side towards C, i.e. {λ ∈ h∗
R
| 〈λ,α〉 >

0}, and the negative side of Hα is the side away from C.
For w ∈W , the inversion set of W is

R(w) = {α ∈ R+ | wα ∈ R−}, (1.5)

where R− = −R+. There is a bijection

W ←→ {fundamental chambers for W acting on h∗
R
}

w 7−→ w−1C
(1.6)

and the chamber w−1C is the unique chamber which is on the positive side of Hα for α 6∈ R(w)
and on the negative side of Hα for α ∈ R(w).

The simple roots α1, . . . , αn in R+ index the walls Hαi
of the fundamental chamber C and

the corresponding reflections s1, . . . sn generate W . In fact, W can be presented by generators
s1, s2, . . . , sn and relations

s2
i = 1, for 1 ≤ i ≤ n,

sisjsi · · ·
︸ ︷︷ ︸

mij factors

= sjsisj · · ·
︸ ︷︷ ︸

mij factors

, for i 6= j, (1.7)

where the (acute) angle π/mij between the hyperplanes Hαi
and Hαj

determines the value mij .
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Fix q ∈ C∗ with q2 6= ±1. The Iwahori-Hecke algebra H associated to (W,C) is the associative
algebra over C defined by generators T1, T2, . . . , Tn and relations

T 2
i = (q − q−1)Ti + 1, for 1 ≤ i ≤ n,

TiTjTi · · ·
︸ ︷︷ ︸

mij factors

= TjTiTj · · ·
︸ ︷︷ ︸

mij factors

, for i 6= j, (1.8)

where mij are the same as in the presentation of W . For w ∈ W define Tw = Ti1 · · · Tip
where

si1 · · · sip
= w is a reduced expression for w. By [Bou, Ch. IV §2 Ex. 23], the element Tw does

not depend on the choice of the reduced expression. The algebra H has dimension |W | and the
set {Tw}w∈W is a basis of H.

The affine Hecke algebra H̃ associated to (W,C,L) algebra given by

H̃ = C-span{TwXλ | w ∈W,Xλ ∈ X} (1.9)

where the multiplication of the Tw is as in the Iwahori-Hecke algebra H, the multiplication of the
Xλ is as in (1.2) and we impose the relation

XλTi = TiX
siλ + (q − q−1)

Xλ −Xsiλ

1−X−αi
, for 1 ≤ i ≤ n and Xλ ∈ X. (1.10)

This formulation of the definition of H̃ is due to Lusztig [Lu] following work of Bernstein and
Zelevinsky. The elements TwXλ, w ∈W , Xλ ∈ X, form a basis of H̃.

The group algebra of X,
C[X] = C-span{Xλ | λ ∈ L}, (1.11)

is a subalgebra of H̃ with a W -action obtained by linearly extending the W -action on X,

wXλ = Xwλ for w ∈W , Xλ ∈ X. (1.12)

Theorem 1.13. (Bernstein, Zelevinsky, Lusztig [Lu, 8.1]) The center of H̃ is C[X]W = {f ∈
C[X] | wf = f for all w ∈W}.

Proof. Assume

z =
∑

λ∈L,w∈W

cλ,wXλTw ∈ Z(H̃).

Let m ∈ W be maximal in Bruhat order subject to cγ,m 6= 0 for some γ ∈ L. If m 6= 1 there exists
a dominant µ ∈ L such that cγ+µ−mµ,m = 0 (otherwise cγ+µ−mµ,m 6= 0 for every dominant µ ∈ L,

which is impossible since z is a finite linear combination of XλTw). Since z ∈ Z(H̃) we have

z = X−µzXµ =
∑

λ∈L,w∈W

cλ,wXλ−µTwXµ.

Repeated use of the relation (1.10) yields

TwXµ =
∑

ν∈L,v∈W

dν,vX
νTv
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where dν,v are constants such that dwµ,w = 1, dν,w = 0 for ν 6= wµ, and dν,v = 0 unless v ≤ w. So

z =
∑

λ∈L,w∈W

cλ,wXλTw =
∑

λ∈L,w∈W

∑

ν∈L,v∈W

cλ,wdν,vX
λ−µ+νTv

and comparing the coefficients of XγTm gives cγ,m = cγ+µ−mµ,mdmµ,m. Since cγ+µ−mµ,m = 0 it
follows that cγ,m = 0, which is a contradiction. Hence z =

∑

λ∈L cλXλ ∈ C[X].
The relation (1.10) gives

zTi = Tiz = (siz)Ti + (q − q−1)z′

where z′ ∈ C[X]. Comparing coefficients of Xλ on both sides yields z′ = 0. Hence zTi = (siz)Ti,
and therefore z = siz for 1 ≤ i ≤ n. So z ∈ C[X]W .

It is often convenient to assume that W acts irreducibly on h∗
R

and that the lattice L is the
weight lattice

P = {x ∈ h∗
R | 〈x, α〉 ∈ Z for all α ∈ R+} =

n∑

i=1

Zωi, (1.14)

where the fundamental weights are the elements ω1, . . . , ωn of Rn given by

〈ωi, α
∨
j 〉 = δij , where α∨

i =
2αi

〈αi, αi〉
(1.15)

and δij is the Kronecker delta. Many facts are easier to state in this case and the general case can
always be reduced to this one. We will make some further remarks on this reduction at the end of
this section.

Consider the connected regions of the negative Shi arrangement A− ([Sh1-3], [St1-2], [AL]),
i.e. the arrangement of (affine) hyperplanes given by

A− = {Hα,Hα−δ | α ∈ R+} where
Hα = {x ∈ R

n | 〈x, α〉 = 0},

Hα−δ = {x ∈ R
n | 〈x, α〉 = −1},

(1.16)

Each chamber w−1C, w ∈ W , contains a unique region of A− which is a cone, and the vertex of
this cone is the point λw which appears in the following theorem.

Hα1 Hα2
Hα1+α2

Hα1+2α2

Hα1+2α2−δ

Hα1+α2−δHα2−δ Hα1−δ

Cs1C

s2C
s1s2C

s2s1C

s1s2s1C

s2s1s2C

• •

•

•

•

• •

•
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Theorem 1.17. [Sb3] Suppose that W acts irreducibly on h∗
R

and that X = {Xλ | λ ∈ P} where
P is the weight lattice. The algebra C[X] is a free C[X]W -module with

basis {Xλw | w ∈W}, where λw = w−1

(
∑

siw<w

ωi

)

.

Proof. The proof is accomplished by establishing three facts:

(a) Let fy, y ∈W , be a family of elements of Z[X]. Then det(zfy) is divisible by
∏

α∈R+

(Xα − 1)|W |/2.

(b) det
(
zXλy

)

z,y∈W
=
∏

α>0

(1−Xα)|W |/2.

(c) If f ∈ Z[X] then there is a unique solution to the equation

∑

w∈W

awXλw = f, with aw ∈ Z[X]W .

(a) For each α ∈ R+ subtract row zfy from row sαzfy. Then this row is divisible by (1 −
X−α). Since there are |W |/2 pairs of rows (zfy, sαzfy) the whole determinant is divisible by
(1−X−α)|W |/2. For α, β ∈ R+ the factors (1−X−α) and (1−X−β) are coprime, and so det(zfy)

is divisible by
∏

α∈R+

(1−X−α)|W |/2. This product and the product in the statement of (a) differ

by the unit (X2ρ)|W |/2 in Z[X].

(b) By (a), det(zXλy) is divisible by
∏

α∈R+

(Xα − 1)|W |/2. The top coefficient of det(zXλy ) is equal

to
∏

z∈W

zXλz =
∏

z∈W

∏

i

siz<z

Xωi =

n∏

i=1

X(|W |/2)ωi = (Xρ)|W |/2,

and the top coefficient of
∏

α∈R+

(Xα − 1)|W |/2 is (X2ρ)|W |/2.

(c) Assume that ay ∈ Z[X]W are solutions of the equation
∑

y∈W Xλy ay = f . Act on this equation
by the elements of W to obtain the system of |W | equations

∑

y∈W

(zXλy )ay = zf, z ∈W.

By (a) the matrix (zXλy)z,y∈W is invertible and so this system has a unique solution with ay ∈
Z[X]W . In fact, the ay can be obtained by Cramer’s rule. Cramer’s rule provides an expression
for ay as a quotient of two determinants. By (a) and (b) the denominator divides the numerator
to give an element of Z[X]. Since each determinant is an alternating function, the quotient is an
element of Z[X]W .

Remark. In [Sb2] Steinberg proves this type of result in full generality without the assumptions
that W acts irreducibly on h∗

R
and L = P . Note also that the proof given above is sketchy,

particularly in the aspect that the top coefficient of the determinant is what we have claimed it is.
See [Sb2] for a proper treatment of this point.
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(1.18) Deducing the H̃L representation theory from H̃P . It is often easier to work with
the representation theory of H̃ in the case when L = P . It is important to be able to convert from
this case to the case of a general lattice L. If W acts irreducibly on h∗

R
then the lattice L satisfies

Q ⊆ L ⊆ P, where P =
∑

i=1

Zωi and Q =
∑

i=1

Zαi

are the weight lattice and the root lattice respectively. The group Ω = P/Q is a finite group (either
cyclic or isomorphic to Z/2Z× Z/2Z). It corresponds to the center of the corresponding complex
algebraic group. Let us denote the corresponding affine Hecke algebras by

H̃Q ⊆ H̃L ⊆ H̃P ,

according which lattice is used to make the group X.

Theorem 1.19. [RR] Then there is an action of the finite group P/L on H̃P , by ring automor-
phisms, such that

H̃L = (H̃P )P/L = {h ∈ H̃P | gh = h for all g ∈ P/L},

is the subalgebra of fixed points under the action of the group P/L.

This theorem is exactly what is needed to apply a (not very well known) version of Clifford
theory to completely classify the representations of H̃L in terms of the representations of H̃P , see
[RR].

2. H̃-modules

(2.1) Weights. In view of the results in (1.18) we shall (for the remainder of this paper, except
sections 5, 6 and 7 where we use the data in (1.1)) assume that L = P in the definition of the
group X and H̃, see (1.2), (1.9) and (1.14). The Weyl group acts on

T = Hom(X, C∗) = {group homomorphisms t:X → C∗}, by (wt)(Xλ) = t(Xw−1λ).

Let M be a finite dimensional H̃-module and let t ∈ T . The t-weight space and the generalized
t-weight space of M are

Mt = {m ∈M | Xλm = t(Xλ)m for all Xλ ∈ X}, and

Mgen
t = {m ∈M | for each Xλ ∈ X, (Xλ − t(Xλ))km = 0 for some k ∈ Z>0},

respectively. Then

M =
⊕

t∈T

Mgen
t . (2.2)

is a decomposition of M into Jordan blocks for the action of C[X], and we say that t is a weight
of M if Mgen

t 6= 0. Note that Mgen
t 6= 0 if and only if Mt 6= 0. A finite dimensional H̃-module

M is calibrated if Mgen
t = Mt, for all t ∈ T .
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Remark. The term tame is sometimes used in place of the term calibrated particularly in the
context of representations of of Yangians, see [NT]. The word calibrated is preferable since tame
also has many other meanings in different parts of mathematics.

Let M be a simple H̃-module. As an X(T )-module, M contains a simple submodule and this
submodule must be one-dimensional since all irreducible representations of a commutative algebra
are one-dimensional. Thus, a simple module always has Mt 6= 0 for some t ∈ T .

(2.3) Central characters. The Pittie-Steinberg theorem, Theorem 1.17, shows that, as vector
spaces,

H̃ = H ⊗ C[X] = H ⊗ C[X]W ⊗K, where K = C-span{Xλw | w ∈ W},

and H is the Iwahori-Hecke algebra defined in (1.8). Thus H̃ is a free module over Z(H̃) = C[X]W

of rank dim(H) ·dim(K) = |W |2. By Dixmier’s version of Schur’s lemma (see [Wa, Lemma 0.5.1]),
Z(H̃) acts on a simple H̃-module by scalars and so it follows that every simple H̃-module is finite
dimensional of dimension ≤ |W |2. Theorem 2.12(d) below will show that, in fact, the dimension
of a simple module is ≤ |W |.

Let M be a simple H̃-module. The central character of M is an element t ∈ T such that

pm = t(p)m, for all m ∈M, p ∈ C[X]W = Z(H̃).

The element t is only determined up to the action of W since t(p) = wt(p) for all w ∈W . Because
of this, any element of the orbit Wt is referred to as the central character of M .

Because P = L in the construction of X, a theorem of Steinberg [Sb2, 3.15, 4.2, 5.3] tells us
that the stabilizer Wt of a point t ∈ T under the action of W is the reflection group

Wt = 〈sα | α ∈ Z(t)〉, where Z(t) = {α ∈ R+ | t(Xα) = 1}.

Thus the orbit Wt can be viewed in several different ways via the bijections

Wt←→W/Wt ←→ {w ∈ W | R(w) ∩ Z(t) = ∅} ←→

{
chambers on the positive
side of Hα for α ∈ Z(t)

}

, (2.4)

where the last bijection is the restriction of the map in (1.6). If the root system Z(t) is generated by
the simple roots αi that it contains then Wt is a parabolic subgroup of W and {w ∈W |R(w)∩Z(t)}
is the set of minimal length coset representatives of the cosets in W/Wt.

(2.5) Principal series modules. For t ∈ T let Cvt be the one-dimensional C[X]-module given
by

Xλvt = t(Xλ)vt, for Xλ ∈ X.

The principal series representation M(t) is the H̃-module defined by

M(t) = H̃ ⊗C[X] Cvt = IndH̃
C[X](Cvt). (2.6)

The module M(t) has basis {Tw ⊗ vt | w ∈W} with H acting by left multiplication.
If w ∈W and Xλ ∈ X then the defining relation (1.10) for H̃ implies that

Xλ(Tw ⊗ vt) = t(Xwλ)(Tw ⊗ vt) +
∑

u<w

au(Tu ⊗ vt), (2.7)
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where the sum is over u < w in the Bruhat-Chevalley order and au ∈ C. Let Wt = Stab(t) be the
stabilizer of t under the W -action. It follows from (2.7) that the eigenvalues of X on M(t) are of
the form wt, w ∈W , and by counting the multiplicity of each eigenvalue we have

M(t) =
⊕

wt∈Wt

M(t)genwt where dim(M(t)genwt ) = |Wt|, for all w ∈W . (2.8)

In particular, if t is regular (i.e. when Wt is trivial), there is a unique basis {vwt | w ∈W} of M(t)
determined by

Xλvwt = (wt)(Xλ)vwt, for all w ∈ W and λ ∈ P ,

vwt = Tw ⊗ vt +
∑

u<w

awu(t)(Tu ⊗ vt), where awu(t) ∈ C. (2.9)

Let t ∈ T . The spherical vector in M(t) is

1t =
∑

w∈W

qℓ(w)Tw ⊗ vt. (2.10)

Up to multiplication by constants this is the unique vector in M(t) such that Tw1t = qℓ(w)1t for
all w ∈W . The following is due to Kato, [Kt1, Proposition 1.20 and Lemma 2.3].

Proposition 2.11. Let t ∈ T and let Wt be the stabilizer of t under the W -action.

(a) If Wt = {1} and vwt, w ∈W is the basis of M(t) defined in (2.9) then

1t =
∑

z∈W

t(cz), where cz =
∏

α∈R(w0z)

q − q−1Xα

1−Xα
.

(b) The spherical vector 1t generates M(t) if and only if t

(
∏

α∈R+

(q−1 − qXα)

)

6= 0.

(c) The module M(t) is irreducible if and only if 1wt generates M(wt) for all w ∈W .

Proof. The proof is accomplished in exactly the same way as done for the graded Hecke algebra in
[KR, Proposition 2.8]. The only changes which need to be made to [KR] are

(1) Use Ti

(
∑

w∈W

qℓ(w)Tw

)

= q

(
∑

w∈W

qℓ(w)Tw

)

and 1t =

(
∑

w∈W

qℓ(w)Tw

)

vt and the τ -operators

defined in Proposition 2.14 for the proof of (a). (We have included this result in this section
since it is really a result about the structure of principal series modules. Though the proof
uses the τ -operators, which we will define in the next section, there is no logical gap here.)

(2) For the proof of (b) use the Steinberg basis {Xλy | y ∈W} and the determinant det(Xz−1λy)
from Theorem 1.17(b) in place of the basis {by | w ∈W} and the determinant used in [KR].

Part (b) of the following theorem is due to Rogawski [Rg, Proposition 2.3] and part (c) is due
to Kato [Kt1, Theorem 2.1]. Parts (a) and (d) are classical.

Theorem 2.12. Let t ∈ T and w ∈W and define P (t) = {α ∈ R+ | t(Xα) = q±2}.
(a) If Wt = {1} then M(t) is calibrated.
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(b) M(t) and M(wt) have the same composition factors.

(c) M(t) is irreducible if and only if P (t) = ∅.
(d) If M is a simple H̃-module with Mt 6= 0 then M is a quotient of M(t).

Proof. (a) follows from (2.8) and the definition of calibrated. Part (b) accomplished exactly as
in [KR, Proposition 2.8] and (c) is a direct consequence of the definition of P (t) and Proposition
2.11.

(d) Let mt be a nonzero vector in Mt. If vt is as in the construction of M(t) in (2.6) then, as
C[X]-modules, Cmt

∼= Cvt. Thus, since induction is the adjoint functor to restriction there is a
unique H̃-module homomorphism given by

φ: M(t) −→ M
vt 7−→ mt

This map is surjective since M is irreducible and so M is a quotient of M(t).

(2.13) The τ operators. The following proposition defines maps τi:M
gen
t →Mgen

sit
on general-

ized weight spaces of finite dimensional H̃-modules M . These are “local operators” and are only
defined on weight spaces Mgen

t such that t(Xαi) 6= 1. In general, τi does not extend to an operator
on all of M .

Proposition 2.14. Fix i, let t ∈ T be such that t(Xαi) 6= 1 and let M be a finite dimensional
H̃-module. Define

τi: Mgen
t −→ Mgen

sit

m 7−→

(

Ti −
q − q−1

1−X−αi

)

m.

(a) The map τi:M
gen
t −→Mgen

sit is well defined.

(b) As operators on Mgen
t , Xλτi = τiX

siλ, for all Xλ ∈ X.

(c) As operators on Mgen
t , τiτi =

(q − q−1Xαi)(q − q−1X−αi)

(1−Xαi)(1−X−αi)
.

(d) Both maps τi:M
gen
t →Mgen

sit and τi:M
gen
sit →Mgen

t are invertible if and only if t(Xαi) 6= q±2.

(e) Let 1 ≤ i 6= j ≤ n and let mij be as in (1.7). Then

τiτjτi · · ·
︸ ︷︷ ︸

mij factors

= τjτiτi · · ·
︸ ︷︷ ︸

mij factors

,

whenever both sides are well defined operators on Mgen
t .

Proof. (a) The element Xαi acts on Mgen
t by t(Xαi) times a unipotent transformation. As an

operator on Mgen
t , 1 − X−αi is invertible since it has determinant (1 − t(X−αi))d where d =

dim(Mgen
t ). Since this determinant is nonzero (q− q−1)/(1−X−αi) = (q− q−1)(1−X−αi)−1 is a

well defined operator on Mgen
t . Thus the definition of τi makes sense.
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Since (q − q−1)/(1 − X−αi) is not an element of H̃ or C[X] it should be viewed only as an
operator on Mgen

t in calculations. With this in mind it is straightforward to use the defining
relation (1.10) to check that

Xλτim = Xλ

(

Ti −
q − q−1

1−X−αi

)

m =

(

Ti −
q − q−1

1−X−αi

)

Xsiλm = τiX
siλm, and

τiτim =

(

Ti −
q − q−1

1−X−αi

)(

Ti −
q − q−1

1−X−αi

)

m =
(q − q−1Xαi)(q − q−1X−αi)

(1−Xαi)(1−X−αi)
m,

for all m ∈Mgen
t and Xλ ∈ X. This proves (a), (b) and (c).

(d) The operator Xαi acts on Mgen
t as t(Xαi) times a unipotent transformation. Similarly for X−αi .

Thus, as an operator on Mgen
t det((q − q−1Xαi)(q − q−1X−αi)) = 0 if and only if t(Xαi) = q±2.

Thus part (c) implies that τiτi, and each factor in this composition, is invertible if and only if
t(Xαi) 6= q±2.

(e) Let t ∈ T be regular. By part (a), the definition of the τi, and the uniqueness in (2.9), the
basis {vwt}w∈W of M(t) in (2.9) is given by

vwt = τwvt, (2.15)

where τw = τi1 · · · τip
for a reduced word w = si1 · · · sip

of w. Use the defining relation (1.10) for

H̃ to expand the product of τi and compute

vw0t = · · · τiτjτi
︸ ︷︷ ︸

mij factors

vt = · · · TiTjTi
︸ ︷︷ ︸

mij factors

vt +
∑

w<w0

TwPwvt = Tw0
⊗ vt +

∑

w<w0

t(Pw)Tw ⊗ vt

= · · · τjτiτj
︸ ︷︷ ︸

mij factors

vt = · · · TjTiTj
︸ ︷︷ ︸

mij factors

vt +
∑

w<w0

TwQwvt = Tw0
⊗ vt +

∑

w<w0

t(Qw)Tw ⊗ vt

where Pw and Qw are rational functions in the Xλ. By the uniqueness in (2.9), t(Pw) = aw0w(t) =
t(Qw) for all w ∈ W , w 6= w0. Since the values of Pw and Qw coincide on all generic points t ∈ T
it follows that

Pw = Qw for all w ∈ W , w 6= w0. (2.16)

Thus,

· · · τiτjτi
︸ ︷︷ ︸

mij factors

= Tw0
+
∑

w<w0

TwPw = Tw0
+
∑

w<w0

TwQw = · · · τjτiτj
︸ ︷︷ ︸

mij factors

,

whenever both sides are well defined operators on Mgen
t .

Let t ∈ T and recall that

Z(t) = {α ∈ R+ | t(Xα) = 1} and P (t) = {α ∈ R+ | t(Xα) = q±2}. (2.17)

If J ⊆ P (t) define

F (t,J) = {w ∈W | R(w) ∩ Z(t) = ∅, R(w) ∩ P (t) = J}. (2.18)

We say that the pair (t, J) is a local region if F (t,J) 6= ∅. Under the bijection (2.4) the set F (t,J)

maps to the set of chambers whose union is the set of points x ∈ h∗
R

which are
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(a) on the positive side of the hyperplanes Hα for α ∈ Z(t),
(b) on the positive side of the hyperplanes Hα for α ∈ P (t)\J ,
(c) on the negative side of the hyperplanes Hα for α ∈ J .

See the picture in Example 4.11(d). In this way the local region (t, J) really does correspond to a
region in h∗

R
. This is a connected convex region in h∗

R
since it is cut out by half spaces in h∗

R
∼= Rn.

The elements w ∈ F (t,J) index the chambers w−1C in the local region and, as J runs over the
subsets of P (t), the sets F (t,J) form a partition of the set {w ∈ W | R(w) ∩ Z(t) = ∅} (which, by
(2.4), indexes the cosets in W/Wt).

Corollary 2.19. Let M be a finite dimensional H̃-module. Let t ∈ T and let J ⊆ P (t). Then

dim(Mgen
wt ) = dim(Mgen

w′t ), for w,w′ ∈ F (t,J).

Proof. Suppose w, siw ∈ F
(t,J). We may assume that siw > w. Then α = w−1αi > 0, α 6∈ R(w)

and α ∈ R(siw). Now, R(w) ∩ Z(t) = R(siw) ∩ Z(t) implies t(Xα) 6= 1, and R(w) ∩ P (t) implies

t(Xα) 6= q±2. Since wt(Xαi) = t(Xw−1αi) = t(Xα) 6= 1 and wt(Xαi) 6= q±2 and thus, by
Proposition 2.14(d), the map τi:M

gen
wt → Mgen

siwt is well defined and invertible. It remains to note

that if w,w′ ∈ F (t,J), then w′ = si1 · · · siℓ
w where sik

· · · siℓ
w ∈ F (t,J) for all 1 ≤ k ≤ ℓ. This

follows from the fact that F (t,J) corresponds to a connected convex region in h∗
R
.

3. Classification of calibrated representations

For simple roots αi and αj in R and let Rij be the rank two root subsystem of R generated
by αi and αj . A weight t ∈ T is calibratable if, for every pair i, j, i 6= j, t is a weight of a calibrated
representation of the rank two affine Hecke (sub)algebra generated by Ti, Tj and C[X]. A local
region

(t, J) is skew if wt is calibratable for all w ∈ F (t,J).

The classification of irreducible representations of rank two affine Hecke algebras given in [R1] can
be used to state this condition combinatorially. Specifically, a weight t ∈ T is calibratable if

(a) For all simple roots αi, 1 ≤ i ≤ n, t(Xαi) 6= 1, and

(b) For all pairs of simple roots αi and αj such that {α ∈ Rij | t(X
α) = 1} 6= ∅,

the set {α ∈ Rij | t(X
α) = q±2} contains more than two elements.

Condition (a) says that t is regular for all rank 1 subsystems of R generated by simple roots. This
condition guarantees that the weight is “calibratable” (i.e. appears as a weight of some calibrated
representation) for all rank 1 affine Hecke subalgebras of H̃. Condition (b) is an “almost regular”
condition on t with respect to rank 2 subsystems generated by simple roots.

Remark. The conversion between the definition of calibratable weight and the combinatorial
condition given in (a) and (b) is as follows. Consider a rank two affine Hecke algebra H̃.
(A) By Theorem 2.12(a) and Theorem 2.12(d), local regions (t, J) with t regular satisfy (a) and

(b) and always contribute calibrated representations of H̃ .
(B) Using the notation of [R1], the local regions (t, J) with t nonregular and which satisfy both

conditions (a) and (b) are
Type A2: none,
Type C2: (tb, {α1}) and (tb, {α1, α1 + α2}) (for each of these P (t) contains 3 elements),
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Type G2: (te, J) with J 6= ∅ and J 6= P (te) (for each of these P (te) contains 4 elements).

From (A) and (B) it follows that the local regions which satisfy (a) and (b) do contribute calibrated
weights. The following shows that the other local regions don’t contribute calibratable weights.
(C) By Lemma 3.1(a) local regions (t, J) with a weight ξ = wt, w ∈ F (t,J) such that ξ(Xαi) = 1

don’t satisfy (a) and, by inspection of the tables in [R1], they never contribute a calibrated
representation.

(D) Using the notation of [R1], the local regions which satisfy condition (a) but not condition (b)
are

Type A2: (tc, {α2}) and (td, {α1})
Type B2: (td, {α2})
Type G2: (ti, {α2}), (tf , {α1}),

(note that to satisfy (b) Z(t) must be nonempty). From the tables in [R1] we see that none of
these local regions supprts a calibrated representation.

Remark. The paper [R1] does not treat roots of unity. However, it is interesting to note that,
provided q2 6= ±1, the methods of [R1] go through without change to classify all representations
of rank two affine Hecke algebras even when q2 is a root of unity. This classification can be used
(as in the previous remark) to show that (a) and (b) above still characterize calibratable weights
when q2 is a root of unity such that q2 6= ±1. The key point is that Lemma 1.19 of [R1] still
holds. If q2 = −1 then Lemma 1.19 of [R1] breaks down at the next to last line of the proof in the
statement “. . . forces φ(wt(Tj) to have Jordan blocks of size 1 . . .”. When q2 = −1 it is possible
that φ(wt(Tj)) has a Jordan block of size 2. If q2 = 1 then one can change the definition of the

τ -operators and use similar methods to produce a complete analysis of simple H̃-modules, but we
shall not do this here, choosing instead to exclude the case q2 = 1 for simplicity of exposition.

The following lemma provides fundamental results about the structure of irreducible calibrated
H̃-modules. We omit the proof since it is accomplished in exactly the same way as in [KR, Lemma
4.1 and Lemma 4.2].

Lemma 3.1. Let M be an irreducible calibrated module. Then, for all t ∈ T such that Mt 6= 0,

(a) If t ∈ T such that Mt 6= 0 then t(Xαi) 6= 1 for all 1 ≤ i ≤ n.

(b) If t ∈ T such that Mt 6= 0 then dim(Mt) = 1.

(c) If t ∈ T such that both Mt and Msit are both nonzero then the map τi:Mt → Msit is a
bijection.

This lemma together with the classification of irreducible modules for rank two affine Hecke
algebras gives the following fundamental structural result for irreducible calibrated H̃-modules.
The proof is essentially the same as the proof of Proposition 4.3 in [KR]. We repeat the proof here
for continuity.

Theorem 3.2. If M is an irreducible calibrated H̃-module with central character t ∈ T then there
is a unique skew local region (t, J) such that

dim(Mwt) =

{

1, for all w ∈ F (t,J),
0 otherwise.

Proof. By Lemma 3.1b all nonzero generalized weight spaces of M have dimension 1 and by Lemma
3.1c all τ -operators between these weight spaces are bijections. This already guarantees that there
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is a unique local region (t, J) which satisfies the condition. It only remains to show that this local
region is skew.

Let H̃ij be the subalgebra generated by Ti, Tj and C[X]. Since M is calibrated as an H̃-module

it is calibrated as a H̃ij-module and so all factors of a composition series of M as an H̃ij-module
are calibrated. Thus the weights of M are calibratable. So (t, J) is a skew local region.

The following Proposition shows that the weight space structure of calibrated representations,
as determined in Theorem 3.2, essentially forces the H̃-action on a weight basis. The proof is quite
similar to the proof of Proposition 4.4 in [KR]. However, we include the details since there is a
technicality here; to make the conclusion in (3.4) we use the fact that the group X corresponds to
the weight lattice L = P .

Proposition 3.3. Let M be a calibrated H̃-module and assume that for all t ∈ T such that
Mt 6= 0,

(A1) t(Xα
i ) 6= 1 for all 1 ≤ i ≤ n, and (A2) dim(Mt) = 1.

For each b ∈ T such that Mb 6= 0 let vb be a nonzero vector in Mb. The vectors {vb} form a basis
of M . Let (Ti)cb ∈ C and b(Xλ) ∈ C be given by

Tivb =
∑

c

(Ti)cbvc and Xλvb = b(Xλ)vb.

Then

(a) (Ti)bb =
q − q−1

1− b(X−αi)
, for all vb in the basis,

(b) If (Ti)cb 6= 0 then c = sib,

(c) (Ti)b,sib(Ti)sib,b = (q−1 + (Ti)bb)(q
−1 + (Ti)sib,sib).

Proof. The defining equation for H̃,

XλTi − TiX
siλ = (q − q−1)

Xλ −Xsiλ

1−X−αi
,

forces
∑

c

(
c(Xλ)(Ti)cb − (Ti)cbb(X

siλ)
)
vc = (q − q−1)

b(Xλ)− b(Xsiλ)

1− b(X−αi)
vb

Comparing coefficients gives

c(Xλ)(Ti)cb − (Ti)cbb(X
siλ) = 0, if b 6= c, and

b(Xλ)(Ti)bb − (Ti)bbb(X
siλ) = (q − q−1)

b(Xλ)− b(Xsiλ)

1− b(X−αi)
.

These relations give:

If (Ti)cb 6= 0 then b(Xsiλ) = c(Xλ) for all Xλ ∈ X, and

(Ti)bb =
q − q−1

1− b(X−αi)
if b(X−αi) 6= 1 and b(Xλ) 6= b(Xsiλ) for some Xλ ∈ X.
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By assumption (A1), b(Xαi) 6= 1 for all i. For each fundamental weight ωi, Xωi ∈ X and
b(Xsiωi) = b(Xωi−αi) 6= b(Xωi) since b(Xαi) 6= 1. Thus we conclude that

Tivb = (Ti)bbvb + (Ti)sib,bvsib, with (Ti)bb =
q − q−1

1− b(X−αi)
. (3.4)

This completes the proof of (a) and (b). By the definition of H̃ the vector

T 2
i vb = ((Ti)

2
bb + (Ti)b,sib(Ti)sib,b)vb + ((Ti)bb + (Ti)sib,sib)(Ti)sib,bvsib

must equal

((q − q−1)Ti + 1)vb = ((q − q−1)(Ti)bb + 1)vb + (q − q−1)(Ti)sib,bvsib.

Using the formula for (Ti)bb and (Ti)sib,sib we find (Ti)bb +(Ti)sib,sib = (q−q−1). So, by comparing
coefficients of vb, we obtain the equation

(Ti)b,sib(Ti)sib,b = (q − (Ti)bb)((Ti)bb + q−1) = (q−1 + (Ti)bb)(q
−1 + (Ti)sib,sib).

Theorem 3.5. Let (t, J) be a skew local region and let F (t,J) index the chambers in the local
region (t, J). Define

H̃(t,J) = C-span{vw | w ∈ F
(t,J)},

so that the symbols vw are a labeled basis of the vector space H̃(t,J). Then the following formulas
make H̃(t,J) into an irreducible H̃-module: For each w ∈ F (t,J),

Xλvw = (wt)(Xλ)vw, for Xλ ∈ X, and

Tivw = (Ti)wwvw + (q−1 + (Ti)ww)vsiw, for 1 ≤ i ≤ n,

where (Ti)ww =
q − q−1

1− (wt)(X−αi)
, and we set vsiw = 0 if siw 6∈ F

(t,J).

Proof. Since (t, J) is a skew local region (wt)(X−αi) 6= 1 for all w ∈ F (t,J) and all simple roots αi.
This implies that the coefficient (Ti)ww is well defined for all i and w ∈ F (t,J).

By construction, the nonzero weight spaces of H̃(t,J) are (H̃(t,J))genwt = (H̃(t,J))wt where w ∈
F (t,J). Since dim(H̃(t,J)) = 1 for u ∈ F (t,J), any proper submodule N of H̃(t,J) must have Nwt 6= 0
and Nw′t = 0 for some w 6= w′ with w,w′ ∈ F (t,J). This is a contradiction to Corollary 2.19. So
H̃(t,J) is irreducible if it is an H̃-module.

It remains to show that the defining relations for H̃ are satisfied. This is accomplished as in
the proof of [KR, Theorem 4.5]. The only relation which is tricky to check is the braid relation.
This can be verified as in [KR] or it can be checked by case by case arguments (as in [R2]).

We summarize the results of this section with the following corollary of Theorem 3.2 and the
construction in Theorem 3.5.

Theorem 3.6. Let M be an irreducible calibrated H̃-module. Let t ∈ T be (a fixed choice of) the
central character of M and let J = R(w) ∩ P (t) for any w ∈W such that Mwt 6= 0. Then (t, J) is
a skew local region and M ∼= H̃(t,J) where H̃(t,J) is the module defined in Theorem 3.5.

4. The structure of local regions



affine hecke algebras 17

Recall that the Weyl group acts on

T = Hom(X, C∗) = {group homomorphisms t:X → C∗}, by (wt)(Xλ) = t(Xw−1λ).

Any element t ∈ T is determined by the values t(Xω1), t(Xω2), . . . , t(Xωn). For t ∈ T define the
polar decomposition

t = trtc, tr, tc ∈ T such that tr(X
λ) ∈ R>0, and |tc(X

λ)| = 1,

for all Xλ ∈ X. There is a unique γ ∈ Rn and a unique ν ∈ Rn/P such that

tr(X
λ) = e〈γ,λ〉 and tc(X

λ) = e2πi〈ν,λ〉, for all λ ∈ P . (4.1)

In this way we identify the sets Tr = {t ∈ T | t = tr} and Tc = {t ∈ T | t = tc} with h∗
R

and h∗
R
/P ,

respectively.
For this paragraph (our goal here is (4.3) below) assume that q is not a root of unity (we will

treat the type A, root of unity case in detail in §7). The representation theory of H̃ is “the same”
for any q which is not a root of unity i.e., provided q is not a root of unity, the classification and
construction of simple H̃-modules can be stated uniformly in terms of the parameter q. Suppose
t ∈ T is such that t = tr and γ ∈ h∗

R
is such that

t = eγ , in the sense that t(Xλ) = e〈γ,λ〉, for all Xλ ∈ X.

For the purposes of representation theory (as in Theorem 3.5) t indexes a central character and so
we should assume that γ is chosen nicely in its W -orbit. When

q = e and γ is dominant, i.e. 〈γ, α〉 ≥ 0 for all α ∈ R+, (4.2)

then

Z(t) = Z(γ), P (t) = P (γ), and F (t,J) = F (γ,J) for a subset J ⊆ P (t),

where
Z(γ) = {α ∈ R+ | 〈γ, α〉 = 0}, and P (γ) = {α ∈ R+ | 〈γ, α〉 = 1}

F (γ,J) = {w ∈W | R(w) ∩ Z(γ) = ∅, R(w) ∩ P (γ) = J}. (4.3)

In this case the combinatorics of local regions is a new chapter in the combinatorics of the Shi
arrangement defined in (1.16). Other aspects of the combinatorics of the Shi arrangement can be
found in [Sh1-3], [St1-2], [AL], [ST], and there are several additional places in the literature [Sh3],
[Xi,1.11, 2.6], [KOP], [Ks] which indicate that there that there is a deep (and not yet completely
understood) connection between the structure and representation theory of the affine Hecke algebra
and the combinatorics of the Shi arrangement.

(4.4) Intervals in Bruhat order. Using the formulation in (4.3), Theorem 4.6 will give a
complete description of the structure of F (γ,J) as a subset of the Weyl group when q is not a root
of unity. We will treat the type A, root of unity cases in §7.

The weak Bruhat order is the partial order on W given by

v ≤ w if R(v) ⊆ R(w), (4.5)
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where R(w) denotes the inversion set of w ∈ W as defined in (1.5). This definition of the weak
Bruhat order is not the usual definition but is equivalent to the usual one by [Bj, Prop. 2]. A set
of positive roots K is closed if α, β ∈ K, α + β ∈ R+ implies that α + β ∈ K. The closure K of a
subset K ⊆ R+ is the smallest closed subset of R+ containing K. A set of positive roots K ⊆ R+

is the inversion set of some permutation w ∈ W if and only if K is closed and Kc = R+\K is
closed (see [Bj, Prop. 2] or [KR, Theorem 5.1]).

The following theorem is proved in [KR, §5]. The proof of part (b) of the Theorem relies
crucially on a theorem of J. Losonczy [Lo].

Theorem 4.6. Let γ ∈ h∗
R

be dominant (i.e. 〈γ, α〉 ≥ 0 for all α ∈ R+) and let J ⊆ P (γ). Let
F (γ,J) be as given in (4.3).

(a) Then F (γ,J) is nonempty if and only if J satisfies the condition

if β ∈ J , α ∈ Z(γ) and β − α ∈ R+ then β − α ∈ J .

(b) The sub-root system R[γ] = {α ∈ R | 〈γ, α〉 ∈ Z}, has Weyl group

W[γ] = 〈sα | α ∈ R[γ]〉 and if W [γ] = {σ ∈W | R(σ) ∩ R[γ] = ∅}

then
F (γ,J) = W [γ] · [τmax, τmin],

where τmax, τmin ∈ W[γ] are determined by

R(τmax) ∩R[γ] = J and R(τmin) ∩ R[γ] = (P (γ)\J)∪ Z(γ)
c
,

the complement is taken in the set of positive roots of R[γ], and [τmin, τmax] denotes the interval
between wmin and wmax in the weak Bruhat order in W[γ].

(4.7) Conjugation. Assume that γ is dominant (i.e. 〈γ, α〉 ≥ 0 for all α ∈ R+) and J ⊆ P (γ).
Let F (γ,J) be as given in (4.3). The conjugate of (γ, J) and of w ∈ F (γ,J) are defined by

(γ, J)′ = (−uγ,−u(P (γ) \ J)) and
F (t,J) 1−1

←→ F (t,J)′

w ←→ w′ = wu−1 ,
(4.8)

where u is the minimal length coset representative of w0Wγ ∈W/Wγ and w0 is the longest element
of W . In (6.7) we shall show that these maps are generalizations of the classical conjugation
operation on partitions.

Theorem 4.9. The conjugation maps defined in (4.8) are well defined involutions.

Proof.
(a) Since γ is dominant, −uγ = −w0γ is dominant and thus 〈−uγ,−uα〉 = 1 only if −uα > 0.

Thus the equation 〈−uγ,−uα〉 = 1⇐⇒ 〈γ, α〉 = 1 gives that P (−uγ) = −uP (γ).

(b) Let v ∈ Wγ such that w0 = uv. (By [Bou, IV §1 Ex. 3], v is unique.) Then R+ ⊇ −w0Z(γ) =
−uvZ(γ) = uZ(γ), and it follows that

Z(−uγ) = R+ ∩ {α ∈ R | 〈uγ, α〉 = 0} = R+ ∩ (uZ(γ) ∪ −uZ(γ)) = uZ(γ).
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(c) Let R− = −R+ be the set of negative roots in R. Let v ∈ Wγ such that w0 = uv. Then v is
the longest element of Wγ and R(v) = Z(γ). Thus, since w0R

− = R+,

R(u) = {α ∈ R | α ∈ R+, w0vα ∈ R−} = {α ∈ R | α ∈ R+, vα ∈ R+},= R+\R(v) = R+\Z(γ).

(d) The weight −uγ = −uvγ = −w0γ is dominant and −u(P (γ)\J) ⊆ P (−uγ) since −uP (γ) =
P (−uγ). This shows that (γ, J)′ is well defined.

(e) Write w0 = uv where where v is the longest element of Wγ . Similarly, write w0 = u′v′ where
u′ is the minimal length coset representative of w0Ww0γ and v′ is the longest element in Ww0γ .
Conjugation by w0 is an involution on W which takes simple reflections to simple reflections
and Ww0γ = w0Wγw0. It follows that v′ = w0vw0. This gives

u′u = (w0v
′)(w0v) = w0w0vw0w0v = 1,

and so the second map in (4.8) is an involution.

(f) Using (e) and (a),

−u′(P (−uγ)\(−u(P (γ)\J))) = −u′(−uP (γ)\(−u(P (γ)\J))) = P (γ)\(P (γ)\J) = J,

and so the first map in (4.8) is an involution.

(g) Let w ∈ F (γ,J) and let w′ = wu−1. Since R(w) ∩ Z(γ) = ∅,

u−1R(wu−1) ∩ Z(γ) = {β ∈ R | uβ ∈ R(wu−1), β ∈ Z(γ)}

= {β ∈ R | uβ ∈ R+, wu−1uβ ∈ R−, β ∈ Z(γ)}

= {β ∈ R | β ∈ u−1R+, wβ ∈ R−, β ∈ Z(γ)}

= {β ∈ R | β ∈ u−1R+, β ∈ R(w), β ∈ Z(γ)}, since Z(γ) ⊆ R+,

= {β ∈ R | β ∈ u−1R+, β ∈ R(w) ∩ Z(γ)}

= ∅,

and thus, by (b),

R(w′) ∩ Z(−uγ) = R(wu−1) ∩ uZ(γ) = u
(
u−1R(wu−1) ∩ Z(γ)

)
= ∅.

Since R(w) ∩ P (γ) = J ,

−u−1R(wu−1) ∩ P (γ) = {β ∈ R | − uβ ∈ R(wu−1), β ∈ P (γ)}

= {β ∈ R | − uβ ∈ R+,−wu−1uβ ∈ R−, β ∈ P (γ)}

= {β ∈ R | uβ ∈ R−, wβ ∈ R+, β ∈ P (γ)}

= {β ∈ R | β ∈ R(u), β ∈ R+\R(w), β ∈ P (γ)}, since P (γ) ⊆ R+

= {β ∈ R | β ∈ R+\Z(γ), β ∈ R+\R(w), β ∈ P (γ)}

= {β ∈ R | β ∈ R+\Z(γ), β ∈ P (γ)\J}, since R(w) ∩ P (γ) = J ,

= P (γ)\J, since Z(γ) and P (γ) are disjoint.

Thus, by (a),

R(w′) ∩ P (−uγ) = R(wu−1) ∩ −uP (γ) = −u
(
−u−1R(wu−1) ∩ P (γ)

)
= −u (P (γ)\J) ,
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and so the second map in (4.8) is well defined.

Remark 4.10. In type A, the conjugation involution coincides with the duality operation for
representations of p-adic GL(n) defined by Zelevinsky [Ze]. Zelevinsky’s involution has been studied
further in [MW], [KZ], [LTV] and extended to general Lie type by Kato [Kt2] and Aubert [Au].
For H̃-modules in type A, this is the involution on modules induced by the Iwahori-Matsumoto
involution of H̃ and is detected on the level of characters: it sends an irreducible H̃-module L to
the unique irreducible L∗ with dim((L∗)gent ) = dim(Lgen

t−1) for each t ∈ T . I would like to thank J.
Brundan for clarifying this remark and making it precise.

(4.11) Examples.

(a) If γ is dominant and is generic (as an element of C) then Z(γ) = P (γ) = ∅ and F (γ,∅) = W .

(b) Let ρ be defined by 〈ρ, αi〉 = 1, for all 1 ≤ i ≤ n. Then

Z(ρ) = ∅, P (ρ) = {α1, . . . , αn}, and F (ρ,J) = {w ∈W | D(w) = J},

where D(w) = {αi | wsi < w} is the right descent set of w ∈ W . The sets F (γ,J) which arise
here are fundamental to the theory of descent algebras [So], [GR], [Re].

(c) This example is a generalization of (b). Suppose that (γ, J) is a local region such that γ is
regular and integral (i.e. 〈γ, α〉 ∈ Z>0 for all α ∈ R+). Then

Z(γ) = ∅, P (γ) ⊆ {α1, . . . , αn}, and F (γ,J) = {w ∈ W | D(w) ∩ P (γ) = J}.

(d) Let R be the root system of type C2 with simple roots α1 = ε1 α2 = ε2 − ε1, where {ε1, ε2}
is an orthonormal basis of h∗

R
= R2. The positive roots are R+ = {α1, α2, α1 + α2, α1 + 2α2}.

Let γ ∈ R2 be given by 〈γ, α1〉 = 0 and 〈γ, α2〉 = 1. Then γ is dominant (i.e. in C) and
integral and

Z(γ) = {α1} and P (γ) = {α2, α1 + α2}.
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The following picture displays the local regions F (γ,J) as regions in h∗
R
, see the remarks after

(2.18).
Hα1

Hα2
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J = {α2, α1 + α2}
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The solid line is the hyperplane corresponding to the root in Z(γ) and the dashed lines are
the hyperplanes corresponding to the roots in P (γ).

(e) Let R be the root system of type C2 as in (d). Let γ ∈ R2 be defined by

〈γ, α1〉 = 0, 〈γ, α2〉 = 1
2
. Then Z(γ) = {α1}, P (γ) = {α1 + 2α2}.

If J = P (γ) then the unique minimal element wmin of F (γ,J) has R(wmin) = {α2, α1 +2α2} 6=
J = J.

5. The connection to standard Young tableaux

In this section we shall show that the combinatorics of local regions is a generalization of the
combinatorics of standard Young tableaux. Let us first make some general definitions, which we
will show later provide generalizations of standard objects in the Young tableaux theory. This
section is a (purely combinatorial) study of the local regions in the form which appears in (4.3),
and therefore corresponds to the representation theory of affine Hecke algebras when q is not a
root of unity.

(5.1) Definitions. Let γ ∈ h∗
R

be dominant and let

Z(γ) = {α ∈ R+ | 〈γ, α〉 = 0}, P (γ) = {α ∈ R+ | 〈γ, α〉 = 1},

F (γ,J) = {w ∈W | R(w) ∩ Z(γ) = ∅, R(w) ∩ P (γ) = J},

as in (4.3).

(a) A local region is a pair (γ, J) such that F (γ,J) is nonempty.

(b) A ribbon is a local region (γ, J) such that γ is regular, i.e. 〈γ, α〉 6= 0 for all α ∈ R.

(c) An element γ ∈ C is calibratable if

(1) For all simple roots αi, 1 ≤ i ≤ n, 〈γ, αi〉 6= 0, and

(2) For all pairs of simple roots αi and αj such that {α ∈ Rij | 〈γ, α〉 = 0} 6= ∅,
the set {α ∈ Rij | 〈γ, α〉 = 1} contains more than two elements.
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(d) A skew local region is a local region (γ, J) such that wγ is calibratable for all w ∈ F (γ,J). All
ribbons are skew.

(e) A column (resp. row) reading tableau is a minimal (resp. maximal) element of F (γ,J) in the
weak Bruhat order.

(f) If α ∈ R the α-axial distance for w ∈ F (γ,J) is the value dα(w) = 〈wγ,α〉.
Remarks. (1) Theorem 4.6(b) shows that, up to a shift, the set F (γ,J) has a unique maximal

and a unique minimal element and is an interval in the weak Bruhat order. This is the fundamental
importance of the notions of the row reading and the column reading tableaux. Theorem 6.9 in
Section 6 will show how Theorem 4.6(b) is a generalization of a Young tableaux result of Björner
and Wachs [BW, Theorem 7.2].

(2) The definition of skew local regions is forced by the representation theory of the affine Hecke
algebra (see Theorem 3.6, the classification of irreducible calibrated representations). In Proposi-
tion 6.4 below we shall show that the skew local regions and the ribbons are generalizations of the
skew shapes and border strips which are used in the theory of symmetric functions [Mac, I §5 and
I §3 Ex. 11]

(3) The axial distances control the denominators which appear in the construction of irreducible
representations of the affine Hecke algebra in Theorem 3.5. In (6.1) we shall see how they are
analogues of the axial distances used by A. Young [Yg2] in his constructions of the irreducible
representations of the symmetric group.

To summarize, a brief dictionary between local regions combinatorics and the Young tableaux
combinatorics:

skew local regions ←→ skew shapes λ/µ
ribbons ←→ border strips

local regions ←→ general configurations of boxes
F (γ,J) ←→ the set of standard tableaux Fλ/µ

The remainder of this section and the next section explain in greater detail the conversions indicated
in this dictionary.

(5.2) The root system. Let {ε1, . . . , εn} be an orthonormal basis of h∗
R

= Rn so that each
sequence γ = (γ1, . . . , γn) ∈ Rn is identified with the vector γ =

∑

i γiεi. The root system of type
An−1 is given by the sets

R = {±(εj − εi) | 1 ≤ i, j ≤ n} and R+ = {εj − εi | 1 ≤ i < j ≤ n} .

The Weyl group is W = Sn, the symmetric group, acting by permutations of the εi.

(5.3) Partitions, skew shapes, and standard tableaux. A partition λ is a collection of n
boxes in a corner. We shall conform to the conventions in [Mac] and assume that gravity goes up
and to the left.

Any partition λ can be identified with the sequence λ = (λ1 ≥ λ2 ≥ . . .) where λi is the number of
boxes in row i of λ. The rows and columns are numbered in the same way as for matrices. We shall
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always use the word diagonal to mean a major diagonal. In the example above λ = (553311) and
the diagonals of λ (from southwest to northeast) contain 1,1,1,2,3,3,2,2,2, and 1 box respectively.

If λ and µ are partitions such that µi ≤ λi for all i write µ ⊆ λ. The skew shape λ/µ consists
of all boxes of λ which are not in µ. Let λ/µ be a skew shape with n boxes. Number the boxes of
each skew shape λ/µ along diagonals from southwest to northeast and

write boxi to indicate the box numbered i.

See Example 5.8 below. A standard tableau of shape λ/µ is a filling of the boxes in the skew shape
λ/µ with the numbers 1, . . . , n such that the numbers increase from left to right in each row and
from top to bottom down each column. Let Fλ/µ be the set of standard tableaux of shape λ/µ.
Given a standard tableau p of shape λ/µ define the word of p to be the permutation

wp =

(
1 · · · n

p(box1) . . . p(boxn)

)

(5.4)

where p(boxi) is the entry in boxi of the standard tableau.

(5.5) Placed skew shapes. Let λ/µ be a skew shape with n boxes. Imagine placing λ/µ on
a piece of infinite graph paper where the diagonals of the graph paper are indexed consecutively
(with elements of Z) from southwest to northeast.

...
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The content of a box b is
c(b) = diagonal number of box b.

Identify the sequence

γ = (c(box1), c(box2), . . . , c(boxn)) with γ =
n∑

i=1

c(boxi)εi ∈ R
n. (5.6)

The pair (γ, λ/µ) is a placed skew shape. It follows from the definitions in (5.1) that

Z(γ) = {εj − εi | j > i and boxj and boxi are in the same diagonal}, and

P (γ) = {εj − εi | j > i and boxj and boxi are in adjacent diagonals}.

Define

J =






εj − εi

∣
∣
∣
∣
∣

j > i
boxj and boxi are in adjacent diagonals
boxj is northwest of boxi






, (5.7)



24 arun ram

where northwest means strictly north and weakly west.

(5.8) Example. The following diagrams illustrate standard tableaux and the numbering of
boxes in a skew shape λ/µ.

1

2 3

4

5

6

7

8

10

9

11

12 13 14

11

6 8

2

7

1

13

5

3

14

10

4 9 12

λ/µ with boxes numbered A standard tableau p of shape λ/µ

The word of the standard tableau p is the permutation wp = (11, 6, 8, 2, 7, 1, 13, 5, 14, 3, 10, 4, 9, 12)
(in one-line notation).

The following picture shows the contents of the boxes in the placed skew shape (γ, λ/µ) with
γ = (−7,−6,−5,−2, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6).

-7

-6 -5

-2

0

1

1

2

3

2

3

4 5 6

Contents of the boxes of (γ, λ/µ)

In this case J = {ε2 − ε1, ε6 − ε5, ε8 − ε7, ε10 − ε8, ε10 − ε9, ε11 − ε9, ε12 − ε11}.

Theorem 5.9. Let (γ, λ/µ) be a placed skew shape and let J be as defined in (5.7). Let Fλ/µ be
the set of standard tableaux of shape λ/µ and let F (γ,J) be the set defined in (5.1). Then the map

Fλ/µ 1−1
←→ F (γ,J)

p ←→ wp,

where wp is as defined in (5.4), is a bijection.

Proof. If w = (w(1) · · ·w(n)) is a permutation in Sn then

R(w) = {εj − εi | j > i such that w(j) < w(i) }.

The theorem is a consequence of the following chain of equivalences:

The filling p is a standard tableau if and only if for all 1 ≤ i < j ≤ n
(a) p(boxi) < p(boxj) if boxi and boxj are on the same diagonal,
(b) p(boxi) < p(boxj) if boxj is immediately to the right of boxi, and
(c) p(boxi) > p(boxj) if boxj is immediately above boxi.

These conditions hold if and only if
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(a) εj − εi 6∈ R(wp) if εj − εi ∈ Z(γ),
(b) εj − εi 6∈ R(wp) if εj − εi ∈ P (γ) \ J ,
(c) εj − εi ∈ R(wp) if εj − εi ∈ J ,

which hold if and only if

(a) α 6∈ R(wp) if α ∈ Z(γ), (b) α 6∈ R(wp) if α ∈ P (γ) \ J , and (c) α ∈ R(wp) if α ∈ J .

Finally, these are equivalent to the conditions R(wp) ∩ Z(γ) = ∅ and R(wp) ∩ P (γ) = J .

(5.10) Placed configurations. We have described how one can identify placed skew shapes
(γ, λ/µ) with certain pairs (γ, J). One can extend this conversion to associate placed configurations
of boxes to more general pairs (γ, J). The resulting configurations are not always skew shapes.

Let (γ, J) be a pair such that γ = (γ1, . . . , γn) is a dominant integral weight and J ⊆ P (γ).
(The sequence γ is a dominant integral weight if γ1 ≤ · · · ≤ γn and γi ∈ Z for all i.) If J satisfies
the condition

If β ∈ J , α ∈ Z(γ), and β − α ∈ R+ then β − α ∈ J

then (γ, J) will determine a placed configuration of boxes (see Theorem 4.6). As in the placed
skew shape case, think of the boxes as being placed on graph paper where the boxes on a given
diagonal all have the same content. (The boxes on each diagonal are allowed to slide along the
diagonal as long as they don’t pass through the corner of a box on an adjacent diagonal.) The
sequence γ describes how many boxes are on each diagonal and the set J determines how the boxes
on adjacent diagonals are placed relative to each other. We want

γ =
n∑

i=1

c(boxi)εi,

and
(a) If εj − εi ∈ J then boxj is northwest of boxi, and
(b) If εj − εi ∈ P (γ)\J then boxj is southeast of boxi,

where the boxes are numbered along diagonals in the same way as for skew shapes, southeast means
weakly south and strictly east, and northwest means strictly north and weakly west.

If we view the pair (γ, J) as a placed configuration of boxes then the standard tableaux are
fillings p of the n boxes in the configuration with 1, 2, . . . , n such that for all i < j
(a) p(boxi) < p(boxj) if boxi and boxj are on the same diagonal,
(b) p(boxi) < p(boxj) if boxi and boxj are on adjacent diagonals and boxj is southeast of boxi,

and
(c) p(boxi) > p(boxj) if boxi and boxj are on adjacent diagonals and boxj is northwest of boxi.

As in Theorem 5.6 the permutation in F (γ,J) which corresponds to the standard tableau p is
wp = (p(box1), . . . , p(boxn)). The following example illustrates the conversion.

Example. Suppose γ = (−1,−1,−1, 0, 0, 0, 1, 1, 1, 2, 2, 2) and

J = {ε4 − ε1, ε4 − ε2, ε4 − ε3, ε5 − ε2, ε5 − ε3, ε7 − ε5, ε7 − ε6, ε8 − ε6, ε10 − ε9, ε10 − ε8,

ε10 − ε7, ε11 − ε9, ε11 − ε8, ε11 − ε7, ε12 − ε9} .
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The placed configuration of boxes corresponding to (γ, J) is as given below.
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contents of boxes numbering of boxes a standard tableau

(5.11) Books of placed configurations. The general case, when γ = (γ1, . . . , γn) is an
arbitrary element of Rn and J ⊆ P (γ), is handled as follows. First group the entries of γ according
to their Z-coset in R. Each group of entries in γ can be arranged to form a sequence

β + Cβ = β + (z1, . . . , zk) = (β + z1, . . . , β + zk), where 0 ≤ β < 1, zi ∈ Z and z1 ≤ · · · ≤ zk.

Fix some ordering of these groups and let

~γ = (β1 + Cβ1
, . . . , βr + Cβr

)

be the rearrangement of the sequence γ with the groups listed in order. Since ~γ and γ are in the
same orbit it is sufficient to analyze ~γ (γ corresponds to the central character of the corresponding
affine Hecke algebra representations and thus any convenient element of the orbit is appropriate,
see (2.3)).

The decomposition of ~γ into groups induces decompositions

Z(~γ) =
⋃

βi

Zβi
, P (~γ) =

⋃

βi

Pβi
, and, if J ⊆ P (~γ), then J =

⋃

βi

Jβi
,

where Jβi
= J ∩ Pβi

. Each pair (Cβ, Jβ) is a placed shape of the type considered in the previous
subsection and we may identify (~γ, J) with the book of placed shapes ((Cβ1

, Jβ1
), . . . , (Cβr

, Jβr
)).

We think of this as a book with pages numbered by the values β1, . . . , βr and with the placed
configuration determined by (Cβi

, Jβi
) on page βi. In this form the standard tableaux of shape

(~γ, J) are fillings of the n boxes in the book with the numbers 1, . . . , n such that the filling on each
page satisfies the conditions for a standard tableau in (5.10).

Example. If γ = (1/2, 1/2, 1, 1, 1, 3/2,−2,−2,−1/2,−1,−1,−1,−1/2, 1/2, 0, 0, 0) then one possi-
bility for ~γ is

~γ = (−2,−2,−1,−1,−1, 0, 0, 0, 1, 1, 1,−1/2,−1/2, 1/2, 1/2, 1/2, 3/2).

In this case β1 = 0, β2 = 1/2,

β1 + Cβ1
= (−2,−2,−1,−1,−1, 0, 0, 0, 1, 1, 1) and β2 + Cβ2

= (−1/2,−1/2, 1/2, 1/2, 1/2, 3/2).
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If J = Jβ1
∪ Jβ2

where Jβ2
= {ε14 − ε13, ε17 − ε16} and

Jβ1
= {ε3 − ε2, ε4 − ε2, ε5 − ε2, ε6 − ε3, ε6 − ε4, ε6 − ε5, ε9 − ε7, ε9 − ε8, ε10 − ε7, ε10 − ε8}

then the book of shapes is

-1
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-1 1
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where the numbers in the boxes are the contents of the boxes. The filling
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is a standard tableau of shape (~γ, J). This filling corresponds to the permutation

w = (2, 12, 4, 5, 9, 1, 13, 15, 8, 11, 17, 3, 7, 6, 10, 16, 14) in F (~γ,J) ⊆ S16.

6. Skew shapes, ribbons, conjugation, etc. in Type A

In this section we shall explain how the definitions in Section 5.1 correspond to classical notions
in Young tableaux theory. As in the previous section let R be the root system of Type An−1 as
given in (5.2). For clarity, we shall state all of the results in this section for placed shapes (γ, J)
such that γ is dominant and integral, i.e. γ = (γ1, . . . , γn) with γ1 ≤ · · · ≤ γn and γi ∈ Z. This
assumption is purely for notational clarity.

(6.1) Axial distance. Let (γ, J) be a local region such that γ is dominant and integral. Let
wp ∈ F

(γ,J) and let p be the corresponding standard tableau as defined by the map in Theorem
5.9. Then it follows from the definitions of γ and wp in (5.6) and (5.4) that

〈wγ, εi〉 = 〈γ,w−1
p εi〉 = c(boxw−1

p (i)) = c(p(i)), (6.2)

where p(i) is the box of p containing the entry i.
In classical standard tableau theory the axial distance between two boxes in a standard tableau

is defined as follows. Let λ be a partition and let p be a standard tableau of shape λ. Let 1 ≤ i, j ≤ n
and let p(i) and p(j) be the boxes which are filled with i and j respectively. Let (ri, ci) and (rj , cj)
be the positions of these boxes, where the rows and columns of λ are numbered in the same way
as for matrices. Then the axial distance from j to i in p is

dji(p) = cj − ci + ri − rj ,
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(see [Wz]). Rewriting this in terms of the local region (γ, J) determined by (5.7)

dji(p) = c(p(j))− c(p(i)) = 〈wpγ, εj − εi〉 = dεj−εi
(w),

where wp ∈ F
(γ,J) is the permutation corresponding to the standard tableau p and dα(wp) is

the α-axial distance defined in (5.1f). This shows that the axial distance defined in (5.1f) is a
generalization of the classical notion of axial distance. These numbers are crucial to the classical
construction of the seminormal representations of the symmetric group given by Young (see Remark
(3) of Section 5.1).

(6.3) Skew shapes. The following proposition shows that, in the case of a root system of type
A, the definition of skew local region coincides with the classical notion of a skew shape.

Proposition 6.4. Let (γ, J) be a local region with γ dominant and integral. Then the config-
uration of boxes associated to (γ, J) is a placed skew shape if and only if (γ, J) is a skew local
region.

Proof. ⇐=: We shall show that if the placed configuration corresponding to the pair (γ, J) has any
2× 2 blocks of the forms

a b

c.
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.
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Case (1) Case (2) Case (3)

then there exists a w ∈ F (γ,J) such that wγ violates one of the two conditions in (5.1c). This will
show that if (γ, J) is a skew local region then the corresponding placed configuration of boxes must
be a placed skew shape. In the pictures above the shaded regions indicate the absence of a box
and, for reference, we have labeled the boxes with a, b, c.

Case (1): Create a standard tableau p such that the 2× 2 block is filled with

i− 1 i

i + 1
.

.
.

.

.

.
.

.

by filling the region of the configuration strictly north and weakly west of box c in row reading
order (sequentially left to right across the rows starting at the top), putting the next entry in box
c, and filling the remainder of the configuration in column reading order (sequentially down the
columns beginning at the leftmost available column). Let w = wp be the permutation in F (γ,J)

which corresponds to the standard tableau p. Let p(i) denote the box containing i in p. Then,
using the identity (6.2),

〈wγ,αi + αi+1〉 = 〈wγ, εi+1 − εi−1〉 = c(p(i + 1))− c(p(i− 1)) = 0,

since the boxes p(i + 1) and p(i− 1) are on the same diagonal. However,

〈wγ,αi〉 = 〈wγ, εi − εi−1〉 = c(p(i))− c(p(i− 1)) = 1, and

〈wγ,αi+1〉 = 〈wγ, εi+1 − εi〉 = c(p(i + 1))− c(p(i)) = −1,
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and so condition (2) in (5.1c) is violated.

Case (2): Create a standard tableau p such that the 2× 2 block is filled with

i− 1

i i + 1

.

.
.

.

.

.
.

.

by filling the region weakly north and strictly west of box c in column reading order, putting the
next entry in box c, and filling the remainder of the configuration in row reading order. Using this
standard tableau p, the remainder of the argument is the same as for case (1).

Case (3): Create a standard tableau p such that the 2× 2 block is filled with

i− 1

i
.

.
.

.

.

.
.

.
.

.
.

.

.

.
.

.

by filling the region strictly north and strictly west of box b in column reading order, putting
the next entry in box b, and filling the remainder of the configuration in row reading order. Let
w = wp be the permutation in F (γ,J) corresponding to p and let p(i) denote the box containing i
in p. Then

〈wγ,αi〉 = 〈wγ, εi − εi−1〉 = c(p(i))− c(p(i− 1)) = 0,

since t(i) and t(i− 1) are on the same diagonal. Hence, condition (1) in (5.1c) is violated.
=⇒: Let γ ∈ Zn and λ/µ describe a placed skew shape (a skew shape placed on infinite graph

paper). Let (γ, J) be the corresponding local region as defined in (5.7). We will show that every
wγ is calibratable for every w ∈ F (γ,J).

Let w ∈ F (γ,J) and let p be the corresponding standard tableau of shape λ/µ. Consider a
2× 2 block of boxes of p. If these boxes are filled with

i j

k ℓ

then either i < j < k < ℓ or i < k < j < ℓ. In both cases we have i < ℓ − 1 and it follows that
ℓ− 1 and ℓ are not on the same diagonal. Thus

〈wγ,αℓ〉 = c(p(ℓ))− c(p(ℓ− 1)) 6= 0,

and so wγ stasfies condition (a) in the definition of calibratable.
The same argument shows that one can never get a standard tableau in which ℓ and ℓ − 2

occur in adjacent boxes of the same diagonal and thus it follows that wγ satisfies condition (b) in
the definition of calibratable. Thus (γ, J) is a skew local region.

(6.5) Ribbon Shapes. Classically, a border strip (or ribbon) is a skew shape which contains
at most one box in each diagonal. Although the convention, [Mac, I §1 p. 5], is to assume that
border strips are connected skew shapes we shall not assume this.
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Recall from (5.1b) that a placed shape (γ, J) is a placed ribbon shape if γ is regular, i.e.
〈γ, α〉 6= 0 for all α ∈ R.

Proposition 6.6. Let (γ, J) be a placed ribbon shape such that γ is dominant and integral. Then
the configuration of boxes coresponding to (γ, J) is a placed border strip.

Proof. Let (γ, J) be a placed ribbon shape with γ dominant and regular. Since γ = (γ1, . . . , γn)
is regular, γi 6= γj for all i 6= j. In terms of the placed configuration γi = c(boxi) is the diagonal
that boxi is on. Thus the configuration of boxes corresponding to (γ, J) contains at most one box
in each diagonal.

Example. If γ = (−6,−5,−4, 0, 1, 3, 4, 5, 6, 7) and J = {ε2 − ε1, ε5 − ε4, ε7 − ε6, ε9 − ε8, ε10 − ε9}
then the placed configuration of boxes corresponding to (γ, J) is the placed border strip

-6

-5 -4

0

1

3

4 5

6

7

where the boxes are labeled with their contents.

(6.7) Conjugation of Shapes. Let (γ, J) be a placed shape with γ dominant and integral (i.e.
γ = (γ1, . . . , γn) with γ1 ≤ · · · ≤ γn and γi ∈ Z) and view (γ, J) as a placed configuration of boxes.
In terms of placed configurations, conjugation of shapes is equivalent to transposing the placed
configuration across the diagonal of boxes of content 0. The following example illustrates this.

Example. Suppose γ = (−1,−1,−1, 0, 0, 1, 1) and J = (ε4 − ε2, ε4 − ε3, ε6 − ε5, ε7 − ε5). Then the
placed configuration of boxes corresponding to (γ, J) is

-1 0

-1

-1

1

1

0

.
.

.
.

in which the shaded box is not a box in the configuration.
The minimal length representative of the coset w0Wγ is the permutation

u =

(
1 2 3 4 5 6 7
5 6 7 3 4 1 2

)

.
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We have −uγ = −w0γ = (−1,−1, 0, 0, 1, 1, 1) and

−u(P (γ) \ J) = −u {ε4 − ε1, ε5 − ε1, ε5 − ε2, ε5 − ε3, ε6 − ε4, ε7 − ε4}

= −{ε3 − ε5, ε4 − ε5, ε4 − ε6, ε4 − ε7, ε1 − ε3, ε2 − ε3}

= {ε5 − ε3, ε5 − ε4, ε6 − ε4, ε7 − ε4, ε3 − ε1, ε3 − ε2} .

Thus the configuration of boxes corresponding to the placed shape (γ, J)′ is

0

1

-1

1

-1

0

1

.
.

.

(6.8) Row reading and column reading tableaux. Let (γ, J) be a placed shape such that
γ is dominant and integral and consider the placed configuration of boxes corresponding to (γ, J).
The minimal box of the configuration is the box such that

(m1) there is no box immediately above,

(m2) there is no box immediately to the left,

(m3) there is no box northwest in the same diagonal, and

(m4) it has the minimal content of the boxes satisfying (m1), (m2) and (m3).

There is at most one box in each diagonal satisfying (m1), (m2), and (m3). Thus, (m4) guarantees
that the minimal box is unique. It is clear that the minimal box of the configuration always exists.

The column reading tableaux of shape (γ, J) is the filling pmin which is created inductively by

(a) filling the minimal box of the configuration with 1, and

(b) if 1, 2, . . . , i have been filled in then fill the minimal box of the configuration formed by the
unfilled boxes with i + 1.

The row reading tableau of shape (γ, J) is the standard tableau pmax whose conjugate (pmax)
′ is

the column reading tableaux for the shape (γ, J)′ (the conjugate shape to (γ, J)).
Recall the definitions of the weak Bruhat order and closed subsets of roots given after equation

(4.5).

Theorem 6.9. Let (γ, J) be a placed shape such that γ is dominant and integral (i.e. γ =
(γ1, . . . , γn) with γ1 ≤ · · · ≤ γn and γi ∈ Z). Let pmin and pmax be the column reading and
row reading tableaux of shape (γ, J), respectively, and let wmin and wmax be the corresponding
permutations in F (γ,J). Then

R(wmin) = J, R(wmax) = (P (γ) \ J) ∪ Z(γ)
c
, and F (γ,J) = [wmin, wmax],

where Kc denotes the complement of K in R+ and [wmin, wmax] denotes the interval between wmin

and wmax in the weak Bruhat order.

Proof. (a) Consider the configuration of boxes corresponding to (γ, J). If k > i then either
c(boxk) > c(boxi), or boxk is in the same diagonal and southeast of boxi. Thus when we create
pmin we have that

If k > i then boxk gets filled before boxi if and only if boxk is northwest of boxi,
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where the northwest is in a very strong sense: There is a sequence of boxes

boxi = boxi0 , boxi1 , . . . , boxir
= boxk

such that boxim
is either directly above boxim−1

or in the same diagonal and directly northwest of
boxim−1

. In other words,

If k > i then pmin(boxk) < pmin(boxi) ⇐⇒ boxk is northwest of boxi.

So, from the formula for wp in (5.4) we get

If k > i then wmin(k) < wmin(i) ⇐⇒ εk − εi ∈ J ,

where wmin is the permutation in F (γ,J) which corresponds to the filling tmin and J is the closure
of J in R. It follows that

R(wmin) = J.

(b) There are at least two ways to prove that R(wmax) = (P (γ) \ J) ∪ Z(γ)
c
. One can mimic

the proof of part (a) by defining the maximal box of a configuration and a corresponding filling.
Alternatively one can use the definition of conjugation and the fact that R(w0w) = R(w)c. The
permutation wmin is the unique minimal element of F (γ,J) and the conjugate of wmax is the unique
minimal element of F (γ,J)′ . We shall leave the details to the reader.

(c) An element w ∈ W is an element of F (γ,J) if and only if R(w)∩P (γ) = J and R(w)∩Z(γ) =
∅. Thus F (γ,J) consists of those permutations w ∈W such that

J ⊆ R(w) ⊆ (P (γ) \ J) ∪ Z(γ)
c
.

Since the weak Bruhat order is the ordering determined by inclusions of R(w), it follows that F (γ,J)

is the interval between wmin and wmax.

Example. Suppose γ = (−1,−1,−1, 0, 0, 1, 1) and J = {ε4 − ε2, ε4 − ε3, ε6 − ε5, ε7 − ε5}. The
minimal and maximal elements in F (γ,J) are the permutations

wmin =

(
1 2 3 4 5 6 7
1 3 4 2 7 5 6

)

and wmax =

(
1 2 3 4 5 6 7
1 5 6 2 7 3 4

)

.

The permutations correspond to the standard tableaux

1 2

3

4

5

6

7

.
.

.
.

and

1 2

5

6

3

4

7

.
.

.
.

.

7. The type A, root of unity case
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This section describes the sets F (t,J) in the case of the root system of (5.2) when q2 = e2πi/ℓ,
a primitive ℓth root of unity, ℓ > 2.

Let t ∈ T . Identify t with a sequence

t = (t1, . . . , tn) ∈ C
n, where t(Xεi) = ti.

For the purposes of representation theory (see Theorem 3.6) t indexes a central character (see (2.3))
and so t can safely be replaced by any element of its W -orbit. In this case W is the symmetric
group, Sn, acting by permuting the sequence t = (t1, . . . , tn).

The cyclic group 〈q2〉 of order ℓ generated by q2, acts on C∗. Fix a choice of a set {ξ} of coset
representatives of the 〈q2〉 cosets in C∗. Replace t with the sequence obtained by rearranging its
entries to group entries in the same 〈q2〉-orbit, so that

t = (ξ1t
(1), · · · , ξkt(k)), where ξ1, . . . , ξk are distinct representatives of the cosets in C∗/〈q2〉,

and each t(j) is a sequence of the form

t(j) = (q2γ1 , . . . , q2γr ), with γ1, . . . , γr ∈ {0, 1, . . . , ℓ− 1} and γ1 ≤ · · · ≤ γr.

As in (5.11) this decomposition of t into groups induces decompositions

Z(t) =
k⋃

j=1

Zξj
(t) and P (t) =

k⋃

j=1

Pξj
(t),

and it is sufficient to analyze the case when t consists of only one group, i.e. all the entries of t are
in the same 〈q2〉 coset.

Now assume that

t = (q2γ1 , . . . , q2γn), with γ1 ≤ · · · ≤ γn, γi ∈ {0, . . . , ℓ− 1}.

Consider a page of graph paper with diagonals labeled by . . . , 0, 1, . . . , ℓ− 1, 0, 1, . . . , ℓ− 1, 0, 1, . . .
from southwest to northeast. For each local region (t, J), J ⊆ P (t), we will construct an ℓ-periodic
configuration of boxes for which the ℓ-periodic standard tableaux defined below will be in bijection
with the elements of F (t,J). For each 1 ≤ i ≤ n, the configuration will have a box numbered
i, boxi, on each diagonal which is labeled γi. There are an infinite number of such diagonals
containing a box numbered i, since the diagonals are labeled in an ℓ-periodic fashion, but each
strip of consecutive diagonals labeled 0, 1, . . . , ℓ − 1 will contain n boxes. The content of a box b
(see [Mac, I §1 Ex. 3]) is

c(b) = (the diagonal number of the box b).

Then
Z(t) = {εj − εi | i < j, γi = γj}

= {εj − εi | i < j, boxi and boxj are in the same diagonal} ,

and

P (t) =

{

εj − εi

∣
∣
∣
∣
∣

i < j and γj = γi + 1, or
i < j and γj = ℓ− 1 and γi = 0

}

= {εj − εi | i < j and boxi and boxj are in adjacent diagonals}.
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We will use J ⊆ P (t) to organize the relative positions of the boxes in adjacent diagonals.

If εj − εi ∈ J and if c(boxj) 6= ℓ− 1 or c(boxi) 6= 0 place boxj northwest of boxi,
if εj − εi 6∈ J and if c(boxj) 6= ℓ− 1 or c(boxi) 6= 0 place boxj southeast of boxi,
if εj − εi ∈ J and c(boxj) = ℓ− 1 and c(boxi) = 0 place boxj southeast of boxi,
if εj − εi 6∈ J and c(boxj) = ℓ− 1 and c(boxi) = 0 place boxj northwest of boxi.

Thus, t determines the number of boxes in each diagonal and J determines the relative posi-
tions of the boxes in adjacent diagonals. This information completely determines the ℓ-periodic
configuration of boxes associated to the pair (t, J).

A ℓ-periodic standard tableau is an ℓ-periodic filling p of the boxes with 1, 2, . . . , n such that

(a) if i < j and boxi and boxj are in the same diagonal then p(i) < p(j),

(b) if i < j and boxi and boxj are in adjacent diagonals with boxj southwest of boxi then
p(i) < p(j),

(c) if i < j and boxi and boxj are in adjacent diagonals with boxj northeast of boxi then p(i) >
p(j),

where p(i) denotes the entry in boxi. An ℓ-periodic standard tableau p corresponds to a permuta-
tion in Sn via the correspondence

{standard tableaux} ←→ F (t,J)

p 7−→

(
1 2 · · · n

p(1) p(2) · · · p(n)

)

Example. Suppose that q2 = e2πi/4 and

t = (q0, q0, q0, q0, q2, q2, q2, q4, q4, q6, q6, q6, q6, q6).

Then

Z(t) = {ε2 − ε1, ε3 − ε1, ε4 − ε1, ε3 − ε2, ε4 − ε2, ε4 − ε3, ε6 − ε5, ε7 − ε5, . . .} and

P (t) = {ε5 − ε1, ε5 − ε2, ε5 − ε3, ε5 − ε4, ε6 − ε1, . . . , ε14 − ε9, ε10 − ε1, ε10 − ε2, . . . , ε14 − ε4}.

If

J = {ε5 − ε2, ε5 − ε3, ε5 − ε4, ε6 − ε3, ε6 − ε4, ε8 − ε5, ε8 − ε6, ε8 − ε7, ε9 − ε7, ε10 − ε9,

ε11 − ε9, ε12 − ε9, ε12 − ε2, ε12 − ε3, ε12 − ε4, ε13 − ε2, ε13 − ε3, ε13 − ε4, ε14 − ε3, ε14 − ε4}

then the corresponding ℓ-periodic configuration of boxes and a sample ℓ-periodic standard tableau
are

· · ·
· · ·

1
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3

4

5

6

7
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9

10
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13

14
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11
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14

1

2

3

4

5

6

7

8

· · ·
· · ·

0

0

0

0

1

1

1

2

2

3

3

3

3

3

2

3

3

3

3

3

0

0

0

0

1

1

1

2

numbering of boxes contents of boxes
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· · ·
· · ·

1

9

13

14

6

12

4

5

3

8

11

2

7

10

3

8

11

2

7

10

1

9

13

14

6

12

4

5

a standard tableau p

8. Standard tableaux for type C in terms of boxes

(8.1) The root system. Let {ε1, . . . , εn} be an orthonormal basis of h∗
R

= Rn and view elements
γ =

∑

i γiεi of Rn as sequences

γ = (γ−n, . . . , γ−1; γ1, . . . , γn), such that γ−i = −γi. (8.2)

The root system of type Cn is given by the sets

R = {±2εi,±(εj ± εi) | 1 ≤ i, j ≤ n} and R+ = {2εi, εj ± εi | 1 ≤ i < j ≤ n} . (8.3)

The simple roots are given by α1 = 2ε1, αi = εi − εi−1, 2 ≤ i ≤ n. The Weyl group W = WCn is
the hyperoctahedral group of permutations of −n, . . . ,−1, 1, . . . , n such that w(−i) = −w(i). This
groups acts on the εi by the rule wεi = εw(i), with the convention that ε−i = −εi.

For this type C case there is a nice trick. View the root system as

R = {±(εj ± εi) | i < j, i, j ∈ {±1, . . . ,±n}} and

R+ = {εj − εi | i < j, i, j ∈ {±1, . . . ,±n}} .
(8.4)

with the convention that ε−i = −εi. In this notation εi − ε−i = 2εi, and ε−i − ε−j = εj − εi.
This way the type C root system “looks like” a type A root system and many computations can
be done in the same way as in type A.

(8.5) Rearranging γ. We analyze the structure of the sets F (γ,J) as considered in (4.3). This
corresponds to when the q in the affine Hecke algebra is not a root of unity. The analysis in this
case is analogous to the method that was used in (5.11) to create books of placed configurations
in the type A case.

Let γ ∈ Rn. Apply an element of the Weyl group to γ to “arrange” the entries of γ so that,
for each i ∈ {1, . . . , n},

γi ∈ [z + 1
2
, z], for some z ∈ Z. Then γ−i = −γi ∈ [z′, z′ + 1

2
], for some z′ ∈ Z.

As in the type A case, the sets Z(γ) and P (γ) can be partitioned according to the Z cosets of the
elements of γ and it is sufficient to consider each Z-coset separately and then assemble the results
in “books of pages”. There are three cases to consider:
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Case (β): the Z-coset β + Z, β ∈ ( 1
2
, 1). Then

γ = (−β − zn ≤ · · · ≤ −β − z2 ≤ −β − z1 ; β + z1 ≤ β + z2 ≤ · · · ≤ β + zn), zi ∈ Z,

Case ( 1
2 ): The Z-coset 1

2 + Z. Then

γ = (− 1
2 − zn ≤ · · · ≤ −

1
2 − z2 ≤ −

1
2 − z1 ; 1

2 + z1 ≤
1
2 + z2 ≤ · · · ≤

1
2 + zn), zi ∈ Z≥0,

Case (0): The Z-coset Z. Then

γ = (−zn ≤ · · · ≤ −z2 ≤ −z1 ; z1 ≤ z2 ≤ · · · ≤ zn), zi ∈ Z≥0.

It is notationally convenient to let z−i = −zi.

(8.6) Boxes and standard tableaux. Let us assume that the entries of γ all lie in a single
Z-coset and decribe the resulting standard tableaux. The general case is obtained by creating
books of pages of standard tableaux where the pages correspond to the different Z-cosets of entries
in γ.

The placed configuration of boxes is determined as follows.

(8.7) Case β, β ∈ ( 1
2
, 1): Assume that γ ∈ h∗

R
is of the form

γ = (−β − zn ≤ · · · ≤ −β − z2 ≤ −β − z1 ; β + z1 ≤ β + z2 ≤ · · · ≤ β + zn), zi ∈ Z.

Place boxes on two pages of infinite graph paper. These pages are numbered β and −β and each
page has the diagonals numbered consecutively with the elements of Z, from bottom left to top
right. View these two pages, page β and page −β, as “linked”. For each 1 ≤ i ≤ n place boxi

on diagonal zi of page β and box−i on diagonal −zi of page −β. The boxes on each diagonal are
arranged in increasing order from top left to bottom right. The placement of boxes on page −β is
a 180◦ rotation of the placement of the boxes on page β.

Using the notation for the root system of type Cn in (8.4)

P (γ) = {εj − εi | j > i and boxi and boxj are in adjacent diagonals} and

Z(γ) = {εj − εi | j > i and boxi and boxj are in the same diagonal} .

Note that ε−i − ε−j ∈ Z(γ) if and only if εj − εi ∈ Zβ(γ), and similarly ε−i − ε−j ∈ Pβ(γ) if and
only if εj − εi ∈ Pβ(γ). If J ⊆ P (γ) arrange the boxes on adjacent diagonals according to the rules

(1) if εj − εi ∈ J place boxj northwest of boxi, and

(2) if εj − εi ∈ P (γ)\J place boxj southeast of boxi.

A standard tableau is a negative rotationally symmetric filling p of the 2n boxes with−n, . . . ,−1, 1, . . . , n
such that
(a) p(boxi) < p(boxj) if j > i and boxj and boxi are in the same diagonal,
(b) p(boxi) > p(boxj) if j > i, boxi and boxj are in adjacent diagonals and boxj is northwest of

boxi,
(c) p(boxi) < p(boxj) if j > i, boxi and boxj are in adjacent diagonals and boxj is southeast of

boxi.

The negative rotational symmetry means that the filling of the boxes on page −β is the same as
the filling on page β except rotated by 180◦ and with all entries in the boxes multiplied by −1.
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Example. Suppose β ∈ ( 1
2
, 1), and

γ = (−β;β) + (−2,−2,−2,−1,−1,−1, 0, 0, 0, 1, 1, 1;−1,−1,−1, 0, 0, 0, 1, 1, 1, 2, 2, 2)

= (−β − 2,−β − 2,−β − 2,−β − 1,−β − 1,−β − 1,−β,−β,−β,−β + 1,−β + 1,−β + 1;

β − 1, β − 1, β − 1, β, β, β, β + 1, β + 1, β + 1, β + 2, β + 2, β + 2)

and

J = {ε4 − ε1, ε−1 − ε−4, ε4 − ε2, ε−2 − ε−1, ε4 − ε3, ε−3 − ε−4, ε5 − ε2, ε−2 − ε−5,

ε5 − ε3, ε−3 − ε−5, ε7 − ε5, ε−5 − ε−7, ε7 − ε6, ε−6 − ε−7, ε8 − ε6, ε−6 − ε−8,

ε10 − ε9, ε−9 − ε−10, ε10 − ε8, ε−8 − ε−10, ε10 − ε7, ε−7 − ε−10, ε11 − ε9, ε−9 − ε−11,

ε11 − ε8, ε−8 − ε−11, ε11 − ε7, ε−7 − ε−11, ε12 − ε9, ε−9 − ε−12, } .

The placed configuration of boxes corresponding to (γ, J) is

1

1

1

0

0

0

-1

-1

-1

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

Page −β Page β

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

1

2

3

4

5

6

7

8

9

10

11

12

Page −β Page β

contents of boxes numbering of boxes

and a sample negative rotationally symmetric standard tableau is

9

7

5

12

8

-3

2

-1

-4

11

10

-6

-9

-7

-5

-12

-8

3

-2

1

4

-11

-10

6

Page −β Page β

a standard tableau

(8.8) Case 1
2
: Assume that γ ∈ h∗

R
is of the form

γ = (− 1
2
− zn ≤ · · · ≤ −

1
2
− z2 ≤ −

1
2
− z1 ; 1

2
+ z1 ≤

1
2

+ z2 ≤ · · · ≤
1
2

+ zn), zi ∈ Z≥0,

Place boxes on a page of infinite graph paper which has its diagonals numbered consecutively with
the elements of 1

2 + Z, from bottom left to top right. This page has page number 1
2 . For each
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i ∈ {±1, . . . ,±n} place boxi on diagonal 1
2

+ zi and box−i on diagonal − 1
2
− zi. The boxes on each

diagonal are arranged in increasing order from top left to bottom right and the placement of boxes
is negative rotationally symmetric in the sense that a 180◦ rotation takes boxi to box−i.

Using the root system notation in (8.4),

P (γ) = {εj − εi | j > i and boxi and boxj are in adjacent diagonals} and

Z(γ) = {εj − εi | j > i and boxi and boxj are in the same diagonal}.

Note that it is the formulation of the root system of type Cn in (8.4) which makes the description
of P (γ) and Z(γ) nice in this case. If J ⊆ P (γ) arrange the boxes on adjacent diagonals according
to the rules

(1) if εj − εi ∈ J place boxj northwest of boxi, and

(2) if εj − εi ∈ P (γ)\J place boxj southeast of boxi.

A standard tableau is a negative rotationally symmetric filling p of the 2n boxes with−n, . . . ,−1, 1, . . . , n
such that
(a) p(boxi) < p(boxj) if j > i and boxj and boxi are in the same diagonal,
(b) p(boxi) > p(boxj) if j > i, boxi and boxj are in adjacent diagonals and boxj is northwest of

boxi,
(c) p(boxi) < p(boxj) if j > i, boxi and boxj are in adjacent diagonals and boxj is southeast of

boxi.

The negative rotational symmetry means that the filling of the boxes is the same if all entries in
the boxes multiplied by −1 and it is rotated by 180◦.

Example. Suppose γ =
(
− 7

2
,− 5

2
,− 5

2
,− 3

2
,− 3

2
,− 3

2
,− 3

2
,− 1

2
,− 1

2
,− 1

2
,− 1

2
; 1

2
, 1

2
, 1

2
, 1

2
, 3

2
, 3

2
, 3

2
, 3

2
, 5

2
, 5

2
, 7

2

)

and

J = {ε11 − ε10, ε−10 − ε−11, ε10 − ε8, ε−8 − ε−10, ε9 − ε7, ε−7 − ε−9, ε9 − ε8, ε−8 − ε−9,

ε7 − ε3, ε−3 − ε−7, ε7 − ε4, ε−4 − ε−7, ε6 − ε2, ε−2 − ε−6, ε6 − ε3, ε−3 − ε−6,

ε6 − ε4, ε−4 − ε−6, ε5 − ε4, ε−4 − ε−5, ε5 − ε3, ε−3 − ε−5, ε5 − ε2, ε−2 − ε−5,

ε2 − ε−1, ε3 − ε−1, ε4 − ε−1, ε1 − ε−1} .

= {ε11 − ε10, ε10 − ε8, ε9 − ε7, ε9 − ε8, ε7 − ε3, ε7 − ε4, ε6 − ε2, ε6 − ε3, ε6 − ε4, ε5 − ε4,

ε5 − ε3, ε5 − ε2, ε2 + ε1, ε3 + ε1, ε4 + ε1, 2ε1} .

The placed configuration of boxes corresponding to (γ, J) is as given below.

-7
2

-5
2

-5
2

-3
2

-3
2

-3
2

-3
2

-1
2

-1
2

-1
2

-1
2

1
2

1
2

1
2

1
2

3
2

3
2

3
2

3
2

5
2

5
2

7
2 -11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

11 -3

-5

8

-7

-2

9

10

-6

-4

-1

11

-11

1

4

6

-10

-9

2

7

-8

5

3

Page 1
2 Page 1

2 Page 1
2

contents of boxes numbering of boxes a standard tableau
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(8.9) Case 0: Assume that γ ∈ h∗
R

is of the form

γ = (−zn ≤ · · · ≤ −z2 ≤ −z1 ; z1 ≤ z2 ≤ · · · ≤ zn), zi ∈ Z≥0.

Place boxes on a page of infinite graph paper which has its diagonals numbered consecutively
with the elements of Z, from bottom left to top right. This page has page number 0. For each
i ∈ {±1, . . . ,±n} place boxi on diagonal zi and box−i on diagonal −zi. The boxes on each diagonal
are arranged in increasing order from top left to bottom right and the placement of boxes is negative
rotationally symmetric in the sense that a 180◦ rotation takes boxi to box−i.

Using the root system notation in (8.4),

P (γ) = {εj − εi | j > i and boxi and boxj are in adjacent diagonals} and

Z(γ) = {εj − εi | j > i and boxi and boxj are in the same diagonal}.

If J ⊆ P (γ) arrange the boxes on adjacent diagonals according to the rules

(1) if εj − εi ∈ J place boxj northwest of boxi, and

(2) if εj − εi ∈ P (γ)\J place boxj southeast of boxi.

A standard tableau is a negative rotationally symmetric filling p of the 2n boxes with−n, . . . ,−1, 1, . . . , n
such that
(a) p(boxi) < p(boxj) if j > i and boxj and boxi are in the same diagonal,
(b) p(boxi) > p(boxj) if j > i, boxi and boxj are in adjacent diagonals and boxj is northwest of

boxi,
(c) p(boxi) < p(boxj) if j > i, boxi and boxj are in adjacent diagonals and boxj is southeast of

boxi.

The negative rotational symmetry means that the filling of the boxes is the same if all entries in
the boxes multiplied by −1 and it is rotated by 180◦.

Example. Suppose γ = (−2,−1,−1,−1, 0, 0, 0; 0, 0, 0, 1, 1, 1, 2) and

J = {ε4 − ε1, ε−1 − ε−4, ε4 − ε2, ε−2 − ε−4, ε4 − ε3, ε−3 − ε−2, ε5 − ε1, ε−1 − ε−5,

ε5 − ε2, ε−2 − ε−5, ε5 − ε3, ε−3 − ε−5, ε6 − ε1, ε−1 − ε−6, ε6 − ε2, ε−2 − ε−6,

ε6 − ε3, ε−3 − ε−6, ε7 − ε6, ε−6 − ε−7, ε6 − ε−1, ε1 − ε−6, ε5 − ε−1, ε1 − ε−5,

ε4 − ε−1, ε1 − ε−4, ε5 − ε−2, ε2 − ε−5, ε4 − ε−2, ε2 − ε−4} .

= {ε4 − ε1, ε4 − ε2, ε4 − ε3, ε5 − ε1, ε5 − ε2, ε5 − ε3, ε6 − ε1, ε6 − ε2, ε6 − ε3, ε7 − ε6,

ε6 + ε1, ε5 + ε1, ε5 + ε2, ε4 + ε1, ε4 + ε2} .

The placed configuration of boxes corresponding to (γ, J) is as given below.

0

0

0

-1

-1

-1

-2

0

0

0

1

1

1

2

-3

-2

-1

-6

-5

-4

-7

1

2

3

4

5

6

7

-7

-3

-1

2

5

6

4

1

3

7

-6

-5

-2

-4

Page 0 Page 0 Page 0

contents of boxes numbering of boxes a standard tableau
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(8.10) A posteriori the analysis of the three cases, Case β, Case 1
2
, and Case 0, it becomes

evident that the trick of using the formulation of the root system of type Cn in (8.4) provides a
completely uniform description of the configurations of boxes and standard tableaux corresponding
to type Cn local regions. All three cases give negative rotationally invariant tableaux. We could
not ask for nature to work out more perfectly.
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de longueur finie d’un groupe réductif p-adique, Trans. Amer. Soc. 347 (1995), 2179–2189.

[Bj] A. Björner, Orderings of Coxeter groups, Combinatorics and Algebra (Boulder, Colo. 1983),
Contemp. Math. 34, Amer. Math. Soc., Providence 1984, 175–195.

[BW] A. Björner and M. Wachs, Generalized quotients in Coxeter groups, Trans. Amer. Math.
Soc. 308 no. 1 (1988), 1–37.
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