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0. Introduction

Using a combinatorial approach which avoids geometry, this paper studies the ring structure
of K7(G/B), the T-equivariant K-theory of the (generalized) flag variety G/B. Here, the data
G D B D T'is a complex reductive algebraic group (or symmetrizable Kac-Moody group) G, a Borel
subgroup B, and a maximal torus T, and K7 (G/B) is the Grothendieck group of T-equivariant
coherent sheaves on G/B. Because of the T-equivariance the ring K7 (G/B) is an R-algebra, where
R is the representation ring of T'. As explained by Grothendieck [Gd] (in the non Kac-Moody case)
and Kostant and Kumar [KK] (in the general Kac-Moody case), the ring K1 (G/B) has a natural
R-basis {[Ox,] | w € W}, where W is the Weyl group and Ox, is the structure sheaf of the
Schubert variety X,, C G/B. One of the main problems in the field is to understand the structure
constants of the ring K (G/B) with this basis, that is, the coeffients ¢, in the equations

Ox,)[0x,]= ) i, [0x.] (0.1)

zeW

Our approach is to work completely combinatorially and define K-(G/B) as a quotient of the affine
nil-Hecke algebra. The fact that the combinatorial approach coincides with the geometric one is
a consequence of the results of Kostant and Kumar [KK] and Demazure [D]. In the combinatorial
literature the elements [Ox | are often called (double) Grothendieck polynomials.

Research partially supported by the National Science Foundation (DMS-0097977) and the National Security Agency
(MDA904-01-1-0032). Keywords: flag variety, K-theory, affine Hecke algebras, Schubert varieties.


http://de.arxiv.org/abs/math/0405333v1

2 S. GRIFFETH AND A. RAM

Let P be the weight lattice of G and, for A € P, let [X*] be the homogeneous line bundle
on G/B corresponding to the character of 7' indexed by A. The theorem of Pittie [P] says that
the ring K7(G/B) is generated by the [X*], A € P. Steinberg [St] strengthened this result by
displaying specific [X ~*«], w € W, which form an R-basis of K7(G/B). These results are often
collectively known as the “Pittie-Steinberg theorem?”.

The theorems which we prove in Section 2 are simply different points of view on the Pittie-
Steinberg theorem. Though we are not aware of any reference which states these theorems in the
generality which we consider, these theorems should be considered well known.

Let s1,..., S, be the simple reflections in W (determined by the data (G 2 B 2 T')), let wy be
the longest element of W and let P be the set of dominant weights in P. The Schubert varieties
Xuwos; are the codimension one Schubert varieties in G/B. In section 3 we prove “Pieri-Chevalley”
formulas for the products

[xXMox,),  X0x,) [X"NOx,],  and  [Ox,,.][0x,], (0.2)

for \ € PT, w € W and 1 < i < n. All of these Pieri-Chevalley formulas are given in terms
of the combinatorics of the Littelmann path model [Lil-3]. The formula which we give for the
first product in (0.2) is due to Pittie and Ram [PR1]. In this paper we provide more details of
proof than appeared in [PR1]. The other formulas for the products in (0.2) follow by applying
the duality theorem of Brion [Br, Theorem 4] to the first formula. However, here we give an
independent, combinatorial, proof and deduce Brion’s result as a consequence. The last formula is
a consequence of the nice formula

[Ox, . ]=1—ewowi[x—*1], (0.3)

wOSi]

which is an easy consequence of the first two Pieri-Chevalley rules.

It is not difficult to “specialize” product formulas for K7(G/B) to corresponding product
formulas for K(G/B), Hy(G/B), and H*(G/B) (by using the Chern character and comparing
lowest degree terms, and ignoring the T-action). Thus the products which are computed in this
paper also give results for ordinary Grothendieck polynomials, double Schubert polynomials, and
ordinary Schubert polynomials. In section 4 we explain how to do these conversions. For most of
these cases the specialized versions of our Pieri-Chevalley rules are already very well known (see,
for example, [Ch]).

In Section 5 we give explicitly

(a) two different kinds of formulas for [Ox, ] in terms of X*, and
(b) complete computations of the products in (0.1)

for the rank two root systems. This data allows us to make a “positivity conjecture” for the coeffi-
cients ¢Z,, in (0.1). This conjecture generalizes the theorems of Brion [Br, formula before Theorem
1] and Graham [Gr, Corollary 4.1], which treat the cases K(G/B) and H}(G/B), respectively.

Acknowledgement. It is a pleasure to thank Alain Lascoux for setting the foundations of the
subject of this paper. Our approach is heavily influenced by his teachings. In particular, he has
always promoted the study of the flag variety by divided difference operators (the affine, or graded,
nil-Hecke algebra), it is his work with Fulton in [FL] that provided the motivation for the Pieri-
Chevalley rules as we present them, and it his idea of “transition” (see, for example, the beautiful
paper [La]) which allows us to obtain product formulas for Schubert classes in the form which we
have given in Section 5 of this paper.
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1. Preliminaries

Fix the following data and notation:

h*

R
Rt
w
S1y..-
mij
R(w)={a € R |wa & Rt}
l(w) = Card(R(w))

’STL

<

Aly...y,Qp
Wiyeoo,Wn

P =3 Zw

Pt =370 Lxowi

is a real vector space of dimension n,
is a reduced irreducible root system in h*,
is a set of positive roots in R,

is the Weyl group of R,

are the simple reflections in W,

is the order of s;s; in W, i # j,

is the inversion set of w € W,

is the length of w € W,

is the Bruhat-Chevalley order on W,
are the simple roots in R,

are the fundamental weights,

is the weight lattice,

is the set of dominant integral weights.

For a brief, easy, introduction to root systems with lots of pictures for visualization see [NR]. By

[Bou VI §1 no. 6 Cor. 2 to Prop. 17], if w = s;, - -~

R(w) = {a,, si, i,y

si, be a reduced word for w, then

(1.1)

) Siy t SinQliy )

The affine nil-Hecke algebra is the algebra H given by generators T}, ..., T, and X*, \ € P,

with relations
T? =T,

(2

T - =TTy - -,

my; factors

and

X M = T X5 +

Let T, = T;, -+ T;, for a reduced word w = s;, -

{X T, | we W,\ e P}

are bases of H.
Both the nil-Hecke algebra,

H = Z-span{T,, | w € W},

are subalgebras of H. The action of W on Z[X] is given by defining

wX* = XN

XAXH = XAMH, (1.2)
m;; factors
X/\ o st-/\
. 1.
1— X~ (13)
- 8;,- Then

and  {T,X*|weW,\c P} (1.4)
and  Z[X] = Z-span{X* | A € P} (1.5)
forwe W, e P, (1.6)

and extending linearly. The proof of the following theorem is given in [R, Theorem 1.13 and
Theorem 1.17]. The first statement of the theorem is due to Bernstein, Zelevinsky, and Lusztig
[Lu, 8.1] and the second statement is due to Steinberg [St] and is known as the Pittie-Steinberg
theorem.
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Theorem 1.7. Define
A =w ! Z wi, forw e W. (1.8)

s;w<w
The center of H is Z(H) = Z[X]V and each element f € Z[X] has a unique expansion

f=> fuX v, with f, € Z[X]V. (1.9)
weWw

Let ¢; = 1 —T; and let &, = &;, -+ -¢;, for a reduced word w = s;, ---s;,. Then &, is well

defined and independent of the reduced word for w since

p*

e2 =g, and Ei€jE; = E5EE . (1.10)
N—— N———
m;; factors m;; factors

The second equality is a consequence of the formulas

Ew = Z(—l)e(”)Tv and Ty = Z(*l)g(v)&; (1.11)

v<w v<w

which are straightforward to verify by induction on the length of w.

2. The ring Kr(G/B)

Let H and Z[X] be as in (1.5). The trivial representation of H is defined by the homomorphism
1: H — Z given by 1(T;) = 1. The first of the maps

Z|X] =~ HT,, — Hogl
f — fTwo — fel

is an H-module isomorphism if the action of H on Z[X] is given by

Xoif — g
T f = % for f € Z[X]. (2.1)
The group algebra of P is
R = Z-span{e* | A € P} with etelt = eMH, (2.2)

for A, € P. Extend coefficients to R so that Hi = R®z H and R[X]| = R®zZ[X] are R-algebras.
Define K7(G/B) to be the Hp-module

Kr(G/B) = R-span{[Ox,] | w € W}, (2.3)
so that the [Ox, ], w € W, are an R-basis of K1 (G/B), with Hg-action given by

Ox,. ], ifws; >w,

XMOx,]=€Ox,],  and Ti[oxw]:{[ox] if ws; < w.
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If R is an R[X]-module via the R-algebra homomorphism given by

e: R|X| — R
- B (25)
then, as Hg-modules, K7(G/B) = I:IR®R[X]R6, where R, is the R-rank 1 R[X]-module determined
by the homomorphism e. B
Let @ be the field of fractions of R and let @) be the algebraic closure of (). For w € W let

by in Q®g Kr(G/B) be determined by — X*b, = e“*b,,, for A € P. (2.6)

If the b, exist, then they are a Q-basis of Q @r K1 (G/B) since they are eigenvectors with distinct
eigenvalues. If 7;, 1 < ¢ < n, are the operators on Q ®r K1(G/B) given by

1

=T
i 1— X

then b1 = [Ox,] and T7;by = bys,, for ws; > w, (2.7)
because, a direct computation with relation (1.3) gives that X by = 1. X5 by = T,€Y5b, =
e¥$i7by,.. Thus the b, w € W, exist and the form of the T-operators shows that, in fact, they
form a Q-basis of Q ®r K1(G/B) (it was not really necessary to extend coefficients all the way to

Q). Equations (2.6) and (2.7) force

1
TiTjTi = TjTiTj ", and the equality 7=

IS CENP SRS

m;; factors m;; factors

is checked by direct computation using (1.3). Let 7, = 74, - - 7;, for a reduced word w = s;, - -+ 5;
Then, for w € W,

P’

by = Ty-1b1, Ox,] =T,-1[0x,] and we define Zx,] =€cw-110x,], (2.8)

where g,, is as in (1.11). In terms of geometry, [Ox, ] is the class of the structure sheaf of the
Schubert variety X, in G/B and, up to a sign, [Zx,] is class of the sheaf Zx  determined by the
exact sequence 0 — Zx, — Ox, — Opx, — 0, where 0X,, = | |,.,, BvB (see [Ma, Theorem
2.1(ii)] and [LS, equation (4)]. We are not aware of a good geometric characterization of the basis
{[X=*»] | w € W} of K7(G/B) which appears in the following theorem.

Theorem 2.9. Let \,, w € W, be as defined in Theorem 2.9 and let [X*] = X/\[Oxwo] =
X*Ty,[Ox,] for A € P. Then the [X ~*v], w € W, form an R-basis of K1(G/B).

Proof. Up to constant multiples, [Ox,, | = Tu,[Ox,] is determined by the property
T;[0x,, ]| = [Ox,,], for all 1 <i <n. (2.10)

If constants c,, € Q) are given by

[OXWO] = Z Cwbu
weW

then comparing coefficients of b,,s,, for ws; > w, on each side of (2.10) yields a recurrence relation
for the ¢y,

1

1 — ewoer’

1
Cw = Cus; <17> for ws; > w, which implies Cwgv—1 = H

— (2.11)
a€R(v)
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via (1.1) and the fact that ¢,, = 1. Thus,

[X—)w] - XM [OXwO] — Z Cwe—w)wbw’
weW

and if C'; M and A are the |WW| x |WW| matrices given by

C =diag(cw), M =(e"""), and A=(az0), where by =) a..[O0x.],
zeW

then the transition matrix between the X v and the [Ox.] is the product ACM. By (2.8) and
the definition of the 7;, the matrix A has determinant 1. Using the method of Steinberg [St] and
subtracting row e~*e“*» from row e~*“** in the matrix M allows one to conclude that det(M) is
divisible by

H (1 —e®)IWl/2 and identifying H e WA = ﬁ H e Wi = (e=P)IWI/2

aERT weWw i=1s;w<w

as the lowest degree term determines det(M) exactly. Thus,

wi/2
det(ACM)=1- H H 0 716704 (eﬂ H (1 — e@)) - (ep)IW\/2_

weW aeR(w) aERT

Since this is a unit in R, the transition matrix between the [Ox, ] and the X ~** is invertible.

Theorem 2.12. The composite map

®: R[X] — HgT, <— Hr — Kg(G/B)
f = fTwo h — h[OXl]

is surjective with kernel

ker® = (f — e(f) | f € RIX]"),
the ideal of the ring R[X|] generated by the elements f — e(f) for f € R[X]". Hence
RIX]

Ke(GIB) = T T Fe mmmy

has the structure of a ring.

Proof. Since ®(X*) = X*T,,[0Ox,] = XA[(’)XWO], it follows from Theorem 2.9 that ® surjective.
Thus Kr(G/B) = R[X]/ker®. Let I = (f —e(f) | f € RIX]W).If f € R[X]" then, for all A € P,

O(XA(f —e(f) = XM(f — e(f)Two[Ox,] = X Ty (f — e(£))[Ox,]
= X Ty, (e(f) — e(f))[Ox,] =0,

since f —e(f) € Z(Hg). Thus I C ker ®. The ring K7(G/B) = R[X]/ker ® is a free R-module of
rank |[W| and, by Theorem 1.7, so is R[X]/I. Thus ker® = I. I
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3. Pieri-Chevalley formulas

Recall that both
{X Ty | A€ Powe W} and {T,-. X" | pePzecW} are bases of H.
If cﬁ)i\ € 7 are the entries of the transition matrix between these two bases,
XM= Y AT X (3.1)
zeW,ueP

then applying each side of (3.1) to [Ox,] gives that

XOx, )= Y enieOx],  inKr(G/B).
zeW,uepP
This is the most general form of “Pieri-Chevalley rule”. The problem is to determine the coefficients
H,z
Cor A

The path model

A path in h* is a piecewise linear map p: [0, 1] — h* such that p(0) = 0. For each 1 <i <mn
there are root operators e; and f; (see [L3] Definitions 2.1 and 2.2) which act on the paths. If
A € PT the path model for X is

T = {fisfir - fupa}s
the set of all paths obtained by applying the root operators to py, where p, is the straight path
from 0 to A, that is, px(t) = tA, 0 <t < 1. Each path p in 7* is a concatenation of segments

D= P a @D @ ®@pyy with  wp >wy >--->w, and a1 +ax+---+a, =1, (3.2)

'LUQA

where, for v € W and a € (0,1], p?, is a piece of length a from the straight line path p,\ = vpj.
If Wy = Stab(\) then the w; should be viewed as cosets in W/W, and > denotes the order on
W /W) inherited from the Bruhat-Chevalley order on W. The total length of p is the same as the
total length of py which is assumed (or normalized) to be 1. For p € T let

,
p(1) = Z a;w; A be the endpoint of p,

i=1
t(p) =wy, the initial direction of p, and
¢(p) = w,, the final direction of p.

If h € T is such that e;(h) = 0 then h is the head of its i-string
SMh) = {h, fih,.., "0},

where m is the smallest positive integer such that f/"h # 0 and f{”“h = 0. The full path model
T? is the union of its i-strings. The endpoints and the inital and final directions of the paths in
the i-string S (h) have the following properties:

(fFr)(1) =h() — kay, for 0 < k < m,

either t(h) = u(fih) = = u(fI"h) < s;t(h)
or u(h) <u(fih) =---=u(f"h) = si(h), and (3.3)
; (h) == o(f" " h) = ¢(f"h)

either sip(fI"h) <

¢
or sid(fh) = ¢(h) = -+ = ¢(f"""h) < ¢(f"h).
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The first property is [L2] Lemma 2.1a, the second is is [L1] Lemma 5.3, and the last is a result of
applying [L2] Lemma 2.1e to [L.1] Lemma 5.3. All of these facts are really coming from the explicit
form of the action of the root operators on the paths in 7* which is given in [L1] Proposition 4.2.

Let A € PT, w € W and z € W/W,, and let p € 7> be such that «(p) < wW, and
¢(p) > z. Write p in the form (3.2) and let @y, ...,w,, Z be the maximal (in Bruhat order) coset
representatives of the cosets wq,...,w,,z such that

w> Wy > Wy > > Wy > A (3.4)

Theorem 3.5. Recall the notation €, from (1.11). Let A\ € PT and let Wy = Stab()). Let
w € W. Then, in the affine nil-Hecke algebra H,

Xy = > Ty XPW and  XPey,a= Y Y (1) XM,

pETA peTA zEW/Wy
L(p)<wWy v(p)=w =z<é(p)

where, if Wy # {1} then Ty -1 = T;; -1 and €,-1 = €31 with @, and Z as in (3.4).

Proof. (a) The proof is by induction on ¢(w). Let w = s;v where s;v > v. Define
Tg)‘w ={peT*| up) <wWy}.
Assume w = s;v > v. Then the facts in (3.3) imply that
(1) 72, is a union of the strings S;(h) such that h € 72, and
(2) If h € T2, then either S;(h) C T2, or S;(h) N T2, = {h}.
Using the facts in (3.3), a direct computation with the relation (1.3) establishes that, if h € 7. é\v

then
> Top X"V =Ty X"UT;, and

peS;(h)
= [T T AT
p . 3 . —
p€eS;(h) T(b(h)*lX E, if S,J(h) M TSU = {h}
Thus
XTy1 = X T = Z Ty -+ X" | T (by induction)
pGTév
1 R(1
- Z Z Z Ty(p-1 XP + Z Ty X" | T,
hETé‘U Sl(h)gTé‘v pGSz(h) Sz(h)mTé\U:{h}
ei(h)=0 B =
= > > Ty X"+ YT Ty X" T
ner2, \Si(h)CT2, Si(R)NT2, ={h}
e;(h)=0 - =
h(1 1
= > > T X"+ Y. Top- X"
net2, \Si(h)CT2, S:(h)NT2,={h} pPESi(h)
e;(h)=0

= Z T¢(p)—1Xp(1).

A
pGTSw
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(b) The proof is similar to case (a). For w € W let
T2, ={p e T | ulp) = wWy}.

Assume w = s;v > v. Then the facts in (3.3) imply that
(1) 72, is a union of the strings S;(h) such that h € 72, , and
(2) If h € T2, then either S;(h) C T2, or S;(h) N T2, = {h}.
Let
Eom = D, (1) Pes. (3.6)

z€EW /Wy
z<¢(p)

Using (3.3), a direct computation with the relation (1.3) establishes that, if h € 72, with e;h =0
then
Y. EwXWT=0,  and  EmX"VTi=— ) Ep Xt
pesith) pesi ()~ {h)

Thus

XAgw—l = X)\Ev—lé“i = (—1)8(1)) Z g¢(p)Xp(1) Tz

pET2,
=D Y Y EeXt W Y E&wXY | T
Si(h)CT2, p€Si(h) Si(h)NT2,={h}

= (=D lo- > > S Xt

Si(h)NT2,={h} peSi(h)—{h}

= (—1)*™ Z g¢(p)Xp(1) ) 1

peT2,

Corollary 3.7. Let A\, € P' and let w € W. Then, in the affine nil-Hecke algebra H,

XM= ) > (~)fHET L, xPM) and

peT WO 2€EW/W_ g
¢ (p)=wwq zwg>u(p)

xorg, = Y Y (C)f T, xr0),

PETH  zeW/Wy
¢>(p):ww0 zwg <o (p)

Proof. The second identity is a restatement of the first with a change of variable p = —wgA. The
first identity is obtained by applying the algebra involution

H — H
To +— € and the bijection
X)\ N X—)\

T/\ SN wao/\

 — p*
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where p* is the same path as p except translated so that its endpoint is at the origin. Representation
theoretically, this bijection corresponds to the fact that L(\)* = L(—wgA), if L(A) is the simple
G-module of highest weight A. Note that p*(1) = —p(1), «(p*) = ¢(p)wo, and ¢(p*) = t(p)wo. N

Applying the identities from Theorem 3.5 and Corollary 3.7 to [Ox,]| yields the following
product formulas in K7(G/B). In particular, this gives a combinatorial proof of the (T-equivariant
extension) of the duality theorem of Brion [Br, Theorem 4]. For A € P and w € W let [X}] =
XMOx,, ] = X Ty, [Ox,] and let ¢5 ,, be given by

[XM[0x,] = ¢ wl0x.], (3.8)
zeW

Corollary 3.9. Let A € PT, w € W and W = Stab(\). Then, with notation as in (3.8),

z 1
G = § eP( )7

peTA
wWy >u(p)>¢p(p)=2W)y

Cfvo/\,w = ( 1)Z(w)+Z(Z) 1;\),1;1000 and Ci)\,w = ( 1)Z(w)+Z(Z) 151:)2)\7,211)0

Proposition 3.10. For 1 <i<n, [Ox =1—eWowi[ X,

wosi]

Proof. We shall show that
X7 [0x,,] = 7% ([Ox,,] = [Ox,,.,]); (3.11)

and the result will follow by solving for [Ox Let wj = —wow;. By Corollary 3.9,

siwo]'

oy apg = (— 1) o) )¢ ij g = (—1)Hw0ITE) Z P
peT®i
zwg>e(p) Z¢(p)=1
The straight line path to wj, pu;, has tzw,(Pw;) = 2w, (w;) and is the unique path in 7% which
may have final direction 1. Suppose ¢..,(pw;) = 1. Then, since s; is the only simple reflection
which is not in Stab(w;), it must be that zwy # s, for all k # j. Thus zwy = 1 or 2wy = s; and
SO €2, 4w, 7 0 only if 2 = wg or z = sjwy = wys;. Now (3.11) follows since p,,; has endpoint
wj = —wow;. 1

Corollary 3.12. Let c¢Z,, be as in (3.8). Then, for 1 <i<mn, c¥ . , = —(e”(Wwimwowi) _ 1) and

WO Sis,

CZ v — (_1)£(w)+£(2)+1 Z ewowier(l)’ fOI‘ P % w.

peT ~WOWsq
zwg>e(p) Z¢(p)=wwq

Proof. This follows from Proposition 3.10 and Corollary 3.9 and the fact that, in the case when
z = w, there is a unique path p with wwy = ¢(p) = ¢(p) = wwp and endpoint p(1) = wwo(—wew;) =
—ww;. 1
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4. Converting to H7(G/B)

The graded nil-Hecke algebra is the algebra Hy, given by generators ti,...,t, and ), A € P,
with relations

t? =0, titjti-- = titit; -, Tarp =T+ 2, and xzat; = tixgy + (A o). (4.1)
N—— N——
m;; factors m;; factors

The subalgebra of H,, generated by the xy is the polynomial ring Z[x,...,x,], where z; = .,

and W acts on Z|[x1,...,z,] by
WT) = Topr and w(fg) = (wf)(wg), forwe W, Ne P, f,g € Zlxy,...,x,].
Then the last formula in (4.1) generalizes to

[ —=sif

)

ftz:tl(szf)+ ) fOTfGZ[$1,...,SUn]-

Let ty, = t;, - -+ 1;, for areduced word w = s;, - - - s;, and let ZW* be the subalgebra of Hg, spanned
by the t,,, w € W. Then

{z{" - apnty, |w e W, m; € Lo} and {tpa" - zp |weW, m; € Lo}

are bases of Hg,.
Let S = Z[y1, ..., yn) and extend coefficients to S so that Hyy ¢ = S®zHg: and S[z1,...,2,] =
S ®gz Zlzy,...,x,] are S-algebras. Define H3.(G/B) to be the Hy, ¢ module

Hi(G/B) = S-span{[X,] | w € W}, (4.2)

so that the [X,,], w € W, are an S-basis of K7(G/B), with Hy, g-action given by

, — , _ ) X ], ifws; > w,
$1[X1] = yz[Xl]a and tl[Xw] - {O, if ws; < w,

Let y be the S-algebra homomorphism given by

y: Slxy,...,z,] — S

Zq — Y

so that H}(G/B) = Hg s ®8[ay,....5n] Y @ Hgr s-modules Then, using analogous methods to the
K1 (G/B) case proves the following theorem, which gives the ring structure of H*T'(G/B) (see also
the proof of [KR, Prop. 2.9] for the same argument with (non-nil) graded Hecke algebras).

Theorem 4.4. The composite map

o Slxy,...,z,] — gr,5twy, = Hgs — Hp(G/B)
f A h o+ WX

is surjective with kernel
ker® = (f —y(f) | f € Sfar,...,z,]"),
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the ideal of the ring Syx1,. .., x| generated by the elements f—y(f) for f € S[z1,...,2,]". Hence

ZYi, - Yny T1y -y T

H;(G/B) = (f—y(f) ’ feS[xl,...,xn]W>

has the structure of a ring.

As a vector space Hyy = Z[x1,...,Tn] @ ZWg. Let }/I; = Q[z1,...,z,]] ® QW,, with
multiplication determined by the relations in (4.1). Then Hg, is a completion of Hg, (this simply

allows us to write infinite sums) and the elements of H,, given by

Ta,

r>0

(4.5)

satisfy the relations of H and thus ch extends to a ring homomorphism ch: H— I/fg\r. It is this fact
that really makes possible the transfer from K-theory to cohomomology possible. Though is it not
difficult to check that the elements in (3.5) satisfy the defining relations of H it is helpful to realize
that these formulas come from geometry. As explained in [PR2], the action of T; on K1 (G/B) and
the action of ¢; on H}(G/B) are, respectively, the push-pull operators = (m;) and 7} (7; )., where
if P; is a minimal parabolic subgroup of G then m;: G/P; — G/B is the natural surjection. Then
the first formula in (3.5) is the definition of the Chern character, and the second formula is the
Grothedieck-Riemann-Roch theorem applied to the map m;. The factor a;/(1 — ch(X %)) is the
Todd class of the bundle of tangents along the fibers of 7; (see [Hz, page 91]).

Then EE(G/B)Q = Qlly1,---ynll ®zys,....y.) H7(G/B) is the appropriate completion of

H.(G/B) to use to transfer the ring homomorphism ch: Hp — Hyg, to a ring homomorphism
ch: Kr(G/B) — fl\;(G/B)Q by setting ch(h[Ox,]) = ch(h)[X,], for h € Hg. (4.6)
The ring flg(G/B)Q is a graded ring with
deg(yi) =1  and  deg([Xy]) = l(wo) — £(w), (4.7)

and, forw e W, ch([Ox,]) = [Xw] + higher degree terms. (4.8)

In summary, if e; = ¥, X; = X¥", y; = yo,, T; = Ty,

RIX]=7Z[ef!, ... et XF .. X3,

Y )

ZIX]) = ZIXiY, . X, and Sfer,o@al = Qllyss s yalllos @l

then there is a commutative diagram of ring homomorphisms

~

_ R[X] h B Slzy, ..., z,]
Kr(G/B) = (f—e(f)| fERXY) Hz(G/B)q = (—y(f) | f€Sz1,...,an]W)
leizl lyi:O

K(G/B) = Z[X] ch, H*(G/B)g = Qlz1, ..., xzn]

(f =) [ feZIX]V) (f = fQ0) | f€Qlay,....za]V)
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5. Rank two and a positivity conjecture

In this section we will give explicit formulas for the rank two root systems. The data supports
the following positivity conjecture which generalizes the theorems of Brion [Br, formula before
Theorem 1] and Graham [Gr, Corollary 4.1].

Conjecture 5.1. For B € Rt let y3 = e " and ag = e P — 1 and Iet d(w) = £(wg) — £(w) for
w € W. Let ¢, be the structure constants of Kp(G/B) with respect to the basis {[Ox,] | w € W}
as defined in (0.1). Then

Copy = (1)1 f (o ), where  f(a,y) € Zsolag,ys | B € RY),

wv

that is, f(,y) is a polynomial in the variables ag and yg, § € R, which has nonnegative integral
coefficients.

In the following, for brevity, use the following notations:

in Kp(G/B), [w]=[0x,], o= e—(rentsaz) 1 and yps = e (rortsaz)
in K(G/B)’ [w] [OXw] Aprs = Oa and Yrs = ]-a
in H7(G/B), [w]=[Xy], aps=ra;+ sas, and Yrs = 1,
in H*(G/B)v [w] [Xw]7 ars =0, and Yrs = 1,

and in H}.(G/B) and in H*(G/B) the terms in { } brackets do not appear.

Type As. For the root system R of type Ao

_ _ 1 2 _ _ 1 1
a; = —wi + 2ws, AL=p, sy Twa =301+ 502, Agys, = Sawe = 301 — 3Qg,

— _ _ _ 2 1 _ _ 1 1
g = 2(4}1 — Wy, )\wo = O, )\82 = W1 = 50[1 + §042, )\8182 = S1WwW1 = *5041 + 50[2.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s281] =1, [1] = (L —emr X791 [s1] = (1 — e™*2 X72) s5],
[s9s81] =1 — e 1 X w2, [s182] =1 —e w2 X~
[s1] = (1 — ™22 X 7%2)[s251], [s2] = (1 — ™1 X7 )[s155],
and
[s18981] = 1, [s182] =1 —e 2 X~ [s281] =1 — e 1 X ™2
1 _ W2 Y TSIwl W2 YW —2w2 y—w2
[s1]=1—e"“2X e T e X2,
o) =1—e ™' X" - g
[S ] 1 e w X Sawa e—w1X—u)2 + 6—2(4)1X—w1
[1] =1 g WX TS1W1 _ oW1 Y —Sawa g e—2w1X—w1 4 e—Q(A)QX—WQ —e PX P,

[1]2 = *041004010411[1], [51]2 = a01a11[81], [52]2 = 04010411[82],
[1][s1] = coren1 [1], [s1][s2] = —an[1], [s2][s152] = —an1[s2],
[1][s2] = 1011 (1], [s1][s152] = yo1[1] — ao1[s1], [s2][s251] = y10[1] — a10[s2],
[1[s182] = —au1[1], [s1][s281] = —ani[s1],
= ]

*0411[1 >
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[5152]2 = 1/01[82] - 0401[8152], [5251]2 = 1/10[81] - 0410[8251]-
[s182][s2s1] = {—[1] } + [s1] + [s2],

Type Bs. For the root system R of type By

3
o = 2w — wy, A1 =p=2a1 + jao, As; = wz = aq + g,
1
ay = —2w + 2wo, Awy =0, Asy, = w1 = g + 5Qo,
Asps) = Sowz = ai, Asisps; = S182we = —au,
_ _1 _ _ 1
Aspsy = S1W1 = 502, Asysise = S281W1 = —5Q2.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

1] = (1= e X =) [s,] = (1= 522X %)[sq],

[ [
[ [
[s2s1] = (1 — ™1 X759 )[ss18],  [s182] = (1 — €™21*1 X 71 )[s551 53],
[s1] = (1 — e=*2.X 72 [s51], [s2] = (1 — ™2 X7 )[s155],

and
[s1828182] = 1, [s18281] =1 —e 2 X %2, [s28182) =1 —e ¥t X ™%,
[s182]) = (1 —e™%2) —e 2 X792 — 7 @2 X 75292 4 (7P 4 e SIP) X791
[5251] — 1 . e—le—wl _ e—W1X—S1W1 + 6—2&)1X—WQ’
[s1]=(1—e™2) 4 (e P+ e TP X 1 4 (7P + e 5P) X1

e B s e R P
[s2] = (L4 e721) e 21X 702wz e 72 X e
_ e X e | g X _ (B 4 g X,
[1] = (1 4 e7291) — e @1 X 7525191 | (e7F f g7 S1P) X —5191 _ (p73W1 | gmw1) Y~
eTW2 X TS1S2wW2 | T AWL X s2ws (o722 | pmwW2) YTW2 4 o TP X TP

The multiplication of the Schubert classes is given by

[818281]2 = { *@/11[51] } + (y01 + yll)[5251] - 0401[815281]a

1] = awananonl), s18281)[S28182] = { [1] — [s1] — [s2 5152 5251
[1][s1] = —ap1a11001[1], [ Il ] = {1 —[s1] = [s2] } + [ 1+ ],

s T e L R

[1][s251] = aq1001[1], [s251]% = —a21y10[51] + aroaai[s2s1],
1]|s18251 —aq1(1 4+ Y11
{1%528182} —0421E 1], ot [s251][s15251] = ya1[s1] — aai[sa2s1],

[5251][825152] = { *ylg[l] } + ’ylo[gl] + y10[82] _ 0410[8251],
[s1]7 = —aprariasi[s1], [52]2 = —aigou1az[sa],

[s1][s2] = an1aa1[1],
[s1][s182] = —a11(yo1 + y11)[1] + o111 [s1],

]

] [s2][5152 Q11021 [82),
[s1][5281] = Q11001 [51],

] =

] =

] =
[s2][s281] = —a21y10[1] + 1021 [s2],
[52”518251] y21[ ] - 0421[52],
[s1][s15281] = —an1 (1 4+ y11)[s1], (5o][52515] = —aeaa[sa],

[ ][825152 = yn[ ] - 0411[51],
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[8182]2 = —aq1(Yo1 + y11)[s2] + ao1011[s152],
[8182] [8281] = ({ a1 } + y21)[1] - 0411[81] - 0421[32]7

[s152][s15281] = {

—(yor +y10)[1] } + yoi[s1] + (y11 + y12)[s2] — o1 [s152],

[8182][828182] = y11[82] - 0411[8132]7

[s251]° =

—a21y10[51] + 10021 5251,

[8281][818281] = y21[81] - 0421[8281],

[5281][528182] = { *910[1] } + 910[51] + ylo[Sz] — Q10 [5251],

Type G,. For the root system R of type Gs

A1 = p =5a+ 3as,

sy = w2 = 3a1 + 209,

sy = W1 = 201 + g,
sosp = Sawz = 31 + g,
s1sp = S1W1 = Q1 + Qg
= S2851W1 = O,

> > > > >

828182

)\818231 = S182Ww2 = (9,

)\32313231 = 8§28182Wa = —Q9,

)\31328132 = S182851wW1 = —Qq,
>\5152515251 = 51825182wz = —3a1 — (g,
>\5251525152 = 82818281W1 = —Q1 — (2,
Ay = 0.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

818281525152] 1,
5182818281 =1 — e ¥2 X w2
S9818251) = (1 — et X ~51%1)[5951 5951 S,

518251] = see below,

[
[
[
[
[
[

s951] = (1 — e™ 1 X 91525191 )59 51 59],
s1] = (1 —e™*2X742)[s351],
] — o2 X w2
[818281] = (

(1-

$981828182] =1 —e 1 X w1,

X s3] = (1= e X 2) ],

[

[

[s1828182] = (1 — e 511 X ~¥1)[5951 5281 S2),
1 _ 6*8282w1X*w1

[s28182] = T X [s1525152),

[s182] = (1 — e%2%191 X ~“1)[5y89],

[so] = (1 — eS1“r X ~“1)[s1 8],

)[s2s18281] + €72 (1 + e¥r X ~92)[s951]

)

14 e 2
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and

[wo] =1, [s251825182] =1 — Yy X ™, [s152515251) = 1 — 32X ™2,
[s2515251] = 1 — Y1 X ™0 —yo1 X519 4 ygo X ™92,
[s1525182] = (1 — y32) + (Y22 + Ya2 + Ya3 + Ys53) X 1 — g2 X 7719 — ygp X 752711
— Y3 X Y7 — Yz XY,
[s2s182] = (1 — Y21 + Ya2) + (Ya2 — Y21 — Y52 — Y53 — ¥Y63) X " + (Yaz — y21) X 1"
+ (Yaz — Y21) X 2 + oy X792+ ygp X779,
[s15281] = (1 — 2y32) + (Y22 + Va2 + Yaz + Ys53) X ™" + (Y22 + Yaz + Yaz + ys3) X"
— Yz X T — g X T2
— (Y32 + ya3 + Ys3) X 792 — Yz X 7792 — g X 771722,
[s251] = (1 — Y21 + 2u42) + (Ya2 — Y21 — Ys2 — Y53 — Ye3) X “*
+ (a2 — Y21 — Y32 — Y53 — Y63) X ' + (Yaz — yor) X~ BT
(a2 — y21) X 77290 4 (ygn + ye3) X ™92 4 yao X 75292 4y X 515202
[s182] =1 —y11 — Yo1 — Y32 — Y3 — Y53 + (Y22 + y32)(1 + Y10 + Yy20) X "
+ (22 + Y32 + Ya2) X 1 + (Yoo + ys2 + yag) X~ 52512
— (Y32 + ya3 + Ys53) X 7% — (Ys2 + ya3 + Ys3) X 7277 — ygp X 7717292 — ygp XT72719202
[s2] = (14 y31 + Y32 + 2ya2 + Y63) — (Y21 + Y52 + Y53 + Ysa) X~ — (yo1 + Ys2 + ys3) X 51"
— (Y21 + Ys2 + Ys53) X TF2FE — o XTEIIEL gy X252
+ (ya2 + Y63) X 9% + (yaz + ye3) X %22 4 ygo X 515292 4 gy p X 52515202
[s1] =1 — (y11 + Y21 +y32 + 2943 + 2y53) + (Y22 + ¥s54) (1 + y10 + y20) X "
+ (Y22 + Ys5a) (1 + Y10 + y20) X ™5 + (Y22 + Y32 + yag) X 52511
+ (y22 + Y32 + Ya2) X 772710 — (Y32 + ya3 + Ys3 + Yea) X~ ¥7 — (Y32 + yaz + ys3) X 722
— (Y32 + Yaz + Ys3) X 712 — yzp X TIIIRE2 g, XTSI
[1] = (1+ y31 + yaz + Y63 — Y53 — ya3) — Y21 (1 + y32)° X~
+ Y22 (1 4 y10 + y20) (1 + Y21 + y31) X ™" — (Y21 + ys2 + ys3) X 52512
Yoo X TETIE o) X722 o (14 y11) (1 4 921) X ™92 + (yaz + ye3) X 522
— (Y32 + Ya3 + Ys3) X 15292 gy X 752515202 g X T RS2S1202 g X TP

The multiplication of the Schubert classes is given by

[1]* = arpao1 110213132 (1], [1][s25182] = —an1as132(1],
[1][s1] = —ap1a11a21a31032(1], [1][s1525152] = a1 aza(1 + y21)[1],
[1][s2] = —aipai1aziaziaszs(1], [1][s2515251] = azi1a32(1 + ya1)[1],

[1][s182] = a11an1a31032[1], [1][s152515251] = —az2(1 + y32)[1],
[1][s251] = ar1a21a31032[1], [1][s251525182] = —aa1 (1 + y21)[1],
] =

[ ][815281 *041104210432(1 + Y11 + @121)[1],
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[51]2 = —Qp1 011021 031 O32[51]
[s1][s2] = a1 aziasa(l]
[s1][s182] = —ar10132(Yo1 + Y11 + Yo1)[1] + Qo111 21 32 [51]
[ ][8281] Q11 Q21 (31 (032 [81]
][815251] *041104210432(1 + Yy + 1/21)[81]

][828182] = 04210432(?;11 + y21)[1] - 041104210432[81]

[s1][s1525182] = —a32(y22 + y32)[1] + a1 ase (1 + y11)[s1]

[s1][s2518251] = qraza(1 + ya1)[s1]
[s1][s152518251) = —az2(1 + y32)[s1]
[81][8281828182] = y32[ ] - 0432[81]

[52]2 = —O01p0110i21 (31 (32 [82]

[ ][8182 —0411042104310432[82]

[s2][s251 —a1a31a32910(1] + Qo213 azz[ss)
[ ][818281 a21a32(y21 + y31)[1] — (v21 (31032 [82]
[ ][828182 —210;31(X32 [82]
[s2][s1525152] = ao1asa(1 + yo21)[s2]
[s2][s2518251] = —a1 (Y31 + Ys2)[1] + azras1 (1 + y21)[s2]

[s2][s152515251] = Yes[1] — o1 (1 + Y21 + Ya2)[s2]

]
I =
J=
I =
]
I =
J=
I =

[82][8251828152 *0521(1 + y21)[82]
[s152] = —oniaziasa(yor + Y1 + y21)[s2] + anren1021052[5152]
[s152][5251] = ag1as2(y11 + Y21 + as1)[1] — araziasz[s1] — agiazyass|ss]

[8182][818281]

[8182] [828182]

[5152][51525152] =

[5152] [52515251] =

[5152] [5182515251]

[5152] [5281525152]

= —az2(ys2 + yao{ +a11(yor + 2y11 + 1) P[] + arrasa (Yo + y11)[s1]
+ (a31a32y11 + ar1as2 (Yor + Y11 + y21)) [s2] — ap1 11 v32[s152]
= 04210432(?;11 + y21)[82] — (110021032 [8182]
—a32 (Y22 + y32)[s2] + crrasa(1 + yi1)[s152]
(y63 {+as2(y11 + y21) })[1] — asoyri[s1] — (as2(y11 + y21) + asiys2) [s2]
+ a11032 [8182]
= { —(y33 + ya3 + y53)[1] } + yas[s1] + (y33 + yas + ys3)[s2]
— a1 (14 y11 + yo2)[s152]

= Y32 [52] — (32 [5152]

17
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[8281]2 = *042104316132@/10[51] + a1 031032 [5251]
[8281][818281] = 04210431(?;21 + y31)[81] — (v21 (31032 [8281]
[s251][s25152] = —21 (Y51 + Ys2{ +as1y10 })[1] + 21 (@10y31 + 32910)[51]

+ a21031 (Y10 + Y21)[S2] — Q10021 v31[S251]
[s251][s1525152] = (y62{ +as1 (Y21 + y31) })[1] — (a31y21 + a1o(ys1 + y41))[81]
- (0431y21 + a32y31) [s2] + az1a31[s251]
[s251][s2515251] = —a1 (Y31 + Ys2)[s1] + o131 (1 + y21)[s251]
[s251][s152518251] = Yes[s1] — 21 (1 + Y21 + ya2)[s251]

[8281][8281828182] = { —y31[1] } + y31[81] + y31[82] - 0431[8281]

[313231]2 = —0432(y32 + y42{ +a11(y11 + y21) })[81]
+ (04110432(%1 +y11 +yo1) + a31a32y11) [s251] — ap1a1132[515251]
[s1s251][s25152] = (1{ +a11(y11 + Y22 + Y33 + Y31 + yaz) + as1(y21 + ys2) + asayar })[1]

— (o1 (y21 + @32) + @10(ys1 + ya1 + Y32 + yaz))[s1]
— (a31(y21 + y32) + a1 (Y21 + ys2 + Y31 + ou2)[s2]
+ a1 a32[s152] + a1z [s251]

[s18251][s1528182] = { —(y33 + 2v43 + Y53 + 11 (Yo1 + y11) + @21 (Y11 +y21))[1] }
+ (y33 + ya3{ +oa1(yor + y11) + a21(y11 + y21) }) 1]
((1133 + a3 + y53){ +aa1(yor + y11) + @21 (Y11 + yo1) }) [s2]
— o11(yo1 + 11 + y22)[s152) — (a11(yor + y11) + 21 (Y11 + y21)) [s251]
+ aprai1[s15251]

[s15251][s2815251] = (Ye2{ +az2y21 })[s1] — (0431@/32 + aza (Y11 + y21))[5281] + a11032(515251]
[s15281][s152815281] = { —(va3 + ys3)[51] } + (y33 + a3 + ys3)[s251] — @11 (1 + y11 + ya2)[s15251]
[s15251][s251525152] = { (y11 + y21)[1] — (W11 + y21)[s1) — (Y11 + yo1)[s2] }

+y1[s1s2] + (Y11 + y21)[s251] — a11(s15251]

[828182]2 = —a21(Y21 + Ya2)[s2] + (a11a21y31 + azlaslylo)[«SlSz] — Q100210315251 52)
[s25152][s1525152] = Ys3[s2] — (0421@/31 + a11a21a321/21)[8182] + ag1a31 [s251 52]
[s25152][s2515251) = { *(1151 + Ys2 + 04311110) (1]} + (yar{ +as1y10 })[51] + (Ya2 + ys2{ +az1y10 })[52]
— (a11y31 + az1y10)[5152] — az1y10[5251] + @031 [525152]
[s25152][s152515281] = { (Y31 + y32 + ya2)[1] — (y31 + ys2)[s1] — (y31 + Y32 + ya2)[s2] }
+ (Y31 + y32)[s152] + y31[s251] — az1[s25152]

[525152”5251525152] = y31[5152] - 0431[525182]
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[s1525152]% = { —yass2] } + (ys2 + yaz{ +01y21 + say11 })[s152]
- (0401(2111 +y21) + az1(yo1 + yn))[828182] + o111 [51525152]
[s1525152][s2515251] = { (Y21 + Y31 + Y32 + a2 + a11)[1]
— (y21 + Y31 + Y32 + a11)[s1] — (Y21 + Y31 + Y32 + Ya2 + a11)[s2] }
+ (y31 + yaz{, +au1 })[s182] + (y21 + ys1{ +au1 })[s251]
- 0411[818281] - 0431[828182]
[s1528182][s182518251] = { —(yo1 + Y11 + Y21 + Y22 + y32)[1]
+ (Yo1 + Y11 + Y21 + y22)[s1] + (o1 + Y11 + Ya1 + Y22 + Y32)[s2]
— (yo1 + Y11 + Y21 + y22)[s152] — (Yo1 + Y11 + y21)[s251] }
+ yo1[s15251] + (Yo1 + y11 + Y21)[s25152] — ap1[s1525152]

[51825152”5251525152] = { *921[5152] } + (@111 + @/21)[525182] - a11[81828182]

[82818281]2 = { —ysa[s1] + (Va2 + ys2)[s251] } — (@11Y31 + as1Y10)[S15251] + 1pa31[S2515251]
[52515251][5152515251] = {942 [51] - (1/31 + y41)[5251] } + (@131 + y32)[518281] - a31[82818251]
[s2515281][s251528182] = { —y10[1] + y10[s1] + y10[S2] — yr0[s152] — Y10[s2s1] }

+ y10[s15251] + y10[s25152] — a10[s2515251]

[8182815251]2 = { —ys2[s1] + (y22 + y32)[s251) — (Y11 + Y21 + y22)[s15251] }
+ (Yo1 + Y11 + Yo1)[S2515251] — p1[s152515251]
[s152515251][s251525182) = { [1] — [s1] — [s2] + [s152] + [s251]

— [s18281] — [s2s182] } + [s1525182] + [s2518251]

[5251525152]2 = y10[81828182] — Q710 [5251525152]
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