arXiv:0801.0709v1 [math.RT] 4 Jan 2008

Combinatorics in affine flag varieties

James Parkinson
Institut fur Mathematische Strukturtheorie
Technische Universitat Graz
Steyrergasse 30/I11, A-8010 Graz Austria
parkinson@weyl.math.tu-graz.ac.at

Arun Ram

Department of Mathematics
University of Wisconsin
Madison, WI 53706 USA

ram@math.wisc.edu
and
Department of Mathematics and Statistics

University of Melbourne

Parkville VIC 3010 Australia

Cristoph Schwer
Mathematisches Institut Universitat zu Koln
Weyertal 86-90, 50931 Koln, Germany
cschwer@math.uni-koeln.de

Dedicated to Gus Lehrer on the occasion of his 60" birthday

Abstract

The Littelmann path model gives a realisation of the crystals of integrable representations
of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent-Littelmann and
others [BG] [GR] has demonstrated a connection between this model and the geometry of
the loop Grassmanian. The alcove walk model is a version of the path model which is
intimately connected to the combinatorics of the affine Hecke algebra. In this paper we
define a refined alcove walk model which encodes the points of the affine flag variety. We
show that this combinatorial indexing naturally indexes the cells in generalized Mirkovic-
Vilonen intersections.
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1 Introduction

A Chevalley group is a group in which row reduction works. This means that it is a group with
a special set of generators (the “elementary matrices”) and relations which are generalisations of
the usual row reduction operations. One way to efficiently encode these generators and relations
is with a Kac-Moody Lie algebra g. From the data of the Kac-Moody Lie algebra and a choice
of a commutative ring or field F the group G(F) is built by generators and relations following
Chevalley-Steinberg-Tits.

Of particular interest is the case where F is the field of fractions of o, the discrete valuation
ring o is the ring of integers in F, p is the unique maximal ideal in 0 and k = o/p is the residue
field. The favourite examples are

F=C((t) o = C[[t]] k=C,
F=Q, 0=127 k=T,
F=TF,((t)) o = Fy[ft]] k =TFq,

where Q) is the field of p-adic numbers, Z, is the ring of p-adic integers, and F, is the finite field
with ¢ elements. For clarity of presentation we shall work in the first case where F = C((t)).
The diagram

G = GC(®)
F ul ul
ul gives K = G(EC[t]) == G(©) (1.1)
Y k=o/p ul ul ul

I = eviZg(B(C)) == B(C)

where B(C) is the “Borel subgroup” of “upper triangular matrices” in G(C). The loop group is
G = G(C((t))), I is the standard Twahori subgroup of G,

G(C)/B(C) is the flag variety,
(1.2)
G/I is the affine flag variety, and G/K is the loop Grassmanian.

The primary tool for the study of these varieties (ind-schemes) are the following “classical”
double coset decompositions, see [Stl, Ch. 8] and §(2.6)]

Theorem 1.1. Let W be the Weyl group of G(C), W =W x bz the affine Weyl group, and
U~ the subgroup of “unipotent lower triangular” matrices in G(F) and h%‘ the set of dominant
elements of by. Then

Bruhat

decomposition G = U BuwB K= |—| Twl
weW weW
Twahori G= || rwr G=||Uu
decomposition =) =3
weW veW
Cartan _ Twasawa
decomposition G = U Kty K G = |—| Uty K decomposition

AVent wY€Ebz



In this paper we shall refine the Littelmann path model (in its alcove walk form, see [Ra]) by
putting labels on the paths to provide a combinatorial indexing of the points in the affine flag
variety. This combinatorial method of expressing the points of G//I gives detailed information
about the structure of the intersections

UvInlwl  with v,weW. (1.3)

The corresponding intersections in G/K have arisen in many contexts. Most notably, the set of
Mirkovié-Vilonen cycles of shape NV and weight 11 is the set of irreducible components of the
closure of U"t,v K N KtyvK in G/K,

MVOAY)w = Tr(U—t,v K N Ky K),

and
when k =TF,, Cardg/g(U t,wK N Kty K) is

(up to some easily understood factors) the coefficient of the monomial symmetric function v
in the expansion of the Macdonald spherical function Pyv.
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2 Borcherds-Kac-Moody Lie algebras

This section reviews definitions and sets notations for Borcherds-Kac-Moody Lie algebras. Stan-
dard references are the book of Kac [Kac], the books of Wakimoto [Wakl][Wak2], the survey
article of Macdonald [Mac3] and the handwritten notes of Macdonald [Mac2]. Specifically, [Kacl
Ch. 1] is a reference for §2.1, [Kac, Ch.3 and 5] for §2.2, and [Kad, Ch.2] for §2.3.

2.1 Constructing a Lie algebra from a matrix

Let A = (ai;) be an n x n matrix. Let
r = rank(A), ¢ = corank(A), so that r+4¢=n. (2.1)

By rearranging rows and columns we may assume that (a;;)i<ij<r is nonsingular. Define a
C-vector space

b’ has basis hq,...,h,, and

o
h=b oo, where 0 has basis dy, ..., d,. (2.2)
Define a,...,a, € h* by
Oéi(hj) = Qjj and ai(dj) = O4,r+75> (23)
and let
h =1/, where c={hebh |a;(h)=0foral 1l <i<n}. (2.4)



Let ¢1...,co € b be a basis of ¢ so that hy,...,h.,c1,...,co,dq,...,dy is another basis of h and
define k1,...,Kk¢ € h* by

/{i(hj) == 0, /ii(Cj) = 52']', and /ii(dj) =0. (2.5)
Then aq,...,an, k1, ..., k¢ form a basis of h*.
Let a be the Lie algebra given by generators b,eq,...,en, f1,-.., fn and relations
[h7 h,] - 07 [eiu f]] - 57,]h27 [ha ei] - ai(h’)eia [h7 fl] - _az(h)flu (26)

for h,h/ € h and 1 < i,j < n. The Borcherds-Kac-Moody Lie algebra of A is
g= %, where v is a the largest ideal of a such that tNh = 0. (2.7)

The Lie algebra a is graded by
Q= ZZ%’, by setting deg(e;) = i, deg(fi) = —au, deg(h) =0, (2.8)
i=1
for h € h. Any ideal of a is Q-graded and so g is Q-graded (see [Mac2l, (1.6)] or [Mac3 p. 81]),

g=0g0d <@ ga) , where go ={z €g]|[h,z] =a(h)r}, and
acR
R={a|a#0and g, # 0} is the set of roots of g.

(2.9)

The multiplicity of a root a € R is dim(g,) and the decomposition of g in (2.9)) is the decompo-
sition of g as an h-module (under the adjoint action). If

nt is the subalgebra generated by eq,...,e,, and
n~ is the subalgebra generated by fi,..., fx,

then (see [Mac3l p. 83] or [Kad, §1.3])

g=n"®hen" and h=gy, nt = EB ga, n = EB g a, (2.10)
aERT aERT
where .
R+ = Q+ NR with Q+ = ZZZOOQ'. (211)

i=1
Let ¢ and 0 be as in (2.2) and (24]). Then

0 acts on g’ = [g, g] by derivations,  ¢= Z(g) = Z(g),
g=n"@hont =a/t=¢ %0,
g=n"obh on’ =g (2.12)

g'=n"obent =g/
and g’ is the universal central extension of g’ (see Ex. 3.14]).



2.2 Cartan matrices, sl; subalgebras and the Weyl group

A Cartan matriz is an n x n matrix A = (a;;) such that
a;j € Z, a; = 2, a;; <0ifi# 7, a;; # 0 if and only if aj; # 0. (2.13)

When A is a Cartan matrix the Lie algebra g contains many subalgebras isomorphic to sly. For
1 < i < n, the elements e; and f; act locally nilpotently on g (see [Mac3), p. 85] or [Mac2l, (1.19)]

or [Kad, Lemma 3.5]),

span{e;, fi, hi} = slo, and 5; = exp(ade;) exp(—adf;) exp(ade;) (2.14)
is an automorphism of g (see Lemma 3.8]). Thus g has lots of symmetry.

The simple reflections s;: h* — h* and s;: h — b are given by
$iA = A= Ahy)aoy and sih = h — a;(h)hi, for 1 <i <nmn, (2.15)
Aeb*, heb, and
5i8a = Us,a and S;h = s;h, fora € R, he€b.

The Weyl group W is the subgroup of GL(h*) (or GL(h)) generated by the simple reflections.

The simple reflections on h are reflections in the hyperplanes

n

b = {heb|ai(h) =0}, and c=p" =()p"

i=1
The representation of W on h and h* are dual so that

Mwh) = (w™\)(h),  forwe W, X€b* heb.

The group W is presented by generators si,...,s, and relations
s? =1 and 5i8jS; = 5;8;5j " (2.16)
—_— Y

m;; factors m;; factors

for pairs ¢ # j such that a;ja;; < 4, where m;; = 2,3,4,6 if a;;a;; = 0,1, 2,3, respectively (see

(2.12)] or [Kad, Prop.3.13]).
The real roots of g are the elements of the set

Ry = U Way, and Rin, = R\Rye (2.17)
i=1

is the set of imaginary roots of g. If @« = way; is a real root then there is a subalgebra isomorphic
to sly spanned by

ea = We;, fo=wf;, and h, = Wh,, (2.18)
and s, = ws;w™! is a reflection in W acting on b and h* by

Sad = A — Ahqo)a and soh = h —a(h)hq, respectively. (2.19)
Let bg = R-span{hy,...,hp,d1,...,ds}. The group W acts on hg and the dominant chamber
C={\ €br|{a;,\)>0forall<i<n} (2.20)

is a fundamental domain for the action of W on the Tits cone
X = U wC = {h € hr | (o, h) < 0 for a finite number of « € R™}. (2.21)

weW

X = bg if and only if W is finite (see [Kad, Prop. 3.12] and (2.14)]).



2.3 Symmetrizable matrices and invariant forms

A symmetrizable matriz is a matrix A = (a;j) such that there exists a diagonal matrix
E = diag(eq,...,e,), € € Ry, such that A& is symmetric. (2.22)

If (,): g x g — C is a g-invariant symmetric bilinear form then

(hiy h) = ([es, fil, h) = —(fi, [ei, h]) = (fi, ci(h)ei) = ai(h){ei, fi),

so that
(hi, h) = a;(h)e;, where e; = (e, fi)- (2.23)

Conversely, if A is a symmetrizable matrix then there is a nondegenerate invariant symmetric bi-
linear form on g determined by the formulas in (2Z23]) (see (3.12)] or [Kacl Theorem 2.2]).
If A is a Cartan matrix and (,): h x h — C is a W-invariant symmetric bilinear form then

(hi,h> = —<Sihi,h> = —<hi,8ih> = —(hi,h — Oéz(h)hz> = —<hi,h> + ai(h)(hi,hi>,

so that
(hi, h) = a;(h)e;, where & = 3(hi, hi). (2.24)

In particular, o;(hj)e; = (hi, hj) = (hj, hi) = oj(h;)e; so that A is symmetrizable. Conversely,
if A is a symmetrizable Cartan matrix then there is a nondegenerate W-invariant symmetric
bilinear form on b determined by the formulas in (224]) (see [Mac2], (2.26)]).

If 2o € ga) Yo € 9o then [To,Ya] € [8a;8-a] € go = b and (h, [Ta, Ya]) = —([Ta, "], Vo) =
a(h){(zq, ya), so that

[Tas Ya| = (Tas Ya )R, where (h, h.) = a(h) for all h € b (2.25)
determines h) € h. If & € Ry and eq, fo, ha are as in ([2I8) then
ha = [eoufoc] = <eouf0c>hz and (eocafa> = %<ha7ho¢>- (226)

Let
o = (eq, fa)a = ${ha, ho)or so that a’(h) = (h, ha). (2.27)

Use the vector space isomorphism

b — b . .

h +— (h,) . . v . v

I oV to identify Q" = E_l Zh; and Q= E_l Lo (2.28)
hy — o« - .

and write

AV, 1) = p(hy) if A =MNaj +-+\a,, and  hy = Ahy + -+ My, (2.29)



3 Steinberg-Chevalley groups

This section gives a brief treatment of the theory of Chevalley groups. The primary reference is
[St] and the extensions to the Kac-Moody case are found in .

Let A be a Cartan matrix and let R, be the real roots of the corresponding Borcherds-Kac-
Moody Lie algebra g. Let U be the enveloping algebra of g. For each o € R, fix a choice of e,
in (2I8) (a choice of w). Use the notation

1 1
Zo(t) = exp(teq) =1+ €4 + Etzei + gt?’ei +e in U[[t]].

Then
To(t)xo(u) = xo(t + u) in U[[t, u]].

Following 3.2], a prenilpotent pair is a pair of roots a, € Ry such that there exists
w,w’ € W with
wa,wf € RY and w'o,w' B € —RE,.

This condition guarantees that the Lie subalgebra of g generated by g, and gg is nilpotent. Let
@, 3 be a prenilpotent pair and let e, € g and eg € gg be as in (ZI8). By [St, Lemma 15] there
are unique integers C’Zﬁ such that

zo(t)zg(u) = xﬁ(u)aza(t)a:aJrg(Cé:l tu)x2a+ﬁ(0§:1 tzu)xa+25(0i:25ut2) e
Let F be a commutative ring. The Steinberg group
St is given by generators z,(f) for « € Ry, f € F,

and relations
zao(f1)xa(f2) = za(f1 + f2), for @ € Ry, and (3.1)

Ta(f1)25(f2) = 2a(f2)Ta(f1)Tass(Co 1 F2)T20:8(Co 4 fE f2)Tarap(Co 5 f1f3) - (3.2)
for prenilpotent pairs a, 3. In St define

na(g) = xa(g)x_a(—g_l)xa(g), na =na(l), and hyv(g) = na(g)ngl, (3-3)

for « € Ryc and g € F*.
Let hz be a Z-lattice in h which is stable under the W-action and such that

hz 2 QY, where QY = Z-span{hi,...,h,}
with hi,...,hy, as in (22). With
T given by generators hyv(g) for \Y € bz, g € F*, and relations

hav(g1)hav(g2) = hav(gige)  and  hav(g)huv(g) = haviv (9), (3.4)

the Tits group
G is the group generated by St and T

with the relations coming from the third equation in (B3] and the additional relations

I (9)za(F)hav(9) ! = 2a(gP M f)  and  nibav (g)n; = hsav(g). (3.5)



For a, B € Rye let €43 = £1 be given by
Sa(eg) = €apes, 3, where 5o = exp(ade,) exp(—adf,) exp(ade,)

(see [CCl p.48] and [T1, (3.3)]). By [Stl Lemma 37] (see also [T, §3.7(a)])
na(9)25(Fnal9) ™ = zsleasg™ 1), hav(@)za(Hhav(9) ™t =2a(g T f),  (3.6)
and  1a(g)hav (9')na(9) ™" = hsaav (). (3.7)
Thus G has a symmetry under the subgroup
N generated by T and the nq(g) for a € Rye,g € F*. (3.8)

If F is big enough then N is the normalizer of 7" in G [Stl Ex. (b) p.36] and, by [St, Lemma 27],
the homomorphism
N — W

na(g) = Sa

Remark 3.1. [T1, §3.7(b)] If hz = Q" and the first relation of (3. holds in St then there is a
surjective homomorphism ¢: St — G. By [Stl Lemma 22], the elements

is surjective with kernel 7. (3.9)

-1 -1

nahav (9)ng hs.av (9) and  na(9)ng hav(9)

automatically commute with each zg(f) so that ker(¢) C Z(St). In many cases St is the
universal central extension of G (see 3.7(c)] and [St, Theorems 10,11,12]).

Remark 3.2. The algebra g’ = [g,g] in (ZI2]) is generated by €4, @ € Rye. A g'-module V is
integrable if e,, o € Rye, act locally nilpotently so that

zq(c) = exp(ceq), for o € Rye, c € C, (3.10)

are well defined operators on V. The Chevalley group Gy is the subgroup of GL(V') generated
by the operators in (8I0). To do this integrally use a Kostant Z-form and choose a lattice in the
module V' (see [Ti §4.3-4] and [Stl, Ch. 1]). The Kac-Moody group is the group Gx s generated
by symbols

zo(c), @€ Rye,c€C, with relations xo(c1)za(c2) = zo(c1 + c2)

and the additional relations coming from forcing an element to be 1 if it acts by 1 on every
integrable g’ module. This is essentially the Chevalley group Gy for the case when V is the
adjoint representation and so Gk C Aut(g’). There are surjective homomorphisms

St((C) — Gy — Gy.
See [Kad, Exercises 3.16-19] and Proposition 1].

Remark 3.3. [St, Lemma 28] In the setting of Remark let Ty be the subgroup of Gy
generated by hov(g) for @ € Rye,g € F*. Then

hay (91) -~ hay(gn) =1 if and only if gﬁ”’alv) e gfﬂ’o‘m =1 for all weights p of V,
Z(Gv) = {hay () hay(gn) | /" - gl9%) =1 for all # € R},
and if F is big enough
Tv = {huy(91) - hey(gn) | 915+ gn €FY,

where wy,...,w, is a Z-basis of the Z-span of the weights of V' [Stl Lemma 35].



4 Labeling points of the flag variety G/B

In this section we follow [Stl Ch.8] to show that the points of the flag variety are naturally
indexed by labeled walks. This is the first step in making a precise connection between the
points in the flag variety and the alcove walk theory in [Ral.

Let G be a Tits group as in (3.0 over the field F = C. The root subgroups

Xo = {za(c) | c € C}, for a € Ry, satisfy wXpw ' = Xy, (4.1)

for w € W and 8 € Ry, since h,v ((:)Xghoév(c)_1 = X and naXﬁngl = X, 3. As a group &, is
isomorphic to C (under addition).
The flag variety is G/B, where the subgroup

B is generated by T and z,(f) for « € R, f € C. (4.2)
Let w € W. The inversion set of w is
R(w)={ac R |wa ¢ R, and l(w) = Card(R(w)) (4.3)

is the length of w. View a reduced expression @ = s;, - - - §;, in the generators in (2.16]) as a walk
in W starting at 1 and ending at w,

1 — 8, — 88y, — - ——  8j -8, =W. (4.4)

Letting z;(c) = x4, (c) and n; = nq, (1), the following theorem shows that

BwB = {a:,-l(cl)ni_lla:iz(CQ)ni_Ql e xie(cz)ni_llB | c1,...,c0 € C} (4.5)
so that the G/B-points of BwB are in bijection with labelings of the edges of the walk by
complex numbers ¢y, ..., c,. The elements of R(w) are

/81 - 047;1, 52 - S’ila’i27 ceey 5@ - S’il e Siefla’iga (46)

and the first relation in (3:6) gives

xil(cl)ni_llxiz(CQ)ni_zl e 332'[(05)712-_[1 =g, (£c1) -+ 28, (L) Ny, (4.7)

-1 -1
where n,, = n; n;,

Theorem 4.1. [St, Thm. 15 and Lemma 43| Let w € W and let n,, be a representative of w
in N. If

R(w) ={b1,...,0¢} then {xp,(c1) - xg,(co)ny | c1,...,c0 € C}
18 a set of representatives of the B-cosets in BwB.

Proof. The conceptual reason for this is that

BuB=| [] ¥« |nwB=nu| [] %Xuia I %-.|B
acR w=lagRi w-laeRk
=ny| ] Aww|B=| ][] 4 |n.B
w—lagR a€R(w)

= {xﬁl(cl) o ':Eﬁz(cf)an | Cl,...,C € ]F}



Since R;, may be infinite there is a subtlety in the decomposition and ordering of the product
of X, in the second “equality” and it is necessary to proceed more carefully. Choose a reduced
decomposition w = s;, ---s;, and let 01,..., B, be the ordering of R(w) from (4.G]).

Step 1: Since R(w) C Ry there is an inclusion
{zp,(c1) - xg,(c))nwB | c1,...,c0 € C} C BwbB.

To prove equality proceed by induction on 4.
Base case: Suppose that w = s;. Let o € R, and ¢,d € C. If ¢ = 0 or «, o is a prenilpotent
pair then, by relation (3.2]),

To(d)a, (c)nj_lB = 2o, ()07

1 /
i B, for some ¢ € C. (4.8)

If o, oy is not a prenilpotent pair and ¢ # 0 then «, —«; is a prenilpotent pair and, by ([B.2)),

Ta(d)za, (c)nj_lB = zo(d)z_q, (cHB = T, (cHB = Toy (c)nj_lB.

Thus {7, (c)nj_lB | c € C} is B-invariant and so Bs;B = {,, (c)nj_lB | c e C}.
Induction step: If w = s;, - - -s;, is reduced and if (ws;) > £(w) then, by induction,

BwsjB C BwB - BsjB = {xs,(c1) - "xgl(cz)a:waj(c)nwnj_lB | c1y...yco,c € F}

so that Bws;B = {xg,(c1) - 25, (cox1)nws; B | c1,. .., ceq1 € C} with By = way.
Step 2: Prove that BwB = BvB if and only if w =v by induction on ¢(w).

Base case: Suppose that ¢(w) = 0. Then BwB = BvB implies that v € B so that there is
a representative n, of v such that n, € BN N. Then vRf, C R since n,X,n,! = X,, € B for
a € Rf,. So ¢(v) = 0. Thus, by ZI6), v =1.

Induction step: Assume BwB = BvB and s; is such that {(ws;) < ¢(w). Since BuB-Bs;B C
BvB U Bus;B (see [Stl, Lemma 25],

Bws;B C BwB - Bs;B = BvB - Bs;B C BvBU Bvs;B = BwB U Bvs;B.

Thus, by induction, ws; = w or ws; = vs;j. Since ws; # w, it follows that w = v.
Step 3: Let us show that if z,,, (Cl)”i_ll : "fﬂaie(cé)”i_elB = Za, (c’l)nl_l1 : "mail(CZ)”i_elB’ then
¢; =, fori=1,2,... . The left hand side of

Tovy (02)”1'_21 e xil(c@)ni_llB = ny, i, (¢) — Cl)”i_ll e :L"Z-Z(CZ)ni;lB

isin Bs;, ---s;,B. If ¢y # ¢ then ni_lla:il (cf—e1)ng, € Bs;, B and the right hand side is contained
in
ni_llxil (¢} — c1)ni,Bsi, - $;,B C Bs;,B - Bs;, - s;,B= Bs;, -+ s;,B.
By Step 2 this is impossible and so ¢} = ¢;. Then, by induction, ¢, = ¢; for i =1,2,...,£.
Step 4: From the definition of R(w) it follows that if o, € R(w) and a + 8 € R, then

a+ (€ R(w) and if o, f € R(w) then «, # form a prenilpotent pair. Thus, by [St, Lemma 17],
any total order on the set R(w) can be taken in the statement of the theorem. O

Remark 4.2. Suppose that A € h* is dominant integral and M ()) is an (integrable) highest
weight representation of G generated by a highest weight vector v;\r. Then the set Bva;\r
contains the vector wvy” and is contained in the sum €0, M()), of the weight spaces with
weights > wA. This is another way to show that if w # v then BwB # BvB and accomplish
Step 2 in the proof of Theorem 1l
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5 Loop Lie algebras and their extensions

This section gives a presentation of the theory of loop Lie algebras. The main lines of the theory
are exactly as in the classical case (see, for example, §4] and [Kac, ch.7]) but, following
recent trends (see [Gal. [GK], [GR] and [Roul]) we treat the more general setting of the loop Lie
algebra of a Kac-Moody Lie algebra.

Let go be a symmetrizable Kac-Moody Lie algebra with bracket [,]o: g0 ® go — go and
invariant form (,)g: go X go — C. The loop Lie algebra is

go[t,t '] =C[t,t '] ®cgo  with bracket [z, t"ylo = ™"z, ylo,

for z,y € go. Let

g=golt.t J®Cc®Cd, g =go[t,t ']®Cc, § =golt,t"]= é
where the bracket on g is given by
[t x, t"y] = " [z, ylo + Om4n,0m{x, Y)oc, ce Z(g), [d,t™z] = mt™x. (5.1)

By [Kac, Ex. 7.8], ¢ is the universal central extension of g’. An invariant symmetric form on g
is given by

(e,d)y =1, (e, t™y) = (d,t"y) =0, (e,c)y = (d,d) =0, (5.2)
and
if =0
(7, ) = {@’wo’ Pt (5.3)
0, otherwise,

for x,y € gog, m,n € Z.
Fix a Cartan subalgebra hg of go and let

h="ho® Cc® Cd, bh' =ho @ Cc, b’ = bo. (5.4)
Asin [22), let hy, ..., hy,d1,...,dp be a basis of by and let

{hi,...,hn,dy,...,dp,c,d} be a basis of h and (5.5)
{wi,...,wn,01,...,d7, Ao, 0} the dual basis in h* ‘
so that

6(ho) =0, d(c)=0, 6(d)=1, and  Ag(ho) =0, Ao(c) =1, Ao(d)=0. (5.6)

Let R be as in (29). As an h-module

o= | Poarks | & | P ors | @b, where b§=bhy @ Cca Cd, (5.7)
a€R k€740
keZ
Gt ks = t" G, grs = t"ho, and  R=(R+Z5)UZxd (5.8)

is the set of roots of g.
Let a € Ry with @ = wa; and fix a choice of eq, f, and h,, in (2ZI8]) (choose w). Then

e—atks = t* fa, foatns =t Feq, h—otks = —ha + keq, fa)oc, (5.9)
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span a subalgebra isomorphic to sly. If go = ny @© ho @ nar is the decomposition in (2.10) and

n™ is the subalgebra generated by nar and e_o ks for @ € Rye, k € Z~0, and
n~ is the subalgebra generated by ny and f_,4xs for a € Rye, k € Z~,

then

g=n" ®hdnt with nt = na’ @ @ Gatks and n” =ng; @ @ Ja+ks
aeRU{0} aeRU{0}
k€Zsq kEZ g

The elements e_q1 k5 and [,k in ([B.9) act locally nilpotently on g because f, and e, act
locally nilpotently on gg. Thus

5_oyns = exp(ad t* f,) exp(—ad t~*e, ) exp(ad t* f,) (5.10)
is a well defined automorphism of g and
S—a+ks88 = Os oy aDd  S_aqpsh = s_aqrsh, (5.11)
for h e hand B € R, where s_qips: b — b* and s_qiks:h— b  are given by
S—atksA = A — Mh—giks)(—a+kd) and s_qikwsh =h— (—a+ kd)(h)h_atks, (5.12)

for A € h* and h € h. The Weyl group of g is the subgroup of GL(h*) (or GL(h)) generated by
the reflections s_ 1 ks,
Wast = (S—atks | @ € Rye, k € Z). (5.13)

Noting that bh* =ph5&CAy@Cs and b =hy P Ccd Cd, use (5.12) to compute

5 wirs(3) = A+ A(ha)(—r + k6), 5 wins(R) = Tt alR)(—ha + Elews fa)oc),
5_atks(fAo) = LAg — kl{eq, fa)o(—a +kd), s_ayrs(me) =me,
S_atks(md) = mo, $—arks(bd) = Ld — kl(—hq + k{ea; fa)oc).

for A € by, h € ho, m,£ € C. For « € Rye and k € Z

define tg,v € Wag by S_aiks = tkaVS—as (5.14)
and use ([2.20) and ([227) to compute
thav(A) = A — A(khy)d, thav (h) = 71 koY (h)e,
trav (LAg) = EAO + tka” — 04 (kha, kha)od, trav(mc) =
thav (M) = thav (0d) = + CUkhe — 04 (khq, kho)oc

Then tkavtjgy (5\) = tkh, (5\ — S\(jhﬁ)& =\ S\(k‘ha +jh5)5, and

thavtigy (CAo) = tiav ((Ag + £5B8Y — €3 (jhg, jhs)od)
= (g + Cka” — (1 (kho, kho)od + 58" — €5BY (kha)S — €1 (jhg, jhs)od
= (Ao + U(ka” + jBY) — €2 (kho + jhg, kha + jhg)od.

This computation shows that tiovt;gv = tjovirgv. Thus, if Wy is the Weyl group of g and
Q* = Z-span{ay,...,q, } then

Wag = {tyvw | AV e Q" ,w e Wy} with vty =ty and  wtyv = tyavw, (5.15)
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for w € Wy, \V, " € Q*.
Since C¢ is W,g-invariant, the group Weg acts on h*/C§ and Wg acts on the set

(b5 + Ao +C5)/Cs — b}

MbAg+CS A (5.16)
and the W,g-action on the right hand side is given by
5a(A) = A = A(ha)a and thav(\) = A + ka”, for A € hy. (5.17)

Here b is a set with a Wyg-action, the action of Wag is not linear.

6 Loop groups and the affine flag variety G/I

This section gives a short treatment of loop groups following [Stl Ch.8] and [Macll, §2.5 and
2.6]. This theory is currently a subject of intense research as evidenced by the work in [Gal,

Let go be a symmetrizable Kac-Moody Lie algebra and let hz be a Z-lattice in hg that
contains QY = Z-span{hy, ..., hy,}.

The loop group is the Tits group G = G(C((t))) (6.1)

over the field F = C((t)). Let K = Go(C[[t]]) and Go(C) be the Tits groups of gy and bz over
the rings CI[t]] and C, respectively, and let B(C) be the standard Borel subgroup of Go(C) as
defined in (£2)). Let

U~ be the subgroup of G generated by x_,(f) for « € R, and f € C((t)), (6.2)

and define the standard Iwahori subgroup I of G by

G = Go(C((t)

Ul Ul

K = GC[t]) == Go(C) (6.3)
Ul Ul Ul

I = evy(BC) = B(O)

The affine flag variety is G/I.
For a + j6 € Rye + 76 and ¢ € C, define

Toris(c) = zolct) and taw = hyv (1), (6.4)

and, for ¢ € C*, define
Mot j5(€) = Tatjs ()7 —ajs(—¢ ) Tarjs(c); (6.5)
Natjs = Natjs(1),  and  hiagjav (€) = natjs(Q)ngy s (6.6)

analogous to ([B.3)).
The group

W = {t)\v’w | AV e hz,w € Wo} with vty =ty and  wtyv = ty,\vw, (67)
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acts on b @ Co by
v(p+kS) =vpu+kS  and  tyw(p+kS) =p+ (k— (A, m)é (6.8)

for v € Wy, AV € bz, p € b, and k € Z. Then nyjs(c) = t_javnalc) = nalct?),

1

NaZgrks(Cngt = nazg(ct’)ng' = 24 p(eapet™) = x5, (5115 (€a,p0)

for a € Ry, and, for \V € bz,

tavapprs(Q)tns = 2pans(t™ Vo) = Tty (8+k0) (€)-
Thus the root subgroups
Xotjs = {Tatjs(c) | c€C}  satisfy  wXarjpw™' = Xyatjo) (6.9)

for w € W and o+ j0 € Rye +7Z4. These relations are a reflection of the symmetry of the group
G under the group defined in (B3):

N = N(C((t))) generated by na(g), hav(g), for g € C(())*, (6.10)

a € Ry, and \V € bz. The homomorphism N — Wp from B0 lifts to a surjective homomor-
phism (see p.26 and p. 28])

N — w
Natjs +— t_javsa with kernel H generated by hy(d), d € C[[t]]*.

ty\v — t}\/
Define . .
Rl = (R, + Z500) U (—R} 4+ Z=¢d) and RY = —R}E +Z6 (6.11)
so that _
Xoyjs ©1 if and only if o+ jé € Rl and

~ (6.12)
Xogjs CUT if and only if a+jo e RY

Note that R, U (—RL) = RV U (—RY) = Ry, + Z4.

7 The folding algorithm and the intersections U vl N [wl

In this section we prove our main theorem, which gives a precise connection between the alcove
walks in [Ra] and the points in the affine flag variety. The algorithm here is essentially that
which is found in and, with our setup from the earlier sections, it is the ‘obvious one’. The
same method has, of course, been used in other contexts, see, for example, [C].

A special situation in the loop group theory is when g is finite dimensional. In this case, the
extended loop Lie algebra g defined in (5.1 is also a Kac-Moody Lie algebra. If Gy is the Tits
group of go and G = Go(C((t))) is the corresponding loop group then the subgroup I defined in
[63) differs from the Borel subgroup of the Kac-Moody group G for g only by elements of
T, and the affine flag variety of G coincides with the flag variety of Gkps. Thus, in this case,
Theorem [£1] provides a labeling of the points of the affine flag variety.

Suppose that gg is a finite dimensional complex semisimple Lie algebra presented as a Kac-
Moody Lie algebra with generators e1,...,en, f1,---, fn,h1,-..,h, and Cartan matrix A =
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(i(hj))1<; j<n- Let ¢ be the highest root of I (the highest weight of the adjoint representation),
fix T

€o € o) fgo S 99— such that <€g0, f@>0 = 1’

and let

€0 =C€_pis =tfp fo=[f-prs =1 ey, ho = [eo, fo] = [ta—y,t 'ay] = —hy +c,
as in (5.9). The magical fact is that, in this case, g = go[t,t™'] @ Cc @ Cd is a Kac-Moody Lie
algebra with generators eq,...,en, fo,---, fn, Ros-- -, hn,d and Cartan matrix

AW = (O‘i(hj))ogi,jgnv where oy =—p+d and hg= —h,+ec, (7.1)
where § is as in (5.0) (see [Kad, Thm.7.4]).
The alcoves are the open connected components of
hr\ U H_q4js, where H_,yj5 = {z¥ €br | (2¥,a) = j}.
—a+j8eRI,
Under the map in (5.I6]) the chambers wC of the Tits cone X (see (220) and ([Z21])) become
the alcoves. Each alcove is a fundamental region for the action of W,g on hr given by (5.17)

and W,g acts simply transitively on the set of alcoves (see Prop. 6.6]). Identify 1 € Wg
with the fundamental alcove

Ag={z" €br | (z¥,q;) > 0 for all 0 <i < n}

to make a bijection
Wag «— {alcoves}.

For example, when gy = sl3,

H(xz-l-ts (xz H—a2+26 H—a2+46

Jr\/ /\/i/ /i/

— H_pp45
“’“ \ t H7<p+36
‘W‘ i_ H_ 125
\ / +
/ 5250 6” \ — Ha,
i_Hw (7.2)
) LAt
T AT A VA
t H, 4

WAVAVAVAVAVAVA

H*OA1+(§ HOél 041+2(§ a1+46

+



The alcoves are the triangles and the (centres of) hexagons are the elements of QV.
Let w € W,g. Following the discussion in (4])-(Z4l), a reduced expression @ = s;, - - - s;, is
a walk starting at 1 and ending at w,

NAVAVAVAVAVAVAVAVAVAVAVAVA
VAT AVAVAVAVAVAVAVAVAVAVAY
NSVAVAVAVAVAVAVAVAVAVAVAVAVA

RAVAVAV AT ST AT AT AT VAVAY
NONINININININININININ/N

Hﬁl HB3 Hﬁs

and the points of

Twl = {x;, (cl)ni_llxh(cz)ni ! -z, (co)n; 1I | c1,...,c0 € C} (7.3)
are in bijection with labelings of the edges of the walk by complex numbers ¢q,...,¢,. The
elements of R(w) = {fB1,...,0} are the elements of R, corresponding to the sequence of

hyperplanes crossed by the walk.
The labeling of the hyperplanes in (72)) is such that neighboring alcoves have

H’UOCJ‘
U_{_,Usj with va; € RL if v is closer to 1 than vs;. (7.4)

The periodic orientation (illustrated in (7.2))) is the orientation of the hyperplanes H, s such
that

(a) 1 is on the positive side of H, for o € R},

re)
(b) Hgaiks and H,, have parallel orientiations.

This orientation is such that
Hvaj

vaj € RY,  if and only if U__{_ivsj. (7.5)

Together, (T4) and (ZH) provide a powerful combinatorics for analyzing the intersections
U~vI NIwl. We shall use the first identity in B3], in the form

zo(cnyt =z o(cHaa(—c)hgv () (main folding law), (7.6)
to rewrite the points of TwI given in (73] as elements of U~ vI. Suppose that
T (cl)ni_ll - xie(cz)ni_zl = 2, (c}) -+ - @, (), where b € 1, (7.7)

v € Wyg and n, = nj_ll A jkl if v =s; ---s;, is a reduced word, and y1,...,v € RU so that

Ty, (¢]) - 24,(cy) € U™, Then the procedure described in (Z8)-(Z.I0) will compute cj,, € C,
Vel v e W and v € RY so that

1

iy (c1)ng - xi, (co)ny, g (c)n; !

‘/L'“{l (Cl) x’w (Cz)fﬂwﬂ (CZ-I—l)nU’b,'
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Keep the notations in (7). Since ba:j(c)nj_1 € Is;I there are unique ¢ € C and ' € I such
that b:z:j(c)nj_l = xj(é)nj_lb’ and

~1 -1 -1 -1
iy (c1)ny, "'xie(cf)nil xj(c)”j :x%(cll)"’sz(CZ)"vaj(C)”j

oo —1
= @y, (c1) 2o, ()00 (€)n; b
H’UOCJ‘

Case 1: If va; € RY, U:_{_;”Sj, then z, (c})--- :E«,Z(cz)nvxj(é)nglb’ is equal to

Loy, (€]) -+ - 24, (€)) Ty (£C) 05, b € UTws;I N Tws;l.

In this case, 41 = vay;, v = vsj, and

HUCY]‘ HUCY]
v $ o] becomes v ___l_: v, (7.8)
z +e
Hvaj

Case 2: Ifvay; ¢ R, and é £0, V% :__‘_:U, then
C

Ly (ch)-- Loy (Cz)nvxaj (5)71;113/ = T, (1) - Ty, (€ )nvx—aj (6_1)35043- (_E)haJV (e’

Hvozj HUO‘J’
— |+ - |+
ot <_l_ v becomes > v (7.9)
¢ et

Hvaj
Case 3: If voy; ¢ RYU and ¢ =0, V% :__‘_Oiv, then

Loy (€1) -+ Ty (Cz)nvxaj (O)n;lb/ = L, (C1) -+ Ty (CZ)nvx—aj (O)Hj_lb,
= a:yl(c' ) xW(CZ)wWH(O)nij b e U vs;I N ITws;l,

v :__~O_+ v becomes "% ;%iv (7.10)

We have proved the following theorem.

Theorem 7.1. If w € Wog and W = s;, - - - 8, is a minimal length walk to w define

. __ [ labeled folded paths p of type W
Pla), = { which end in v for v € Wag,
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where a labeled folded path of type W is a sequence of steps of the form

H’l)()cj HUO‘_J”_ H’l)()cj
>, vsi 0+v, where the kth step has j = ij.

o | T USJ"
¢ o1

Viewing U~vI N ITwl as a subset of G/I, there is a bijection

P (), «— U vINIwl.

8 An example
For the group G = SL3(C((t))),

1 c

)
—_
)

—_

_ o O

v
>
Q
=<
—
2]
~
I

[evlN e
o

| ©
i

o O
S
—_
|
|
—_
o
o

(an)
(an)
—
(@)
(an)
—

Zq, (C 0 =
0
1 00 1 0 0 1 0 O
Tay(C 0 c 0O ¢c 0], no=10 0 1],
0

1
00 1 0 ! 0 -1 0
1 0 0 el 00 0 0 —t!
Tagc) =10 1 0 0 1 0], np=10 1 0
c 0 1 0 0 ¢ t 0 0
Let w = s95150825051505250 and v = $951505251525¢ S0 that
2 0 0 01 0
w=|0 0 1 and v= [t 0 0
0 t2 0 0 0 t2

We shall use Theorem [7.1] to show that the points of TwI N U~ vl are

—1 —1 —1 —1 -1 -1 -1 —1 —1

x2(c1)ng w1(c2)ny xoles)ng x2(ca)ny xo(cs)ng x1(ce)ny zo(er)ng x2(cg)ny xo(co)ng 1,
with c1,...,c9 € C such that
c1=0, co0=0, c3=0, ¢4=0, ¢5#0, ¢c¢=0, ¢ #0, cg :c7_108. (8.1)

Precisely,

—1 —1 —1 —1 —1 —1 —1 —1 (-1 —1

22(0)ny 21 (0)n] “20(0)ngy  x2(0)ng “xo(cs)ny  x1(0)ny ~xo(cr)ng  wa(cg)ny  xo(c; “cg)ng

is equal to ugvgbg, with ug € U™, vg € N, bg € I given by

1 0 0 0 1 0
Ug = 65_1 —05207_ cgt 1 0], vg=|—-t2 0 0
cste 12 0 1 0 0 t?2 8.9
et —cilertest  —cgier cs2er e (82)
bg = —t cscr + cgt —C5 — Cq 168t ,
—c 'l —egtetest el egter Pest
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so that ug = T_q,(d1)T—y(d2)T—0y—5(d3)T—p—5(d1)T—a, (d5)T—ay—25(d6 )T —p—36(d7)T -0, +5(ds)
~x_a2_35(d9) with

d1 = d2 = d3 = d4 = 0, d5 == Cgl, dﬁ == 0, d7 = 65_167_1, dg = —65267_168, dg = 0. (8.3)

Pictorially, the walk with labels c1, ..., cg

vy
becomes W 5

/\M\/\ /N /N /\
/\ /\
the labeled folded path with labels dy, ..., dg.
The step by step computation is as follows:
Step 1: If ¢; = 0 then
x2(cl)n§1 = :U,OQ(O)n;l = uqv1by, with
1 0 0
Ul = T_q,(0), vu=|0 0 —-1], and by = 1.
01 O
Step 2: If ¢g = 0 then, since viz1(c2)v; ! = . (c2),
u1v1b1x1(02)nf1 = u1x¢(62)v1nf1b1 = ulav,@(O)vlnflbl = Uov9bo, with
0 -1 0
up = u12—4,(0), vy = vlnfl =10 0 -1 and by = 1.

1 0 0

Step 3: If ¢c3 = 0 then, since vgxo(c;g)v;l = Toyto(—C3),

ugvgngo(c;),)ngl = U,Q.’L'aer(;(—Cg)’Ugnalbg = ugw,az,g(O)vgnalbg = ugvsbs, with
0 -1 0
Uz = U2Z_qy—5(0), vg = vgno_l =1t 0 0|, and bs = 1.

0 0 ¢!

Step 4: If ¢4 = 0 then, since 1)3.%'2(64)’[)3_1 = Typ5(—ca),

u30363x2(04)n2_1 = u3x¢+5(—C4)v3nz_1b3 = ugw,¢,5(0)v3n2_163 = Uuqv4by, with
0 0 1
uyg = uzr_,—5(0), vy = v3n2_1 =1t 0 O and by = 1.
0t %t o0
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Step 5: If ¢5 # 0 then by the folding law and the fact that vz a,(cs vyt = 2_q, (c5 1),

u4v4b4x0(65)n61 = UAVAT _q, (cgl):nao(—%)hag (c5)by = U4x_a1(cgl)v4b5 = u5vsbs,

where
st 00
Us = UgT—a, (c5 1), U5 = vy, and bs = Tag(—c5)hay(cs)ba= | 0 1 0
—t 0 c5

Step 6: If 05_106 =0 (so ¢g = 0) then

u5v5b5x1(cﬁ)n1_1 = u5v5x1(c5_166)n1_1bf5 = u5:13_a2_25(0)v5n1_1bg = ugugbg,

with
0 0 1 1 0 0
U = UST—ay—26(0), V6 = U5n1_1 =10 —t 0 and b = by = 0 c5_1 0
t=t 0 0 —cgt t Cs

so that bsxy(cg)ny * = x1(cs 'cg)ny b
Step 7: If c5c7 # 0 then, since U6$_a0(c)'l)6_1 = T_,_25(c),
uguebso(cr)ng * = ugvewo(cser)ng by = u6v6x_ao(cglc;l)xao(—%m)hag (esc7)b

-1 -1
= uﬁx—gp—26(c5 Cy Jvebr = urv7by,

where
Uy = ugT_p_os(cs ez ), v7 = g, and
cs —1 0 c7_1 —cglc;l 0
bs=10 cgl 0 and by = $a0(—C5C7)ha(\)/ (esc7)by = 0 cgl 0 |,
0O 0 1 —cst t c5Cr

so that b6x0(07)n51 = $0(65C7)n0_1b/6.

2 —1

Step 8: No restrictions on c; %c; g, Since vraq, (c)vr ' = 20, 45(—¢),

-1 -2 -1 —1p —2 1 1y
urv7braa(cg)ng - = urvraa(cy 7 eg)ng by = urx_qo, 45(—c5 “c; cg)urng T br = ugugbs,

with
0 10
—2 1 —1
Ug = UTT_q,+5(—C5 “C7 Cg), vg=uwvm, = 0 0 t], and
t=1 0 0
—1 —1 -1 —1 -1
bg = b, = —c5t cscr + cst —t ,
—1 1 -2 -1 29 -1 -2 -1
—C5 Cpcgt  cgep gt eyt — ey teq cst

so that byra(cg)ny * = wa(cs 2c; teg)ny Tb.
Step 9: If 0510769 — cglcg =0 (so ¢cg = 6;168) then

—1 —1 —1 —1/ 137
ugvgbgxo(co)ny = ugvgwo(cs  Ccreg — €5 cg)ny by = URT_qy—35(0)vgng by = ugvgbg

with ug, vg and by as in (8.2]).
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