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Abstract

In this paper we study the T -equivariant generalized cohomology of flag varieties using two
models, the Borel model and the moment graph model. We study the differences between
the Schubert classes and the Bott-Samelson classes. After setup of the general framework we
compute, for classes of Schubert varieties of complex dimension 6 3 in rank 2 (including A2,

B2, G2 and A
(1)
1 ), moment graph representatives, Pieri-Chevalley formulas and products of

Schubert classes. These computations generalize the computations in equivariant K-theory
for rank 2 cases which are given in Griffeth-Ram [GR].

1 Introduction

This paper is a study of the generalized equivariant cohomology of flag varieties. We set up
a general framework for working with the generalized (equivariant) Schubert calculus which
allows for detailed study without the need for knowledge of cobordism or generalized cohomology
theories. Working in the context of a complex reductive algebraic group G, the (generalized) flag
variety is G/B, where B is a Borel subgroup containing the maximal torus T . The equivariant
generalized cohomology theory hT comes with a (formal) group which is used to combinatorially
construct the ring S = hT (pt). The Borel model presents hT (G/B) as a ‘coinvariant ring’
S ⊗SW0 S and the moment graph model presents hT (G/B) via the image of the inclusions of
the T -fixed points of G/B. Special cases of generalized equivariant cohomology theories are
‘ordinary’ cohomology (corresponding to the additive group) and K-theory (corresponding to
the multiplicative group). The universal formal group law corresponds to complex cobordism.

Our work follows papers of Bressler-Evens [BE1, BE2], Calmès-Petrov-Zainoulline [CPZ],
Harada-Holm-Henriques [HHH], Hornbostel-Kiritchenko [HK], and Kiritchenko-Krishna [KiKr],
which have laid important foundations. Combining these tools we study the equivariant co-
homology of the flag varieties, partial flag varieties, and Schubert varieties via the algebraic
and combinatorial study of the rings which appear in the Borel model and the moment graph
model. In Sections 2.3 and 3 we review the setup for these models and the connection to the
(generalized) nil affine Hecke algebra and the BGG-Demazure operators (see also [HLSZ] and
[BE1, BE2]).

AMS Subject Classifications: Primary 14M17; Secondary 14N15.
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One of the main points of our work is to shift the focus from Bott-Samelson classes to
Schubert classes. In ordinary equivariant cohomology and equivariant K-theory these agree, but
in generalized cohomology the Schubert classes and the Bott-Samelson classes usually differ.
Since the Schubert varieties are not, in general, smooth it is not even clear how the Schubert
classes (the fundamental classes of the Schubert varieties) should be defined. In Section 5 we give
explicit examples of “naive pushforwards” and Bott-Samelson classes and explain why neither
of these can possibly be the Schubert classes in general. There are several directions to explore
in searching for a good way to define Schubert classes:

(a) One can take the lead of Borisov-Libgober [BL] (see also [To]), and define the Schubert
class [Xw] as a ‘corrected’ version of the Bott-Samelson class [Z~w] which, in the end, does
not depend on the reduced word ~w chosen for w. Borisov-Libgober [BL, Definition 3.1]
obtain a correction factor for the elliptic genus from the discrepancies of the components
of the exceptional divisor of a resolution of singularities of a variety with at worst log ter-
minal singularities. Recent papers of Anderson-Stapledon [AS] and Kumar-Schwede [KS]
explain that Schubert varieties have Kawamata log terminal singularities and analyze the
exceptional divisor in the Bott-Samelson resolution. In Section 5 we compute a possible
equivariant algebraic cobordism correction factor for the smallest singular (complex dimen-
sion 3) Schubert variety in all rank 2 cases. Though the approach of Borisov-Libgober was
a motivation for our computations we have not yet understood how to make our compu-
tation of the correction factor for equivariant algebraic cobordism relate to the correction
suggested by Borisov-Libgober for the elliptic genus.

(b) One can try to define the Schubert classes as classes determined, hopefully uniquely, by
positivity properties under multiplication. We have not yet managed to make a defini-
tion that is satisfying but our computations of Schubert products do display remarkable
positivity features.

(c) One can try to use the theory of Soergel bimodules (see [Soe]) to pick out particular gen-
erators (as (S, S)-bimodules) of the generalized cohomologies of Schubert varieties which
serve as Schubert classes. Though we have not had space to exhibit our computations of
the algebraic cobordism case of Soergel bimodules in this paper, our preliminary compu-
tations show that generalizing the Soergel bimodule theory to the ring S which appears
in Theorem 3.1 is useful for obtaining better understanding of the equivariant generalized
cohomology of Schubert varieties.

In Section 7 we provide explicit computations of Schubert classes, and products with Schubert
classes in the rank 2 cases. Our computations hold for all rank two cases, but we have only
given specific results for Schubert classes of Schubert varieties in G/B of (complex) dimension
6 3. In partiuclar, this provides complete results for types A2 and B2 and partial results for G2

and A
(1)
1 .

To some extent this paper is a sequel to [GR]. That paper considers the case of equivariant
K-theory. In retrospect, [GR] did not capitalize on the full power of the moment graph model,
in particular, that the map Φ in Theorem 3.1 is a ring homomorphism. This key point is the
feature which we exploit in this paper to execute computations similar to those in [GR], but
with greater ease and in greater generality.

Acknowledgments. We thank the Australian Research Council for continuing support of our
research under grants DP0986774, DP120101942 and DP1095815. Many thanks to Geordie
Williamson, Omar Ortiz, and Martina Lanini for teaching us the theory of moment graphs and
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this beautiful way of working with T -equivariant cohomology theories. We thank Alex Ghitza,
Matthew Ando, Megumi Harada, Dave Anderson and Michel Brion for helpful conversations.
We also thank Craig Westerland for answering many many questions of all shapes and sizes all
along the way. It is a pleasure to dedicate this paper to C.S. Seshadri who, for so many years,
has provided so much Schubert calculus support and inspiration.

2 The Schubert calculus framework

2.1 Flag and Schubert varieties

The basic data is

G a connected complex reductive algebraic group
∪|
B a Borel subgroup
∪|
T a maximal torus.

(2.1)

The Weyl group, the character lattice and cocharacter lattice are, respectively,

W0 = N(T )/T, h∗Z = Hom(T,C×) and hZ = Hom(C×, T ), (2.2)

where Hom(H,K) is the abelian group of algebraic group homomorphisms from H to K with
product given by pointwise multiplication, (φψ)(h) = φ(h)ψ(h). Since the Weyl group acts on
T , it also acts on h∗

Z
and on hZ.

A standard parabolic subgroup of G is a subgroup PJ ⊇ B such that G/PJ is a projective
variety. A parabolic subgroup of G is a conjugate of a standard parabolic subgroup.

The flag variety is G/B and G/PJ are the partial flag varieties. (2.3)

These are studied via the Bruhat decomposition

G =
⊔

w∈W0

BwB and G =
⊔

u∈W J

BuPJ (2.4)

where WJ = {v ∈W0 | vT ⊆ PJ} and

W J = {coset representatives u of cosets in W0/WJ}. (2.5)

The Schubert varieties are

Xw = BwB in G/B and XJ
u = BuPJ in G/PJ , (2.6)

and the Bruhat orders are the partial orders on W0 and WJ given by

Xw = BwB =
⊔

v6w

BvB and XJ
u = BuPJ =

⊔

z6u

BzPJ . (2.7)

The T -fixed points

in G/B are {wB | w ∈W0} and in G/PJ are {uPJ | u ∈W J}. (2.8)

3



Let P1, . . . , Pn be the minimal parabolic subgroups Pi 6= B. Then

Wi =W{i} = {1, si} and s1, . . . , sn are the simple reflections in W0. (2.9)

With respect to the action of W0 on h∗
R
= R ⊗Z h∗

Z
, the si are reflections in the hyperplanes

(h∗)si = {µ ∈ h∗
R
| siµ = µ}. An alternative description of the standard parabolic subgroups is

to let J ⊆ {1, 2, . . . , n} and let

WJ = 〈sj | j ∈ J〉. Then PJ =
⊔

v∈WJ

BvB. (2.10)

In particular, Pi = P{i} = B ⊔BsiB, for i = 1, 2, . . . , n.

Theorem 2.1. (Coxeter) The group W0 is generated by s1, . . . , sn with relations

s2i = 1 and sisjsi · · ·︸ ︷︷ ︸
mij factors

= sjsisj · · ·︸ ︷︷ ︸
mij factors

where π/mij = (h∗)si∠(h∗)sj is the angle between (h∗)si and (h∗)sj .

The definitions in (2.3), (2.8) and (2.6) provide T -equivariant maps

pJ : G/B −→ G/PJ

gB 7−→ gPJ

ιw : pt →֒ G/B
pt 7−→ wB

σw : Xw →֒ G/B
gB 7−→ gB

(2.11)

and

ιJu : pt →֒ G/PJ

pt 7−→ uPJ

σJu : XJ
u →֒ G/PJ

gPJ 7−→ gPJ
(2.12)

for J ⊆ {1, 2, . . . , ℓ}, w ∈W0, and u ∈W J .
For example, in type G = GL3, with T and B the subgroups given by

T =







∗ 0 0
0 ∗ 0
0 0 ∗





 and B =







∗ ∗ ∗
0 ∗ ∗
0 0 ∗





 ,

then W0 = 〈s1, s2 | s2i = 1, s1s2s1 = s2s1s2〉, where

s1 =



0 1 0
1 0 0
0 0 1


 and s2 =



0 1 0
1 0 0
0 0 1


 .

Then

Xw0 = G/B

Xs1s2

+ �

88qqqqqqqqqq
Xs2s1

3 S

ff▼▼▼▼▼▼▼▼▼▼

Xs1

?�

OO

& �

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
Xs2

?�

OO

8 X

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

pt = X1

+ �

88qqqqqqqqqqq3 S

ff▼▼▼▼▼▼▼▼▼▼▼
?�

OO
and G/B

%% %%❑❑
❑❑

❑❑
❑❑

❑❑

yyyysss
ss
ss
ss
s

G/P1

%% %%❑❑
❑❑

❑❑
❑❑

❑❑
G/P2

yyyysss
ss
ss
ss
s

G/G = pt
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where P1 and P2 are the subgroups of G = GL3(C) given by

P1 =







∗ ∗ ∗
∗ ∗ ∗
0 0 ∗





 = B ⊔Bs1B and P2 =







∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗





 = B ⊔Bs2B.

2.2 Generalized cohomology theories

Schubert calculus is the study of the cohomology of flag and Schubert varieties. Although the
home for our computations is the particular ring S = L[[yλ]] of (3.4) the motivation comes from
the formalism of generalized cohomology theories h. Model examples are: ordinary cohomology
H, K-theory K, elliptic cohomology (see [MR, GKV, Gr, An, Lu]) and complex and algebraic
cobordism Ω (see [LM]). Key to our point of view is that if f : X → Y is a morphism of spaces,
the contravariance of the cohomology theory provides

a pullback f∗ : h(Y ) → h(X), and a pushforward f! : h(X) → h(Y )

exists if the morphism f is nice enough. Our true interest is in the morphisms in (2.11) and
(2.12) and (4.5). Sometimes we will try to consider, by combinatorial gadgetry, pushforwards
across these morphisms even in cases where we are not sure that, for any given cohomology
theory, the pushforward properly exists.

As in [CPZ, §8.2], the important property for the analysis of Schubert calculus is that an
oriented cohomology theory h comes with a formal group law F over the coefficient ring h(pt)
such that

F (ch1 (L1), c
h
1 (L2)) = ch1(L1 ⊗L2),

where L1 and L2 are line bundles on X and ch1 denotes the first Chern class in the cohomology
theory h (see [LM, Cor. 4.1.8]). The Lazard ring L is generated by symbols aij , for i, j ∈ Z>0,
which satisfy the relations given by the equations

F (x, F (y, z)) = F (F (x, y), z), F (x, y) = F (y, x), F (x, 0) = x, (2.13)

where
F (x, y) = x+ y + a11xy + a12xy

2 + a21x
2y + · · ·

The ring L is the universal coefficient ring for a formal group law F . This ring is one of the
ingredients for the construction of the ring S where we do our computations.

A equivariant cohomology theory hT is a functor from T -spaces (some appropriate class of
topological or geometric objects with T -action) to some class of algebraic objects (in most of
our model examples, hT (pt)-algebras). Important features and properties of the theory include:

(0) Normalization: specification of hT (pt),

(1) nice behaviour under products, smashes, suspensions: such as axioms for computing
hG×K(M ×N),

(2) functoriality/pullbacks: if f : X → Y then we have f∗ : hT (Y ) → hT (X)

(3) Thom isomorphism/orientability/pushforwards: For certain classes of maps f : X → Y
there exists a pushforward f! : hT (X) → hT (Y ),

(4) Change of groups: For certain classes of groups G and K and group homomorphisms
ϕ : G→ K there exist χϕ : hG → hK and χϕ : hK → hG.

5



The art of choosing appropriate categories of input “T -spaces”, of output “algebraic objects” and
widening the classes of maps on which pushforwards and/or change of groups homomorphisms
are defined is a beautiful chapter in algebraic topology and geometry. The challenge of extending
a nonequivariant generalized cohomology theory to the equivariant case can be considerable. For
such a genuinely equivariant theory the formal groups above will be replaced by actual groups
but we do not emphasize this point of view here. For a small selection of references we refer the
reader to [Ad, p. 37-29] for a discussion of the connection to formal group laws and spectra, [Ma,
Chapt. XIII] and [Oko] for a discussion of equivariant orientable theories as Mackey functors
and [GKV, (1.5)] for discussion of axioms for equivariant elliptic cohomology.

In order to specify a home for our computations in Schubert calculus in equivariant coho-
mology theories we follow [HHH]. They restrict their class of spaces to GKM spaces: stratified
T -spaces

X =
⋃

i∈Z>0

Xi, X1 ⊆ X2 ⊆ X3 ⊆ · · · ,

where the successive quotients Xi/Xi−1 are homeomorphic to the Thom spaces Th(Vi) of some
h-orientable T -vector bundles Vi → Fi (see [HHH, (2.1)]). As pointed out in [HHH, Remark
3.3], for the case of flag and Schubert varieties that are the focus of this paper, the Fi are points
and the Vi are one dimensional representations of T . In particular, the assumptions of [HHH,
§3] hold for these cases.

2.3 The Borel model for hT (G/B)

The general combinatorial Schubert calculus uses h∗
Z
and hZ to build a C-algebra R with an

action of W0 on R by C-algebra automorphisms (in favorite examples C may be Z, or the ring

T̃ h0 of holomorphic functions on the upper half plane, or the Lazard ring L, see the examples
below). If

RW0 = {f ∈ R | wf = f for w ∈W0} is the invariant ring,

then, conceptually,
R = hT (pt) and RW0 = hG(pt), (2.14)

for the equivariant cohomology theory hT under analysis. By definition, the coinvariant ring is

R⊗RW0 R =
R⊗C R

〈f ⊗ 1− 1⊗ f | f ∈ RW0〉
, (2.15)

where the terminology is chosen to be representative of the classical terminology in the study of
the cohomology of G/B, not to reflect a notion of coinvariants with respect to a group action.
Then (see [Bo, Proposition 26.1], [KL, Proposition 1.6], [KiKr, Theorem 4.7]) the ring

R⊗RW0 R is a good combinatorial model for hT (G/B), (2.16)

where the product on R⊗RW0 R is given by (f1 ⊗ g1)(f2 ⊗ g2) = f1f2 ⊗ g1g2.
There are four favorite examples:

Cohomology: hT = HT . Here

HT (pt) = S(h∗Z) = C[x1, . . . , xn] and HG(pt) = HT (pt)
W0 = C[x1, . . . , xn]

W0 ,

where xi = xωi
, where ω1, . . . , ωn is a Z-basis of h∗

Z
. Alternatively, HT (pt) is the ring

C[xλ | λ ∈ h∗Z] with xλ+µ = xλ + xµ,
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for λ, µ ∈ h∗
Z
and with wxλ = xwλ for w ∈W0 and λ ∈ h∗

Z
. Then

HT (G/B) = HT (pt)⊗HG(pt) HT (pt) =
C[y1, . . . , yn, x1, . . . , xn]

〈f(x1, . . . , xn)− f(y1, . . . , yn) | f ∈ C[x1, . . . , xn]W0〉
.

K-theory: hT = KT . Here

KT (pt) = C[h∗Z] = C[X±1
1 , . . . ,X±1

n ] and KG(pt) = KT (pt)
W0 = C[X±1

1 , . . . ,X±1
n ]W0 ,

where Xi = eωi , where ω1, . . . , ωn is a Z-basis of h∗
Z
. Alternatively, KT (pt) is the ring

C[eλ | λ ∈ h∗Z] with eλ+µ = eλeµ,

for λ, µ ∈ h∗
Z
and with weλ = ewλ for w ∈W0 and λ ∈ h∗

Z
. Then

KT (G/B) = KT (pt)⊗KG(pt) KT (pt) =
C[Y ±1

1 , . . . , Y ±1
n ,X±1

1 , . . . ,X±1
n ]

〈f(X1, . . . ,Xn)− f(Y1, . . . , Yn) | f ∈ C[X±1
1 , . . . ,X±1

n ]W0〉
.

Elliptic cohomology: hT = EllT . Here EllT (pt) is the structure sheaf of the abelian variety
Aτ = h∗

C
/(h∗

Z
+ τh∗

Z
). The homogeneous coordinate ring

for Aτ is T̃ h =
⊕

m∈Z>0

T̃ hm, and for Aτ/W0 is T̃ h
W0
.

Then the graded T̃ h-module corresponding to

the sheaf EllT (G/B) on Aτ is T̃ h⊗
T̃ h

W0 T̃ h.

Complex or algebraic cobordism: hT = ΩT . Algebraic cobordism is treated in the book
of Levine-Morel [LM] and T -equivariant algebraic cobordism ΩT is treated in [Kr] and [KiKr].
The following summary of our setting is made precise by Theorem 3.1 below.

The Lazard ring L is the coefficient ring for the universal formal group law F so that L is
given by generators aij with relations given by setting

F (x, y) = x+ y +
∑

i,j∈Z>0

aijx
iyj in L[[x, y]],

and requiring

F (x, 0) = F (0, x) = x, F (x, y) = F (y, x), F (x, F (y, z)) = F (F (x, y), z).

Then
ΩT (pt) = L[[xλ | λ ∈ h∗Z]] with xλ+µ = xλ +F xµ = F (xλ, xµ),

for λ, µ ∈ h∗
Z
. Then

ΩG(pt) = ΩT (pt)
W0 = L[[xλ | λ ∈ h∗Z]]

W0 , where wxλ = xwλ,

for w ∈W0 and λ ∈ h∗
Z
, and

ΩT (G/B) = ΩT (pt)⊗ΩG(pt) ΩT (pt) =
L[[yλ, xµ | λ ∈ h∗

Z
]]

〈f(x)− f(y) | f ∈ L[[xλ | λ ∈ h∗
Z
]]W0〉

.

Sample references for such identities are [KK1] for the case of HT (G/B), [KK2, KL, CG] for
KT (G/B), [KP, Gr, GKV, An, Ga] for EllT (G/B) and [HHH, CPZ, HK, KiKr] for ΩT (G/B).

The cobordism case specializes to the cases of cohomology HT and K-theory KT by setting

F (x, y) =

{
x+ y, in HT ,

x+ y − xy, in KT ,
and xλ =

{
xλ, in HT ,

1− eλ, in KT .

7



3 The moment graph model

3.1 T -fixed points and the map Φ

Following Goresky-Kottwitz-MacPherson [GKM, Theorem 1.2.2] a powerful way to think about
this theory is via the moment graph model. This means that for a T -variety X where the
imbeddings of the T -fixed points of X into X are

ιw : pt → X
∗ 7→ w

consider ι∗ =
⊕

w∈W ι∗w : Ω∗
T (X)−→

⊕

w∈W

ΩT (pt), (3.1)

where the sums are over an index set W for the T -fixed points in X. When X is a “GKM-
space” (see [GKM, Theorem 14] for several equivalent characterization of a GKM space for
equivariant ordinary cohomology and [?, HHH]or equivariant generalized cohomology theories)
the ring homomorphism ι∗ is injective with image

im ι∗ =



(gw)w∈W0 ∈

⊕

w∈W0

ΩT (pt),

∣∣∣∣
gw − gw′ ∈ yαΩT (pt) if there is a

1-dimensional T -orbit containing w and w′



 ,

where yα is the T -equivariant Chern class of the tangent along the 1-dimensional orbit connecting
w and w′.

Computations are facilitated by encoding the information of im ι∗ with a moment graph,
which has vertices corresponding to the T -fixed points of X and labeled edges w

α
−→w′ cor-

responding to 1-dimensional T -orbits in X. For example, for G/B for type GL3 the graph
is

1
y−α1

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥
y−α2

''PP
PPP

PPP
PPP

PPP

y−(α1+α2)

��

s1

y−α2

��

y−(α1+α2)

++❲❲❲❲
❲❲❲❲❲

❲❲❲❲
❲❲❲❲❲

❲❲❲❲
❲❲❲❲❲

❲ s2

y−α1

��

y−(α1+α2)

ss❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣

❣❣❣❣❣
❣❣❣❣

s1s2

y−α1 ''PP
PPP

PPP
PPP

P s2s1

y−α2ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

s1s2s1 = s2s1s2

(3.2)

A moment graph section is a tuple (gw)w∈W of elements of ΩT (pt) which is an element of im ι∗.
A morphism of GKM-spaces is a morphism of T -spaces

f : X → Y which provides, by restriction, f : W → V

from the set W of T -fixed points of X to the set V of T -fixed points of Y . Viewing elements of
HT (X) and HT (Y ) as moment graph sections the maps

f∗ : HT (Y ) → HT (X) and f! : HT (X) → HT (Y )

are given by

(f∗(c))w = cf(w), and (f!(γ))v =
∑

w∈f−1(v)

γw
1

e(f)wv
, (3.3)
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where the Euler class of f from v to w is

e(f)wv =




∏

edges of W
adjacent to w

yβ







∏

edges of V
adjacent to v

yβ




−1

.

The second formula in (3.3) is a form of the familiar formula for push forwards by “localization
at the T -fixed points” as found, for example, in [AB, (3.8)]. The Euler class of f from v to w is
the contribution measured by the difference between the tangent space at the T -fixed point w
in X to the tangent space to the T -fixed point v = f(w) in Y .

The Borel model and the moment graph model for G/B for equivariant algebraic cobordism
ΩT (G/B) are summarized in the following Theorem, which is a combination of [KiKr, Theorem
4.7] and [HHH, Theorem 3.1]. The ring S which takes the role of ΩT (pt) is as in [CPZ, §2.4].
For comparison to the K-theory case see [KK2, Theorem 3.13] and [LSS, Theorem 3.1].

Theorem 3.1. ([HHH, Theorem 3.1], [KiKr, Theorem 4.7] and [CPZ, §2.4] combined) Let
G ⊇ B ⊇ T be a reductive group datum as in (2.1) and let W0 and h∗

Z
be the Weyl group and

the weight lattice h∗
Z
as in (2.2). Let L be the Lazard ring generated by aij as in (2.13) and let

S be the L-algebra

S = L[[yλ | λ ∈ h∗Z]], with yλ+µ = yλ + yµ + a11yλyµ + a12yλy
2
µ + a21y

2
λyµ + · · · . (3.4)

The Weyl group
W0 acts L-linearly on S by wyλ = ywλ,

for w ∈W0, λ ∈ h∗
Z
. Define a product on

⊕
w∈W0

S pointwise,

(fw)w∈W0 · (gw)w∈W0 = (fwgw)w∈W0 , (3.5)

and let S ⊗SW0 S be the coinvariant ring as defined in (2.15). The S-algebra homomorphism

Φ: S ⊗SW0 S
∼ // ΩT (G/B)

∼ // imΦ � � //
⊕

w∈W0
S

f ⊗ g ✤ //
(
f · (w−1g)

)
w∈W0

(3.6)

is well defined and injective with

imΦ =



(gw)w∈W0 ∈

⊕

w∈W0

S

∣∣∣∣ gw − gwsα ∈ y−αS for α ∈ R+ and w ∈W0



 ,

where R+ is the set of positive roots corresponding to B and sα ∈ W0 denotes the reflection
corresponding to α.

To provide a feel for the ring S of (3.4), let us provide some formulas which will be useful
for computations later. To recapitulate and summarize previous definitions,

S = L[[yλ | λ ∈ h∗Z]] with yλ+µ = yλ + yµ − p(yλ, yµ)yλyµ, (3.7)

where p(yλ, yµ) ∈ L[[yλ, yµ]] is a power series

p(yλ, yµ) = −a11 − a12yµ − a21yλ − a31y
2
λ − a22yλyµ − a13yµyλ − · · · , (3.8)
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with aij ∈ L satisfying relations such that

y−λ+λ = y0 = 0, yλ+µ = yµ+λ, y(λ+µ)+ν = yλ+(µ+ν). (3.9)

Then

yα =
−y−α

1− p(yα, y−α)y−α
,

1

y−α
+

1

yα
= p(yα, y−α), (3.10)

and the formula

y−ℓα

y−α
= ℓ−

ℓ−1∑

j=1

p(y−α, y−jα)y−jα = 1 +
ℓ−1∑

j=1

(1− p(y−α, y−jα)y−jα), for ℓ ∈ Z>0, (3.11)

is proved by induction on ℓ. Using (3.11) and the formula siλ = λ− 〈λ, α∨
i 〉αi for the action of

a simple reflection on h∗ produces

ysiλ − yλ
y−αi

= (1− p(yλ, y−〈λ,α∨

i 〉αi
)yλ)


1 +

〈λ,α∨〉−1∑

j=1

(1− p(y−αi
, y−jαi

)y−jαi
)


 , (3.12)

for 〈λ, α∨
i 〉 ∈ Z>0. Formula (3.12) generalizes one of the favorite formulas for the action of a

Demazure operator (see [Ku2, Lemma 8.2.8]). This cobordism case specializes to HT and KT

by setting

p(yλ, yµ) =

{
0, in HT ,

1, in KT ,
and yλ =

{
yλ, in HT ,

1− eλ, in KT .
(3.13)

3.2 The nil affine Hecke algebra

Let S be as in (3.4) and (3.7). The point of view of [GR] is that the homomorphism Φ of (3.6)
arises naturally from the nil affine Hecke algebra.

The nil affine Hecke algebra H is

H = (S ⊗L S)⋉L[W0]

= S-span{gtw | g ∈ S,w ∈W0} = L-span{(f ⊗ g)tw | f, g ∈ S,w ∈W0}

with
tutv = tuv and tw(f ⊗ g) = (f ⊗ (wg))tw , (3.14)

for u, v, w ∈ W0 and f, g ∈ S. The nil affine Hecke algebra H acts on S ⊗L S and on S ⊗SW0 S
by

tw(f ⊗ g) = f ⊗ wg and (h⊗ p)(f ⊗ g) = hf ⊗ pg, (3.15)

for h, p, f, g ∈ S and w ∈W0. These actions arise from the realization of S⊗SW0 S as an induced
up H-module in (3.16) below.

Let b1 be a symbol and let Sb1 be the S ⊗L S module (a rank 1 free S-module with basis
{b1}) corresponding to the ring homomorphism

ε : S ⊗L S −→ S
f ⊗ g 7−→ fg

so that the S ⊗L S action on Sb1 is given by (f ⊗ g)b1 = fgb1,

for f, g ∈ S. The induced module

Hb1 = IndHS⊗LS
(Sb1) has S-basis {bw| w ∈W0}, where bw = twb1.
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Let 10 =
∑

w∈W0
tw. With the definition of the H action on S ⊗L S as in (3.15), the sequence

of maps (see [GR, Theorem 2.12])

S ⊗L S −→ H10 →֒ H −→ Hb1 ∼=
⊕

w∈W0
S

(f ⊗ g) 7−→ (f ⊗ g)10
h 7−→ hb1

(3.16)

is a homomorphism ofH-modules (with kernel generated by {f⊗1−1⊗f | f ∈ SW0}). The maps
in (3.16) allow for the expansion of any element of S ⊗L S in terms of the basis {bw | w ∈ W0}
of Hb1, giving

(f ⊗ g)10b1 = (f ⊗ g)
( ∑

w∈W0

tw
)
b1 =

∑

w∈W0

tw(f ⊗ (w−1g))b1

=
∑

w∈W0

tw(f · (w−1g))b1 =
∑

w∈W0

(f · (w−1g))bw.

This formula illustrates that computing Φ(f ⊗ g) in (3.6) is equivalent to expanding (f ⊗ g)b1
in terms of the bw. Because of this we use (3.6) and (3.16) to

identify ΩT (G/B) = Hb1 = S-span{bw | w ∈W0} ∼=
⊕

w∈W0
S

and write elements
f ∈ ΩT (G/B) as f =

∑

w∈W0

fwbw. (3.17)

The product in ΩT (G/B) is then given by (3.5). To more easily keep track of the left and right
factors in S ⊗L S use the notation

xµ = 1⊗ yµ and yµ = yµ ⊗ 1. (3.18)

Then the formulas

xλ · 1 = xλ
∑

w∈W0

twb1 =
∑

w∈W0

twxw−1λb1 =
∑

w∈W0

yw−1λbw, and (3.19)

tv
∑

w∈W0

fwbw =
∑

w∈W0

fwtvbw =
∑

w∈W0

fwbvw =
∑

z∈W0

fv−1zbz, (3.20)

provide the formulas for action of the nil affine Hecke algebra in terms of moment graph sections
(see (3.15)). We often view the values fw as labels on the vertices of the moment graph so that,
for exmaple, in type GL3 where the moment graph is as in (3.2), (3.19) can be written

xλ =

yλ
ys1λ ys2λ
ys2s1λ ys1s2λ

ys1s2s1λ

4 Partial flag varieties and Bott-Samelson classes [Z~w]

In this section we review the formulas for the Bott-Samelson classes as established in, for exam-
ple, [HK, CPZ, BE1, BE2]. Though some of these references are not considering the equivariant
case, the same machinery applies to define these classes in ΩT (G/B). In particular, this is the
place in the theory where the BGG/Demazure operators are derived from the geometry. These
operators play a fundamental role in the combinatorial study of ΩT (G/B).
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4.1 Pushforwards to partial flag varieties: BGG/Demazure operators

Using the notation for parabolic subgroups and partial flag varieties as in (2.3), if J ⊆ {1, 2, . . . , n}
and

πJ : G/B → G/PJ

gB 7→ gPJ
then πJ(wB) = uPJ , where wWJ = uPJ .

Then, in the setting of Theorem 3.1,

S ⊗SW
0
SWJ ∼= ΩT (G/PJ ),

and π∗J : ΩT (G/PJ ) → ΩT (G/B) and (πJ)! : ΩT (G/B) → ΩT (G/PJ ) correspond to

π∗J : S ⊗SW0 S
WJ →֒ S ⊗SW0 S and (πJ )! : S ⊗SW0 S −→ S ⊗SW0 S

WJ (4.1)

where (πJ)! is given by the operator in the nil affine Hecke algebra given by

(πJ)! =


 ∑

v∈WJ

tv


 1

xJ
, where xJ =

∏

α∈R+
J

x−α.

with R+
J the set of positive roots for PJ ⊇ B ⊇ T . A special case is when J = {i}, for which

WJ = {1, si} and π∗i (πi)! = Ai = (1 + tsi)
1

x−αi

, (4.2)

is the BGG-Demazure operator (see [BE1, Cor.-Def. 1.9]). The calculus of the operators Ai is
controlled via the identities in Section 8.

4.2 Bott-Samelson classes

For a sequence ~w = (i1, . . . , iℓ) with 1 6 i1, . . . , iℓ 6 n define the Bott-Samelson class

[Z~w] = [Zi1i2···iℓ ] = Ai1Ai2 · · ·Aiℓ [Zpt], (4.3)

where, in the notation of (3.17),

[Zpt]v =

{∏
α∈R+ y−α, if v = 1,

0, if v 6= 1.
(4.4)

Theorem 4.1. ([BE2, Prop. 1], [HK, Prop. 3.1], [KK2, Lemma 3.15], see also [HHH, Proposi-
tion 4.1]) The generalized cohomology

hT (G/B) has hT (pt)-basis {[Z~w] = [γ~w : Γ~w → G/B] | w ∈W0},

where, for each w ∈W0, ~w = si1 · · · siℓ is a fixed reduced word for w.

Let us explain where this comes from. Let X be a T -variety. Following [Fu, Example 1.9.1], or
[CG, §5.5], a cellular decomposition of X is a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xd = X

by closed subvarieties such that Xi = Xi−1 are isomorphic to a disjoint union of affine spaces
A
ℓi for i = 1, 2, . . . , d. The “cells” of X are the Xi −Xi−1.
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Theorem 4.2. (see [G, Prop. 7]; [Fu, Example 1.9.1] who refers to [Ch]; [CG, Lemma 5.5.1];
[BE2, Proposition 1]; [HK, Theorem 2.5]) Let X be a T -variety with a cellular decomposition.
Then hT (X) has an hT (pt)-basis given by resolutions of cell closures (choose one resolution for
each cell).

For X = G/B, the Bruhat decomposition

G =
⊔

w∈W0

BwB provides the desired cell decomposition

and the Schubert varieties Xw = BwB are the closures of the Schubert cells. Let P1, . . . , Pn be
the minimal parabolics of G (with Pi ⊇ B and Pi 6= B) and let s1, . . . , sn be the corresponding
simple reflections in W0. The group W0 is generated by s1, . . . , sn. Let ~w = si1 · · · siℓ be a
reduced word for w. Then the Bott-Samelson variety Γi1,...,iℓ = Pi1 ×B Pi2 ×B · · · ×B Piℓ/B
provides a resolution of Xw,

γi1,...,iℓ : Pi1 ×B Pi2 ×B · · · ×B Piℓ ×B pt −→ Xw →֒ G/B
[g1, . . . , gℓ] 7−→ g1 · · · gℓB

(4.5)

Then following, for example, the proof of [BE2, Prop. 2], since the diagram

Pi1 ×B · · · ×B Piℓ ×B Piℓ+1
×B pt

γi1...iℓ+1 //

τ

��

G/B

πiℓ+1

��
Pi1 ×B · · · ×B Piℓ ×B pt γi1...iℓ

// G/B πiℓ+1

// G/Piℓ+1

(4.6)

(a) commutes, and

(b) has both vertical maps fibrations with fibre Piℓ+1
/B,

it is a pullback square. Thus

(γi1...iℓ+1
)!(ι

∗(1)) = π∗iℓ+1
(πiℓ+1

◦ γi1...iℓ)!(1)

= π∗iℓ+1
(πiℓ+1

)!(γi1...iℓ)!(1) = Aiℓ+1
(γi1...iℓ)!(1). (4.7)

The following result then follows by induction.

Theorem 4.3. ([HK, Theorem 3.2], [BE2, Proposition 2]) If I = (i1, . . . , iℓ) is a sequence in
{1, . . . , n} and γi1...iℓ is as in (4.5) then

[Zi1···iℓ ] = [(γi1...iℓ)!(1)] = Ai1 · · ·Aiℓ [Zpt], where [Zpt] is the class of a point.

Theorem 4.3 says that the values on the vertices of the element [Zi1···iℓ ] on the moment graph
of Γi1,...,iℓ are exactly the coefficients of the 2ℓ terms in the expansion of

Ai1 · · ·Aiℓ = (1 + tsi1 )
1

x−αi1

· · · (1 + tsiℓ )
1

x−αiℓ

.

For example, in type GL3,

[Z121] =




y−(α1+α2)

y−α1
1 · 1 · 1

+
y−α2
yα1

ts1 · 1 · 1 + 1 · ts2 · 1 +
y−(α1+α2)

y−α1
1 · 1 · ts1

+ts1 · ts2 · 1 +
y−α2
yα1

ts1 · 1 · ts1 + 1 · ts2 · ts1
+ts1 · ts2 · ts1


 b1
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provides the expansion of [Z121] = (1 + ts1)
1

x−α1
(1 + ts1)

1
x−α1

(1 + ts1)
1

x−α1
yR−b1 in the basis

{bw | w ∈W0}. An example of the pushpull in (4.6) in the case of type GL3

P1 ×B P2 ×B P1 ×B pt
γ121 //

τ

��

GL3/B

π1

��
P1 ×B P2 ×B pt γ12

// GL3/B π1
// GL3/P1

(4.8)

has moment graphs as in Figure 1, and the computation in (4.7) for this example is

1
1 1 1
1 1 1

1

(γ121)!
−→

∆121

∆121 1
1 1

1

xτ∗

xπ∗

1

1
1 1
1

(γ12)!
−→

y−(α1+α2)

y−α2 y−(α1+α2)

0 y−α2

0

(π1)!
−→

∆121

1
1

where ∆121 =
y−(α1+α2)

y−α1
+

y−α2
yα1

.

4.3 Change of groups morphisms across ι : B →֒ PJ

In the same way that Theorem 3.1 provides S ⊗W0
S S ∼= ΩT (G/B) one can obtain

SWJ ⊗SW
0
S ∼= ΩPJ

(G/B),

and, if ι : B →֒ PJ is the inclusion then the change of group homomorphisms

ιJ : ΩPJ
(G/B) → ΩT (G/B) and ιJ : ΩT (G/B) → ΩPJ

(G/B)

are given, combinatorially, by

ιJ : SWJ ⊗SW
0
S →֒ S ⊗SW

0
S and ιJ : S ⊗SW

0
S −→ SWJ ⊗SW

0
S,

with

ιJ(f ⊗ g) =
∑

w∈WJ

w

(
1

yJ
f

)
⊗ g, where yJ =

∏

α∈R+
J

y−α,

with R+
J the set of positive roots for PJ ⊇ B ⊇ T . The pushforward ιJ is similar to the

pushforward operator (πJ )! appearing in (4.1) except acting on the left factor of S ⊗SW0 S (see,
for example, the definition of δi in [Ka, §7]).
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1 · 1 · 1
y−α1

ww♣♣♣
♣♣♣

♣♣♣
♣♣ y−α1

''◆◆
◆◆

◆◆◆
◆◆◆

◆

y−α2��
s1 · 1 · 1

y−α2

��

y−α1

''◆◆
◆◆◆

◆◆◆
◆◆◆

1 · s2 · 1
y−s2α1

ww♣♣♣
♣♣♣

♣♣♣
♣♣

y−α1

''◆◆
◆◆◆

◆◆◆
◆◆◆

1 · 1 · s1

y−s1α2

��y−s1α1
ww♣♣♣

♣♣♣
♣♣♣

♣♣

s1 · s2 · 1

y−α1 ''❖❖
❖❖

❖❖
❖❖

❖❖
❖

s1 · 1 · s1

y−s1α2

��

1 · s2 · s1

y−s1s2α1ww♦♦♦
♦♦♦

♦♦
♦♦
♦

s1 · s2 · s1

(γ121)!
−→

1
y−α1

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥
y−α2

''PP
PPP

PPP
PPP

PPP

y−(α1+α2)

��

s1

y−α2

��

y−(α1+α2)

++❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲ s2
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��
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ss❣❣❣❣❣
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❣❣❣❣❣

❣❣❣❣❣
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s1s2

y−α1 ''PP
PPP

PPP
PPP

P s2s1

y−α2ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

s1s2s1 = s2s1s2

xτ∗

xπ∗

1

1 · 1
y−α1

zz✉✉
✉✉
✉✉
✉✉
✉

y−α2��
s1 · 1

y−α2

��

1 · s2
y−s2α1

zz✉✉
✉✉
✉✉
✉✉
✉

s1 · s2

(γ12)!
−→

1
y−α1

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥
y−α2

''PP
PPP

PPP
PPP

PPP

y−(α1+α2)

��

s1

y−α2

��

y−(α1+α2)

++❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
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❲❲❲❲❲ s2
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y−(α1+α2)

ss❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣
❣❣❣❣❣

❣❣❣❣
❣❣❣❣❣

s1s2

y−α1 ''PP
PPP

PPP
PPP

P s2s1

y−α2ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

s1s2s1 = s2s1s2

(π1)!
−→

1
y−α2

''PP
PPP

PPP
PPP

PPP

y−(α1+α2)

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

s2

y−α1

��
s2s1

Figure 1: An example of the moment graphs for the diagram (4.8)
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5 Schubert classes [Xw]

Now we consider the inclusions σw : Xw −→ G/B of the Schubert varieties into the flag variety.
For w ∈W0, define the Schubert classes

[Xw] = (σw)!(1), where (σw)! : ΩT (Xw) → ΩT (G/B). (5.1)

If Xw is not smooth then, as discussed further below, it is not clear that (σw)! is well defined.
Though we consider various approaches to the analysis of [Xw] = (σw)!(1) below, we have not
yet found a definition of (σw)! which is fully satisfying (at least to us) in the singular case.

In generalized cohomology

the Schubert class [Xw] is not always equal to [Z~w]

for a reduced word ~w of w, although, in equivariant cohomology and equivariant K-theory,
[Xw] = [Z~w] if ~w is a reduced word for w. We consider various approaches to the analysis of
[Xw] = (σw)!(1):

(a) Defining (σw)!(1) by (3.3);

(b) Comparing [Xw] = (σw)!(1) and the Bott-Samelson class [Z~w] via the diagram

ΩT (Γ~w)
(γ~w)!

&&▼▼
▼▼

▼▼
▼▼

▼▼

(γ̃~w)!
��

ΩT (Xw)
(σw)! // ΩT (G/B)

(5.2)

(c) Combinatorial forcing by support conditions, normalization and/or (S, S)-bimodule struc-
ture of the cohomology.

(a) Is (σw)!(1) given by (3.3)? As pointed out in [Ty, Proposition 2.7], since Xw is filtered by
Schubert cells BvB with v 6 w and BvB ∼= C

ℓ(v) has even real dimension, the Schubert variety
Xw has no odd-dimensional cohomology, and thus, by [GKM, Theorem 14], the Schubert variety
Xw is ‘equivariantly formal’ (i.e., is a GKM-space) and the moment graph theory applies. The
moment graph of Xw is the subgraph of the moment graph of G/B with vertices {v ∈W0 | v 6

w}. If Xw is smooth then there are no challenges in defining the pushforward (σw)! and the
pushforward formula in (3.3) gives that

if Xw is smooth, then [Xw]v =
yR−∏

β∈R+

vsβ6w

y−β

, for v ∈W0 such that v 6 w, (5.3)

as found, for example, in [BiLa, Theorem 7.2.1] (the notation f =
∑

w∈W0
fwbw for elements of

ΩT (G/B) is as (3.17)). For example, the inclusion σs2s1 : Xs2s1 → G/B for G = GL3 corresponds
to the inclusion of moment graphs

1
y−α1

zztt
tt
tt
tt
tt y−α2

$$❏
❏❏

❏❏
❏❏

❏❏
❏

s1
y−(α1+α2)

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚ s2

y−α1

��
s2s1

1
y−α1

ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥
y−α2

''PP
PPP

PPP
PPP

PPP

y−(α1+α2)

��

s1

y−α2

��

y−(α1+α2)

++❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲

❲❲❲❲❲
❲❲❲❲

❲ s2

y−α1

��

y−(α1+α2)

ss❣❣❣❣❣
❣❣❣❣

❣❣❣❣❣
❣❣❣❣

❣❣❣❣❣
❣❣❣❣❣

s1s2

y−α1 ''PP
PPP

PPP
PPP

P s2s1

y−α2ww♥♥♥
♥♥♥

♥♥♥
♥♥♥

s1s2s1 = s2s1s2
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so that

[Xs2s1 ] =

y
R−

y−α1y−α2yR−

y−α1y−s1α2

yR−

y−α1y−α2

0
yR−

y−α1y−s1α2

0

The following example illustrates that this procedure does not work well when Xw is not
smooth. From [Ku, Prop. 6.1], the singular Schubert varieties for G of rank 2 are

Type Singular Locus

B2 Xs1s2s1 Xs1

G2 Xs1s2s1 Xs1

G2 Xs1s2s1s2 Xs1s2

G2 Xs2s1s2s1 Xs2s1

G2 Xs1s2s1s2s1 Xs1s2s1

G2 Xs2s1s2s1s2 Xs2

The inclusion σs1s2s1 : Xs1s2s1 → G/B for G = Sp4 (Type B2) corresponds to the inclusion of
moment graphs

1
y−α1

xxqqq
qq
qq
qq
qq
q

y−α2

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

y−s1α2

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

s1

y−α2

��

y−s1α2

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱ s2

y−α1

��

y−s2α1

tt❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤

s1s2

y−α1

��

s2s1y−s2α1

tt❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤

s1s2s1

1
y−α1

xxqqq
qq
qq
qq
qq
q

y−α2

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

y−s1α2

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

y−s2α1

��✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

s1

y−α2

��

y−s2α1

��✷
✷✷
✷✷

✷✷
✷✷
✷✷

✷✷
✷✷
✷✷

✷✷
✷✷
✷✷

y−s1α2

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱ s2

y−α1

��

y−s1α2

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

y−s2α1

tt❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤

s1s2 y−s1α2

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱

y−α1

��

s2s1y−s2α1

tt❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤
❤

y−α2

��
s1s2s1

y−α2 &&▼▼
▼▼

▼▼
▼▼

▼▼
s2s1s2

y−α1xxqqq
qq
qq
qq
q

s1s2s1s2

but the direct “naive” application of the pushforward formula in (3.3) produces

[Xs1s2s1 ]? =?

y−s2α1

y−s2α1 y−s1α2

y−s1α2 y−α2

y−α2 0
0

=

y−(α1+α2)

y−(α1+α2) y−(2α1+α2)

y−(2α1+α2) y−α2

y−α2 0
0

(5.4)

which cannot be correct for [Xs1s2s1 ] since the right hand side does not satisfy the condition to
be in imΦ (the difference across the edge 1 → s2 is not divisible by y−α2). This answer needs
to be corrected by finding N so that

[Xs1s2s1 ] =

Ny−(α1+α2)

Ny−(α1+α2) y−(2α1+α2)

y−(2α1+α2) y−α2

y−α2 0
0

17



where the correction factor N appears on vertices corresponding to the singular locus.
In the example in (5.4) we see that the moment graph knows that Xs1s2s1 is not smooth!

It is interesting to contrast (5.4) with the same analysis for σs2s1s2 : Xs2s1s2 → G/B, where the
pushforward formula gives

[Xs2s1s2 ] =

y−s1α2

y−s2α1 y−s1α2

y−α1 y−s2α1

0 y−α1

0

=

y−(2α1+α2)

y−(α1+α2) y−(2α1+α2)

y−α1 y−(α1+α2)

0 y−α1

0

which is in imΦ (this case works out well since Xs2s1s2 is smooth).

(b) Using (5.2) to compare [Xw] and [Z~w]. Working in rank 2, use notations y−R , ∆121 and
∆212 as in (7.2), so that (see (4.8) and Figure 1)

[Z212] =

∆212
yR−

y−α1y−α2y−s1α2
∆212

y
R−

y−α2y−s2α1y−s2s1α2

y
R−

y−α1y−α2y−s1α2

0
yR−

y−α2y−s2α1y−s2s1α2

0

Since Xs1s2s1 is smooth it is reasonable to apply the pushforward formula in (3.3) which gives

[Xs2s1s2 ] =

yR−

y−α1y−α2y−s2α1y
R−

y−α1y−α2y−s1α2

y
R−

y−α1y−α2y−s2α1yR−

y−α2y−s2α1y−s2s1α2

yR−

y−α1y−α2y−s1α2

0
yR−

y−α2y−s2α1y−s2s1α2

0

Using these and computing with the formulas (3.10)-(3.12) gives the formula

[Z212] = [Xs2s1s2 ] +

(
∆212 −

yR−

y−α1y−α2y−s2α1

)
y−α2

yR−

[Xs2 ]

= [Xs2s1s2 ] +
yR−

y−α1y−α2y−s2α1

(
y−s2α1 − y−α1

y−α2

+ p(yα2 , y−α2)y−α1 − 1

)
y−α2

yR−

[Xs2 ]

= [Xs2s1s2 ] +
yR−

y−α1y−α2y−s2α1

((1− p(y−α1 , y−α2)y−α1 + p(yα2 , y−α2)y−α1 − 1)
y−α2

yR−

[Xs2 ]

= [Xs2s1s2 ] +
1

y−s2α1

(
p(yα2 , y−α2)− p(y−α1 , y−α2)

)
y−α1

y−α2

yR−

[Xs2 ]

which is reflected in [CPZ, 17.3, first equation] and [HK, §5.2]. Similarly, with our conjectured
correction factor N as in (7.3), we get a formula which would provide [Z121] − [Xs1s2s1 ] = 0 in
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cohomology and K-theory but have [Z121]− [Xs1s2s1 ] 6= 0 in complex or algebraic cobordism:

[Z121]− [Xs1s2s1 ] =

(
∆121 −

NyR−

y−α1y−α2y−s1α2

)
y−α1

yR−

[Xs1 ]

=
yR−

y−α1y−α2y−s1α2

(
y−s1α2 − y−α2

y−α1

+ p(yα1 , y−α1)y−α2 −N

)
y−α1

yR−

[Xs1 ]

=
yR−

y−α1y−α2y−s1α2

(
(1− p(y−α2 , y−jα1)y−α2)

(
1 +

∑j−1
k=1(1− p(y−α1 , y−kα1)y−kα1

)

+p(yα1 , y−α1)y−α2 −N

)
y−α1

yR−

[Xs1 ]

=
yR−

y−α1y−α2y−s1α2

(
p(yα1 , y−α1)− p(y−α2 , y−jα1)

)
y−α2

y−α1

yR−

[Xs1 ]

=
1

y−s1α2

(
p(yα1 , y−α1)− p(y−α2 , y−jα1)

)
[Xs1 ].

(c) Combinatorial forcing: The Schubert classes satisfy

(a) (normalization) [Xw]w =
∏

α∈R(w) y−α, where R(w) = {α ∈ R+ | wα 6∈ R+}.

(b) If WJu =WJz then [XwJu]v = [XwJu]z,

(c) (support) [Xw]v = 0 unless v 6 w.

These properties do not characterize the Schubert classes; the Bott-Samelson classes also satisfy
these properties. As observed, for example, in [HHH, Proposition 4.3], in equivariant cohomology
a degree condition can be imposed to get uniqueness. It is not clear to us how to generalize the
degree condition to equivariant K-theory and/or equivariant cobordism. It seems plausible that
in generalized equivariant cohomology the Schubert classes might be characterized by positivity
properties, or by using the (S, S)-bimodule structure of ΩT (Xw) and ΩT (Z~w) as in the theory
of Soergel bimodules (see [Soe] and [EW]).

6 Products with Schubert classes

For w ∈ W0 define Schubert classes [Xw] by [Xw] = (σw)!(1) as in (5.1). Continue to use
notations f =

∑
w∈W0

fwbw for elements of ΩT (G/B), as in (3.17).

The Schubert product problem: Find a combinatorial description of the cwuv ∈ R given by

[Xu][Xv] =
∑

w∈W0

cwuv[Xw]. (6.1)

As is visible from the formula (6.3) below and the formulas at the end of this section, if v 6 u
in Bruhat order then

[Xu][Xv ] = [Xu]v[Xv ] +
∑

w<v

cwuv[Xw], (6.2)

and so the determination of the moment graph values [Xu]v is a subproblem of the Schubert
product problem. The other coefficients cwuv are determined by the [Xu]v in an intricate but,
perhaps, controllable fashion. Furthermore, our computations of products in the rank two cases
display a certain amount of positivity, indicating that there may be a positivity statement for
equivariant cobordism analogous to that which holds for equivariant cohomology and equivariant
K-theory (see [Gra] and [AGM]).
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Properties (a) and (c) are already enough to provide an algorithm for expanding an element
f =

∑
w∈W0

fwbw in terms of Schubert classes. If f has support on w with ℓ(w) 6 k then

f −
∑

ℓ(w)=k

fw
1

[Xw]w
[Xw] =

∑

ℓ(v)6k−1


fv −

∑

ℓ(w)=k

fw
[Xw]v
[Xw]w


 bv

has support on v with ℓ(v) 6 k − 1. Then

f−
∑

ℓ(w)=k

fw
1

[Xw]w
[Xw]−

∑

ℓ(v)=k−1


fv −

∑

ℓ(v)=k−1
ℓ(w)=k

fw
[Xw]v
[Xw]w




1

[Xv ]v
[Xv]

=
∑

ℓ(z)6k−2


fz −

∑

ℓ(w)=k

fw
[Xw]z
[Xw]w

−
∑

ℓ(v)=k−1

fv
[Xv ]z
[Xv]v

+
∑

ℓ(v)=k−1
ℓ(w)=k

fw
[Xw]v
[Xw]w

[Xv]z
[Xv ]v


 bz

and induction gives that

f =
∑

z∈W0




ℓ(w0)∑

k=1

∑

w1>···>wk=z

(−1)k−1fw1

[Xw1 ]w2

[Xw1 ]w1

[Xw2 ]w3

[Xw2 ]w2

· · ·
[Xwk−1

]wk

[Xwk−1
]wk−1

1

[Xwk
]wk


 [Xz] (6.3)

with the terms in the sum naturally indexed by chains in the Bruhat order (compare to, for
example, [BS]).

For example, in rank 2 using notations as in Section 7, if f =
∑

w6s1s2s1s2
fwbw then

f = fs1s2s1s2
1

[Xs1s2s1s2 ]s1s2s1s2
[Xs1s2s1s2 ]

+ (fs1s2s1 − fs1s2s1s2)
1

[Xs1s2s1 ]s1s2s1
[Xs1s2s1 ] + (fs2s1s2 − fs1s2s1s2)

1

[Xs2s1s2 ]s2s1s2
[Xs2s1s2 ]

+

(
(fs1s2 − fs2s1s2) + (fs1s2s1s2 − fs1s2s1)

[Xs1s2s1 ]s1s2
[Xs1s2s1 ]s1s2s1

)
1

[Xs1s2 ]s1s2
[Xs1s2 ]

+

(
(fs2s1 − fs1s2s1) + (fs1s2s1s2 − fs2s1s2)

[Xs2s1s2 ]s2s1
[Xs2s1s2 ]s2s1s2

)
1

[Xs2s1 ]s2s1
[Xs2s1 ]

+




(fs1 − fs2s1) + (fs2s1s2 − fs1s2)
[Xs1s2 ]s1
[Xs1s2 ]s1s2

+(fs1s2s1s2 − fs1s2s1)

(
[Xs1s2s1 ]s1

[Xs1s2s1 ]s1s2s1
−

[Xs1s2s1 ]s1s2
[Xs1s2s1 ]s1s2s1

[Xs1s2 ]s1
[Xs1s2 ]s1s2

− 1

)



1

[Xs1 ]s1
[Xs1 ]

+




(fs2 − fs1s2) + (fs1s2s1 − fs2s1)
[Xs2s1 ]s2
[Xs2s1 ]s2s1

+(fs2s1s2s1 − fs2s1s2)

(
[Xs2s1s2 ]s2

[Xs2s1s2 ]s2s1s2
−

[Xs2s1s2 ]s2s1
[Xs2s1s2 ]s2s1s2

[Xs2s1 ]s2
[Xs2s1 ]s2s1

− 1

)



1

[Xs2 ]s2
[Xs2 ]

+ (f1 − fs1 − fs2 + fs1s2 + fs2s1 − fs1s2s1 − fs2s1s2 + fs1s2s1s2)
1

[X1]1
[X1]
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and we may use the explicit values of [Xw]v given in Figure 2 to derive

f = fs1s2s1s2
y−α1y−s1α2y−s1s2α1y−s1s1s1α2

yR−

[Xs1s2s1s2 ]

+ (fs1s2s1 − fs1s2s1s2)
y−α1y−s1α2y−s1s2α1

yR−

[Xs1s2s1 ] + (fs2s1s2 − fs1s2s1s2)
y−α2y−s2α1y−s2s1α2

yR−

[Xs2s1s2 ]

+

(
(fs1s2 − fs2s1s2) + (fs1s2s1s2 − fs1s2s1)

y−α1y−s1α2y−s1s2α1

y−α1y−α2y−s2α1

)
y−α2y−s2α1

yR−

[Xs1s2 ]

+

(
(fs2s1 − fs1s2s1) + (fs1s2s1s2 − fs2s1s2)

y−α2y−s2α1y−s2s1α2

y−α1y−α2y−s1α2

)
y−α1y−s1α2

yR−

[Xs2s1 ]

+




(fs1 − fs2s1) + (fs2s1s2 − fs1s2)
y−α2y−s2α1
y−α1y−α2

+(fs1s2s1s2 − fs1s2s1)

(
Ny−α1y−s1α2y−s1s2α1

y−α1y−α2y−s1α2
−

y−α1y−s1α2y−s1s2α1
y−α1y−α2y−s2α1

y−α2y−s2α1
y−α1y−α2

− 1

)

 y−α1

yR−

[Xs1 ]

+




(fs2 − fs1s2) + (fs1s2s1 − fs2s1)
y−α1y−s1α2
y−α1y−α2

+(fs2s1s2s1 − fs2s1s2)

(
y−α2y−s2α1y−s2s1α2
y−α1y−α2y−s2α1

−
y−α2y−s2α1y−s2s1α2
y−α1y−α2y−s1α2

y−α1y−s1α2
y−α1y−α2

− 1

)

 y−α2

yR−

[Xs2 ]

+ (f1 − fs1 − fs2 + fs1s2 + fs2s1 − fs1s2s1 − fs2s1s2 + fs1s2s1s2)
1

yR−

[X1]

which simplifies to

yR−f = fs1s2s1s2y−α1y−s1α2y−s1s2α1y−s1s1s1α2 [Xs1s2s1s2 ]

+ (fs1s2s1 − fs1s2s1s2)y−α1y−s1α2y−s1s2α1 [Xs1s2s1 ]

+ (fs2s1s2 − fs1s2s1s2)y−α2y−s2α1y−s2s1α2 [Xs2s1s2 ]

+ ((fs1s2 − fs2s1s2)y−α2y−s2α1 + (fs1s2s1s2 − fs1s2s1)y−s1α2y−s1s2α1)[Xs1s2 ]

+ ((fs2s1 − fs1s2s1)y−α1y−s1α2 + (fs1s2s1s2 − fs2s1s2)y−s2α1y−s2s1α2)[Xs2s1 ]

+




(fs1 − fs2s1)y−α1 + (fs2s1s2 − fs1s2)y−s2α1

+(fs1s2s1s2 − fs1s2s1)

(
Ny−s1s2α1y−α1

y−α2
−

y−s1α2y−s1s2α1
y−α2

− y−α1

)

 [Xs1 ]

+




(fs2 − fs1s2)y−α2 + (fs1s2s1 − fs2s1)y−s1α2

+(fs2s1s2s1 − fs2s1s2)

(
y−s2s1α2y−α2

y−α1
−

y−s2α1y−s2s1α2
y−α1

− y−α2

)

 [Xs2 ]

+ (f1 − fs1 − fs2 + fs1s2 + fs2s1 − fs1s2s1 − fs2s1s2 + fs1s2s1s2)[X1]

This last formula allows for quick computation of products with Schubert classes in rank 2
for low dimensional Schubert varieties. In particular, for g =

∑
w∈W0

gwbw in ΩT (G/B),

g[X1] = g1[X1],

g[Xs1 ] = gs1 [Xs1 ] + g1,s1 [X1], where g1,s1 =
g1 − gs1
y−α1

,

g[Xs2 ] = gs2 [Xs2 ] + g1,s2 [X1], where g1,s2 =
g1 − gs2
y−α2

,

g[Xs1s2 ] = gs1s2 [Xs1s2 ] + gs1,s1s2 [Xs1 ] + gs2,s1s2 [Xs2 ] +
g1,s1 − gs2,s1s2

y−α2

[X1],

g[Xs2s1 ] = gs2s1 [Xs2s1 ] + gs1,s2s1 [Xs1 ] + gs2,s2s1 [Xs2 ] +
g1,s2 − gs1,s2s1

y−α1

[X1],
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where

gs1,s1s2 =
gs1 − gs1s2
y−α2

, gs2,s1s2 =
gs2 − gs1s2
y−s2α1

, gs1,s2s1 =
gs1 − gs2s1
y−s1α2

, gs2,s2s1 =
gs2 − gs2s1
y−α1

.

Using (3.19), Pieri-Chevalley rules giving the expansions of products xλ[Xw] in terms of Schubert
classes are directly determined from these formulas.

7 Schubert classes and products in rank 2

In rank 2, W0 is a dihedral group generated by s1 and s2 with s2i = 1, s1α1 = −α1, s2α2 = −α2,

s1α1 = −α1, s1α2 = jα1 + α2,
s2α1 = α1 + α2, s2α2 = −α2,

with

j =





1, in Type A2,

2, in Type B2,

3, in Type G2,

and

b1
bs1 bs2
bs1s2 bs2s1
bs1s2s1 bs2s1s2
bs1s2s1s2 bs2s1s2s1
bs1s2s1s2s1 bs2s1s2s1s2

...
...

bw basis

y−α1

yα1 y−s2α1

ys2α1 y−s1s2α1

ys1s2α1 y−s2s1s2α1

ys2s1s2α1 y−s1s2s1s2α1

ys1s2s1s2α1 y−s2s1s2s1s2α1

...
...

x−α1

y−α2

y−s1α2 yα2

y−s2s1α2 ys1α2

y−s1s2s1α2 ys2s1α2

y−s2s1s2s1α2 ys1s2s1α2

y−s1s2s1s2s1α2 ys2s1s2s1α2

...
...

x−α2

Let

yR− =
∏

α∈R+

y−α, (7.1)

∆121 = yR−

(
1

y−α2y−α1y−α2

+
1

y−s2α2y−s2α1y−α2

)

=
yR−

y−α1y−α2y−s1α2

(
y−s1α2 − y−α2

y−α1

+ p(yα1 , y−α1)y−α2

)

∆212 =
yR−

y−α2y−α1y−s2α1

(
y−s2α1 − y−α1

y−α2

+ p(yα2 , y−α2)y−α1

)
, and (7.2)

N = 1 + (1− p(y−α2 , y−jα1)y−α2)
( j−1∑

k=1

(1− p(y−α1 , y−kα1)y−kα1

)
. (7.3)

We note that, for ordinary cohomology HT and K-theory KT ,

N =

{
1 + (j − 1), in HT ,

1 + e−α2(e−α1 + · · ·+ e−(j−1)α1), in KT ,
and ∆121 =

NyR−

y−α1y−α2y−s1α2

.
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The Schubert and Bott-Samelson cycles for rank 2 and length 6 1 are given

yR−

0 0
0 0
0 0
0 0
...

...

[X1] = [Zpt]

yR−

y−α1yR−

y−α1
0

0 0
0 0
0 0
...

...

[Xs1 ] = [Z1]

yR−

y−α2

0
yR−

y−α2

0 0
0 0
0 0
...

...

[Xs2 ] = [Z2]

The remaining Schubert and Bott-Samelson cycles for rank 2 and length 6 3 are given in Figure
2.

7.1 Schubert products in rank 2

Using the explicit moment graph representations of the Schubert classes, the formulas for prod-
ucts g[Xw] given at the end of Section 6 allow for quick computations of the products of Schubert
classes in rank 2 for Weyl group elements up to length 3. It is straightforward to check that these
generalise the corresponding computations for equivariant cohomology and equivariant K-theory
which were given in [GR, §5]. Since [Xs1s2s1s2 ] = [Xs2s1s2s1 ] = 1 in Type B2, these calculations
completely determine all Schubert products generalized equivariant Schubert products for Types
A2 and B2.

The Schubert products for low dimensional Schubert varieties are as follows.

[X1]
2 = yR− [X1], [X1][Xs1 ] =

yR−

y−α1

[X1], [X1][Xs2 ] =
yR−

y−α2

[X1],

[X1][Xs1s2 ] =
yR−

y−α1y−α2

[X1], [X1][Xs2s1 ] =
yR−

y−α2y−α1

[X1],

[X1][Xs1s2s1 ] =
NyR−

y−α1y−α2y−s1α2

[X1], [X1][Xs2s1s2 ] =
yR−

y−α2y−α1y−s2α1

[X1],

[Xs1 ]
2 =

yR−

y−α1

[Xs1 ], [Xs1 ][Xs1s2 ] =
yR−

y−α1y−α2

[Xs1 ], [Xs1 ][Xs1s2s1 ] =
NyR−

y−α1y−α2y−s1α2

[Xs1 ],

[Xs1 ][Xs2 ] =
yR−

y−α1y−α2

[X1],

[Xs1 ][Xs2s1 ] =
yR−

y−α1y−s1α2

[Xs1 ] +
yR−

y−α2y−α1y−s1α2

(
y−s1α2 − y−α2

y−α1

)
[X1],

[Xs1 ][Xs2s1s2 ] =
yR−

y−α2y−α1y−s1α2

[Xs1 ] +
yR−

y−α1y−α2y−s1α2y−s2α1

(
y−s1α2 − y−s2α1

y−α1

)
[X1],

[Xs2 ]
2 =

yR−

y−α2

[Xs2 ], [Xs2 ][Xs2s1 ] =
yR−

y−α2y−α1

[Xs2 ], [Xs2 ][Xs2s1s2 ] =
yR−

y−α2y−α1y−s2α1

[Xs2 ],

[Xs2 ][Xs1s2 ] =
yR−

y−α2y−s2α1

[Xs2 ] +
yR−

y−α1y−α2y−s2α1

(
y−s2α1 − y−α1

y−α2

)
[X1],

[Xs2 ][Xs1s2s1 ] =
yR−

y−α1y−α2y−s2α1

[Xs2 ] +
yR−

y−α1y−α2y−s1α2y−s2α1

(
Ny−s2α1 − y−s1α2

y−α2

)
[X1],
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y
R−

y−α1y−α2yR−

y−α1y−α2

yR−

y−α2y−s2α1yR−

y−α2y−s2α1
0

0 0
0 0
...

...

[Xs1s2 ] = [Z12]

y
R−

y−α1y−α2yR−

y−α1y−s1α2

yR−

y−α1y−α2

0
yR−

y−α1y−s1α2

0 0
0 0
...

...

[Xs2s1 ] = [Z21]

Ny
R−

y−α1y−α2y−s1α2
NyR−

y−α1y−α2y−s1α2

yR−

y−α1y−α2y−s2α1yR−

y−α1y−α2y−s2α1

yR−

y−α1y−s1α2y−s1s2α1yR−

y−α1y−s1α2y−s1s2α1
0

0 0
...

...

[Xs1s2s1 ]

y
R−

y−α1y−α2y−s2α1yR−

y−α1y−α2y−s1α2

yR−

y−α1y−α2y−s2α1yR−

y−α2y−s2α1y−s2s1α2

yR−

y−α1y−α2y−s1α2

0
y
R−

y−α2y−s2α1y−s2s1α2

0 0
...

...

[Xs2s1s2 ]

∆121

∆121
yR−

y−α1y−α2y−s2α1yR−

y−α1y−α2y−s2α1

yR−

y−α1y−s1α2y−s1s2α1y
R−

y−α1y−s1α2y−s1s2α1
0

0 0
...

...

[Z121]

∆212
yR−

y−α1y−α2y−s1α2
∆212

yR−

y−α2y−s2α1y−s2s1α2

yR−

y−α1y−α2y−s1α2

0
y
R−

y−α2y−s2α1y−s2s1α2

0 0
...

...

[Z212]

Figure 2: Schubert and Bott-Samelson cycles for rank 2 and length 6 3.
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[Xs1s2 ]
2 =

yR−

y−α2y−s2α1

[Xs1s2 ] +
yR−

y−α2y−α1y−s2α1

(
y−s2α1 − y−α1

y−α2

)
[Xs1 ],

[Xs1s2 ][Xs2s1 ] =
yR−

y−α1y−α2y−s1α2

[Xs1 ] +
yR−

y−α1y−α2y−s2α1

[Xs2 ]

+
yR−

y−α1y−α2y−s1α2y−s2α1

((y−s2α1 − y−α1

y−α2

)(y−s1α2 − y−α2

y−α1

)
− 1

)
[X1],

[Xs1s2 ][Xs1s2s1 ] =
yR−

y−α1y−α2y−s2α1

[Xs1s2 ] +
yR−

y−α1y−α2y−s1α2y−s2α1

(
Ny−s2α1 − y−s1α2

y−α2

)
[Xs1 ],

[Xs1s2 ][Xs2s1s2 ] =
yR−

y−α2y−s2α1y−s2s1α2

[Xs1s2 ]

+
yR−

y−α1y−α2y−s2α1y−s1α2y−s2s1α2

(
y−s2α1y−s2s1α2 − y−α1y−s1α2

y−α2

)
[Xs1 ]

+
yR−

y−α1y−α2y−s2α1y−s2s1α2

(
y−s2s1α2 − y−α1

y−s2α1

)
[Xs2 ]

+
yR−

y2−α2

(
1

y2−α1
y−s2α1

−
1

y2−s2α1
y−α1

−
1

y2−α1
y−s1α2

+
1

y2−s2α1
y−s2s1α2

)
[X1],

[Xs2s1 ]
2 =

yR−

y−α1y−s1α2

[Xs2s1 ] +
yR−

y−α1y−α2y−s1α2

(
y−s1α2 − y−α2

y−α1

)
[Xs2 ],

[Xs2s1 ][Xs1s2s1 ] =
yR−

y−α1y−s1α2y−s1s2α1

[Xs2s1 ] +
yR−

y−α1y
2
−s1α2

(
N

y−α2

−
1

y−s1s2α1

)
[Xs1 ]

+
yR−

y2−α1

(
1

y−s2α1y−α2

−
1

y−s1s2α1y−s1α2

)
[Xs2 ]

+
yR−

y2−α1

(
N

y2−α2
y−s1α2

−
N

y−α2y
2
−s1α2

−
1

y2−α2
y−s2α1

+
1

y2−s1α2
y−s1s2α1

)
[X1],

[Xs2s1 ][Xs2s1s2 ] =
yR−

y−α2y−α1y−s1α2

[Xs2s1 ] +
yR−

y−α2y
2
−α1

(
1

y−s2α1

−
1

y−s1α2

)
[Xs2 ],

[Xs1s2s1 ]
2 =

yR−

y−α1y−s1α2y−s1s2α1

[Xs1s2s1 ] +
yR−

y−α2
1

(
1

y−α2y−s2α1

−
1

y−s1α2y−s1s2α1

)
[Xs1s2 ]

+
yR−

y−α1y−α2

(
N2

y−α2y
2
−s1α2

−
N

y2−s1α2
y−s1s2α1

−
1

y−α1y−α2y−s2α1

+
1

y−α1y−s1α2y−s1s2α1

)
[X1],

[Xs1s2s1 ][Xs2s1s2 ] =
yR−

y−α1y−α2y−s2α1y−s2s1α2

[Xs1s2 ] +
yR−

y−α1y−α2y−s1α2y−s1s2α1

[Xs2s1 ]

+
yR−

y−α1y−α2

(
N

y−α2y
2
−s1α2

−
1

y−α2y−s2α1y−s2s1α2

−
1

y2−s1α2
y−s1s2α1

)
[Xs1 ]

+
yR−

y−α1y−α2

(
1

y−α1y
2
−s2α1

−
1

y−α1y−s1α2y−s1s2α1

−
1

y2−s2α1
y−s2s1α2

)
[Xs2 ],

[Xs2s1s2 ]
2 =

yR−

y−α2y−s2α1y−s2s1α2

[Xs2s1s2 ] +
yR−

y−α2
2

(
1

y−α1y−s1α2

−
1

y−s2α1y−s2s1α2

)
[Xs2s1 ]

+
yR−

y−α1y−α2

(
1

y−α1y
2
−s2α1

−
1

y2−s2α1
y−s2s1α2

−
1

y−α1y−α2y−s1α2

+
1

y−α2y−s2α1y−s2s1α2

)
[X1],
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8 The calculus of BGG operators

The nil affine Hecke algebra is the algebra over L with generators xλ, yλ, tw, with λ, µ ∈ h∗
Z
and

w ∈W0, with relations

xλ+µ = xλ + xµ − p(xλ, xµ)xλxµ, yλ+µ = yλ + yµ − p(yλ, yµ)yλyµ, xλyµ = yµxλ,

and
tvtw = tvw, twyλ = yλtw, twxλ = xwλtw, for v,w ∈W0, λ ∈ h∗

Z
.

Recall from (4.2) that the pushpull operators, or BGG-Demazure operators are given by

Ai = (1 + tsi)
1

x−αi

, for i = 1, 2, . . . , n. (8.1)

In general,

Ai = (1 + tsi)
1

x−αi

=
1

x−αi

+
1

xαi

tsi =
1

x−αi

−
1− p(xαi

, x−αi
)x−αi

x−αi

tsi

=
1

x−αi

(1− (1− p(xαi
, x−αi

)x−αi
)tsi) =

1

x−αi

(1− tsi) + p(xαi
, x−αi

)tsi . (8.2)

so that Ai is a divided difference operator plus an extra term. As in [BE1, Prop. 3.1],

A2
i = (1 + tsi)

1

x−αi

(1 + tsi)
1

x−αi

=

(
1

x−αi

+
1

xαi

tsi

)
(1 + tsi)

1

x−αi

=

(
1

x−αi

+
1

xαi

)
(1 + tsi)

1

x−αi

=

(
1

x−αi

+
1

xαi

)
Ai,

so that

A2
i =

(
1

x−αi

+
1

xαi

)
Ai = Ai

(
1

x−αi

+
1

xαi

)
= Aip(xαi

, x−αi
). (8.3)

Note also that

tsiAi = tsi(1 + tsi)
1

x−αi

= Ai and (8.4)

Aitsi = (1 + tsi)
1

x−αi

tsi = (1 + tsi)
1

xαi

= Ai
x−αi

xαi

. (8.5)

If f ∈ L[[xλ | λ ∈ h∗
Z
]] then

fAi = f(1 + tsi)
1

x−αi

= f
1

x−αi

+ ftsi
1

x−αi

and

Ai(sif) = (1 + tsi)
sif

x−αi

= (sif + ftsi)
1

x−αi

,

so that

fAi = Ai(sif) +

(
f − sif

x−αi

)
. (8.6)

The relation (8.6) is the analogue, for this setting, of a key relation in the definition of the
classical nil-affine Hecke algebra (see [CG, Lemma 7.1.10] or [GR, (1.3)]).

26



Next are useful, expansions of products of tsi in terms of products of Ai with xs on the left,

ts1 = xα1A1 −
xα1

x−α1

,

ts2ts1 = xs2α1xα2A2A1 − xs2α1

xα2

x−α2

A1 −
xs2α1

x−s2α1

xα2A2 +
xs2α1

x−s2α1

xα2

x−α2

ts1ts2ts1 = xs1s2α1xs1α2xα1A1A2A1 − xs1s2α1xs1α2

xα1

x−α1

A2A1 −
xs1s2α1

x−s1s2α1

xs1α2xα1A1A2

+
xs2s1α2

x−s2s1α2

xs2α1

xα2

x−α2

A1 +
xs1s2α1

x−s1s2α1

xs1α2

xα1

x−α1

A2 −
xs1s2α1

x−s1s2α1

xs1α2

x−s1α2

xα1

x−α1

+

(
xs1α2

x−s1α2

xs1s2α1

x−s1s2α1

xα1 −
xs1α2

x−s1α2

xs1s2α1 −
xs2s1α2

x−s2s1α2

xs2α1

xα2

x−α2

)
A1

ts1ts2ts1ts2 = xs2s1s2α1xs2s1α2xs2α1xα2A2A1A2A1

− xs2s1s2α1xs2s1α2xs2α1

xα2

x−α2

A1A2A1 −
xs2s1s2α1

x−s2s1s2α1

xs2s1α2xs2α1xα2A2A1A2

+
xs2s1s2α1

x−s2s1s2α1

xs2s1α2xs2α1

xα2

x−α2

A1A2

+

(
xs2s1s2α1

x−s2s1s2α1

xs2s1α2

x−s2s1α2

xs2α1xα2 − xs2s1s2α1

xs2s1α2

x−s2s1α2

xα2 − xs2s1s2α1xs2s1α2

xs2α1

x−s2α1

)
A2A1

−

(
xs2s1s2α1

x−s2s1s2α1

xs2s1α2

x−s2s1α2

xs2α1 − xs2s1s2α1

xs2s1α2

x−s2s1α2

)
xα2

x−α2

A1

+

(
xs2s1s2α1

x−s2s1s2α1

xs2s1α2

xs2α1

x−s2α1

−
xs2s1s2α1

x−s2s1s2α1

xs2s1α2

x−s2s1α2

xs2α1

x−s2α1

xα2

)
A2

+
xs2s1s2α1

x−s2s1s2α1

xs2s1α2

x−s2s1α2

xs2α1

x−s2α1

xα2

x−α2

,

and expansions of products of tsi in terms of products of Ai with xs on the right,

ts1 = A1x−α1 − 1,

ts1ts2 = A1A2x−α2x−s2α1 −A1x−s2α1 −A2x−α2 + 1,

ts1ts2ts1 = A1A2A1x−α1x−s1α2x−s1s2α1 −A1A2x−s1α2x−s1s2α1 −A2A1x−α1x−s1α2

+A1x−s2α1 +A2x−s1α2 − 1 +A1

(
x−α1 − x−s2α1 −

x−α1

xα1

x−s1s2α1

)
,

ts1ts2ts1ts2 = A1A2A1A2x−α2x−s2α1x−s2s1α2x−s2s1s2α1

−A1A2A1x−s2α1x−s2s1α2x−s2s1s2α1 −A2A1A2x−α2x−s2α1x−s2s1α2

+A1A2

(
−
x−α2

xα2

x−s2s1α2x−s2s1s2α1 − x−α2

x−s2α1

xs2α1

x−s2s1s2α1 + x−α2x−s2α1

)

+A2A1x−s2α1x−s2s1α2

−A1

(
x−s2α1 −

x−s2α1

xs2α1

x−s2s1s2α1

)
−A2

(
x−α2 −

x−α2

xα2

x−s2s1α2

)
+ 1.
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Finally, there are expansions of products of Ai in terms of products of tsi :

A1 = (ts1 + 1)
1

x−α1

,

A1A2 = (ts1 + 1)

(
ts2

1

x−α2x−s2α1

+
1

x−α1x−α2

)
,

A1A2A1 = (ts1 + 1)




ts2ts1
1

x−α1x−s1α2x−s1s2α1

+ ts2
1

x−α1x−α2x−s2α1

+
1

x−α1

(
1

x−α1x−α2

+
1

x−s1α1x−s2α1

)



,

A1A2A1A2 = (ts1 + 1)




ts2ts1ts2
1

x−α2x−s2α1x−s2s1α2x−s2s1s2α1

+ts2ts1
1

x−α2x−α1x−s1α2x−s1s2α1

+ts2
1

x−α2x−s2α1

(
1

x−α2x−α1

+
1

x−s2α1x−s2α2

+
1

x−s2s1α2x−s2s1α1

)

+
1

x−α1x−α2

(
1

x−α2x−α1

+
1

x−s2α1x−s2α2

+
1

x−s1α2x−s1α1

)




.

These formulas arranged so that products beginning with ts2 and A2 are obtained from the above
formulas by switching 1s and 2s. In particular, the “braid relations” for the operators Ai are the
equations given by, for example, in the case that s1s2s1 = s2s1s2 so that s1α2 = s2α1 = α1+α2

then
0 = ts1ts2ts1 − ts2ts1ts2

is equivalent to

A2A1A2 −

(
1

x−α2x−α1

−
1

x−α1x−α3

+
1

xα2x−α3

)
A2

= A1A2A1 −

(
1

x−α1x−α2

−
1

x−α2x−α3

+
1

xα1x−α3

)
A1,

as indicated in [HLSZ, Proposition 5.7].
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