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Abstract

In this paper we study the T-equivariant generalized cohomology of flag varieties using two
models, the Borel model and the moment graph model. We study the differences between
the Schubert classes and the Bott-Samelson classes. After setup of the general framework we
compute, for classes of Schubert varieties of complex dimension < 3 in rank 2 (including A,

By, G2 and Agl)), moment graph representatives, Pieri-Chevalley formulas and products of
Schubert classes. These computations generalize the computations in equivariant K-theory
for rank 2 cases which are given in Griffeth-Ram [GR].

1 Introduction

This paper is a study of the generalized equivariant cohomology of flag varieties. We set up
a general framework for working with the generalized (equivariant) Schubert calculus which
allows for detailed study without the need for knowledge of cobordism or generalized cohomology
theories. Working in the context of a complex reductive algebraic group G, the (generalized) flag
variety is G/B, where B is a Borel subgroup containing the maximal torus 7. The equivariant
generalized cohomology theory hr comes with a (formal) group which is used to combinatorially
construct the ring S = hr(pt). The Borel model presents hr(G/B) as a ‘coinvariant ring’
S ®gqw, S and the moment graph model presents hr(G/B) via the image of the inclusions of
the T-fixed points of G/B. Special cases of generalized equivariant cohomology theories are
‘ordinary’ cohomology (corresponding to the additive group) and K-theory (corresponding to
the multiplicative group). The universal formal group law corresponds to complex cobordism.
Our work follows papers of Bressler-Evens BE2], Calmeés-Petrov-Zainoulline [CPZ],
Harada-Holm-Henriques [HHH], Hornbostel-Kiritchenko [HK], and Kiritchenko-Krishna [KiKi],
which have laid important foundations. Combining these tools we study the equivariant co-
homology of the flag varieties, partial flag varieties, and Schubert varieties via the algebraic
and combinatorial study of the rings which appear in the Borel model and the moment graph
model. In Sections and [B] we review the setup for these models and the connection to the
(generalized) nil affine Hecke algebra and the BGG-Demazure operators (see also [HLSZ] and

[BEL, BE2]).
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One of the main points of our work is to shift the focus from Bott-Samelson classes to
Schubert classes. In ordinary equivariant cohomology and equivariant K-theory these agree, but
in generalized cohomology the Schubert classes and the Bott-Samelson classes usually differ.
Since the Schubert varieties are not, in general, smooth it is not even clear how the Schubert
classes (the fundamental classes of the Schubert varieties) should be defined. In Section [l we give
explicit examples of “naive pushforwards” and Bott-Samelson classes and explain why neither
of these can possibly be the Schubert classes in general. There are several directions to explore
in searching for a good way to define Schubert classes:

(a) One can take the lead of Borisov-Libgober [BL] (see also [Td]), and define the Schubert
class [X,,] as a ‘corrected’ version of the Bott-Samelson class [Zz] which, in the end, does
not depend on the reduced word w chosen for w. Borisov-Libgober Definition 3.1]
obtain a correction factor for the elliptic genus from the discrepancies of the components
of the exceptional divisor of a resolution of singularities of a variety with at worst log ter-
minal singularities. Recent papers of Anderson-Stapledon [AS] and Kumar-Schwede [KS]
explain that Schubert varieties have Kawamata log terminal singularities and analyze the
exceptional divisor in the Bott-Samelson resolution. In Section [l we compute a possible
equivariant algebraic cobordism correction factor for the smallest singular (complex dimen-
sion 3) Schubert variety in all rank 2 cases. Though the approach of Borisov-Libgober was
a motivation for our computations we have not yet understood how to make our compu-
tation of the correction factor for equivariant algebraic cobordism relate to the correction
suggested by Borisov-Libgober for the elliptic genus.

(b) One can try to define the Schubert classes as classes determined, hopefully uniquely, by
positivity properties under multiplication. We have not yet managed to make a defini-
tion that is satisfying but our computations of Schubert products do display remarkable
positivity features.

(c) One can try to use the theory of Soergel bimodules (see [Soel) to pick out particular gen-
erators (as (5, 5)-bimodules) of the generalized cohomologies of Schubert varieties which
serve as Schubert classes. Though we have not had space to exhibit our computations of
the algebraic cobordism case of Soergel bimodules in this paper, our preliminary compu-
tations show that generalizing the Soergel bimodule theory to the ring S which appears
in Theorem [B1]is useful for obtaining better understanding of the equivariant generalized
cohomology of Schubert varieties.

In Section[@we provide explicit computations of Schubert classes, and products with Schubert
classes in the rank 2 cases. Our computations hold for all rank two cases, but we have only
given specific results for Schubert classes of Schubert varieties in G/B of (complex) dimension
< 3. In partiuclar, this provides complete results for types As and By and partial results for Go
and Agl).

To some extent this paper is a sequel to [GR]. That paper considers the case of equivariant
K-theory. In retrospect, [GR] did not capitalize on the full power of the moment graph model,
in particular, that the map ® in Theorem Bl is a ring homomorphism. This key point is the
feature which we exploit in this paper to execute computations similar to those in [GR], but
with greater ease and in greater generality.
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2 The Schubert calculus framework
2.1 Flag and Schubert varieties
The basic data is

G a connected complex reductive algebraic group

Ul

B a Borel subgroup (2.1)
ul

T a maximal torus.

The Weyl group, the character lattice and cocharacter lattice are, respectively,
Wo = N(T)/T, b7 = Hom(T,C*) and hz = Hom(C*, T), (2.2)

where Hom(H, K) is the abelian group of algebraic group homomorphisms from H to K with
product given by pointwise multiplication, (¢)(h) = ¢(h)i(h). Since the Weyl group acts on
T, it also acts on b and on bz.

A standard parabolic subgroup of G is a subgroup P; 2 B such that G/Pjy is a projective
variety. A parabolic subgroup of G is a conjugate of a standard parabolic subgroup.

The flag variety is G/B and G/ Py are the partial flag varieties. (2.3)
These are studied via the Bruhat decomposition

G= || BuB and G= || BuPy (2.4)

weWy uew/

where W; ={v € Wy | vT' C Py} and
W7 = {coset representatives u of cosets in Wo/W;}. (2.5)
The Schubert varieties are
X, =BwB inG/B and X/ =DBuP; inG/P;, (2.6)
and the Bruhat orders are the partial orders on Wy and W given by

Xy=BwB=||BvB and X]=DBuP;=||BzP;. (2.7)

v<w z<u

The T-fixed points

in G/B are {wB | w € Wy} and in G/Py are {uPy | uc W”}. (2.8)



Let Py,..., P, be the minimal parabolic subgroups P; # B. Then
Wi =Wy = {1, 5} and $1,...,5y are the simple reflections in Wy. (2.9)

With respect to the action of Wy on by = R ®z b7, the s; are reflections in the hyperplanes

(h*)% = {p € by | sip = p}. An alternative description of the standard parabolic subgroups is
tolet J C {1,2,...,n} and let

Wy=(sj|jeJ). Then P;= || BuvB. (2.10)
veWy

In particular, P; = P; = BU Bs;B, for i =1,2,...,n.
Theorem 2.1. (Coxeter) The group Wy is generated by $1,. .., S, with relations
22 =1 and 8;8jS; " = 8j8;Sj "
—_— Y
m;; factors m;; factors
where w/m;; = (h*)*Z(h*)% is the angle between (h*)* and (h*)%.
The definitions in ([23)), (28] and (26]) provide T-equivariant maps

p;: G/B — G/P; lw: pt <= G/B ow: Xy <— G/B (2.11)
gB +— gP; pt — wB gB +~— ¢B '
and
opt = G/Py ol X < G/P; (2.12)
pt —  uPy gP; —— gPj ’

for J C {1,2,...,¢}, w € Wy, and u € W,
For example, in type G = GL3, with T" and B the subgroups given by

ED) G/G:pt

* 0 0 * k%
T = 0 = 0 and B = 0 * = ,
0 0 =« 0 0 =x
then Wy = (s1,s2 | 87 = 1,515281 = $25152), where
010 010
s1;=1[(1 0 0 and sg=11 0 O
0 0 1 0 0 1
Then
Xu, = G/B and G/B
X818><3281 G/Pl G/P2
X, X

pt = X,



where Py and P, are the subgroups of G = GL3(C) given by

P = =Bl Bs1B and Py = = B U BsyB.

O ¥ ¥

O ¥ ¥

* Kk K

O O ¥

* X X
*

2.2 Generalized cohomology theories

Schubert calculus is the study of the cohomology of flag and Schubert varieties. Although the
home for our computations is the particular ring S = L[[ys]] of (84) the motivation comes from
the formalism of generalized cohomology theories h. Model examples are: ordinary cohomology
H, K-theory K, elliptic cohomology (see [MR] [GKV], [Grl [Anl Lu]) and complex and algebraic
cobordism € (see ). Key to our point of view is that if f: X — Y is a morphism of spaces,
the contravariance of the cohomology theory provides

a pullback f*: h(Y) — h(X), and a pushforward fi: h(X) — h(Y)

exists if the morphism f is nice enough. Our true interest is in the morphisms in ([2I1]) and
@I2) and (£5). Sometimes we will try to consider, by combinatorial gadgetry, pushforwards
across these morphisms even in cases where we are not sure that, for any given cohomology
theory, the pushforward properly exists.

As in [CPZ, §8.2], the important property for the analysis of Schubert calculus is that an
oriented cohomology theory h comes with a formal group law F over the coefficient ring h(pt)
such that

F(c} (L), ¢} (£2)) = (L1 @ L2),

where £1 and L9 are line bundles on X and ci‘ denotes the first Chern class in the cohomology
theory h (see [LM, Cor. 4.1.8]). The Lazard ring L is generated by symbols a;;, for i,j € Z~o,
which satisfy the relations given by the equations

F(m,F(y, Z)) = F(F(m,y),z), F(l‘,y) = F(ya$)7 F(ﬂj‘,O) =, (213)
where
F(z,y) =2+ y + anzy + appzy® + ana’y + -

The ring L is the universal coefficient ring for a formal group law F. This ring is one of the
ingredients for the construction of the ring S where we do our computations.

A equivariant cohomology theory hr is a functor from T-spaces (some appropriate class of
topological or geometric objects with T-action) to some class of algebraic objects (in most of
our model examples, hr(pt)-algebras). Important features and properties of the theory include:

(0) Normalization: specification of hp(pt),

(1) nice behaviour under products, smashes, suspensions: such as axioms for computing
hG>< K(M x N ),

(2) functoriality /pullbacks: if f: X — Y then we have f*: hp(Y) — hp(X)

(3) Thom isomorphism /orientability /pushforwards: For certain classes of maps f: X — YV
there exists a pushforward fi: hp(X) — hr(Y),

(4) Change of groups: For certain classes of groups G and K and group homomorphisms
¢: G — K there exist x,: hg — hg and x¥: hxg — hg.



The art of choosing appropriate categories of input “T-spaces”, of output “algebraic objects” and
widening the classes of maps on which pushforwards and/or change of groups homomorphisms
are defined is a beautiful chapter in algebraic topology and geometry. The challenge of extending
a nonequivariant generalized cohomology theory to the equivariant case can be considerable. For
such a genuinely equivariant theory the formal groups above will be replaced by actual groups
but we do not emphasize this point of view here. For a small selection of references we refer the
reader to [Adl p. 37-29] for a discussion of the connection to formal group laws and spectra,
Chapt. XIII] and [Oko| for a discussion of equivariant orientable theories as Mackey functors
and |[GKV], (1.5)] for discussion of axioms for equivariant elliptic cohomology.

In order to specify a home for our computations in Schubert calculus in equivariant coho-
mology theories we follow [HHH|. They restrict their class of spaces to GKM spaces: stratified
T-spaces

X = UXi, X1 CXoCX3C -,
1€7L>0
where the successive quotients X;/X;_; are homeomorphic to the Thom spaces Th(V;) of some
h-orientable T-vector bundles V; — F; (see [HHH, (2.1)]). As pointed out in [HHH, Remark
3.3], for the case of flag and Schubert varieties that are the focus of this paper, the F; are points
and the V; are one dimensional representations of 7. In particular, the assumptions of [HHH]
§3] hold for these cases.

2.3 The Borel model for hr(G/B)

The general combinatorial Schubert calculus uses b7 and bz to build a C-algebra R with an
action of Wy on R by C-algebra automorphisms (in favorite examples C' may be Z, or the ring

ﬁzo of holomorphic functions on the upper half plane, or the Lazard ring IL, see the examples
below). If
RYo = {fe R | wf=f forwe Wy} is the invariant ring,

then, conceptually,
R=hp(pt) and R = hg(pt), (2.14)

for the equivariant cohomology theory hp under analysis. By definition, the coinvariant ring is

R®c R
(fel—1&f| f e RWo)’

R®pw, R = (2.15)

where the terminology is chosen to be representative of the classical terminology in the study of

the cohomology of G/B, not to reflect a notion of coinvariants with respect to a group action.
Then (see Proposition 26.1], Proposition 1.6], Theorem 4.7]) the ring

R®pw, R is a good combinatorial model for hr(G/B), (2.16)

where the product on R ® zw, R is given by (f1 ® g1)(f2 ® g2) = fifo ® g192.
There are four favorite examples:

Cohomology: hr = Hr. Here
HT(pt) = S(h%) = C[x17"'7$n] and HG(pt) :HT(pt)WO = (C[$17"'7xn]wo7
where x; = ., where w,...,wy is a Z-basis of . Alternatively, Hr(pt) is the ring

Clza | A€ by] with 2y, =2 + 2,



for A, u € b7 and with wz) = x,) for w € Wy and A € h7. Then

Clyr, -+ s Yns T1y -« -, Ty
(f(z1,.swn) = f(y1s- oy yn) | f € Clog, ... z,W0)"

Hr(G/B) = Hr(pt) @ pt) Hr(pt) =

K-theory: hr = Kp. Here
Kr(pt) =Clbs] = C[X{,... . XF']  and  Ka(pt) = Kr(pt)"* = CIXF,..., X",
where X; = e*i, where wy,...,wy, is a Z-basis of b7,. Alternatively, Kr(pt) is the ring
Cle | Aeby] with eMH =eret
for A, u € b7 and with wer = e for w € Wy and \ € b7. Then
Cly, .. YL XGE X

Kr(GIB) = Brot) Sxeon K10 = fre S, V) | £ € CIXG, - X0

Elliptic cohomology: hp = Ellp. Here Ellp(pt) is the structure sheaf of the abelian variety
A: = b5 /(b3 + 7h%). The homogeneous coordinate ring
— — —~ W
for A, is Th = EB Thy,, and for A, /Wy is Th °.

meZxo
Then the graded Th-module corresponding to
the sheaf Elipr(G/B) on A, is Th &= wo Th.

Complex or algebraic cobordism: hp = Qp. Algebraic cobordism is treated in the book
of Levine-Morel [LM] and T-equivariant algebraic cobordism Q0 is treated in [Ki] and [KiKi].
The following summary of our setting is made precise by Theorem [B.1] below.

The Lazard ring L is the coefficient ring for the universal formal group law F so that L is
given by generators a;; with relations given by setting

Flry)=z+y+ Y aga'y!  inLlzy]],
1,JE€EZL>0
and requiring
F(ﬂ;‘,O) = F(O,l‘) =T, F($7y) = F(y,x), F(l‘,F(y, Z)) = F(F($7y)7'z)

Then

Qpr(pt) =L[zx | A€ bz]] with xxy, =2\ +rx, = F(z, x,),
for A\, u € b7. Then

Qa(pt) = Qr(pt)"o = L[[zy | A € b3]]"°, where wz) = Ty,
for w € Wy and X € by, and

Lilyx, x| A € b]]
(f(x) = f(y) | f€Lllza | Aeby]]™o)

Sample references for such identities are for the case of Hp(G/B), [CG] for
Kr(G/B), [KP, Gt [GKV], [Anl, [Ga] for Ellp(G/B) and [HHH, [CPZ, HK]| KiKy] for Qr(G/B).

The cobordism case specializes to the cases of cohomology Hr and K-theory Kr by setting

in H in H
F(w,y) _ {x+y7 m far, and Ty = {.’I’)\, m A,

Qr(G/B) = Qr(pt) ®q pt) r(Pt) =

r4+y—axy, in Kp, 1—e, in Kr.



3 The moment graph model

3.1 T-fixed points and the map ¢

Following Goresky-Kottwitz-MacPherson Theorem 1.2.2] a powerful way to think about
this theory is via the moment graph model. This means that for a T-variety X where the
imbeddings of the T-fixed points of X into X are

pt —- X
x

by

consider (3.1)

= Dew b U (X)— P 2r(pt),
weWw

where the sums are over an index set W for the T-fixed points in X. When X is a “GKM-
space” (see [GKM| Theorem 14] for several equivalent characterization of a GKM space for
equivariant ordinary cohomology and [?, HHH]or equivariant generalized cohomology theories)
the ring homomorphism ¢* is injective with image

|

where y,, is the T-equivariant Chern class of the tangent along the 1-dimensional orbit connecting
w and w'.

Computations are facilitated by encoding the information of im:* with a moment graph,
which has vertices corresponding to the T-fixed points of X and labeled edges w——w’ cor-
responding to 1-dimensional T-orbits in X. For example, for G/B for type GL3 the graph
is

Juw — Gu € Yar(pt) if there is a

im " = Q . . . ..
e (Gw)wem, € @ r(pt), 1-dimensional T-orbit containing w and w’

weWy

)

1 (3.2)
Y—aq Y—ag
Y—(aytag)
S1 52
5152 5251

Yoy

U—aq

515281 = 525152

A moment graph section is a tuple (gy)ww of elements of Q7 (pt) which is an element of im +*.
A morphism of GKM-spaces is a morphism of T-spaces

X =Y which provides, by restriction, W=V

from the set W of T-fixed points of X to the set V of T-fixed points of Y. Viewing elements of
H7p(X) and Hp(Y') as moment graph sections the maps

ST Hp(Y) = Hp(X)  and  fi: Hp(X) — Hp(Y)

are given by
1

s’ (3.3)

and

(h())w = Y,

wef~1(v

(f()w = Cf(w)> Yw
)



where the Fuler class of f from v to w is

—1

e(f)wv - H Yp H Ys

edges of W edges of V

adjacent to w adjacent to v
The second formula in [B3)) is a form of the familiar formula for push forwards by “localization
at the T-fixed points” as found, for example, in (3.8)]. The Euler class of f from v to w is
the contribution measured by the difference between the tangent space at the T-fixed point w
in X to the tangent space to the T-fixed point v = f(w) in Y.

The Borel model and the moment graph model for G/B for equivariant algebraic cobordism
Qr(G/B) are summarized in the following Theorem, which is a combination of Theorem
4.7] and [HHH, Theorem 3.1]. The ring S which takes the role of Qr(pt) is as in [CPZ, §2.4].
For comparison to the K-theory case see Theorem 3.13] and [LSS|, Theorem 3.1].

Theorem 3.1. ([HHH, Theorem 3.1], [KiKx, Theorem 4.7] and [CPZ, §2.4] combined) Let
G 2 B DT be a reductive group datum as in (1)) and let Wy and by, be the Weyl group and
the weight lattice b3, as in (Z2). Let L be the Lazard ring generated by a;; as in (2I3]) and let
S be the L-algebra

S=Lllyx | Aebzll, with Yapp =yr+Yu + auypyu + a12yays + a3y + -+ - (3.4)

The Weyl group
Wo acts L-linearly on S by WY\ = Yw,

forw e Wy, X € b;,. Define a product on EBweWO S pointwise,

(fw)wEWo : (gw)weWo - (fwgw)wEWm (35)

and let S ®gw, S be the coinvariant ring as defined in (2ZI5l). The S-algebra homomorphism

o: S R gwy S-= = QT(G/B) = im ®C @wEWo S (3.6)

fog | (f- (w_lg))wewo

1s well defined and injective with

m® = < (guw)wew, € EB S ‘ Gw — Gus, € Y—aS fora € RT and w € Wy » ,
weWy

where R is the set of positive roots corresponding to B and s, € Wy denotes the reflection
corresponding to «.

To provide a feel for the ring S of (B4, let us provide some formulas which will be useful
for computations later. To recapitulate and summarize previous definitions,

S=Llyr | Aebz]]  with vy =yn+Yu — PWr Yu)YAYus (3.7)

where p(yx,y,) € L{[yx, yu]] is a power series

P(Yr, Yp) = —a11 — @12Y — A21Yx — A31Y5 — A22YAYp — Q13YpYr — (3.8)



with a;; € L satisfying relations such that

Y-xr+xr = Yo =0, Yr+p = Yu+x, Y O+p)+v = Y+ (utv)- (3.9)
Then 1 1
—Y-a
= s —_—t — = P sY—a )y 310
Yo 1- p(ya, y—a)y—a Y—a Yo (ya Y a) ( )
and the formula
-1 l—
=/{— p Y-, Y—ja y joo = =1+ Z y aay—ja)y—ja)a for £ € Z~o, (3-11)
Jj=1 Jj=1

is proved by induction on ¢. Using ([BI1]) and the formula s;A = X\ — (A, o )o; for the action of
a simple reflection on h* produces
AaV)—1

= (1= pWay-pavya)in) [ 1+ D (1= pWap Yjo)Y—jor) | » (3.12)
=1

Ys;h — Yx
Y—ay

for (\, o) € Z>o. Formula ([BI2]) generalizes one of the favorite formulas for the action of a
Demazure operator (see [Ku2, Lemma 8.2.8]). This cobordism case specializes to Hr and K

by setting
0, in Hr, Yx, in Hp,
7 = and = 3.13
) {1, in Kr, " {1 — ¢ i Kr. Y

3.2 The nil affine Hecke algebra

Let S be as in [B4) and [B7). The point of view of [GR] is that the homomorphism ® of (B:6))
arises naturally from the nil affine Hecke algebra.
The nil affine Hecke algebra H is

= (S ®L S) x LW
= S-span{gt,, | g € S,w € Wy} = L-span{(f ® g)tw, | f,g € S,w € Wy}

with
tuty =ty and  t,(f @ g) = (f @ (wg))tw, (3.14)
for u,v,w € Wy and f,g € S. The nil affine Hecke algebra H acts on S ®p, S and on S ®@qw, S
by
tw(f@g)=f@wg and  (h@p)(f®g)=hf®pg, (3.15)

for h,p, f,g € S and w € Wj. These actions arise from the realization of S ®gqw, S as an induced
up H-module in (3I6]) below.

Let by be a symbol and let Sby be the S ®p, S module (a rank 1 free S-module with basis
{b1}) corresponding to the ring homomorphism

e: S®LS — S
f®g — fg

for f,g € S. The induced module

so that the S ®p, S action on Sb; is given by (f ® ¢g)by = fgbs,

Hb, = Indg&hs(Sbl) has S-basis {by| w € Wy}, where by, = tyb1.

10



Let 19 = >~ ey, tw- With the definition of the H action on S @y, S as in ([3.I5]), the sequence
of maps (see [GRl Theorem 2.12])

S®]LS — Hl() — H — Hbl g@wEWoS

(feg) — (f®g)l (3.16)
h —s  hb

is a homomorphism of H-modules (with kernel generated by {f@1—1®f | f € §"0}). The maps
in (BI6]) allow for the expansion of any element of S ®p, S in terms of the basis {b, | w € Wy}
of Hby, giving

(f®g)Llob1 = (f®g)( Z tw)b1 = Z tw(f @ (w™g))by

weWy weWy
= 3 tulf (b= > (F - (w'g)bu
weWy weWy

This formula illustrates that computing ®(f ® ¢) in (B8] is equivalent to expanding (f ® g)b
in terms of the b,,. Because of this we use (B.6]) and ([B.10) to

identify Qp(G/B) = Hby = S-span{b,, | w € Wo} = @,cpy, S

and write elements

feQ(G/B)  as  f= > fubu (3.17)

weWy

The product in Q7 (G/B) is then given by ([3.3]). To more easily keep track of the left and right
factors in S ®, S use the notation

=1y, and Yu = Yu @ L. (3.18)

Then the formulas

Ty 1=z Z twbl = Z twTy—12b1 = Z Yw-120w, and (3.19)
weWy weWy weWy

ty Z fwbw = Z fwtvbw = Z fwbvw = Z fv*lzbzw (320)

weWy weWy weWy zeWp
provide the formulas for action of the nil affine Hecke algebra in terms of moment graph sections

(see ([B.I3])). We often view the values f,, as labels on the vertices of the moment graph so that,
for exmaple, in type G L3 where the moment graph is as in (3.:2)), (319) can be written

Y
ysl A ySQ)\
Ysasi A Ysisa

Ysisosi A

4 Partial flag varieties and Bott-Samelson classes [Z]

In this section we review the formulas for the Bott-Samelson classes as established in, for exam-
ple, BE2]. Though some of these references are not considering the equivariant
case, the same machinery applies to define these classes in Qp(G/B). In particular, this is the
place in the theory where the BGG/Demazure operators are derived from the geometry. These
operators play a fundamental role in the combinatorial study of Q7 (G/B).

11



4.1 Pushforwards to partial flag varieties: BGG/Demazure operators

Using the notation for parabolic subgroups and partial flag varieties as in (2.3]), if J C {1,2,...,n}

and
Ty G/B — G/PJ
gB = gP;

Then, in the setting of Theorem B1]

then mj(wB) =uPy, where wW; = uPj.

S @y S" = Qr(G/Py),
and 7%: Qp(G/Py) — Qp(G/B) and (m): Qp(G/B) — Q7 (G/Py) correspond to
e S @gwy SV s S@ewy S and  (mg): S @gw, S — S @gw, SV (4.1)

where (7)) is given by the operator in the nil affine Hecke algebra given by

(g = Z to i, where z; = H T_g.

zj
veWy aeR}r

with R} the set of positive roots for P; O B D T. A special case is when J = {i}, for which

Wr={l,s;} and = (m)=A4;,= 1+ tsi)i, (4.2)

—a;

is the BGG-Demazure operator (see [BEILL Cor.-Def. 1.9]). The calculus of the operators A; is
controlled via the identities in Section B

4.2 Bott-Samelson classes

For a sequence W = (i1, ...,i7) with 1 <'iq,...,i; < n define the Bott-Samelson class
(Z5] = [Ziyig-i,] = Aiy Ay -+ Aiy [ Zt], (4.3)

where, in the notation of (B.1I7),

[Zptlo = Hocnr y-a. Hv=1, (4.4)
P 0, if v 1.

Theorem 4.1. ([BE2l Prop. 1], Prop. 3.1], Lemma 3.15], see also Proposi-
tion 4.1]) The generalized cohomology

hr(G/B) has hp(pt)-basis {[Zz) = [va: Tg — G/B] | we Wy},
where, for each w € Wy, W = s;, -+ s;, 15 a fived reduced word for w.

Let us explain where this comes from. Let X be a T-variety. Following Example 1.9.1], or
[CGL §5.5], a cellular decomposition of X is a filtration

=X 1CXoCX1C---CXg=X

by closed subvarieties such that X; = X; 1 are isomorphic to a disjoint union of affine spaces
A% for i =1,2,...,d. The “cells” of X are the X; — X;_1.

12



Theorem 4.2. (see [Gl Prop. 7]; [Fu, Example 1.9.1] who refers to [ChL]; [CG, Lemma 5.5.1];
[BE2l, Proposition 1]; [HKl Theorem 2.5]) Let X be a T-variety with a cellular decomposition.
Then hp(X) has an hp(pt)-basis given by resolutions of cell closures (choose one resolution for
each cell).

For X = G/B, the Bruhat decomposition

G = |_| BwB provides the desired cell decomposition
weWy

and the Schubert varieties X,, = BwB are the closures of the Schubert cells. Let Py,..., P, be
the minimal parabolics of G (with P; 2 B and P; # B) and let s1,...,s, be the corresponding
simple reflections in Wy. The group Wy is generated by si,...,s,. Let W = s;,---s;, be a
reduced word for w. Then the Bott-Samelson variety I';, ;, = P;, xp P, xp--- xg P;,/B
provides a resolution of X,

Yit,osip - Pi1 XBPiz XB"'XBPiZ Xppt — Xu <—>G/B (45)
[917"'795] — glng
Then following, for example, the proof of Prop. 2], since the diagram
Yiy..d
Py, xp---xp Py, xg P, | Xppt R G/B (4.6)

Tl lﬂ—ie+1

P, XB“‘XBPigXBpt G/B G/PZ

Viq..ig Tigyy £+1

(a) commutes, and
(b) has both vertical maps fibrations with fibre P;, /B,
it is a pullback square. Thus

Vit wigp V(1) = 7, (Tigyy © Vigoip (1)
= 7Tz>'kg+1(7Ti£+1)!(7i1mie)!(1) = Aie+1 (72'1...1'@)!(1)' (47)

The following result then follows by induction.

Theorem 4.3. ([HK, Theorem 3.2], Proposition 2]) If I = (i1,...,ip) is a sequence in
{1,...,n} and i, 4, is as in (LD) then

Ziyiy) = [(Viy i (V)] = Ay -+ Ay, [Zpn], where [Zy] is the class of a point.

Theorem says that the values on the vertices of the element [Z;,..;,] on the moment graph
of I';, i, are exactly the coefficients of the 2¢ terms in the expansion of

1
Ail AZZ = (1+t521)—(1+t51e)—

Qi iy
For example, in type G L3,

Y—(aj+ag) 1-1-1
y I Y—(aq+ag)
2 N . . G -1 -
Zim) = | Tt b +y1,a e 1H T ey
Ftsy tsy -1+ yoqztsl Lty F 1ty -t

+t81 : t32 : tsl

13



provides the expansion of [Z191] = (1 + tg,)—1—(1 + t5,)——(1 + t5,)——yp-by in the basis

T_aq T—ay T—ay

{by | w € Wy}. An example of the pushpull in (€G] in the case of type GLs

P xp Py xp P, Xxgpt e GLg/B (48)

Py xpg P, xppt GLg/BTl)GLg/Pl

Y12

has moment graphs as in Figure [l and the computation in (A7) for this example is

1 ANDS!
1 1 1 (v121)1 Aq21 1
111 — 1 1
1 1
[~ [
1 Y—(a1+a2) ANDS!
11 (E;! Y—as Y—(a1+az2) (”_1))' 1
1 0 Y—ay 1
0
where Ay = yi;(?:la” y@;&?.

4.3 Change of groups morphisms across t: B — P;
In the same way that Theorem Bl provides S ®ng S = Qr(G/B) one can obtain
S @qy S = Qp, (G/B),
and, if ©: B < Pj is the inclusion then the change of group homomorphisms
v/ Qp,(G/B) = Qr(G/B)  and  15: Qp(G/B) — Qp,(G/B)
are given, combinatorially, by
oSV @gw S S@gw S and o Sogw S — S @gw S,

with

J(feg = w <y%f> ©g,  where y;= [] v

weWy ozeR}L

with Rj the set of positive roots for P; O B DO T. The pushforward 7 is similar to the
pushforward operator (7 ;) appearing in ([4.1]) except acting on the left factor of S ®@qw, S (see,
for example, the definition of ¢; in [Kal §7]).
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q1I

1-1-1

Y—aq l Y—aq
Y—ay
1- S9 1 1-1- S1
l ><S2“1 >< y span
S1-89 - 1 T 1- S92+ 81
Yy—
qu /@1
818981
I
1-1
Y—oaq l
Y—ag
S1 - 1 1- S92
yan /520‘1
S1 89

Figure 1:

1
Y—aq Y—ag
Y—(a1+az)
S1 52
(’ﬂi})! yazl Y—(ay+ag) —(a1+ag) lyal
S$189 5251
Y—aq Y—ag
515251 = S25152
]
1
Y—aq Y—ag
y*(a1+a2)
81 52 Y—(ag-+ag)
ajtag
(n12) yazl Y—(a1+ag) —(agtaz) J{yal (m1)1 lyal
5152 5251 §251
Y—aq Y—ag

518281 = 525182

An example of the moment graphs for the diagram (Z.g])



5 Schubert classes [X,,]

Now we consider the inclusions oy,: X,, — G/B of the Schubert varieties into the flag variety.
For w € Wy, define the Schubert classes

[Xo] = (0u)(1),  where (o) Qr(Xw) = Qp(G/B). (5.1)

If X, is not smooth then, as discussed further below, it is not clear that (o) is well defined.
Though we consider various approaches to the analysis of [X,)] = (0y,)1(1) below, we have not
yet found a definition of (o) which is fully satisfying (at least to us) in the singular case.

In generalized cohomology

the Schubert class [X,,] is not always equal to [Zz]

for a reduced word @ of w, although, in equivariant cohomology and equivariant K-theory,
[Xw] = [Zg] if @ is a reduced word for w. We consider various approaches to the analysis of

[Xow] = (ow)i(1):
(a) Defining (0,)1(1) by B.3);
)

(b) Comparing [X,] = (04)1(1) and the Bott-Samelson class [Z;3] via the diagram
Qp (L) (5.2)

(iwﬁl Q)
(ow):
Qp(Xy) — Qr(G/B)
(¢) Combinatorial forcing by support conditions, normalization and/or (.S, .S)-bimodule struc-
ture of the cohomology.

(a) Is (ow)i(1) given by [B3)? As pointed out in Proposition 2.7], since X, is filtered by
Schubert cells BuB with v < w and BvB = C/") has even real dimension, the Schubert variety
X has no odd-dimensional cohomology, and thus, by [GKM, Theorem 14], the Schubert variety
Xy is ‘equivariantly formal’ (i.e., is a GKM-space) and the moment graph theory applies. The
moment graph of X,, is the subgraph of the moment graph of G/B with vertices {v € W | v <
w}. If X, is smooth then there are no challenges in defining the pushforward (o, ); and the
pushforward formula in ([B.3]) gives that

if X, is smooth, then [Xy), = IR forwe Wy such that v < w, (5.3)

I vs

BERT

ungw

as found, for example, in Theorem 7.2.1] (the notation f =3y, fuwby for elements of
Qr(G/B)is as (BI7)). For example, the inclusion 0,5, : Xs,5, = G/B for G = G L3 corresponds
to the inclusion of moment graphs

1 1
y Xai Y—ay Y—ag
Y—(a1+az)

S1 S92 S1 S9
5251 S182 5281

Y—oy Y—ao
515251 = 525152

16



so that

Yp—
Y—a1Y—ag
Yr— ! Yr—
Y—a1Y—sjag Y-ayY—ag
[X8281] =
Yp—
0 R
Y—a1Y-—siag
0

The following example illustrates that this procedure does not work well when X, is not
smooth. From [Kul Prop. 6.1], the singular Schubert varieties for G of rank 2 are

Type Singular Locus
BQ X318281 Xsl
G2 X513231 Xsl
G2 X81828182 X8182
G2 X82818281 X8281
G2 Xslsgslszsl Xslsgsl
G2 X8281828182 X82

The inclusion oy, 5,5, 0 Xsys0s; — G/B for G = Spy (Type Bs) corresponds to the inclusion of
moment graphs

Y—aq Y—ao
731(1 y752a1
52

—sja9 yfsga

51

51525182

but the direct “naive” application of the pushforward formula in (B3] produces

Y—soay Y—(a1+a2)
Y—ssa1 Y—s100 y—(a1+a2) y—(2a1+a2)
[Xs1s081]7 =7 Y—s1a2 Y=oz = Y—(2a1+a2) Y—an (5.4)
Y—ao 0 Y—as 0
0 0

which cannot be correct for [Xj,s,s,] since the right hand side does not satisfy the condition to
be in im ® (the difference across the edge 1 — s is not divisible by y_,,). This answer needs
to be corrected by finding N so that

Ny—(al—}—ag)
NY_(a1+as) Y- (201 +as)
[X818281] = Y—(201+a2) Y—ay
Y—as 0
0
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where the correction factor N appears on vertices corresponding to the singular locus.

In the example in (4] we see that the moment graph knows that X, s,s, is not smooth!
It is interesting to contrast (5.4]) with the same analysis for 04,55, 1 Xsy5,5, — G/B, where the
pushforward formula gives

Y—siao Y—(2a1+az2)
Y—ssa1 Y—s1ao y—(al—l—az) y—(2a1 +az)
[X828182] = Y—ay Y—soon = Y—ay Y—(a14ao)
0 Y-y 0 Y—ay
0 0

which is in im @ (this case works out well since Xj,,s, 18 smooth).

(b) Using (5.2) to compare [X,] and [Z;]. Working in rank 2, use notations y5, Aj2; and
Agqo as in (2), so that (see (48] and Figure [)

A212
Yr— A
Y-y Y—asY—sjag 212
Zons) e
212 Y—aglY—sgay Y—sgsyag Y—a1Y—agY—siag
Yr—
y*&gy*82a1 y75251a2
0

Since X, 5,5, 18 smooth it is reasonable to apply the pushforward formula in ([B.3]) which gives

Yr—
Y—ai1Y—ag¥Y—soa

Yp— ! Y-
Y—a1Y—agY—sjag Y—a1Y—agY—soaq
Xosos R
525152 Y—ag¥Y—sgayY—sgsiag Y—a1Y—ag¥Y—sjag

0 L

Y—agY—sga;Y—sgsiag
0

Using these and computing with the formulas (B10)-(BI2]) gives the formula

ny y—az
Zo12| = [ X + <A212 - > X
[ ] [ 828132] Y—ar1Y—az¥Y—s20a1 Yr- [ 82]
Yr- Y—ssor =~ Y-y Y—ao
=X + ( + P(Yar Y—as) Y- —1> X
[ 323152] y—aly—a2y—32a1 y—a2 ( Q2 a2) a1 ny [ 52]
YR- Y-
= [X323152] + ((1 - p(y—amy—az)y—al +p(ya27y—a2)y—a1 - 1) = [X82]
y—aly—azy—SQ(le Yr-
1 Y_
- [ngslsz] + (p(yazay—ocz) - p(y—alyy—az))y—oq & [ng]
—s2011 Yr-

which is reflected in 17.3, first equation] and §5.2]. Similarly, with our conjectured
correction factor N as in ([3]), we get a formula which would provide [Z121] — [Xs,s,5,] = 0 in
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cohomology and K-theory but have [Z121] — [Xs,s,s,] # 0 in complex or algebraic cobordism:

NyR* Y—a
Z121] — [ X = <A121 - ) L[X
[ ] [ 818281] Y—ar1Y—az¥Y—s1a2 Yr- [ 81]
Yr- Yy— — Y- Y-
= < - - + p(ya1 ) y—al)y—az - N> - [XS1]
Y—ar1Y—ax¥Y—s10a2 Y-y Yr-
j—1
_ YR~ < (1 = p(Y—a9: Y—jar )Y—as) (1 + 201 (1 = P(Y—ars Y—kar )Y—kay ) ) Yooy |
Y—a1Y—a2lY—si1az +P(Yars Y=o )Y—as — NV YR~ '

Yr- Y—ay
= PWarsY=ar) = P(Y-az> Y—jar) ) Y—az—— | X
y_aly_azy_smz( (Yar s Y—an) (Y—a ]Oll)) 2Ty [Xs,]
1
= (p(y(Xl?y—Oél) - p(y—azvy—jm)) [Xs,]-
y—sloéz

(c) Combinatorial forcing: The Schubert classes satisfy
(a) (normalization) [Xu]w = [[,er@) Y—a: where R(w) = {a € RT | wa ¢ R}
(b) If Wyu= Wz then [Xy,ulo = [Xw,ulz
(¢) (support) [Xy], = 0 unless v < w.

These properties do not characterize the Schubert classes; the Bott-Samelson classes also satisfy
these properties. As observed, for example, in Proposition 4.3], in equivariant cohomology
a degree condition can be imposed to get uniqueness. It is not clear to us how to generalize the
degree condition to equivariant K-theory and/or equivariant cobordism. It seems plausible that
in generalized equivariant cohomology the Schubert classes might be characterized by positivity
properties, or by using the (.5, .5)-bimodule structure of Q7 (X,,) and Qp(Zgz) as in the theory
of Soergel bimodules (see [Soe] and [EW]).

6 Products with Schubert classes

For w € Wy define Schubert classes [X,]| by [Xu] = (0w)i(1) as in (B). Continue to use
notations f =3y, fwbw for elements of Qr(G/B), as in (B.17).

The Schubert product problem: Find a combinatorial description of the ci,, € R given by

[XuXo) = Y cXul- (6.1)
weWy

As is visible from the formula ([6.3]) below and the formulas at the end of this section, if v < u
in Bruhat order then

XX = XX + 3 e [X,), (6.2)

w<v

and so the determination of the moment graph values [X,], is a subproblem of the Schubert
product problem. The other coefficients ¢, are determined by the [X,], in an intricate but,
perhaps, controllable fashion. Furthermore, our computations of products in the rank two cases
display a certain amount of positivity, indicating that there may be a positivity statement for
equivariant cobordism analogous to that which holds for equivariant cohomology and equivariant

K-theory (see [Gra] and [AGM]).
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Properties (a) and (c) are already enough to provide an algorithm for expanding an element
=2 wew, fwbw in terms of Schubert classes. If f has support on w with ¢(w) < k then

by

f_wa

L(w)=

Xol= ) —wa

]“’ 0(v)<k—1 o(w)=

w

has support on v with ¢(v) < k — 1. Then

1 1
f_é(wz):zkfwm[XW]_ 2 -2 fw [Xv]v[Xv]

wlw Z(v):k—l L(v)=k—1
L(w)=k

_ Z fv[§”]2+ Z fw[Xw]v [(Xo]2 b
L(v)=k—1

= Z Z fw
L(z)<k—2

L(w)= ]w

and induction gives that

£(wo)

f= Z Z Z (_1)k—1fw1 [Xw1]w2 [sz]wg [kaﬂ]wk 1 [Xz] (6.3)

ZGWO k=1 wi>>wp=z2 [le]wl I:X'LUQ]HQ [kafl]wkfl [ka]wk

with the terms in the sum naturally indexed by chains in the Bruhat order (compare to, for

example, [BY]).

For example, in rank 2 using notations as in Section [T if f =3 . . . ., fwbw then
f=1 ! (X ]
sroesie [X81828182]81828182 s
1 1
+ (fslszsl - fslszslsz) [X818281] + (f828182 - f51325132) [X323152]
[X515231]313251 [XS23132]323152
[X515281]8182 1
+ (f8182 - f828182) + (f31325132 - f513251) [X5132]
[X515281]518251 [X5182]5182
(s = Frean) + Urnesnres = P} oz ) oL,
S182S8 5182818 S§281S8 S928
. R e i [XS23152]325132 [X3231]3231 2
XS S S
(f81 - fszsl) + (f323132 - fslsg)ﬁ 1
+ Kopogorley  (Xoyogsloysy [Xoyss) 7 Xl
_ s1sgsilsy 51525115152 s1s2ls1
+(f81828182 fslsZsl)([X3152511815231 [X515281}S18251 [Xs182}8182 1) [ 81]81
_ _ [Xsgsq]so
(fsy = fsis2) + (fsisas1 f8281)[xs231]s231 1 [ |
T [Xsos150]s0 [Xsosysolsosy  [Xsosilsy sy
_ s$9s189]s _ $98189/s9s s9s1ls _ X
+(f82818281 fSQSlSQ) [X523152]525132 [X525132}525152 [X5281}3231 1 [ 82]82
1
+ (fl - fsl - fsz + fslsg + f8281 - fslsgsl - fsgslsg + fslszslsz)m[Xl]
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and we may use the explicit values of [X,], given in Figure 2l to derive

y aly Slazy 8152a1y 51818102 X
f f81828152 [

YR~
) y (o5} y—slagy—slszal [X

51523132]

) y—agy—SQCH y—szslaz [X

515251] + (f525152 - f51525152 525152]

Yr- Yr-

Y—a1 Y- Y- Y—an Y-
+ ((f8182 - f828182) + (fslszslsz - f313231) - wes 8132a1> e 2l [X8182]
y—al y—agy—32a1 Yr-

Y—asY— Y— Y—a1 Y-
+ <(f8281 - f818281) + (f81828182 - f828182) cac_2anl 8231a2> O [X8281]
Y—ar1Y—aY—sian Yr-

(fs1 - fszs1) + (f828182 - fSl@)W%

+ (fs15251 - f81828182

n Y-a1Y—ag Y—ay [X ]
+(f5 _ f )(Nyalysla2y3152a1 Y- Y-sjag¥Y—sysgay Y—agY—sgay 1> yR* S1
1525152 515281 Y—a1Y—agY—sqag Y—a1Y—agY—sqay  Y—aqY—ag
(f82 - f8182) + (f818281 - fw&)%
+ b Lo y,]
+(fs o f )<ya2y52a1y5231a2 _ Y—ag¥Y-—sga1Y—sgsjag Y—a1Y-sjay 1> Yp- 52
2515251 525152 Yoy Y—agY—sgay Y—oY—anY—sjag  Y—aiY—as

1
+ (fl - fsl - fsz + fslsg + fSQSl - f818281 - f328132 + fslsgslsg)g[Xl]

which simplifies to

Yr-f = Forsasis0¥—a1 YU—sian¥—s1sa01 Y—si 15100 [ X 515051 52)
+ (fs1s0s1 = Fsisos150)Y—onY—s102Y—s15001 [ X 515051 ]
+ (fsas1s2 = Fsisas150)Y—anY—s201 Y—s5102 [ X251 50]
+ (forso = fssr82)Y—anl—ssar T (fsisosiso — Forsasi)Y—sian¥sisaar ) [Xsso]
+ (fonss = fsrsos1)Y—arU—sian T (fsisosiso — Foosisn)Yesoar Y—sosian) [Xsns]
fsl fszsl Y-y (fszslsg - fslsz)y—sgal

f f ) Ny75132a1y*011 _ yfslagyfslsgal _
51525182 518251 Yoy Y—an Y—ay

[Xi]

fsz fslsg y a9 (f815281 - fszsl)y—slaz

f ) Y—sgsjaglY—ag  Y—soaY—sgsjap [X52]
528182 Yooy Yooy Y—as

f82818281
fsl fsz + fslsg + fSQSl f818281 - fSQSlsQ + fslsgslsg)[Xl]

This last formula allows for quick computation of products with Schubert classes in rank 2
for low dimensional Schubert varieties. In particular, for g = szWO Juwby in Qp(G/B),

glXa] = g1[Xa],

g1 —4g
9[Xs,] = 95, [ Xs, ] + 91,5, [ X1]s where g1, = Tsl,
—a1
= . gl - 952
g[st] = s [st] + 91,5 [Xl], where 1,50 = T’
—as
91,51 — s,
g[XslsQ] = YGs1s2 [X8182] + Gs1,s182 [X31] + Gsa,s152 [X82] + %[Xl]v
—as
91,55 — sy,
g[XSQSl] - gs?sl[Xs?sl] + 93175231[X81] + 952,8281[X82] + %[Xl]v
—a1
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where

_ 9s1 — YJsiso sy — Jsis2 o 9s1 — YUsasy o s — Jsas1
Js1,5180 — ; Jso,5150 — ) Js1,5981 — ) Jso,5081 — .
y_az y_SQQl y_SlOCQ y_Oél

Using (3.19]), Pieri-Chevalley rules giving the expansions of products z)[X,,] in terms of Schubert
classes are directly determined from these formulas.

7 Schubert classes and products in rank 2

In rank 2, Wy is a dihedral group generated by s; and sg with 322 =1, s1a1 = —aq, Saig = —Qa,
_ _ by
s101p = —ay, S10p = Jop + Qa,
_ _ bs by
Sorp = a1 + (g, Sotvg = —Qg, ! 2
b8182 b8251
Wlth b515251 b828182
and bsy 595152 bsys15981
1.in Type A2 b8182818281 b8281828182
J =1 2,in Type Bs,
3,in Type G, by basis
y—Oél y_OCQ
yal y—szal y—81a2 yag
ySQOC] y—5182al y—8251062 yslaz
ySlSQO{l y—828182011 y—818281a2 ySQSlaQ
y82518201 y—815281520¢1 y—52815281062 y51825102
yS]SQS]SQO{l y—5231523132a1 y—81$28182810£2 y8281$281a2
T_qy Ty
Let
vr- = ] v-o (7.1)
acRt
1 1
A191 = Yp- ( + )
y—azy—aly—ag y—szagy—SQOzly—aQ
YR~ Y- — Y-
= ( el = +p(ya17y—a1)y—a2>
y—aly—azy—slaz y—ocl
Yr- Y- — Y-
Agig = L ( = - +p(ya2’y—a2)y—a1> , and (7.2)
y—azy—aly—SQ(J{l y—ag
j—1
N =1+ (1= p(y-az Y—ja)¥-a) (D (1 = Py Y—kar )Y—kan) - (7.3)
k=1

We note that, for ordinary cohomology Hp and K-theory K,

{1+ G—1), in Hr, Apyr — Nyp-

) and .
14+e (e ... pe Do) in K, Yo Y—azY—sian
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The Schubert and Bott-Samelson cycles for rank 2 and length < 1 are given

Y- Yr—
Yr- Y=g Y—ag
0 0 Y- 0 0 Yr-
Y—aq Y—ag
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
[(X1] = [Zpt] X, ] = [Z1] [Xs,] = [Z2]

The remaining Schubert and Bott-Samelson cycles for rank 2 and length < 3 are given in Figure

2l

7.1 Schubert products in rank 2

Using the explicit moment graph representations of the Schubert classes, the formulas for prod-
ucts g[ X, ] given at the end of Section [6allow for quick computations of the products of Schubert
classes in rank 2 for Weyl group elements up to length 3. It is straightforward to check that these
generalise the corresponding computations for equivariant cohomology and equivariant K-theory
which were given in [GR] §5]. Since [Xs, 505,50 = [Xsosises:] = 1 in Type Ba, these calculations
completely determine all Schubert products generalized equivariant Schubert products for Types
A2 and BQ.
The Schubert products for low dimensional Schubert varieties are as follows.

Yr- Yr-
(X417 = yr-[X4], [X1][Xs,] = =2 [X1], [X1][Xs,] = =2 [X1],
—a —ao
X)X = —2—[X1], (X[ Xepsr] = —2—[X3],
Yoo Y—as YasY—ar
Nygr- YR
XX — X1, X,|[X — X1,
X1 Xorsom] y—a1y—a2y—81a2[ 1 1] Xsziso y-azy-my—sm[ 1
YR~ YR~ Nypr-
X, ? = X1, X [ Xss,] = ——[ X, ], X, X = X1,
[Xs,] y_al[ s1] [ Xy [ X80 y_aly_aQ[ s1) [Xsy [ X505 ] y_aly_a2y_sm[ s1)
X ][Xe] = —2F—[X)),
y—aly—az
Yr—- Yr- Y—siaa = Y—as
X 1[X = —I0 IX. ]+ < >X1,
[ 81][ 8281] y—aly—slag[ 81] y—agy—aly—slag y—al [ ]
Yr- Yr- Y—sias — Y—ssaq
X X — X + < > Xl 9
o]l Xsgorsa] y—azy—oqy—slag[ o Y1 Yo Yes1 0o Y—spas Yo =
Yr- Yr- Yr-
X. 12 = X, X || X = X, |, [X]IX — X, ],
[Xs,] y_%[ sy [Xsal[Xsasi] y_a2y_a1[ sals [ Xso)[Xsosss) y_a2y_a1y_32a1[ s2)
Yr— Yr- Y—soa1 = Y—aq
Koo [Korea] = — Y2 [X,] + ( >[X1],
R T o Yessan T YeanY—anY—saon Yo
Yr- Yr- Ny—SQOfl —Y-si09
XX — X, + ( > Xql,
ool X101 y—aly—a2y—32a1[ o2 Y1 YanY—s100Y—spar Yo ]
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jit4

Yp— Yp—

Y—a1Y—a Y-a1Y—a
ny 1 2 yR* ny 1 2 ny
Y—a1Y—ag Y—aglY—sgaq Y-a1Y—sjag Y—ayY—ag
Yp— Yp—
Y—aglY—sgay Y-a1Y—sjag
0 0 0
0 0 0 0
[XS1S2] = [212] [XSZSl] = [Z21]
Nyp— Yp—
Y—a1Y—agY—siag Y—a1Y—ag¥Y—sgaq
Nyp— Yp— _ Y%= Yr—
y—alyigay—slaz y—alyg/;%y—szal y*a1y§gz~7y*31a2 y*alygg%y*‘ﬁal

Y—a1Y—agY—sgaq
Yr—

yfal yfslanyslsQOzl

Y—a1Y—sjag¥Y—sysqaq Y—aglY—sga1Y—sgsiag

0 0
[X818251]
AN
A —tn- —dn__
Y—a1Y—agY—sga Y—a1Y—ag¥Y—sia
ny 1 yRZ* s2Q1 1 yRZ* S14a2

Y-y Y—agY—soag
Yp—

Y—a1Y—sjag¥Y—sysgaq

Y—a1Y—sjagl¥—sysgaq Y—aglY—sga1Y—sgsiag

0 0

[Z121]

Y—a1Y—agY—siag
Yp—

Y—ag¥Y—sga;Y—sgsiag

[X323132]

A212
A212
Yp—
Y—a1Y—agY—sjag
Yp—

Y—agY—sgay Y—sgsiag

[Z212]

Figure 2: Schubert and Bott-Samelson cycles for rank 2 and length < 3.



y - y - y—s a _y—a
Koww? = — YA [x, ]+ — U ( 01 ) X.,),

y—azy—szal y_azy_aly_82a1 y_OCQ
Yr- Yr-
X X = X, |+ X
Kool oz y—oqy—azy—slaz[ o y—aly—azy—sm[ o
ny <<y—82a1 - y—al) (y—slag - y—az) - 1> [Xl],
y—a1y—a2y—81a2y—sza1 y—az y—al
Yr- Yr- NY_sy01 — Y=s105
X, 01X - Xy5,] + ( >X :
KarsallXorszn y—aly—azy—82a1[ s120] YearYman¥—s1aa¥—szan Yas X
Yr-
X X = X
[ 8182][ 828152] y—azy—szaly—5281a2[ 8182]
ny <y—82a1y—8281a2 _y—a1y—81a2> [X ]
s1
y—a1y—a2y—82a1y—slazy—szslaz y—az
Yr- <y—8281012 — Y- > [XSZ]
y_aly_(XQy_82a1y_8281az y_SQOél
Yn- 1 1 1 1
+ =3 (2 T2 2 T2 X,
y—a2 y—aly—SQCYl y—32a1y—a1 y—aly—slaz y—32a1y—8281a2
Yr- Yr- Y—sias — Y-«
X 2: X + < 102 2) X
[ 8281] y—oqy—slaz[ 8281] y—aly—OQy—Slaz y—al [ 82],
YR- YR- N 1
X X = X + < — ) X
Koz [Friszn] y—a1y—81azy—8182a1[ 2] y—quzslaz Y-as  Y—sisom X
YRr- 1 1
+ 3 - ) i
y—al y—82051y—052 y—slsgaly—slag
YR—- N N 1 1
+ 5 (2 — 5 -3 + 3 [Xl]v
y—a1 y—agy—slaz y—a2y—sla2 y—azy—szal y—slazy—slsgal
Yr- Yr- 1 1
X X = X + < — > X
[ 3251][ 828182] y_azy_aly_81a2[ 8281] y_a2y%a1 Yo soor Uesias [ 32],
YR- Yr- 1 1
X 2 = X + < — ) X
Karszn] y—oqy—slazy—slsgal[ 2051 Yoz \Y—asl-sza1  Y—siazY—sisacn o]
2
Yp— N N 1 1
+ =& < — — — —~ + [X1],
Y—arY—az \Y—a2¥Y= s 05 Y- s1asY—s18201 Y-—a1Y—asl¥Y—soan Y—a1Y—s100Y—s1s201
Yr- Yr-
X X = X + X
[ 818281][ 828182] y—aly—azy—32a19—3231a2[ 8182] y—a1y—a2y—81a2y—8182a1[ 8281]
, N 1 1
YR ( 2 - ) > [XS1]
Y—arY—a2 \Y-2¥YZs10y  Y—2l¥-—s201Y=s2s102  YZs aY—s15001
Yp- 1 1 1
+ ( 2 - ] [XS2],
Y—arY—az \Y-a1YZs501  Y-arl¥—s1a2¥—s1s000  YZsy0,Y—s2s102
YR- YR- 1 1
X 2 = X + < — ) X
Koz y—azy—smly—mm[ samsa Yoz \Y-ar¥-siaz  Y—srnY-szs1a2 o]
Yn- 1 1 1 1
Y—arY—az \Y-a1Y~s504 Y a1 Y—sas1an Y-a1Y—aslY—siaz Y—arY—soa1 Y—sasian
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8 The calculus of BGG operators

The nil affine Hecke algebra is the algebra over IL with generators xy, ¥, ty, with A, u € b7 and
w € Wy, with relations

Tatp =T\ + Ty — (T, l’u)l’,\xw Yntp = Yx +Yp — P(Yr, yu)y,\yu, TAYp = YuTx,

and
totw = tow, Lwyx = Yrtw, twTx = Tyrlw, for v,w € Wy, A € h%

Recall from ([£2) that the pushpull operators, or BGG-Demazure operators are given by

1
AZ:(1+t52) ) fori:1,2,...7n, (81)
—a
In general,
1 1 1 1 1— Vo
A; = (1 + tsi)— = + —ts, = . p(l'al,l' al)x a; t,
—ai T Loy L—a; T—ay
1
= x (1 - (1 - p(l‘amx_ai)x_ai)tsi) — (1 - tsl) +p(l‘ai,l‘_ai)t5i, (82)
—ay o

so that A; is a divided difference operator plus an extra term. As in Prop. 3.1],

1 1 1 1 1
A7,2 = (1+tsi)x (1+t5i) = < +_t5i> (1+tsi)—

—a T, T_q;, Ta, T_q,
1 1 1 1 1
O
Too; Loy T_q Too; Loy
so that ) . . .
T_q;, Lo, Toq;, Ta
Note also that
ts; Ai = ts; (1 +ts,) =A; and (8.4)
T_q,
1 T o
Aits, = (1 +tg,) ts, = (1+ts,)— = A; (8.5)
—oy o Loy

If feL[[xx | A€ b3]] then

fAiZf(l‘i‘tsi)L:f —l—ftsiL and
L—a; T—a; T—q
Asif) = (0 1) 2L = (sif 4 i)
so that
A= Aisif) + <f — > | (8.6)

The relation (8.6) is the analogue, for this setting, of a key relation in the definition of the
classical nil-affine Hecke algebra (see [CGl Lemma 7.1.10] or [GRI (1.3)]).
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Next are useful, expansions of products of ¢, in terms of products of A; with zs on the left,

Loy
tsl - ‘ToclAl - x ’
—aq
Ly Tsgay Tsra; Tag
tsztsl = ':L'SQOQ $a2A2A1 - ':L'SQOQ Al - xa2A2 +
T —az L—sz0n L—syon L—ap

Loy Tsisoon
tsltsgtsl - xslszalxslazxa1A1A2Al — Tsys001Lsian A2Al - xslagxa1A1A2
—ay T —s1s901

Lsasian Lay Ls1sa0n Loy Lsisaon  Tsioap Loy
+ xszal Al + S102 A2 -

L —sps1002 L —az L —s1s200 L —ay L—sisp01 L—s1op L—ay
Lsiog  Tsispon Lsiom Lsas1an Taz 1\ 4
+ $a1 - xslsgal - Sa20¢1 1
L—siop L—s1s201 L —s1002 L —szs100 —a

tsltsgtsl tsz = Tgo9s18001LsasiaaLsaar Lasg A2A1A2Al

T x
2 582818201
- ':USQSlsQal xszsla2$32a1 A1A2A1 - $5251a2x32a1$a2A2A1A2
T_qy T —s9818201
T T
28182001 a2
+ Lsys1azLssan A1A2
T —s95182001 —a
Tsgsisoar Lsasiaz Lsosian Lsoa A A
+ 82041'17042 - 33325132041 ':UOQ - 33325132(11 xszslag 2411
L—sas15001 L—s981000 L—sas1002 L—sa0n
Tsosisoar  Lsasiaz Lsosian Loy A
- Lsoar — Lsgs1s201 1
T —s9515000 L—sa51009 —sos1a2 ) LT—an
Tsgs1s901 Tsoo Tsosysaar  Lsgsian  Lssag A
+ 898102 - xaz 2
x—8251820l1 —S8201 x—828182051 x—szslag x—szal
+ xsgslsgal szSlO&z szOél xaz
)

T —s9s15001 L—s9s1a2 L—sq0a17 L—ag
and expansions of products of ¢, in terms of products of A; with xs on the right,
t81 - Alx—al - 17

tsltsz = A1A2x—a2x—82a1 - Alx—sgal - A2x—o¢2 + 17

t31t32t31 = A1A2A1$—a1$—sla2$—slsza1 - A1A2$—81a2$—8152a1 - A2A1$—a1x—sla2
+ Alx—sgal + A2x—81052 -1 + Al T—oy — L—so0; — T —sy1s0a1 | s

to tsyts tsy = A1A2A1A2x—a2$—sza1 T —s9s1a0L —s95152001

- A1A2A1$_52a1 x—52810{2x—3281820{1 - A2A1A2x—a2$—sza1$—3251a2

L—ay L—so
+ A1A2 - T —s9s1a2L—s9s18001 — L—an T —s9818201 + T—qol—s90
Lo Tsoor

+ AZAlx—Szoclx—SleOlZ

T—so01 T—qy
- Al $—sza1 - 33—323132041 - A2 $—a2 - x—8281a2 + 1.
S2Qv1 xaz
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Finally, there are expansions of products of A; in terms of products of ¢;:

1
Al — (tsl + 1) )
T_qy
1 1
A1Ay = (tsl + 1) ts, + ,
—aal—span LT—a1L—ay
1
lsals + s,
L1 L—s100T—s18001 L1 T —aoT—s90q
A1AgAy = (ts, +1) )
1 1 1
+ +
Tea; \T—a;T—as T—s101T—s90q
1

tsols sy

L —qol —s901 L —s9s109 L —s951 52001

1

Fsytsy

T—agl—a1 T—s1apT—s18201

A1A2A1Ag = (ts, + 1)
1 1 1 1
+ts, + +
T—agl—sgon \T—azl—ar  T-sganT—szaz  T—ss1a0T—s2s1001

1 1 1 1
- -

LTearl—ag \T—azl—a1  L—sgarL—ssas  L—s1aal—s10n
These formulas arranged so that products beginning with ¢, and Ay are obtained from the above
formulas by switching 1s and 2s. In particular, the “braid relations” for the operators A; are the
equations given by, for example, in the case that s1s951 = s95159 S0 that sjas = soa = a1 + ao
then
0 = to,toyts, — tsyts,ts,

is equivalent to

1 1 1
AgA1 Ay — < - + ) Ao
T -l —a T—a1T—agz Lol —ag
1 1 1
= A1A2A; — ( - + > Ay,
T -1 L—ag T—apl—agz Lo T —ag

as indicated in [HLSZ, Proposition 5.7].
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