
Two boundary Hecke Algebras and

combinatorics of type C

Zajj Daugherty
Department of Mathematics
The City College of New York

NAC 8/133
New York, NY 10031

zdaugherty@ccny.cuny.edu

Arun Ram
Department of Mathematics and Statistics

University of Melbourne
Parkville VIC 3010 Australia

aram@unimelb.edu.au

Abstract

This paper gives a Schur-Weyl duality approach to the representation theory of the affine
Hecke algebras of type C with unequal parameters. The first step is to realize the affine braid
group of type Ck as the group of braids on k strands with two poles. Generalizing familiar
methods from the one pole (type A) case, this provides commuting actions of the quantum
group Uqg and the affine braid group of type Ck on a tensor space M ⊗N ⊗V ⊗k. Special cases
provide Schur-Weyl pairings between the affine Hecke algebra of type Ck and the quantum
group of type gln, resulting in natural labelings of many representations of the affine Hecke
algebras of type C by partitions. Following an analysis of the structure of weights of affine Hecke
algebra representations (extending the one parameter case to the three parameter case necessary
for affine Hecke algebras of type C), we provide an explicit identification of the affine Hecke
algebra representations that appear in tensor space (essentially by identifying their Langlands
parameters).
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1 Introduction

This paper explores a Schur-Weyl duality approach to the representations of the affine Hecke
algebras of type C with unequal parameters. Following Kazhdan-Lusztig [KL], the irreducible
representations of the affine Hecke algebra are usually constructed via the K-theory of generalized
Springer fibers. This method works well when an algebraic group is available, which is only for
special cases of the three parameters t, t0, tk of the affine Hecke algebras of type C.

G. Lusztig gave a general approach to the unequal parameter case using Kazhdan-Lusztig bases
and cells. In [Lu2], the challenges for pushing this method through in type C are outlined in a set
of conjectures, many of which have now been settled in work of Geck, Bonnafé, and others (see
[Ge, Bo, Gu] and references there). Another analytic approach, closer to the original classification
and construction of Kazhdan-Lusztig, is given by Opdam and Solleveld (see [OS] and [So] and the
references there). In the type C case, Kato [Kt] explained that the “exotic nilpotent cone” can be
used to replace the Kazhdan-Lusztig geometry and obtain a complete geometric classification of
the irreducible representations of affine Hecke algebras (with mild restrictions on parameters).

In the type A case, there is a powerful alternative to the geometric method via Schur-Weyl
duality (see for example [AS, OR, VV]). In this paper we provide an analogue of this Schur-Weyl
duality approach for the type C case, with unequal parameters. This is a generalization of the
degenerate case studied by Daugherty [Da].

The method is the following: Let Uqgln be the Drinfeld-Jimbo quantum group corresponding to
the general linear Lie algebra, and let V = Cn be the standard representation of Uqgln. Write L(λ)
for the irreducible polynomial representation of Uqgln indexed by the partition λ, let M = L((ac))
and N = L((bd)) be irreducible representations of Uqgln indexed by a×c and b×d rectangles. There
is an action of an extension of the affine Hecke algebra of type Ck, denoted Hext

k , with parameters

t
1
2 = q, t

1
2
0 = −iqb+d, and t

1
2
k = −iqa+c (where i =

√
−1),

such that
M ⊗N ⊗ V ⊗k is a (Uqgln, H

ext
k )-bimodule.

We show that the commuting actions of Uqgln and Hext
k provide a Schur-Weyl duality, which can

be used to derive the representation theory of Hext
k from the quantum group Uqgln. We work out

the combinatorics of this correspondence, relating the natural indexing of Hext
k -modules coming

from the Schur-Weyl duality to the other indexings, by describing the weights for the action of the
polynomial part (generated by Bernstein generators) on each irreducible module.

A significant portion of the work in identifying the centralizer of the Uqgln action onM⊗N⊗V ⊗k
as an extended affine Hecke algebra of type C is in relating Coxeter and Bernstein presentations,
and putting the parameter conversions into focus. The relationships between these presentations
are given in Theorem 2.1 for the affine braid group of type C, and in Theorem 2.2 for the affine
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Hecke algebra of type C. Sections 3, 4 and 5 could, perhaps have stood as papers on their own.
In Section 3, we give the combinatorics of local regions and standard tableaux for the case of
type C with unequal parameters (following the equal parameter case done in [Ra2]). The main
result of Section 3, Theorem 3.3, provides a classification and a construction of all irreducible
calibrated Hext

k -modules. As in [Ra2], this classification is via skew local regions, whose precise
definition of skew local regions depends on the careful analysis of the structure of the irreducible
representations of rank two affine Hecke algebras. This analysis was done in the single parameter
case in [Ra1]. Since the corresponding analysis for three distinct parameters in the type C2 case is,
to our knowledge, not available in the literature, we have provided it in Section 4. This will ensure
that our classification of calibrated irreducible representations for Hext

k with distinct parameters,
as given in Theorem 3.3, is on firm footing. The construction of the action of Hext

k on tensor
space is completed in Theorems 5.1 and 5.4. Finally, armed with these tools we prove the main
result, Theorem 5.5, which determines exactly which representations of Hext

k appear in tensor space,
comparing the natural indexing from the highest weight theory for gln to the combinatorics of the
weights of the action of the polynomial part of Hext

k .
Following the schematic from [OR], one would like to generalize the analysis in this paper by

replacing finite-dimensional M and N with, for example, other modules from category O. In the
finite-dimensional case, the key is that R-matrices for M ⊗V and N ⊗V have only two eigenvalues.
This strongly restricts the choices for M and N . Non-finite-dimensional choices of modules M
and N that satisfy these conditions exist in category O, but additional work toward understanding
the combinatorics of M ⊗ N ⊗ V ⊗k in these cases is needed. This understanding would yield an
interesting generalization of the work in this paper.

The seeds of the idea for this paper were sown during conversations of A. Ram with P. Pyatov
and V. Rittenberg in Bonn in 2005. They suggested that one should analyze two boundary spin
chains by R-matrices, thus implying the possibility for Schur-Weyl duality approach to represen-
tations of affine braid groups of type C. This idea was completed in the degenerate case in [Da],
and significant information was obtained in the Temperley-Lieb case in [GN] (see also references
there). In [DR] we shall complete the connection to the statistical mechanics by using the results
of this paper to identify the representations of the two boundary Temperley-Lieb algebra given, in
a diagrammatic form, by de Gier and Nichols in [GN].

Acknowledgements. We thank the Australian Research Council and the National Science Foun-
dation for support of our research under grants DP130100674 and DMS-1162010. Much of the
research for this paper was completed during residency at the special semester on “Automorphic
forms, Combinatorial representation theory, and Multiple Dirichlet series” at ICERM in 2013. We
thank ICERM, all the ICERM staff and the organizers of the special semester for providing a
wonderful and stimulating working environment.

2 The two boundary Hecke algebra

In this section we define the two boundary braid group and Hecke algebras and establish multiple
presentations of each. The conversion between presentations is important for matching the algebraic
approach to the representation theory with the Schur-Weyl duality approach that we give in Section
5.

3



For generators gi, gj , encode relations graphically by

gi gj
means gigj = gjgi,

gi gj
means gigjgi = gjgigj , and

gi gj
means gigjgigj = gjgigjgi.

(2.1)

For example, the group of signed permutations,

W0 =

{
bijections w : {−k, . . . ,−1, 1, . . . , k} → {−k, . . . ,−1, 1, . . . , k}

such that w(−i) = −w(i) for i = 1, . . . , k

}
, (2.2)

has a presentation by generators s0, s1, . . . , sk−1, with relations

s1 sk−1s2 sk−2s0

and s2
i = 1 for i = 0, 1, 2, . . . , k − 1. (2.3)

2.1 The two boundary braid group

The two boundary braid group is the group Bk generated by T̄0, T̄1, . . . , T̄k, with relations

T̄0 T̄1 T̄2 T̄k−2 T̄k−1 T̄k . (2.4)

Pictorially, the generators of Bk are identified with the braid diagrams

T̄k = , T̄0 = , and

T̄i =

i

i

i+1

i+1

for i = 1, . . . , k − 1, (2.5)

and the multiplication of braid diagrams is given by placing one diagram on top of another.
To make explicit the Schur-Weyl duality approach to representations of Bk appearing in Section

5, it is useful to move the rightmost pole to the left by conjugating by the diagram

σ = . (2.6)

Define

Ti = σT̄iσ
−1 =

i

i

i+1

i+1

, Y1 = σT̄0σ
−1 = , (2.7)
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and

X1 = T−1
1 T−1

2 · · ·T−1
k−1σT̄kσ

−1Tk−1 · · ·T1 = . (2.8)

Define

Z1 = X1Y1 and Zi = Ti−1Ti−2 · · ·T1X1Y1T1 · · ·Ti−1 =

i

i

, (2.9)

for i = 2, . . . , k.

Theorem 2.1. The two boundary braid group Bk is presented in the following three ways, using
the notation defined in (2.1).

(a) Bk is presented by generators X1, Y1, Z1, T1, . . . , Tk−1 and relations

T1 T2X1 Tk−2 Tk−1 (a1)

T1 T2Y1 Tk−2 Tk−1 (a2)

T1 T2Z1 Tk−2 Tk−1 (a3)

and
Z1 = X1Y1. (a4)

(b) Bk is presented by generators X1, Y1, T1, . . . , Tk−1 and relations (a1), (a2), and

(T1X1T
−1
1 )Y1 = Y1(T1X1T

−1
1 ). (b3)

(c) Bk is presented by generators Z1, . . . , Zk, Y1, T1, . . . , Tk−1, and relations (a2),

ZiZj = ZjZi for i, j = 1, . . . , k, (c1)

Y1Zi = ZiY1 for i = 2, . . . , k, and (c2)

TiZj = ZjTi for j 6= i, i+ 1, with i = 1, . . . , k − 1, and j = 1, . . . , k, (c3)

and
Zi+1 = TiZiTi for i = 1, . . . , k − 1. (c4)

Proof. With σ as in (2.6) let Tk = σT̄kσ
−1, so that the original generators are the σ-conjugates of

T0, T1, . . . , Tk. (o)
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Conjugate the relations in (2.4) by σ to rewrite them in the form

T1 Tk−1T2 Tk−2Y1

, TkTk−1TkTk−1 = Tk−1TkTk−1Tk, (o1)

TkY1 = Y1Tk, and TkTi = TiTk, for i = 1, . . . , k − 2. (o2)

The conversions between the generators in presentations (a), (b), and (c) are given in (2.7),
(2.8), and (2.9). For generators (a) and (b) in terms of generators (o), the key relations are

Y1 = T0, X1 = T−1
1 · · ·T−1

k−1TkTk−1 · · ·T1 and Tk = Tk−1 · · ·T1X1T
−1
1 · · ·T−1

k−1.

Relations (a) from relations (b): Relation (a4) is the conversion from generators (b) to gen-
erators (a). The relations in (a3) then follow from

TiZ1 = TiX1Y1 = X1TiY1 = X1Y1Ti = Z1Ti, for i = 2, . . . , k − 1,

and

T1Z1T1Z1 = T1X1Y1T1X1Y1 = T1X1(Y1T1X1T
−1
1 )T1Y1 = T1X1(T1X1T

−1
1 Y1)T1Y1

= X1T1X1T1T
−1
1 Y1T1Y1 = X1T1X1T

−1
1 T1Y1T1Y1 = X1T1X1T

−1
1 Y1T1Y1T1

= X1Y1T1X1T
−1
1 T1Y1T1 = Z1T1Z1T1.

Relations (b) from relations (a): Multiplying

T1X1(T1X1T
−1
1 Y1)T1Y1 = X1T1X1T1T

−1
1 Y1T1Y1 = X1T1X1T

−1
1 T1Y1T1Y1

= X1T1X1T
−1
1 Y1T1Y1T1 = X1Y1T1X1T

−1
1 T1Y1T1 = Z1T1Z1T1

= T1Z1T1Z1 = T1X1Y1T1X1Y1 = T1X1(Y1T1X1T
−1
1 )T1Y1

on the left by (T1X1)−1 and on the right by (T1Y1)−1 gives T1X1T
−1
1 Y1 = Y1T1X1T

−1
1 , establishing

(b3).

Relations (b) from relations (o): The pictorial computations

i

i

=

i

i

, = , and

=

show that X1Ti = TiX1 for i = 1, 2, . . . , k − 1, Y1T1X1T
−1
1 = T1X1T

−1
1 Y1, and X1T1X1T1 =

T1X1T1X1. Hence the relations (a1) and (a2) follow from the relations in (o1) and (o2).
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Relations (o) from relations (b): The first set of relations in (o1) are the same as the relations
in (a2). Let A = Tk−1 · · ·T1 and B = Tk−1 · · ·T2. Since X1 commutes with Ti for i = 2, . . . , k − 1,
then BX1B

−1 = X1 so that

ABX1B
−1A−1 = = = Tk,

and

ABT1B
−1A−1 = = = = Tk−1.

Thus, by conjugation by AB, the relation X1T1X1T1 = T1X1T1X1 becomes TkTk−1TkTk−1 =
Tk−1TkTk−1Tk, establishing the second relation in (o1). For i = 1, . . . , k − 2,

TiTk = TiTk−1 · · ·T1X1T
−1
1 · · ·T−1

k = Tk−1 · · ·Ti+2TiTi+1Ti · · ·T1X1T
−1
1 · · ·T−1

k

= Tk−1 · · ·Ti+2Ti+1TiTi+1Ti−1 · · ·T1X1T
−1
1 · · ·T−1

k

= Tk−1 · · ·T1X1T
−1
1 · · ·T−1

i−1Ti+1T
−1
i T−1

i+1 · · ·T
−1
k

= Tk−1 · · ·T1X1T
−1
1 · · ·T−1

i−1T
−1
i T−1

i+1TiT
−1
i+2 · · ·T

−1
k

= Tk−1 · · ·T1X1T
−1
1 · · · · · ·T−1

k Ti = TkTi.

Similarly, (b3) gives

Y1Tk = Y1Tk−1 · · ·T2T1X1T
−1
1 T−1

2 · · ·T−1
k−1 = Tk−1 · · ·T2(Y1T1X1T

−1
1 )T−1

2 · · ·T−1
k−1

= Tk−1 · · ·T2(T1X1T
−1
1 Y1)T−1

2 · · ·T−1
k−1 = Tk−1 · · ·T2T1X1T

−1
1 T−1

2 · · ·T−1
k−1Y1 = TkY1,

giving the relations in (o2).

Relations (c) from relations (o): The first set of relations in (o1) are the same as the relations
in (a2). Relations (c4) are exactly the definitions in the second part of (2.9). The pictorial
computation

ZjZi =

j

j

i

i

=

j

j

i

i

= ZiZj

give relations (c1). Similarly, pictorial computations readily show that Y1Zi = ZiY1 for i > 1 and
TiZj = ZjTi for i 6= j, j + 1, proving relations (c2) and (c3).
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Generators (o) from generators (c): The key formula for the generator Tk is

Tk = Tk−1 · · ·T1(T−1
1 · · ·T−1

k−1TkTk−1 · · ·T1)Y1(T1 · · ·Tk−1)(T−1
k−1 · · ·T

−1
1 )Y −1

1 (T−1
1 · · ·T−1

k−1)

= (Tk−1 · · ·T1)X1Y1(T1 · · ·Tk−1)Tsϕ = ZkT
−1
sϕ ,

where

Tsϕ = Tk−1Tk−2 · · ·T1Y1T1 · · ·Tk−2Tk−1 = .

Relations (o) from relations (c): The first set of relations in (o1) are the same as the relations
in (a2). The relations

TsϕY1 = Y1Tsϕ and TsϕTi = TiTsϕ , for i = 1, . . . , k − 2, (2.10)

are verified pictorially by

= and = .

or by direct computation using the relations in (a2).
By (2.8) and (2.9), Zk = TkTsϕ and, by (c3) and (c2) respectively,

TkTi = ZkT
−1
sϕ Ti = ZkTiT

−1
sϕ = TiZkT

−1
sϕ = TiTk, for i = 1, . . . , k − 2, and (2.11)

TkY1 = ZkT
−1
sϕ Y1 = ZkY1T

−1
sϕ = Y1ZkT

−1
sϕ = Y1Tk,

which proves the relations in (o2).
By the relations in (2.11) and the second set of relations in (2.10),

(T−1
k−1TsϕT

−1
k−1)Tk = Tk(T

−1
k−1TsϕT

−1
k−1) and (T−1

k−1TsϕT
−1
k−1)Tsϕ = Tsϕ(T−1

k−1TsϕT
−1
k−1),

so that (T−1
k−1TsϕT

−1
k−1)(TkTsϕ) = (TkTsϕ)(T−1

k−1TsϕT
−1
k−1). Using these and the equality

Tk−1ZkZk−1 = Tk−1Zk−1Zk = ZkT
−1
k−1Zk = ZkZk−1Tk−1,

we have

Tk−1ZkZk−1 = Tk−1Zk(T
−1
k−1ZkT

−1
k−1) = Tk−1(TkTsϕ)T−1

k−1(TkTsϕ)T−1
k−1

= Tk−1TkTk−1(T−1
k−1TsϕT

−1
k−1)TkTsϕT

−1
k−1 = (Tk−1TkTk−1Tk)(T

−1
k−1TsϕT

−1
k−1TsϕT

−1
k−1)

= ZkZk−1Tk−1 = Zk(T
−1
k−1ZkT

−1
k−1)Tk−1 = (TkTsϕ)T−1

k−1(TkTsϕ) = TkTk−1(T−1
k−1TsϕT

−1
k−1)(TkTsϕ)

= TkTk−1(TkTsϕ)(T−1
k−1TsϕT

−1
k−1) = (TkTk−1TkTk−1)(T−1

k−1TsϕT
−1
k−1TsϕT

−1
k−1).

Multiplying on the right by (T−1
k−1TsϕT

−1
k−1TsϕT

−1
k−1)−1 gives TkTk−1TkTk−1 = Tk−1TkTk−1Tk, estab-

lishing the last relation in (o1).
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If

P 1/2 = (2.12)

then

P 1/2Y1P
−1/2 = = = Y −1

1 X1Y1 (2.13)

and

P 1/2X1P
−1/2 = = = Y1 (2.14)

Following these pictorial computations, the extended affine braid group is the group Bext
k generated

by Bk and P with the additional relations

PX1P
−1 = Z−1

1 X1Z1, PY1P
−1 = Z−1

1 Y1Z1, (2.15)

PZ1P
−1 = Z1, and PTiP

−1 = Ti for i = 1, . . . , k − 1. (2.16)

Note that the element
Z0 = PZ1 · · ·Zk is central in Bext

k (c0)

since the group Bext
k is a subgroup of the braid group on k + 2 strands, and Z0 is the generator of

the center of the braid group on k + 2 strands (see [GM, Theorem 4.2]). So

if D = {Zj0 | j ∈ Z} then Bext
k = D × Bk, with D ∼= Z.

2.2 The two boundary Hecke algebra Hext
k

In this subsection we define the two boundary Hecke algebras and relate it to the presentation of
the affine Hecke algebra of type C that is found, for example, in [Lu1, Proposition 3.6] and [Mac2,
(4.2.4)].

Fix a1, a2, b1, b2, t
1
2 ∈ C×. The extended two boundary Hecke algebra Hext

k is the quotient of
Bext
k by the relations

(X1 − a1)(X1 − a2) = 0, (Y1 − b1)(Y1 − b2) = 0, and (Ti − t
1
2 )(Ti + t−

1
2 ) = 0, (h)

for i = 1, . . . , k − 1. Let

t
1
2
k = a

1
2
1 (−a2)−

1
2 and t

1
2
0 = b

1
2
1 (−b2)−

1
2 . (2.17)

With Zi ∈ Hext
k as in (2.9), define

T0 = b
− 1

2
1 (−b2)−

1
2Y1, Wi = −(a1a2b1b2)−

1
2Zi for i = 1, . . . , k, and (2.18)

W0 = PW1 · · ·Wk = (−1)k(a1a2b1b2)−
k
2PZ1 · · ·Zk = (−1)k(a1a2b1b2)−

k
2Z0. (2.19)

Then

X1 = Z1Y
−1

1 = a
1
2
1 (−a2)

1
2W1T

−1
0 . (2.20)
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Theorem 2.2. Fix t0, tk, t ∈ C× and use notations for relations as defined in (2.1). The extended
affine Hecke algebra Hext

k defined in (h) is presented by generators, T0, T1, . . . , Tk−1, W0, W1, . . . ,
Wk and relations

W0 ∈ Z(Hext
k ), T1 Tk−1T2 Tk−2T0 ; (B1)

WiWj = WjWi, for i, j = 0, 1, . . . , k; (B2)

T0Wj = WjT0, for j 6= 1; (B3)

TiWj = WjTi for i = 1, . . . , k − 1 and j = 1, . . . , k with j 6= i, i+ 1; (B4)

(T0 − t
1
2
0 )(T0 + t

− 1
2

0 ) = 0, and (Ti − t
1
2 )(Ti + t−

1
2 ) = 0 for i = 1, . . . , k − 1. (H)

For i = 1, . . . , k − 1,

TiWi = Wi+1Ti + (t
1
2 − t−

1
2 )
Wi −Wi+1

1−WiW
−1
i+1

, TiWi+1 = WiTi + (t
1
2 − t−

1
2 )
Wi+1 −Wi

1−WiW
−1
i+1

, (C1)

and T0W1 = W−1
1 T0 +

(
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

)
W1 −W−1

1

1−W−2
1

. (C2)

Proof. The conversion between the different sets of generators of Hext
k is provided by (2.18).

Equivalence between (c0–c4)and the second and third relations of (h) with the relations
(B1–B4) and (H). Since T0 and Y1 differ by a constant, and Wi and Zi differ by a constant,
the relations in (c0–c4) are equivalent to the relations in (B1–B4), respectively. Since

0 = (Y1 − b1)(Y1 − b2) = b
1
2
1 (−b2)

1
2 (T0 − b

1
2
1 (−b2)−

1
2 )b

1
2
1 (−b2)

1
2 (T0 + b

− 1
2

1 (−b2)
1
2 )

= −b1b2(T0 − t
1
2
0 )(T0 + t

− 1
2

0 ),

the relations (H) are equivalent to the second and third relations in (h).

Relations (C1–C2) from relations (c0–c4) and (h): From (2.9) and (2.18), Wi+1 = TiWiTi,

and by the last relation in (h), T−1
i = Ti − (t

1
2 − t−

1
2 ). So

TiWi = Wi+1T
−1
i = Wi+1(Ti − (t

1
2 − t−

1
2 )) = Wi+1Ti + (t

1
2 − t−

1
2 )
Wi −Wi+1

1−WiW
−1
i+1

and

TiWi+1 = T 2
i WiTi = (t

1
2 − t−

1
2 )Wi+1 +WiTi = WiTi + (t

1
2 − t−

1
2 )
Wi+1 −Wi

1−WiW
−1
i+1

,

which establishes the relations in (C1).
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By the first relation in (h), X−1
1 = −a−1

1 a−1
2 X1 + (a−1

1 + a−1
2 ). Since W1 = a

− 1
2

1 (−a2)−
1
2X1T0 and

T0 − T−1
0 = t

1
2
0 − t

− 1
2

0 ,

T0W1 −W−1
1 T0 = a

− 1
2

1 (−a2)−
1
2 (T0X1T0 − a1(−a2)T−1

0 X−1
1 T0)

= a
− 1

2
1 (−a2)−

1
2 (T0X1T0 + a1a2T

−1
0 (−a−1

1 a−1
2 X1 + (a−1

1 + a−1
2 ))T0)

= a
− 1

2
1 (−a2)−

1
2 ((T0 − T−1

0 )X1T0 + (a1 − (−a2)))

= (t
1
2
0 − t

− 1
2

0 )W1 + (t
1
2
k − t

− 1
2

k ),

which establishes (C2).

The first relation in (h) from the relations (B1–B4), (H) and (C1–C2). By (C2),

a
− 1

2
1 (−a2)−

1
2 (T0X1T0 − a1(−a2)T−1

0 X−1
1 T0) = T0W1 −W−1

1 T0 = (t
1
2
0 − t

− 1
2

0 )W1 + (t
1
2
k − t

− 1
2

k )

= a
− 1

2
1 (−a2)−

1
2 ((T0 − T−1

0 )X1T0 + (a1 − (−a2)))

= a
− 1

2
1 (−a2)−

1
2 (T0X1T0 + a1a2T

−1
0 (−a−1

1 a−1
2 X1 + (a−1

1 + a−1
2 ))T0),

giving X−1
1 = −a−1

1 a−1
2 X1 + (a−1

1 + a−1
2 ), which establishes the first relation in (h).

As vector spaces,
Hext
k = C[W±1

0 ,W±1
1 , . . . ,W±1

k ]⊗Hfin
k , (2.21)

where Hfin
k is the subalgebra of Hext

k generated by T0, T1, . . . , Tk−1. The algebra Hfin
k is the Iwahori-

Hecke algebra of finite type Ck. If s0, s1, . . . , sk−1 are the generators of W0 as given in (2.3), write
Tw = Tsi1 · · ·Tsi` for a reduced expression w = si1 · · · si` , so that

{Tw | w ∈ W0} is a C-basis of Hfin
k .

Thus (2.21) means that any element h ∈ Hext
k can be written uniquely as

h =
∑
w∈W0

hwTw, with hw ∈ C[W±1
0 ,W±1

1 , . . . ,W±1
k ].

Let
W λ = W λ0

0 W λ1
1 W λ2

2 · · ·W
λk
k for λ = (λ0, λ1, . . . , λk) ∈ Zk+1. (2.22)

Relations (C1) and (C2) produce an action of W0 on

C[W±1
0 ,W±1

1 , . . . ,W±1
k ] = spanC{W λ | λ = (λ0, λ1, . . . , λk) ∈ Zk+1}.

Namely, for w ∈ W0 and λ ∈ Zk+1,

wW λ = Wwλ, where s0λ = s0(λ0, λ1, . . . , λk) = (λ0,−λ1, . . . , λk), and

siλ = si(λ0, λ1, . . . , λk) = (λ0, λ1, . . . , λi−1, λi+1, λi, λi+2, . . . , λk), (2.23)
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for i = 1, 2, . . . , k − 1 (see [Ra2, (1.12)]). With this notation, for λ ∈ Zk+1, the relations (C1) and
(C2) give

TiW
λ = W siλTi + (t

1
2 − t−

1
2 )
W λ −W siλ

1−WiW
−1
i+1

and (2.24)

T0W
λ = W s0λT0 +

(
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

)
W λ −W s0λ

1−W−2
1

, (2.25)

and, replacing siλ by µ,

WµTi = TiW
siµ + (t

1
2 − t−

1
2 )
Wµ −W siµ

1−WiW
−1
i+1

and (2.26)

WµT0 = T0W
s0µ +

(
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

)
Wµ −W s0µ

1−W−2
1

, for µ ∈ Zk+1. (2.27)

The subalgebra Hk ⊆ Hext
k generated by W1, . . . ,Wk and T0, . . . , Tk−1 is the affine Hecke algebra

of type C considered, for example, in [Lu1]. The following theorem determines the center of Hext
k

and shows that, as algebras, Hext
k is a tensor product of Hk by the algebra of Laurent polynomials

in one variable. It follows that the irreducible representations of Hext
k are indexed by C× × Ĥk,

where Ĥk is an indexing set for the irreducible representations of Hk.

Theorem 2.3. Let Hk be the subalgebra of Hext
k generated by W1, . . . ,Wk and T0, . . . , Tk−1. As

algebras,
Hext
k
∼= C[W±1

0 ]⊗Hk, (2.28)

The center of Hext
k is

Z(Hext
k ) = C[W±1

0 ]⊗ C[W±1
1 , . . . ,W±1

k ]W0 ,

and Hext
k is a free module of rank Card(W0)2 = 22k(k!)2 over Z(Hext

k ).

Proof. As observed in (c0), Z0 is central in Bext
k , and therefore W0 = (−1)k(a1a2b1b2)k/2Z0 is central

in Hext
k . Thus

Hext
k = C[W±1

0 ]⊗Hk. (2.29)

By the formulas in (2.23), the Laurent polynomial ring C[W±1
1 , . . . ,W±1

k ] is a W0-submodule of
C[W±1

0 ,W±1
1 , . . . ,W±1

k ], and

C[W±1
0 ,W±1

1 , . . . ,W±1
k ]W0 = C[W±1

1 , . . . ,W±1
k ]W0 ⊗ C[W±1

0 ]. (2.30)

The proof that Z(Hext
k ) = C[W±1

0 ,W±1
1 , . . . ,W±1

k ]W0 is exactly as in [RR, Thm. 4.12]. The fact
that Hext

k is a free module of rank Card(W0)2 over C[C[W±1
0 ,W±1

1 , . . . ,W±1
k ]W0 ] follows from (2.21)

and [Ra2, Theorem1.17].

2.3 Weights of representations and intertwiners

Let t
1
2 ∈ C× be such that (t

1
2 )` 6= 1 for ` ∈ Z. All irreducible complex representations γ of the

algebra C[W±1
0 ,W±1

1 , . . . ,W±1
k ] are one-dimensional. Identify the sets

C = {irreducible representations γ of C[W±1
0 ,W±1

1 , . . . ,W±1
k ]} (2.31)

↔ {sequences (z, γ1, . . . , γk) ∈ (C×)k+1 }
↔ {sequences (ζ, c1, . . . , ck) ∈ Ck+1 }
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via
γ(W0) = z = (−1)ktζ and γ(Wi) = γi = −tci for i = 1, . . . , k (2.32)

(the choice of sign in the last equation is an artifact of equations (5.32) and (5.33) and an effort to
make the combinatorics of contents of boxes Section 5 optimally helpful). The action of W0 from
(2.23) induces an action of W0 on C by

(wγ)(W λ) = γ(Ww−1λ), for w ∈ W0 and λ ∈ Zk+1. (2.33)

Equivalently, on sequences (ζ, c1, . . . , ck), this action is given by

w(ζ, c1, . . . , ck) = (ζ, cw−1(1), . . . , cw−1(k)), for w ∈ W0. (2.34)

Let H̃ext
k be the extensions of Hext

k by the rational functions in W1, . . . ,Wk:

H̃ext
k = C[W±1

0 ]⊗ C(W1, . . . ,Wk)⊗Hfin
k ,

where Hfin
k is the subalgebra of Hext

k generated by T0, T1, . . . , Tk−1. The intertwining operators for
H̃ext
k are

τ0 = T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

and τi = Ti −
t
1
2 − t−

1
2

1−WiW
−1
i+1

(2.35)

for i = 1, 2, . . . , k − 1. Proposition 2.4 shows that these operators satisfy τ0W
λ = W s0λτ0 and

τiW
λ = W siλτi so that, for w ∈ W0 and λ = (λ0, . . . , λk) ∈ Zk+1,

τwW
λ = Wwλτw, where τw = τi1 . . . τi` (2.36)

for a reduced expression w = si1 · · · si` .
Each Hext

k -module M can be written as M =
⊕
γ∈C

Mgen
γ , where for each γ = (z, γ1, . . . , γk) ∈ C,

Mgen
γ =

{
m ∈M

∣∣∣∣ there exists N ∈ Z>0 such that (W0 − z)Nm = 0

and (Wi − γi)Nm = 0 for i = 1, . . . , k

}
(2.37)

is the generalized weight space associated to γ. The intertwiners (2.35) define vector space homo-
morphisms

τ0 : Mgen
γ 7−→Mgen

s0γ and τi : M
gen
γ 7−→Mgen

siγ for i = 1, . . . , k − 1, (2.38)

where

τ0 is defined only when γ1 6= 1, so that (1−W−1
1 )−1 is well-defined on Mgen

γ and

τi is defined only when γi 6= γi+1, so that (1−WiW
−1
i+1)−1 is well-defined on Mgen

γ

for i = 1, . . . , k − 1.
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Proposition 2.4. (Intertwiner presentation) The algebra H̃ext
k is generated by τ0, . . . , τk, W0,

and C(W1, . . . ,Wk) with relations

τ1 τk−1τ2 τk−2τ0

(2.39)

in the notation of (2.1);

τ0W1 = W−1
1 τ0 and τ0Wj = Wjτ0 for j 6= 1; (2.40)

for i = 1, . . . , k − 1,

τiWi = Wi+1τi and τiWi+1 = Wiτi for i > 0, and τiWj = Wjτi for j 6= i, i+ 1; (2.41)

τ2
0 =

(1− t
1
2
0 t

1
2
kW

−1
1 )

1−W−1
1

(1 + t
1
2
0 t
− 1

2
k W−1

1 )

1 +W−1
1

(1 + t
− 1

2
0 t

1
2
kW

−1
1 )

1 +W−1
1

(1− t−
1
2

0 t
− 1

2
k W−1

1 )

1−W−1
1

; (2.42)

and τ2
i =

(t
1
2 − t−

1
2W−1

i Wi+1)(t
1
2 − t−

1
2W−1

i+1Wi)

(1−W−1
i Wi+1)(1−W−1

i+1Wi)
for i = 1, . . . , k − 1. (2.43)

Proof. The proof of the relations in (2.39) is accomplished exactly as in the proof of [Ra2,
Proposition 2.14(e)]; relation (2.43) is [Ra2, Proposition 2.14(c)]. Let us check the relations in
(2.41) and (2.42).

Using (C1),

τiWi =

(
Ti −

t
1
2 − t−

1
2

1−WiW
−1
i+1

)
Wi = Wi+1Ti + (t

1
2 − t−

1
2 )
Wi −Wi+1

1−WiW
−1
i+1

− (t
1
2 − t−

1
2 )

Wi

1−WiW
−1
i+1

= Wi+1

(
Ti −

t
1
2 − t−

1
2

1−WiW
−1
i+1

)
= Wi+1τi.

Similarly, using (C2),

τ0W1 =

T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

W1

= W−1
1 T0 + (t

1
2
0 − t

− 1
2

0 )W1 + (t
1
2
k − t

− 1
2

k )−
(t

1
2
0 − t

− 1
2

0 )W1 + (t
1
2
k − t

− 1
2

k )

1−W−2
1

= W−1
1

T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

 = W−1
1 τ0.

For i = 0, . . . , k − 1 and j 6= i, i + 1, τi and Wj commute by the second set of relations in (C1).
These computations establish the relations in (2.40) and (2.41).
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By the first relation in (H), T0 = T−1
0 + (t

1
2
0 − t

− 1
2

0 ), so that

τ0 = T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

= T−1
0 + (t

1
2
0 − t

− 1
2

0 ) +
(t

1
2
0 − t

− 1
2

0 )W 2
1 + (t

1
2
k − t

− 1
2

k )W1

1−W 2
1

= T−1
0 +

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W1

1−W 2
1

.

Then

τ2
0 = τ0

T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

 = τ0T0 −

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W1

1−W 2
1

 τ0

=

T−1
0 +

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W1

1−W 2
1

T0

−

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W1

1−W 2
1

T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1


= 1 +

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W1

1−W 2
1

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1


= 1−

(t
1
2
0 − t

− 1
2

0 )W−2
1 + (t

1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

(t
1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1



=

(
1− 2W−2

1 +W−4
1 − ((t

1
2
0 − t

− 1
2

0 )2 + (t
1
2
k − t

− 1
2

k )2)W−2
1

−(t
1
2
0 − t

− 1
2

0 )(t
1
2
k − t

− 1
2

k )W−1
1 − (t

1
2
0 − t

− 1
2

0 )(t
1
2
k − t

− 1
2

k )W−3
1

)
(1−W−2

1 )2

=
(1− t

1
2
0 t

1
2
kW

−1
1 )

1 +W−1
1

(1 + t
1
2
0 t
− 1

2
k W−1

1 )

1−W−1
1

(1 + t
− 1

2
0 t

1
2
kW

−1
1 )

1−W−1
1

(1− t−
1
2

0 t
− 1

2
k W−1

1 )

1 +W−1
1

,

establishing (2.42).

3 Calibrated representations of Hext
k

A calibrated Hext
k -module is an Hext

k -module M such that W0,W1, . . . ,Wk are simultaneously diag-
onalizable as operators on M . In the context of (2.37), M is calibrated if

M =
⊕
γ∈C

Mγ , where Mγ = {m ∈M | W0m = zm and Wim = γim for i = 1, . . . , k} (3.1)

for γ = (z, γ1, . . . , γk) ∈ C. Another formulation is that M is calibrated if M has a basis of
simultaneous eigenvectors for W0, . . . ,Wk. This section follows the framework of [Ra2] in developing
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combinatorial tools for describing the structure and the classification of irreducible calibrated Hext
k -

modules. In Section 5 we will use this combinatorics to analyze and classify theHext
k -modules arising

in the Schur-Weyl duality settings.
With notations as in the definition of W0 in (2.2), the reflection representation of W0 is the

action of W0 on hR = Rk given by

w(c1, . . . , ck) = (cw−1(1), . . . , cw−1(k)), where c−i = −ci for i = 1, 2, . . . , k.

The dual space h∗R has basis ε1, . . . , εk, where εi : hR → R is the R-linear map given by εi(γ1, . . . , γk) =
γi. With ε−i = −εi, the action of W0 on Rk produces an action on h∗R given by wεi = εw−1(i).

Let

R+ = {ε1, . . . , εk} t {εj − εi, εj + εi | 1 ≤ i < j ≤ k}
= {ε1, . . . , εk} t {εj − εi | 1 ≤ i < j ≤ k} t {εj − ε−i | 1 ≤ i < j ≤ k}
= {ε1, . . . , εk} t {εj − εi | i, j ∈ {−k, . . . ,−1, 1, . . . , k}, i < j, i 6= −j}.

If w ∈ W0, the inversion set of w is

R(w) = {α ∈ R+ | wα 6∈ R+} (3.2)

= {εi | if i > 0 and w(i) < 0} t {εj − εi | if 0 < i < j and w(i) > w(j)} (3.3)

t {εj + εi | if 0 < i < j and −w(i) > w(j)}.

The chambers are the connected components of hR\
⋃
α∈R+ hα, where hα = {γ ∈ hR | α(γ) = 0}.

The fundamental chamber in hR is

C = {c ∈ hR | α(γ) ∈ R>0 for α ∈ R+} = {(c1, . . . , ck) ∈ Rk | 0 < c1 < c2 < · · · < ck},

and the group W0 can be identified with the set of chambers via the bijection

W0 ←→ {chambers}
w 7−→ w−1C

. Since w−1C =

{
c ∈ hR

∣∣∣∣ α(c) ∈ R<0 if α ∈ R(w) and
α(c) ∈ R>0 if α ∈ R+\R(w)

}
,

the set R(w) determines w.

3.1 Local regions

For γ = (γ1, . . . , γk) ∈ (C×)k, define

Z(γ) = {εi | γi = ±1} t {εj − εi | 0 < i < j, γiγ
−1
j = 1} t {εj + εi | 0 < i < j, γiγj = 1},

P (γ) = {εi | γi ∈ {(t
1
2
0 t

1
2
k )±1, (−t−

1
2

0 t
1
2
k )±1}} t {εj − εi | 0 < i < j, γiγ

−1
j = t±1}

t {εj + εi | 0 < i < j, γiγj = t±1}. (3.4)

Using the conversion from γi to ci as in (2.32), let

γi = −tci , and set −tr1 = −t
1
2
k t
− 1

2
0 and −tr2 = t

1
2
k t

1
2
0 , (3.5)
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so that −t±r1 and −t±r2 are the eigenvalues of W1 that cause τ2
0 to have a nonzero kernel (see

(2.42)). Then, for c = (c1, . . . , ck) ∈ Ck let c−i = −ci and define

Z(c) = {εi | ci = 0} t {εj − εi | 0 < i < j and cj − ci = 0}
t {εj + εi | 0 < i < j and cj + ci = 0}, (3.6)

P (c) = {εi | ci ∈ {±r1,±r2}} t {εj − εi | 0 < i < j and cj − ci = ±1}
t {εj + εi | 0 < i < j and cj + ci = ±1}. (3.7)

A local region is a pair (c, J) with c ∈ Ck and J ⊆ P (c). The set of standard tableaux of shape
(c, J) is

F (c,J) = {w ∈ W0 | R(w) ∩ Z(c) = ∅, R(w) ∩ P (c) = J}. (3.8)

As in [Ra2, §5 and §8] the local regions (c, J) and standard tableaux w ∈ F (c,J) can be converted
to configurations of boxes κ and standard tableaux S of shape κ similar to those that are familiar in
the literature on irreducible representations of Weyl groups of classical types. As explained in [Ra2,
§5.11], the definitions of Z(c) and P (c) make it possible to view the general case c ∈ Ck as pieced
together from the cases c ∈ (Z + β)k where β runs over a set of representatives of the Z-cosets in
C. Below we make the conversion between local regions and configurations of boxes explicit for the
cases when c ∈ Zk and c ∈ (Z + 1

2)k. These are the cases that appear in the Schur-Weyl duality
approach to the representations of Hext

k explored in Section 5. As in [Ra2, §8], it is also true that
these cases are sufficient to determine the general c ∈ (Z + β)k setting.

Let (c, J) be a local region with c = (c1, . . . , ck),

c ∈ Zk or c ∈ (Z + 1
2)k, and 0 ≤ c1 ≤ · · · ≤ ck. (3.9)

Start with an infinite arrangement of NW to SE diagonals, numbered consecutively from Z or Z+ 1
2 ,

increasing southwest to northeast (see Example 1). The configuration κ of boxes corresponding to
the local region (c, J) has 2k boxes (labeled box−k, . . . ,box−1, box1, . . . ,boxk) with the following
conditions.

(κ1) Location: boxi is on diagonal ci, where c−i = −ci for i ∈ {−k, . . . ,−1}.

(κ2) Same diagonals: boxi is NW of boxj if i < j and boxi and boxj are on the same diagonal.

(κ3) Adjacent diagonals:

If εj − εi ∈ J , then boxj is NW (strictly north and weakly west) of boxi:
j

i

If εj − εi ∈ P (c)− J , then boxj is SE (weakly south and strictly east) of boxi: i j

(κ4) Markings: There is a marking on each of the diagonals r1, −r1, r2 and −r2.

If εi ∈ J , boxi is NW of the marking on diagonal ci: i

If εi ∈ P (c)− J , then boxi is SE of the marking in diagonal ci : i

Condition (κ1) enables the values (c−k, . . . , c−1, c1, . . . , ck) to be read off of configuration κ. The
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sets Z(c), P (c), and J can also be determined from the configuration κ since

Z(c) = {εi | 0 < i and boxi is in diagonal 0}
t {εj − εi | 0 < i < j and boxi and boxj are in the same diagonal}
t {εj + εi | 0 < i < j and boxi and boxj are both in diagonal 0},

P (c) = {εi | 0 < i and boxi is in diagonal r1 or r2},
t {εj − εi | 0 < i < j and boxi and boxj are in adjacent diagonals}
t {εj + εi | 0 < i < j and box−i and boxj are in adjacent diagonals}, and

J = {εi ∈ P (c) | boxi is NW of the marking}
t {εj − εi ∈ P (c) | boxj is northwest of boxi}
t {εj + εi ∈ P (c) | boxj is northwest of box−i} .

A standard filling of the boxes of κ is a bijective function S : κ→ {−k, . . . ,−1, 1, . . . k} such that

(S1) Symmetry: S(box−i) = −S(boxi).

(S2) Same diagonals:
If 0 < i < j and boxi and boxj are on the same diagonal then S(boxi) < S(boxj).

(S3) Adjacent diagonals:
If 0 < i < j, boxi and boxj are on adjacent diagonals, and boxj is NW of boxi, then
S(boxj) < S(boxi).
If 0 < i < j, boxi and boxj are on adjacent diagonals, and boxj is SE of boxi, then
S(boxj) > S(boxi).

(S4) Markings:
If boxi is on a marked diagonal and is SE of the marking, then S(boxi) > 0.
If boxi is on a marked diagonal and is NW of the marking, then S(boxi) < 0.

The identity filling of a configuration κ is the filling F of the boxes of κ given by F (boxi) = i, for
i = −k, . . . ,−1, 1, . . . , k. The identity filling of κ is usually not a standard filling of κ (see Example
1).

Example 1. Let k = 4, r1 = 1, and r2 = 3. Consider c = (−3,−2,−2, 2, 2, 3). Then

Z(c) = {ε2 − ε1} and P (c) =
{
ε3, ε3 − ε1, ε3 − ε2

}
.

The box configurations corresponding to J = {ε3 − ε2} and J = {ε3, ε3 − ε1, ε3 − ε2} (filled with
their identity fillings) are

0 1 2 3 4 5
-1
-2
-3
-4
-5

1

-1

2

-2

3

-3

0 1 2 3 4 5
-1
-2
-3
-4
-5

1

-1

2

-2

3

-3

J = {ε3 − ε2} J = {ε3, ε3 − ε1, ε3 − ε2}
18



For both configurations, the identity filling is not a standard filling. Examples of standard fillings
of the configuration corresponding to J = {ε3 − ε2} include

1 2

3

-1-2

-3 ,

-1 2

3

1-2

-3 , and

-2 1

3

2-1

-3 , but not

-3 -2

1

32

-1 .

The proof of the following proposition is a straightforward, though slightly tedious, check that
the conditions R(w) ∩ Z(c) = ∅ and R(w) ∩ P (c) = J from (3.8) convert to the conditions (S2),
(S3), (S4) on standard fillings of shape κ. The proof is similar to the proof of [Ra2, Thm. 5.9].

Proposition 3.1. Let κ be a configuration of boxes corresponding to a local region (c, J) with
c ∈ Zk or c ∈ (Z + 1

2)k. For w ∈ W0 let Sw be the filling of the boxes of κ given by

Sw(boxi) = w(i), for i = −k, . . . ,−1, 1, . . . , k.

The map
F (c,J) −→ {standard fillings S of the boxes of κ}
w 7−→ Sw

is a bijection.

Example 2. Let k = 12, r1 = 3
2 , r2 = 15

2 , c = (1
2 ,

1
2 ,

3
2 ,

3
2 ,

5
2 ,

9
2 ,

11
2 ,

13
2 ,

13
2 ,

15
2 ,

15
2 ,

17
2 ) and

J =

{
ε3, ε10, ε3 − ε2, ε4 − ε2, ε5 − ε4, ε8 − ε7,
ε10 − ε8, ε10 − ε9, ε11 − ε9, ε12 − ε10, ε12 − ε11

}
Let

w =

(
1 2 3 4 5 6 7 8 9 10 11 12
−9 10 −8 7 6 3 4 1 5 −11 2 −12

)
∈ F (c,J).

Then, for the corresponding configuration of boxes κ, the identity filling F , and the standard filling
Sw corresponding to w are

F =

1
2

− 1
2

− 17
2

17
2

− 15
2

15
2

12

-12

11

-11

10

-10

9

-9

8

-8

7

-7

6

-6

5

-5

4-4

3

-3 2

-2 1

-1

and Sw =

1
2

− 1
2

− 17
2

17
2

− 15
2

15
2

-12

12

2

-2

-11

11

5

-5

1

-1

4

-4

3

-3

6

-6

7-7

-8

8 10

-10 -9

9

.
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Remark 3.2. Borrowing a physical intuition, configurations are invariant under sliding boxes along
diagonals like beads on an abacus, so long as boxes that run into each other are not allowed to
exchange places, i.e. for most c ∈ Z,

c+1

c

=

c+1

c

6=

c+1

c

.

Then by arranging configurations so that the boxes are packed together, standard fillings of con-
figurations are exactly analogous to standard tableaux for partitions.

The only exception to this physical intuition is for boxes on the diagonals ±1
2 . Note that if

ci = 1
2 , then boxi and box−i are on adjacent diagonals. However, since 2εi = εi − ε−i /∈ R+ and

therefore never in P (c), the relative positions of boxi and box−i will never be recorded in the set
J . For example, in Figure 2, the point where (c1, c2) = (1

2 ,
1
2) has two configurations, each with

two boxes overlapping in indication that boxi and box−i may “slide past each other”. The drawing

represents the equivalence of

−1
2

1
2

-2

-1 1

2
and

−1
2

1
2

-2

-1

1

2 ,

(with boxes filled in the identity filling) where box1 and box−1 can move freely past each other,
and

represents the equivalence of

1
2

−1
2

2

1

-1

-2

and

1
2

−1
2

2

1-1

-2
,

where box2 and box−2 can move freely past each other. In these two examples ε1− ε−2 ∈ P (c) and
ε2 − ε−1 ∈ P (c) and so the relative orientation of box2 and box−1 and the relative orientation of
box1 and box−2 are recorded in J . Each configuration has exactly two standard fillings.

3.2 Classifying and constructing calibrated representations

Theorem 3.3 below provides an indexing of the calibrated irreducible Hext
k -modules by skew local

regions. A skew local region is a local region (c, J), c = (c1, . . . , ck), such that
if w ∈ F (c,J) then wc = ((wc)1, . . . , (wc)n) satisfies

(wc)1 6= 0, (wc)2 6= 0, (wc)1 6= −(wc)2,

(wc)i 6= (wc)i+1 for i = 1, . . . , k − 1, and (wc)i 6= (wc)i+2 for i = 1, . . . , k − 2.
(3.10)

Theorem 3.3 is completely analogous to the same theorem for the case t
1
2 = t

1
2
0 = t

1
2
k in [Ra2, Theo-

rem 3.5]. As explained in the discussion and remarks before [Ra2, Lemma 3.1] in [Ra2, §3], getting
exactly the right definition of skew local region for the purpose of Theorem 3.3 is accomplished by
a detailed computation of the irreducible representations in rank two cases. More specifically, for
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I ⊆ {0, . . . , k}, let HI be the subalgebra of Hext
k generated by {Ti}i∈I and C[W±1

1 , . . . ,W±1
k ]. Then

the conditions in (3.10) guarantee that for w ∈ F (c,J) and i, j ∈ {0, 1, . . . , k − 1},

there exists a calibrated H{i,j}-module M with Mgen
wc 6= 0.

The cases where H{i,j} is of type A×A1 or of type A2 are checked in [Ra1]. However, when H{i,j}
is of type C2 and there are three distinct parameters, we do not know a reference for this. So in the
effort to provide a more complete presentation, we have done the appropriate analysis in Section

4 for all generic choices of the three parameters t
1
2 , t

1
2
0 , and t

1
2
k , as given in the following theorem

(see also (4.1))

Theorem 3.3. Assume t
1
2 , t

1
2
0 , and t

1
2
k are invertible, t

1
2 is not a root of unity, and

t
1
2
0 t

1
2
k ,−t

− 1
2

0 t
1
2
k 6∈ {1,−1, t±

1
2 ,−t±

1
2 , t±1,−t±1} and t

1
2
0 t

1
2
k 6= (−t−

1
2

0 t
1
2
k )±1.

(a) Let (c, J) be a skew local region and let z ∈ C×. Define

H
(z,c,J)
k = spanC{vw | w ∈ F (c,J)}, (3.11)

so that the symbols vw are a labeled basis of the vector space H
(z,c,J)
k . Let

γi = −tci for i = 1, 2, . . . , k, and γ0 = zγ−1
w−1(1)

· · · γ−1
w−1(k)

.

Then the following formulas make H
(z,c,J)
k into an irreducible Hext

k -module:

PW1 · · ·Wkvw = zvw, Pvw = γ0vw, Wivw = γw−1(i)vw, (3.12)

Tivw = [Ti]wwvw +

√
−([Ti]ww − t

1
2 )([Ti]ww + t−

1
2 ) vsiw, for i = 1, . . . , k − 1, (3.13)

T0vw = [T0]wwvw +

√
−([T0]ww − t

1
2
0 )([T0]ww + t

− 1
2

0 ) vs0w, (3.14)

where vsiw = 0 if siw 6∈ F (c,J), and

[Ti]ww =
t
1
2 − t−

1
2

1− γw−1(i)γ
−1
w−1(i+1)

and [T0]ww =
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )γ−1
w−1(1)

1− γ−2
w−1(1)

. (3.15)

(b) The map

C× × {skew local regions (c, J)} ←→ {irreducible calibrated Hext
k -modules}

(z, c, J) 7−→ H
(z,c,J)
k

is a bijection.

Proof. This result follows from [Ra2, Theorems 3.2 and 3.5]. It is only necessary to establish that
the formulas in (3.12), (3.13), and (3.14) are correct. These are derived in a similar manner to [Ra2,
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Proposition 3.3] as follows. As in [Ra2, Theorem 3.2], if M is an irreducible calibrated Hext
k -module

then
M =

⊕
w∈W0

Mgen
wγ , with dim(Mgen

wγ ) = 1 if Mgen
wγ 6= 0.

For w ∈ W0, if Mgen
wγ 6= 0, let vw be a nonzero vector in Mgen

wγ ; otherwise if Mgen
wγ = 0, let vw = 0.

By (2.38), τivw = [Ti]siw,wvsiw for some constant [Ti]siw,w and the definition of τi in (2.35) gives
that

Tivw =
t
1
2 − t−

1
2

1− γw−1(i)γ
−1
w−1(i+1)

vw + [Ti]siw,wvsiw for i = 1, . . . , k, (3.16)

and

T0vγ =
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )γ−1
w−1(1)

1− γ−2
w−1(1)

vw + [T0]s0w,wvs0w. (3.17)

Thus T0 is an operator on the subspace spanC{vw, vs0w} satisfying (T0− t
1
2
0 )(T0 + t

− 1
2

0 ) = 0 by (H).
Restricting to the action on spanC{vw, vs0w}, the formulas in (3.14) now follow from the following
argument about general 2× 2 matrices.

If a 2× 2 matrix [T0] has eigenvalues α1 and α2,

[T0] =

(
[T0]ww [T0]w,s0w

[T0]s0w,w [T0]s0w,s0w

)
, then ([T0]− α1)([T0]− α2) = 0

is the characteristic polynomial for [T0], and it follows that

Tr([T0]) = [T0]ww + [T0]s0w,s0w = α1 + α2, and

det([T0]) = [T0]ww[T0]s0w,s0w − [T0]w,s0w[T0]s0w,w = α1α2.

Thus

−[T0]w,s0w[T0]s0w,w = α1α2 − [T0]ww[T0]s0w,s0w = α1α2 − [T0]ww((α1 + α2)− [T0]ww)

= α1α2 − (α1 + α2)[T0]ww + ([T0]ww)2 = ([T0]ww − α1)([T0]ww − α2).

Choosing a normalization of vs0w so that the matrix of [T0] is symmetric, we have [T0]w,s0w =
[T0]s0w,w and

[T0]s0w,w =
√

([T0]s0w,w)2 =
√

[T0]w,s0w[T0]s0w,w =
√
−([T0]ww − α1)([T0]ww − α2).

4 Classification of irreducible representations of H2

In this section we do a complete classification of the irreducible representations of the algebra Hext
2 .

An important reason for doing this classification of Hext
2 representations is to provide a sound

basis for the definition of a skew local region (see the remarks immediately after the definition of
skew local region in (3.10)). The classification and construction of calibrated representations of
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Hext
k in terms of skew local regions in Theorem 3.3 is important for determining the irreducible

representations of Hext
k that arise in the Schur-Weyl duality framework (see Theorem 5.5). We will

do the clasification of irreducible Hext
2 representations under genericity assumptions on the

parameters: t
1
2 is not a root of unity and

t
1
2
0 t

1
2
k ,−t

− 1
2

0 t
1
2
k 6∈ {1,−1, t±

1
2 ,−t±

1
2 , t±1,−t±1} and t

1
2
0 t

1
2
k 6= (−t−

1
2

0 t
1
2
k )±1. (4.1)

More specifically, this condition is used for the (rank 2) computation in equation (4.4). Similar
methods apply to the nongeneric cases but the final classification needs to be stated differently and

we will not treat the nongeneric cases here. The nongeneric case t
1
2
0 = t

1
2
k = t

1
2 is done in [Ra1, Ra2]

and [Re]; the case where t
1
2
0 = t

1
2
k 6= t

1
2 appears in [En] (see also [KR]).

The algebra H2 is generated by W±1
1 ,W±1

2 , T0, and T1, and the Weyl group W0 is generated by
s0 and s1 with relations s2

i = 1 and s0s1s0s1 = s1s0s1s0. By (2.29),

Hext
2 = C[W±0 ]⊗H2 as algebras,

and therefore it is sufficient to do the classification of irreducible representations of H2. This
is because all irreducible representations of C[W±1

0 ] are one dimensional and determined by the
image of W0; and all irreducible representations of Hext

2 are the tensor product of an irreducible
representation of C[W±1

0 ] and an irreducible representation of H2.
The group W0 acts on (C×)2 by

s0(γ1, γ2) = (γ−1
1 , γ2) and s1(γ1, γ2) = (γ2, γ1). (4.2)

By (2.35), the intertwiners are

τ0 = T0 −
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )W−1
1

1−W−2
1

and τ1 = T1 −
t
1
2 − t−

1
2

1−W1W
−1
2

.

4.1 Classification of central characters

Following [Ra1, §5], the classification of irreducible Hext
k -modules begins with a classification of pos-

sible pairs (Z(c), P (c)) = (Z(γ), P (γ)) (where γ and c are related as in (2.32)). It is straightforward
(though slightly tedious) to enumerate all the possibilities by taking note of the following:

(0) Since (Z(wγ), P (wγ)) = (wZ(γ), wP (γ)), it is sufficient to do the analysis for a single repre-
sentative γ of each W0-orbit on (C×)k.

(1) The W0-orbits of roots are {±ε1,±ε2} and {±(ε2 ± ε1)}, and our preferred representative of
the W0-orbit will have ε1 or ε2 − ε1 in Z(γ) if Z(γ) 6= ∅.

(2) If Z(γ) = ∅ and P (γ) 6= ∅ then our preferred representative of the W0-orbit will have ε1 or
ε2 − ε1 in Z(γ).

With these preferences, the classification of (Z(γ), P (γ)) is accomplished by noting that

(a) if γ ∈ {(1, 1), (−1,−1)} then (Z(γ), P (γ)) = ({ε1, ε2, ε2 ± ε1}, ∅);
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(b) if γ ∈ {(1,−1), (−1, 1)} then (Z(γ), P (γ)) = ({ε1, ε2}, ∅);

(c) ε2 − ε1 ∈ Z(γ) if and only if γ = (γ1, γ1);

(d) ε2 + ε1 ∈ Z(γ) if and only if γ = (γ1, γ
−1
1 );

(e) ε1 ∈ Z(γ) if and only if γ = (1, γ2) or γ = (−1, γ2);

(f) ε2 ∈ Z(γ) if and only if γ = (γ1, 1) or γ = (γ1,−1);

(g) ε1 ∈ P (γ) if and only if γ = (γ1, γ2) with γ1 ∈ {t
1
2
0 t

1
2
k ,−t

− 1
2

0 t
1
2
k ,−t

1
2
0 t
− 1

2
k , t

− 1
2

0 t
− 1

2
k };

(h) ε2 − ε1 ∈ P (γ) if and only if γ = (γ1, γ2) with γ2 = γ1t
±1;

(i) ε2 + ε1 ∈ P (γ) if and only if γ = (γ1, γ2) with γ1γ2 = t±1.

We shall freely use the conversion between γ = (γ1, γ2) and c = (c1, c2) given by (2.32),

γ1 = −tc1 , γ2 = −tc2 , and write (Z(c), P (c)) = (Z(γ), P (γ)).

Representatives of the 12 possible (Z(c), P (c)) with Z(c) = ∅ are displayed in Figure 1. Represen-
tatives of the 9 possible (Z(c), P (c)) with Z(c) 6= ∅ are displayed in Figure 2. It works out that,
in each case, the pair (Z(c), P (c)) is attained by an element c that has real coordinates (the one
complex character in the equal parameter case that behaves differently from the real characters,
namely the point tb in [Ra1, Figure 5.1], does not appear in the generic unequal parameter case
assumed in (4.1)).

With notation as at the beginning of Section 3, in Figures 1 and 2, the fundamental region C
is the shaded area, the solid lines are the hyperplanes hα for α ∈ R+, and the dotted hyperplanes
are labeled by the equation that defines them. If c = (c1, c2) ∈ C, so that 0 ≤ c1 ≤ c2, then

Z(c) = {solid hyperplanes through c} and P (c) = {dotted hyperplanes through c}.

The bijection

W0 ↔ {chambers}
w 7→ w−1C

identifies each F (c,J) with a set of chambers, (4.3)

a local region in h∗R. As illustrated by the example at the bottom right of Figures 1 and 2, F (c,J)

is identified with the set of chambers that are on the negative side of the hyperplanes in J and on
the positive side of the hyperplanes in P (c)− J . For each (c, J) the corresponding configuration
of boxes κ is displayed in the local region of chambers corresponding to the elements of F (c,J) by
(4.3). In Figure 1, only the boxes on positive diagonals are shown, since they determine the entire
doubled configuration when Z(c) = ∅. The diagram at the bottom right of each figure gives an
example of the correspondence between chambers corresponding to F(c, J), the elements of F (c,J),
and the standard fillings of the corresponding configuration of boxes κ: the point c = (r1 − 1, r1)
in the bottom right of Figure 1, and the point c = (0, 1) in the bottom right of Figure 2.

In Figure 2, the small graphs nearby each marked c = (c1, c2) indicate the structure (generalized
weight spaces and intertwiner maps) of the irreducible modules M of central character c. This
structure is determined below in Section 4.2. There is a vertex in the chamber w−1C for each
element of a basis of Mgen

wc and there is an edge if the matrix of τi (or Ti if τi is not defined on
Mgen
wc ) is nonzero in the entry corresponding to the two vertices that are connected.
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Figure 1: Regular central characters in rank 2. See the description in Section 4.1
c1 = 0 c1 = c2

c2 = 0

c2 = c1 + 1

c2 = −c1 + 1

c2 = r1

c2 = r2

c1 = r1 c1 = r2

1

1 2

-1-2

s1

2

1

-2

-1

s0s1
2

-1

-2

1s1s0s1

1

-2

-1

2

s0

-1 2

1-2

s1s0

-2 1

2-1

s0s1s0
-2 -1

21 s1s0s1s0

-1

-2

1

2

J = ∅

J = {ε2 − ε1}

J = {ε2}

J = {ε2, ε2 − ε1}
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Figure 2: Non-regular points

II

I I

II

I I

c1 = 0 c1 = c2

c2 = 0

c2 = c1 + 1

c2 = −c1 + 1

c2 = r1

c2 = r2

c1 = r1 c1 = r2

1

s1

s1s0

s1s0s1

I
I

I

I

-2 -1

1 2

-1

-2

2

1

1

-2

2

-1

2

-1

1

-2

J = ∅

J = {ε2 − ε1}

J = {ε2 ± ε1}
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4.2 Construction of the irreducible H2-modules

The group W0 acts on (C×)2 as in (4.2) and the central characters are the W0-orbits on (C×)2.
The regular central characters are the W0-orbits of γ = (γ1, γ2) ∈ (C×)2 that have Z(γ) = ∅, i.e.
where the intertwining operators in (2.38) are defined. Let C[W ] = C[W±1

1 ,W±1
2 ] ⊆ H2. By Kato’s

criterion (see [Ra2, Proposition 2.11b]), for central characters γ = (γ1, γ2) with P (γ) = ∅ there is
a single irreducible module of dimension eight given by

L(γ1,γ2) = IndHC[W ](Cγ1,γ2), where Cγ1,γ2 = Cv with W1v = γ1v and W2v = γ2v.

All irreducible modules with Z(γ) = ∅ are calibrated and can be constructed as in Theorem 3.3.
Representatives of the W0-orbits of γ = (γ1, γ2) ∈ (C×)2 that have Z(γ) 6= ∅ and P (γ) 6= ∅ are

as follows:
γ = (γ1, γ2) Z(γ) P (γ)

(t
1
2 , t

1
2 ), (−t

1
2 ,−t

1
2 ) {ε2 − ε1} {ε2 + ε1}

(t
1
2
0 t

1
2
k , t

1
2
0 t

1
2
k ), (−t−

1
2

0 t
1
2
k ,−t

− 1
2

0 t
1
2
k ) {ε2 − ε1} {ε1, ε2}

(1, t), (−1,−t) {ε1} {ε2 − ε1, ε2 + ε1}
(±1, t

1
2
0 t

1
2
k ), (±1,−t−

1
2

0 t
1
2
k ), {ε1} {ε2}

(4.4)

This classification is valid under the genericity assumption on the parameters (4.1), which guaran-
tees that none of these representatives are in the W0-orbit of another.

The following analysis of modules of central character γ = (γ1, γ2) in (4.4) shows that no
irreducible calibrated H2-modules appear at these central characters. As in (3.5), the values r1 and
r2 are defined by

−tr1 = −t
1
2
k t
− 1

2
0 and −tr2 = t

1
2
k t

1
2
0 .

Case (γ1, γ2) = (−1,−tri) for i = 1 or 2: Let H{0} be the subalgebra of H2 generated by

T0,W
±1
1 ,W±1

2 . For each of i = 1 and i = 2, there are two irreducible modules of central character
c = (0, ri):

L+
(0,ri)

= IndH2
H{0}

(C(ri,0)), where C(ri,0) = Cv with

W1v = −triv,
W2v = −v,
T0v = t

1
2
0 v,

and

L−(0,ri) = IndH2
H{0}

(C(−ri,0)), where C(−ri,0) = Cv with

W1v = −t−riv,
W2v = −v,
T0v = −t−

1
2

0 v.

With M = L+
(0,ri)

, the generalized weight space decomposition is

M = Mgen
(ri,0) ⊕M

gen
(0,ri)

, with dim(Mgen
(ri,0)) = dim(Mgen

(0,ri)
) = 2. (4.5)

The element W1W
−1
2 acts on Mgen

(ri,0) with eigenvalues tri . Since the parameters are generic (see

(4.1)), tri 6= t±1 and thus, by (2.43), τ2
1 has no kernel. Thus the intertwiner τ1 : Mgen

(ri,0) →Mgen
(0,ri)

is
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invertible and M = L+
(0,ri)

is irreducible. Replacing ri with −ri in (4.5) yields the decomposition

of M = L−(0,ri) analogously.

Case (γ1, γ2) = (−t
1
2 ,−t

1
2 ): Let H{1} be the subalgebra of H2 generated by T1,W

±1
1 ,W±1

2 . There

are two irreducible modules of central character c = (1
2 ,

1
2):

L+
( 1
2
, 1
2

)
= IndH2

H{1}
(C(− 1

2
, 1
2

)), where C(− 1
2
, 1
2

) = Cv with

W1v = −t−
1
2 v,

W2v = −t
1
2 v,

T1v = t
1
2 v,

and

L−
( 1
2
, 1
2

)
= IndH2

H{1}
(C( 1

2
,− 1

2
)), where C( 1

2
,− 1

2
) = Cv with

W1v = −t
1
2 v,

W2v = −t−
1
2 v,

T1v = −t−
1
2 v.

With M = L+
( 1
2
, 1
2

)
, the generalized weight space decomposition is

M = Mgen

( 1
2
, 1
2

)
⊕Mgen

(− 1
2
, 1
2

)
, with dim(Mgen

( 1
2
, 1
2

)
) = dim(Mgen

(− 1
2
, 1
2

)
) = 2. (4.6)

The element W−1
1 acts on Mgen

( 1
2
, 1
2

)
with eigenvalues −t

1
2 . Since the parameters are generic (see (4.1)),

−t
1
2 6∈ {−t±r1 ,−t±r2} and thus, by (2.42), τ2

0 has no kernel. Thus the intertwiner τ0 : Mgen

( 1
2
,− 1

2
)
→

Mgen

(− 1
2
,− 1

2
)

is invertible and M = L+
( 1
2
, 1
2

)
is irreducible. Similarly, the structure of M = L−

( 1
2
, 1
2

)
is

given by swapping 1
2 and −1

2 in (4.6).

Case (γ1, γ2) = (−tri ,−tri) for i = 1 or 2: Let H{0} be the subalgebra of H2 generated by

T0,W
±1
1 ,W±1

2 . For each of i = 1 and i = 2, there are two irreducible modules of central character
c = (ri, ri):

L+
(ri,ri)

= IndH2
H{0}

(C(ri,−ri)), where C(ri,−ri) = Cv with

W1v = −triv,
W2v = −t−riv,
T0v = t

1
2
0 v,

and

L−(ri,ri) = IndH2
H{0}

(C(−ri,ri)), where C(−ri,ri) = Cv with

W1v = −t−riv,
W2v = −triv,
T0v = −t−

1
2

0 v.

The irreducibility of L+
(ri,ri)

and L−(ri,ri) is not immediate. We will show that M = L+
(ri,ri)

is

irreducible; the irreducibility of L−(ri,ri) is proved analogously.

The generalized weight space decomposition of M = L+
(ri,ri)

is

M = Mgen
(ri,−ri) ⊕M

gen
(−ri,ri) ⊕M

gen
(ri,ri)

with
dim(Mgen

(ri,−ri)) = dim(Mgen
(−ri,ri)) = 1,

dim(Mgen
(ri,ri)

) = 2.
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The element W1W
−1
2 acts on Mgen

(ri,−ri) with eigenvalue tri−(−ri). Since the parameters are generic

(see (4.1)), t2ri 6= t±1 and thus, by (2.43), τ2
1 has no kernel. Thus the intertwiner τ1 : Mgen

(ri,−ri) →
Mgen

(−ri,ri) is invertible. As a H{0}-module, Mgen
(ri,ri)

is irreducible (2-dimensional). So either N =

Mgen
(ri,ri)

is an H2-submodule or M is irreducible.

For the purpose of deriving a contradiction, assume that N = Mgen
(ri,ri)

is an H2-submodule of
M . The space N has a basis

{nγ , T1nγ} with W1nγ = −trinγ , and W2nγ = −trinγ .

By (2.24), W−1
1 T1nγ = T1W

−1
2 nγ + (t

1
2 − t−

1
2 )W−1

1 nγ = T1(−t−ri)nγ + (t
1
2 − t−

1
2 )(−t−ri)nγ and

the action of W−1
1 and W−2

1 on the basis {nγ , T1nγ} are given by the matrices

ρ(W−1
1 ) = (−t−ri)

(
1 (t

1
2 − t−

1
2 )

0 1

)
and ρ(W−2

1 ) = ρ(W−1
1 )2 = t−2ri

(
1 2(t

1
2 − t−

1
2 )

0 1

)
.

Thus

ρ(1−W−2
1 ) = (1− t−2ri)

(
1 −2(t

1
2−t−

1
2 )t−2ri

1−t−2ri

0 1

)
and

ρ(1−W−2
1 )−1 =

1

(1− t−2ri)

(
1 2(t

1
2−t−

1
2 )t−2ri

1−t−2ri

0 1

)
.

Since N is a submodule of M , we have 0 = τ0 = T0 −
(t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )W−1
1

1−W−2
1

(see (2.35)

for the formula for τ0), and so

ρ(T0) = ((t
1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )W−1
1 )(1−W−2

1 )−1

=
(t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−t−ri)
1− t−2ri

1
(t

1/2
k −t

−1/2
k )(t

1
2−t−

1
2 )(−t−ri )

(t
1/2
0 −t−1/2

0 )+(t
1/2
k −t

−1/2
k )(−t−ri )

0 1

(1 2(t
1
2−t−

1
2 )t−2ri

1−t−2ri

0 1

)

=
(t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−t−ri)
1− t−2ri

1 t
1
2−t−

1
2

−tri

(
2(−t−ri )
1−t−2ri

+
(t

1/2
k −t

−1/2
k )

(t
1/2
0 −t−1/2

0 )+(t
1/2
k −t

−1/2
k )(−t−ri

)

)
0 1

 .

Recall, from (3.5), that −tri = ±t±
1
2

k t
1
2
0 , so that

(t
1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−t−ri)
1− t−2ri

=
(t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(±t∓
1
2

k t
− 1

2
0 )

1− t∓1
k t−1

0

= t
1
2
0 .

The eigenvalues of ρ(T0) are t
1
2
0 and, since (T0 − t

1
2
0 )(T0 + t

− 1
2

0 ) = 0, the Jordan blocks of ρ(T0) are
of size 1, forcing

0 =
2(−t−ri)
1− t−2ri

+
(t

1/2
k − t−1/2

k )

(t
1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−t−ri)
=

2(−t−ri)
1− t−2ri

+
(t

1/2
k − t−1/2

k )

(1− t−2ri)t
1/2
0

=
2(−t−ri)t

1
2
0 + (t

1/2
k − t−1/2

k )

(1− t−2ri)t
1/2
0

=
2(±t∓

1
2

k t
− 1

2
0 )t

1
2
0 + (t

1/2
k − t−1/2

k )

(1− t−2ri)t
1/2
0

=
±(t

1/2
k + t

−1/2
k )

(1− t−2ri)t
1/2
0

.
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This is a contradiction since, by the generic condition on parameters in (4.1), 1 6= (−tr1)(−tr2) =

(−t
1
2
k t
− 1

2
0 )(t

1
2
k t

1
2
0 ) = −(t

1
2
k )2. Thus N is not a submodule of M , and so M is irreducible.

Case (γ1, γ2) = (−1,−t): Let H{1} be the subalgebra of H2 generated by T1,W
±1
1 ,W±1

2 . There
are two irreducible modules of central character c = (0, 1):

L+
(0,1) = IndH2

H{1}
(C(−1,0)), where C(−1,0) = Cv with

W1v = −t−1v,
W2v = −v,
T1v = t

1
2 v,

and

L−(0,1) = IndH2
H{1}

(C(1,0)), where C(1,0) = Cv with

W1v = −tv,
W2v = −v,
T1v = −t−

1
2 v.

The irreducibility of L+
(0,1) and L−(0,1) is not immediate. We will show that M = L+

(0,1) is irreducible;

the irreducibility of L−(0,1) is proved analogously.

The generalized weight space decomposition of M = L+
(0,1) is

M = Mgen
(−1,0) ⊕M

gen
(1,0) ⊕M

gen
(0,1) with

dim(Mgen
(−1,0)) = dim(Mgen

(1,0)) = 1,

dim(Mgen
(0,1)) = 2.

The element W−1
1 acts on Mgen

(−1,0) with eigenvalue −t. Since the parameters are generic (see (4.1)),

−t 6∈ {−t±r1 ,−t±r2} and thus, by (2.42), τ2
0 has no kernel. Thus the intertwiner τ0 : Mgen

(−1,0) →
Mgen

(1,0) is invertible. Since Mgen
(0,1) is irreducible as a H{0}-module, we have either N = Mgen

(0,1) is an
H2-submodule or M is irreducible.

For the purpose of deriving a contradiction, assume that N = Mgen
(0,1) is an H2-submodule of M .

The space N has a basis

{nγ , T0nγ} with W1nγ = −nγ , and W2nγ = −tnγ .

By (C2) and (B3),

W1W
−1
2 T0nγ = T0W

−1
1 W−1

2 nγ + ((t
1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )W−1
1 )

W1 −W−1
1

1−W−2
1

W−1
2 nγ

= T0t
−1nγ + ((t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−1))t−1nγ ,

and the action of W1W
−1
2 on the basis {nγ , T0nγ} is given by the matrix

ρ(W1W
−1
2 ) =

(
t−1 ((t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−1))t−1

0 t−1

)
.

Thus

ρ(1−W1W
−1
2 ) =

(
1− t−1 −((t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−1))t−1

0 1− t−1

)

= (1− t−1)

1 −
((t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−1))t−1

1− t−1

0 1

 ,
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and

ρ(1−W1W
−1
2 )−1 =

1

(1− t−1)

1
((t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−1))t−1

1− t−1

0 1

 .

If N is a submodule of M then 0 = τ1 = T1 − t
1
2 +t−

1
2

1−W1W
−1
2

(see (2.35) for the formula for τ1). Thus

ρ(T1) = t
1
2

1
((t

1/2
0 − t−1/2

0 ) + (t
1/2
k − t−1/2

k )(−1))t−1

1− t−1

0 1

 .

Since (T1 − t
1
2 )(T1 + t−

1
2 ) = 0 the Jordan blocks of ρ(T1) are of size one, forcing

0 = (t
1/2
0 − t−1/2

0 )− (t
1/2
k − t−1/2

k ) = t
− 1

2
0 (t

1/2
0 + t

−1/2
k )(t

1/2
0 − t1/2k ).

This is a quadratic equation in t
1
2
0 with two solutions, t

1
2
0 = t

1
2
k and t

1
2
0 = −t−

1
2

k . This is a contradiction

since, by the generic condition on parameters in (4.1), −t−r1 = −t
1
2
0 t
− 1

2
k 6= −1 and −tr2 = t

1
2
0 t

1
2
k 6=

−1. Thus N is not a submodule of M , and so M is irreducible.

5 Representations of Bext
k in tensor space

In this section we give a Schur-Weyl duality approach to the representations of the two boundary
Hecke algebras Hext

k . More generally, in Theorem 5.1 we show that, for a quantum group or
quasitriangular Hopf algebra Uqg and three Uqg-modules M , N and V , there is an action of the
two boundary braid group Bext

k on tensor space M ⊗N ⊗V ⊗k that commutes with the Uqg-action.
This means that there is a weak Schur-Weyl duality pairing between Uqg-modules and Bext

k -modules,
so that if M ⊗N ⊗ V ⊗k is completely reducible as a Uqg-module then

M ⊗N ⊗ V ⊗k ∼=
⊕
λ

L(λ)⊗Bλ
k as (Uqg,Bext

k )-modules,

where L(λ) are irreducible Uqg-modules and Bλ
k are Bext

k -modules. In Section 5.4 we will explain
that when g = gln and M and N and V are appropriately chosen, the Bext-action provides an
action of the two boundary Hecke algebra Hext

k (where the parameters depend on the choice of M
and N). Our main theorem, Theorem 5.5, proves that the Hext

k -modules Bλ
k that appear in tensor

space M ⊗N ⊗ V ⊗k are irreducible, and identifies them in terms of the classification of irreducible
calibrated Hext

k -modules which is given in Theorem 3.3.

5.1 Quantum groups and R-matrices

Let g be a finite-dimensional complex Lie algebra with a symmetric nondegenerate ad-invariant
bilinear form, and let Uqg be the Drinfel’d-Jimbo quantum group corresponding to g. The quantum
group Uqg is a ribbon Hopf algebra with invertible R-matrix

R =
∑
R

R1 ⊗R2 in Uqg⊗ Uqg, and ribbon element v = q−2ρu,
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where u =
∑

R S(R2)R1 and ρ is the staircase weight (see [LR, Corollary (2.15)]). For Uqg-modules
M and N , the map

ŘMN : N ⊗M −→ M ⊗N
n⊗m 7−→

∑
R

R2m⊗R1n

M ⊗N

N ⊗M (5.1)

is a Uqg-module isomorphism. The quasitriangularity of a ribbon Hopf algebra provides the relations
(see, for example, [OR, (2.9), (2.10), and (2.12)]),

ϕ

M ⊗N

N ⊗M

=
ϕ

M ⊗N

N ⊗M
(ϕ⊗ idN )ŘMN = ŘMN (idN ⊗ ϕ),

for any isomorphism ϕ : M →M ,

M ⊗N ⊗ V

V ⊗N ⊗M

=

M ⊗N ⊗ V

V ⊗N ⊗M

(ŘMN ⊗ idV )(idN ⊗ ŘMV )(ŘNV ⊗ idM ) = (idM ⊗ ŘNV )(ŘMV ⊗ idN )(idV ⊗ ŘMN ),

M ⊗ (N ⊗ V )

(N ⊗ V )⊗M

=

M ⊗N ⊗ V

N ⊗ V ⊗M

(M ⊗N)⊗ V

V ⊗ (M ⊗N)

=

M ⊗N ⊗ V

V ⊗M ⊗N

(ŘM⊗N,V ) = (idM ⊗ ŘNV )(ŘMV ⊗ idN ) (ŘM⊗N,V ) = (idM ⊗ ŘNV )(ŘMV ⊗ idN ). (5.2)

For a Uqg-module M define

CM : M −→ M
m 7−→ vm

so that CM⊗N = (ŘMN ŘNM )−1(CM ⊗ CN ) (5.3)

(see [Dr, Prop. 3.2]). Let L(λ) denote the simple Uqg-module generated by a highest weight vector
v+
λ of weight λ. Then

CL(λ) = q−〈λ,λ+2ρ〉idL(λ) (5.4)
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(see [LR, Prop. 2.14] or [Dr, Prop. 5.1]). From (5.4) and (5.3), it follows that if M = L(µ) and
N = L(ν) are finite-dimensional irreducible Uqg-modules of highest weights µ and ν respectively,

then ŘMN ŘNM acts on the L(λ)-isotypic component L(λ)⊕c
λ
µν of the decomposition

L(µ)⊗ L(ν) =
⊕
λ

L(λ)⊕c
λ
µν by the scalar q〈λ,λ+2ρ〉−〈µ,µ+2ρ〉−〈ν,ν+2ρ〉. (5.5)

Proposition 5.1. Let g be a finite-dimensional complex Lie algebra with a symmetric nondegen-
erate ad-invariant bilinear form, let Uqg be the corresponding Drinfeld-Jimbo quantum group, and
let Z = Z(Ug) be the center of U . Let M , N , and V be Ug-modules. Then M ⊗ N ⊗ V ⊗k is a
ZBextk -module with action given by

Φ: ZBextk −→ EndUqg(M ⊗N ⊗ V ⊗k)
Ti 7−→ Ři, for i = 1, . . . , k − 1,

X1 7−→ Ř2
M ,

Y1 7−→ Ř2
N ,

Z1 7−→ Ř2
0,

P 7−→ (ŘMN ŘNM )⊗ id
⊗(k)
V ,

(5.6)

where

Ř2
0 = (Ř(M⊗N)V ŘV (M⊗N))⊗ id

⊗(k−1)
V , Ři = idM ⊗ id

⊗(i−1)
V ⊗ ŘV V ⊗ id

⊗(k−i−1)
V

for i = 1, . . . , k − 1,

Ř2
M = ((idM ⊗ ŘNV )((ŘMV ŘVM )⊗ idN )(idM ⊗ Ř−1

NV ))⊗ id⊗k−1
V , and

Ř2
N = idM ⊗ (ŘNV ŘV N )⊗ id

⊗(k−1)
V ,

with ŘMV as in (5.1). Moreover, this ZBextk action commutes with the Uqg-action on M⊗N⊗V ⊗k.

Proof. This proof follows the proof of [OR, Prop. 3.1], checking that the images of the generators
Ti, X1, Y1, and Z1 under the map Φ satisfy the relations of presentation (a) of the two boundary
braid group in Theorem 2.1, as well as relations (2.15) and (2.16) for the extended two boundary
braid group. For i ∈ {1, . . . , k − 2},

Φ(Ti)Φ(Ti+1)Φ(Ti) = ŘiŘi+1Ři = = = Ři+1ŘiŘi+1 = Φ(Ti+1)Φ(Ti)Φ(Ti+1).

Using the notation ŘM⊗N for the endomorphism Ř0, we have that, for L = M,N, or M ⊗N ,

Ř2
LŘ1Ř

2
LŘ1 = = = = = Ř1Ř

2
LŘ1Ř

2
L,
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which establishes

Φ(A)Φ(T1)Φ(A)Φ(T1) = Φ(T1)Φ(A)Φ(T1)Φ(A) for A = X1, Y1, and Z1, respectively.

The formula
Φ(Z1) = Ř2

0 = Ř2
M Ř

2
N = Φ(X1)Φ(Y1)

is a consequence of the third set of relations (cabling relations) in (5.2). Finally, the relations

Φ(P )Φ(Y1)Φ(P ) = Φ(Z−1
1 )Φ(Y1)Φ(Z1) and Φ(P )Φ(X1)Φ(P ) = Φ(Z−1

1 )Φ(X1)Φ(Z1)

follow from the first and second sets of relations for Ř-matrices in (5.2) by the same braid com-
putation by which the identities (2.13) were derived. The remainder of the relations (commuting
generators) follow directly from the definitions of Φ(Ti), Φ(X1), Φ(Y1), Φ(Z1), and Φ(P ).

5.2 The Bext
k -modules Bλ

k

Assume that M , N , and V are finite-dimensional Uqg-modules and that ω is the highest weight of
V so that

V = L(ω) is irreducible of highest weight ω.

Let P(j) be an index set for the irreducible Uqg-modules that appear in M ⊗N ⊗V ⊗j and let P(−1)

be an index set for the irreducible Uqg-modules in M . The Bratteli diagram for the sequence of
Uqg-modules

M, M ⊗N, M ⊗N ⊗ V, M ⊗N ⊗ V ⊗ V, · · · (5.7)

is the graph with

vertices on level j labeled by µ ∈ P(j), for j ∈ Z≥−1,

mµλ edges µ→ λ for µ ∈ P(j) and λ ∈ P(j+1), and where L(µ)⊗ V ∼=
⊕

λ∈P(j+1) L(λ)⊕mµλ ,

each edge µ→ λ labeled with 1
2(〈λ, λ+ 2ρ〉 − 〈ω, ω + 2ρ〉 − 〈µ, µ+ 2ρ〉).

A specific example in the case where g = gln is given in Figure 3.
If M and N are finite-dimensional then M ⊗ N ⊗ V ⊗k is completely decomposable as a Uqg-

module. If Bλ
k is the space of highest weight vectors of weight λ in M ⊗N ⊗ V ⊗k, then

M ⊗N ⊗ V ⊗k ∼=
⊕
λ∈P(k)

L(λ)⊗Bλ
k , as (Uqg,Bext

k )-bimodules. (5.8)

The Bext
k -modules Bλ

k are not necessarily irreducible and not necessarily nonisomorphic, though they
will be in the (mostly rare but very important) settings where Φ(CBext

k ) = EndUqg(M ⊗N ⊗V ⊗k).
Recall from (2.9) that

Zi = Ti−1 · · ·T1Z1T1 · · ·Ti−1 for i = 1, . . . , k.

The following proposition shows that, as operators on Bλ
k , the Zi are simultaneously diagonalizable

and have eigenvalues determined by the edges on the Bratteli diagram. The proof follows the same
schematic that is used, for example, in the proof of [OR, Proposition 3.2].
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Proposition 5.2. Assume M , N , and V are finite-dimensional Uqg modules with V irreducible.
For λ ∈ P(k), let Bλ

k be the Bext
k -module in (5.8) and let

T λk = {paths S = (S(−1) e0→ S(0) e1→ . . .
ek→ S(k) = λ) in the Bratteli diagram}.

Then
Bλ
k has a basis {vS | S ∈ Tk}

of simultaneous eigenvectors for the action of P,Z1, . . . , Zk, with

PvS = q2e0vS and ZivS = q2eivS , for i = 1, . . . , k,

so that the eigenvalues of P and Z1, . . . , Zk on vS are determined by the labels on the edges of the
path S.

Proof. The basis {vS | S ∈ T λk } is constructed inductively. For the initial case, choose any basis

B̂−1 of the highest weight vectors in M , and let B̂ν
−1 be the set of basis elements in B̂−1 of weight

ν. For the inductive step, assume that B̂µ
k−1 = {vT | T ∈ T µk−1} has been constructed so that

M ⊗N ⊗ V ⊗(k−1) =
⊕

µ∈P (k−1)

L(µ)⊗Bµ
k−1 =

⊕
µ∈P (k−1)

L(µ)⊗

 ∑
T∈T µk−1

CvT

 ,

The set B̂µ
k−1 = {vT | T ∈ T µk−1} is a basis of the vector space of highest weight vectors of weight µ

in M ⊗N ⊗ V ⊗(k−1) that is indexed by the paths T = (T (−1) → · · · → T (k−1) = µ) of length k in
the Bratteli diagram that end at µ. In this form L(µ)⊗CvT denotes the irreducible Uqg-submodule
of M ⊗N ⊗ V ⊗(k−1) with highest weight vector vT of weight µ.

Then, for each T = (T (−1) → · · · → T (k−1) = µ) in T µk−1, choose a basis

B̂T→λ
k = {vS | S = (T (−1) → · · · → T (k−1) = µ→ λ)}

of highest weight vectors in the submodule of M ⊗N ⊗ V ⊗k given by

(L(µ)⊗ CvT )⊗ V = L(µ)⊗ V ⊗ CvT =
∑
µ→λ

L(λ)⊗ CvS .

The basis B̂T→λ
k is indexed by the edges in the Bratteli diagram from µ to a partition λ on level k.

Then
B̂λ
k =

⊔
µ

⊔
T∈T µk−1

T T→λk is a basis of Bλ
k .

The central element q−2ρu in Uqg acts on the submodule L(µ)⊗ CvT of M ⊗N ⊗ V ⊗(k−1) by the
constant q−〈µ,µ+2ρ〉. From (5.2), (5.3), and (5.4) it follows that Zi acts on M ⊗N ⊗ V ⊗k by

Φ(Zi) = Ři−1 · · · Ř1Ř
2
0Ř1 · · · Ři−1 = ŘM⊗N⊗V ⊗(i−1),V ŘV,M⊗N⊗V ⊗(i−1) ⊗ id

⊗(k−i)
V

= (CM⊗N⊗V ⊗(i−1) ⊗ CV )C−1
M⊗N⊗V ⊗i ⊗ id

⊗(k−i)
V

=
∑
λ,µ,ν

q〈λ,λ+2ρ〉−〈µ,µ+2ρ〉−〈ω,ω+2ρ〉πλµω ⊗ id
⊗(k−i)
V , (5.9)
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where πλµν : M ⊗N ⊗ id⊗iV →M ⊗N ⊗ id⊗iV is the projection onto the L(λ) isotypic component of

(L(µ)⊗Bµ
i−1)⊗ V . Thus Zi acts diagonally on the basis B̂λ

k and, by the definition of the labels of
edges in the Bratteli diagram in (5.7), the eigenvalues of ZivS = q2eivS where ei is the label on the
edge S(i) → S(i+1) in the Bratteli diagram.

5.3 Some tensor products for g = gln

The finite-dimensional irreducible polynomial representations L(λ) of Uqgln are indexed by elements
of

P+
poly = {λ = λ1ε1 + · · ·+ λnεn, | λi ∈ Z, λ1 ≥ · · · ≥ λn ≥ 0} .

Use

ρ = (n− 1)ε1 + (n− 2)ε2 + · · ·+ εn−1 =

n∑
i=1

(n− i)εi, (5.10)

as in [Mac1, I (1.13)]. Identify each element λ = λ1ε1 + · · ·+ λnεn in P+
poly with the corresponding

partition having λi boxes in row i so that, for example,

λ = 3ε1 + 2ε2 + 2ε3 = .

The content of the box in row i and column j of a partition λ is

c(box) = j − i = (diagonal number of box), (5.11)

where the diagonals are numbered by the elements of Z from southwest to northeast, with the
northwest corner box of a partition being in diagonal 0.

The representation L(ε1) = L(�) is the standard n-dimensional representation of Uqgln. When
ν = ε1, the decompsition in (5.5) is given by

L(µ)⊗ L(�) ∼=
⊕
λ∈µ+

L(λ), (5.12)

where µ+ is the set of partitions obtained by adding a box to µ. If λ ∈ µ+ and λ/µ is the box
added to µ to obtain λ, then the action in (5.5) is given by

〈λ,λ+ 2ρ〉 − 〈µ, µ+ 2ρ〉 − 〈ε1, ε1 + 2ρ〉
= 〈µ+ εi, µ+ εi + 2ρ〉 − 〈µ, µ+ 2ρ〉 − 〈ε1, ε1 + 2ρ〉 = 2µi + 1 + 2ρi − 1− 2ρ1

= 2µi + 2(n− i)− 2(n− 1) = 2µi − 2i+ 2 = 2c(λ/µ) (5.13)

(see [Mac1, I (5.16) and (8.4)]). Since 〈ε1, ε1 + 2ρ〉 = 2(n− 1) + 1 = 2n− 1, it follows by induction
on the number of boxes in a partition λ that

〈λ, λ+ 2ρ〉 = (2n− 1)|λ|+
∑

box∈λ
2c(box). (5.14)

For µ, ν ∈ P+
poly, the decomposition of the tensor product L(µ) ⊗ L(ν) can be calculated us-

ing the Littlewood-Richardson rule (see [Mac1, Ch. I (9.2)]). When µ and ν are rectangles the

36



decomposition is multiplicity free by the following theorem. In equation (5.15), A consists of the
boxes that are in the union of the rectangles (ac) and (bd) (placed with northwest corner at (1, 1)),
and the dashed rectangular regions are the min(a, b)× d rectangle B with northwest corner box at
(max(a, b) + 1, 1), and the d×min(a, b) rectangle B′ with northwest corner at (1, c+ 1).

Proposition 5.3. (See [St, Lem. 3.3], [Ok, Thm 2.4]) Let a, b, c, d ∈ Z≥0 such that c ≥ d. For
µ ⊆ (min(a, b)d) let

A

B
B′

a b

b

d
c

d

µ

µc

if a ≥ b:

µ̊ =

A

B
B′

b a

a

d
c

d

µ

µc

if a ≤ b:

µ̊ =
(5.15)

so that µc is the 180◦ rotation of the complement of µ in a min(a, b) × d rectangle. Denote the
rectangular partition with c rows of length a by (ac). Then

L((ac))⊗ L((bd)) ∼=
⊕

µ⊆(min(a,b)d)

L(µ̊) ∼=
⊕
ν∈P(0)

L(ν), (5.16)

where P(0) = {µ̊ | µ ⊆ ((min(a, b)d)}.

For an example of the decomposition in (5.16), see Figure 3, where the decomposition of L(ac) ⊗
L(22) for a, c ≥ 2 is indicated in level 0 of the Bratteli diagram (see the description following (5.23)
for explanation of the Bratteli diagram).

The value in (5.5) for the product in (5.16) is given by using (5.14) to compute

〈µ̊, µ̊+ 2ρ〉 − 〈(ac), (ac) + 2ρ〉 − 〈(bd), (bd) + 2ρ〉

= (2n− 1)
(
|̊µ| − |(ac)| − |(bd)|

)
+

 ∑
box∈µ̊

2c(box)

− ∑
box∈(ac)

2c(box)−
∑

box∈(bd)

2c(box)

= 0 +
∑

box∈µ̊
2c(box)− ac(a− c)− bd(b− d). (5.17)

5.4 Irreducible Hext
k -modules in M ⊗N ⊗ V ⊗k

In this subsection we provide, for g = gln, specific highest weight modules M , N , and V such that
the Bext

k -action factors through the extended two boundary Hecke algebra Hext
k . In these cases the

Bext
k -modules Bλ

k in (5.8) are calibrated Hext
k -modules. Theorem 5.5 identifies the Bλ

k for these
cases explicitly in terms of the indexings of calibrated Hext

k -modules given in Theorem 3.3 and
Proposition 3.1.
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Recall that, as defined in Section 2.2, the extended two boundary Hecke algebra Hext
k is the

quotient of the group algebra of the extended two boundary braid group CBext
k by the relations

(X1 − a1)(X1 − a2) = 0, (Y1 − b1)(Y1 − b2) = 0, and (Ti − t
1
2 )(Ti + t−

1
2 ) = 0, (5.18)

i = 1, . . . , k − 1, for fixed a1, a2, b1, b2, t
1
2 ∈ C×.

Theorem 5.4. If g = gln, M = L((ac)), N = L((bd)), and V = L(�),

a1 = q2a, a2 = q−2c, b1 = q2b, b2 = q−2d, and t
1
2 = q, (5.19)

then the map Φ from Proposition 5.1 gives an action of Hext
k on M ⊗ N ⊗ V ⊗k commuting with

that of Uqgln.

Proof. The module M ⊗ V decomposes as

M ⊗ V = L

( a

c

)
⊕ L

(
a

c

)
. (5.20)

By (5.5) and (5.13), ŘMV ŘVM acts on the first summand by the constant q2a and on the second
summand by the constant q−2c. So

(Φ(X1)− q2a)(Φ(X1)− q−2c) = 0; similarly (Φ(Y1)− q2b)(Φ(Y1)− q−2d) = 0

by replacing (ac) with (bd). The relation

(Φ(Ti)− q)(Φ(Ti) + q−1) = 0

follows similarly by considering the tensor product V ⊗ V = L(�)⊗ L(�).

From (2.17), (5.19), and (3.5),

a1 = q2a, a2 = q−2c, b1 = q2b, b2 = q−2d, t
1
2 = q,

t
1
2
k = a

1
2
1 (−a2)−

1
2 = −iqa+c and t

1
2
0 = b

1
2
1 (−b2)−

1
2 = −iqb+d,

−tr1 = −t
1
2
k t
− 1

2
0 = −q(a+c)−(b+d), and −tr2 = t

1
2
k t

1
2
0 = −qa+c+b+d.

(5.21)

Using these conversions, the genericity conditions in (4.1) become requirements that q is not a root
of unity and

−q(a+c)−(b+d),−qa+c+b+d 6∈ {1,−1, q±1,−q±1, q±2,−q±2} and − q(a+c)−(b+d) 6= −q±(a+c+b+d).

In the context of Theorem 5.4, these genericity conditions are

q is not a root of unity, a, b, c, d ∈ Z>0 and (a+ c)− (b+ d) 6∈ {0,±1,±2}. (5.22)

In the setting of Theorem 5.4, equation (5.8) provides Hext
k -modules Bλ

k with

M ⊗N ⊗ V ⊗k ∼=
⊕
λ∈P(k)

L(λ)⊗Bλ
k , as (Uqg,Hext

k )-bimodules. (5.23)
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Theorem 5.5 below will accomplish our primary goal for this paper by identifying the module

Bλ
k explicitly as a calibrated Hext

k -module H
(z,c,J)
k as constructed in Theorem 3.3. The results of

(5.12), (5.13), and Proposition 5.3 show that the Bratteli diagram of (5.7) has P(−1) = {(ac)},
P(0) = {µ̊ | µ ⊆ ((min(a, b))d)} as in Proposition 5.3 and, for j ∈ Z≥0,

P(j) = { partitions obtained by adding j boxes to a partition in P(0) }.

By (5.17), if µ̊ ∈ P(0) then there is an edge

(ac)
e0(µ̊)−−−→ µ̊ with label e0(µ̊) = −ac

2
(a− c)− bd

2
(b− d) +

∑
box∈µ̊

c(box). (5.24)

For j ≥ 0, the edges µ→ λ from level j to level j+ 1 correspond to adding a single box to µ to get
λ, and are labeled by c(λ/µ), the content of the box λ/µ:

µ
c(λ/µ)−−−−→ λ for edges from level j to level j + 1. (5.25)

The case when M = L(ac) and N = L(22) with a, c > 2 is illustrated in Figure 3.
Let λ ∈ P(k). Define

c0 = −1
2(k(a− c+ b− d) + ac(a− c) + bd(b− d)) +

∑
box∈λ

c(box) and z = (−1)kq2c0 . (5.26)

Using notation as in (5.15), let

µc = λ ∩ B′ and let S
(0)
max be the corresponding µ̊. (5.27)

Define the shifted content of a box by

c̃(box) = c(box)− 1
2(a− c+ b− d), and let c = (c1, . . . , ck) with 0 ≤ c1 ≤ c2 ≤ · · · ≤ ck (5.28)

be the sequence of absolute values of the shifted contents of the boxes in λ/S
(0)
max arranged in

increasing order. Index the boxes of λ/S
(0)
max with 1, 2 . . . , k so that

(a) if i < j then |c̃(boxi)| ≤ |c̃(boxj)|,
(b) if i < j and c̃(boxi) = c̃(boxj) < 0 then boxi is SE of boxj ,
(c) if i < j and c̃(boxi) = c̃(boxj) ≥ 0 then boxi is NW of boxj ,
(d) if i < j and c̃(boxi) = −c̃(boxj), then c̃(boxi) ≤ 0 ≤ c̃(boxj),

and define

J = {εi | c̃(boxi) ∈ {−r1,−r2}}

t

εj − εi
∣∣∣∣∣∣
c̃(boxj) = c̃(boxi) + 1 > 0 and boxj is NW of boxi, or
c̃(boxj) = c̃(boxi)− 1 < 0 and boxj is SE of boxi, or
c̃(boxj) = −c̃(boxi)− 1 < 0 < c̃(boxi)

 (5.29)

t

εj + εi

∣∣∣∣∣∣
c̃(boxj) = −1 and c̃(boxi) = 0 and boxj is SE of boxi, or
c̃(boxj) = 1

2 and c̃(boxi) = −1
2 and boxj is NW of boxi, or

c̃(boxj) = −1
2 and c̃(boxi) = −1

2

 ,

so that J is a subset of P (c), where P (c) is as defined in (3.7). See Examples 3 and 4 following
the proof of Theorem 5.5.
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level −1

level 0

level 1

4a

3a
-c

2
(a

-c
+

1
) 2

(a
-c-1

)

a
-3c

-4c

-c
a

-c+1

-c-1

a-1

-c-1

a+1

-c+1

a+1
a-1

-c
a

c

a

a+2 a+2 a+2 a-2 -c+2 -c+2

a-2 a-2 -c+2 -c-2 -c-2 -c-2

Figure 3: Levels −1, 0, and 1 of a Bratteli diagram encoding isotypic components of M ⊗N ⊗ V
where a, c > 2 and b = d = 2. The edges from level −1 to level 0 are labeled by e0(T (0)) as in
(5.17); the edges from level 0 to 1 are labeled by the content of the box added.
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Theorem 5.5. Let g = gln and let M = L(ac), N = L(bd) and V = L(�) so that Hext
k acts on

M ⊗N ⊗ V ⊗k as in Theorem 5.4. Assume that the genericity conditions of (5.22) hold so that q
is not a root of unity, a, b, c, d ∈ Z>0 and (a + c)− (b + d) 6∈ {0,±1,±2}. For λ ∈ P(k), let Bλ

k be
the Hext

k -module of (5.23) and define z, c and J as in (5.26), (5.28), and (5.29). Then

Bλ
k
∼= H

(z,c,J)
k as Hext

k -modules. (5.30)

Proof. By Proposition 5.2, Bλ
k is a calibrated Hext

k module. Therefore Bλ
k has a composition series

with factors that are irreducible calibratedHext
k -modules. By Theorem 3.3, each factor is isomorphic

to some H
(z,c,J)
k where (c, J) is a skew local region, and (z, c, J) is determined by the eigenvalues

of the action of W0,W1, . . . ,Wk. By Proposition 5.2, the simultaneous eigenbasis {vS | S ∈ T λk }
Bλ
k is indexed by

T λk = {paths S = ((ac)→ S(0) → S(1) → · · · → S(k) = λ) in the Bratteli diagram}. (5.31)

To determine which H
(z,c,J)
k appear as composition factors of Bλ

k it is necessary to compute the
eigenvalues of the action of the Wi’s on the basis vectors vS as follows.

By (5.24), (5.25), and the formulas in Proposition 5.2,

Φ(P )vS = q2e0(S(0))vS and Φ(Zi)vS = q2c(S(i)/S(i−1))vS for i = 1, . . . , k.

Using (2.18) and (5.19), Wi = −(a1a2b1b2)−
1
2Zi with a1 = q2a, a2 = q−2c, b1 = q2b, and b2 = q−2d,

and thus

Φ(Wi)vS = −(a1a2b1b2)−
1
2 Φ(Zi)vS = −q−(a−c+b−d)q2c(S(i)/S(i−1)

vS = −q2c̃(S(i)/S(i−1))vS . (5.32)

Then Φ(PW1 · · ·Wk)vS = (−1)kq2(e0(S(0))+c(S(1)/S(0))+···+c(S(k)/S(k−1)))−k(a−c+b−d)vS so that, with
c0 and z as in (5.26),

Φ(W0) = Φ(PW1 · · ·Wk)vS = (−1)kq2c0vS = zvS . (5.33)

Let S = ((ac)→ S(0) → S(1) → · · · → S(k) = λ) be a path to λ in the Bratteli diagram. In the

context of the diagrams in (5.15), the partitions S(0) and S
(0)
max differ by moving some boxes from µ

to µc (from the NW border of λ/S
(0)
max in B to the NW border of λ/S(0) in B′). Thus the sequence

c = (c1, . . . , ck), where

c1, . . . , ck are the values |c̃(S(1)/S(0))|, . . . , |c̃(S(k)/S(k−1))| arranged in increasing order,

coincides with c as defined in (5.28). Let wS ∈ W0 be the minimal length element such that

wSc = wS(c1, . . . , ck) = (cw−1
S (1), . . . , cw−1

S (k)) = (c̃(S(1)/S(0)), . . . , c̃(S(k)/S(k−1))), (5.34)

where c−i = −ci for i ∈ {1, . . . , k}. The signed permutation wS is the unique signed permutation
such that

wSc = (c̃(S(1)/S(0)), . . . , c̃(S(k)/S(k−1))) and R(wS) ∩ Z(c) = ∅,
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where Z(c) is as in (3.6). If the boxes of λ/S(0) are indexed according to the same conditions as
just before (5.29), then wS is the signed permutation given by

wS(i) = sgn(c̃(boxi))(entry in boxi of S),

where the path S is identified with the standard tableau of shape λ/S(0) that has S(j)/S(j−1) filled
with j.

The basis vector vS appears in a composition factor isomorphic to H
(z,c,J)
k where

J = R(wS) ∩ P (c), where R(wS) = R1 tR2 tR3 and P (c) = P1 t P2 t P3,

as defined in (3.2) and (3.7), are given by

R1 = {εi | i > 0 and wS(i) < 0}, P1 = {εi | ci ∈ {r1, r2}},
R2 = {εj − εi | i < j and wS(i) > wS(j)}, P2 = {εj − εi | 0 < i < j, cj = ci + 1},
R3 = {εj + εi | i < j and −wS(i) > wS(j)}, P3 = {εj + εi | 0 < i < j, cj = −ci + 1}.

To describe J = (R1 ∩ P1) t (R2 ∩ P2) t (R3 ∩ P3) in terms of the boxes in λ, first record that

R1 ∩ P1 = {εi | i > 0 and wS(i) < 0} ∩ {εi | ci ∈ {r1, r2}} = {εi | c̃(boxi) = {−r1,−r2}}.

Next analyze

R2 ∩ P2 = {εj − εi | i < j and w(i) > w(j)} ∩ {εj − εi | 0 < i < j, cj = ci + 1}.

Since 0 ≤ ci and cj = ci + 1, we have cj ≥ 1.

Case 1: c̃(boxi) ≥ 0, so that c̃(boxj) = ±(c̃(boxi) + 1).
Case 1a: c̃(boxj) = c̃(boxi) + 1.

If boxj is NW of boxi then w(j) < w(i) and εj − εi ∈ J .
If boxj is SE of boxi then w(j) > w(i) and εj − εi 6∈ J .

Case 1b: c̃(boxj) = −(c̃(boxi) + 1).
Then w(j) < 0 < w(i) so that w(j) < w(i) and εj − εi ∈ J .

Case 2: c̃(boxi) < 0, so that c̃(boxj) = ±(−c̃(boxi) + 1).
Case 2a: c̃(boxj) = c̃(boxi)− 1 < c̃(boxi) < 0.

If boxj is NW of boxi then −w(j) < −w(i) so that w(i) < w(j) and εj − εi 6∈ J .
If boxj is SE of boxi then −w(j) > −w(i) so that w(i) > w(j) and εj − εi ∈ J .

Case 2b: c̃(boxj) = −c̃(boxi) + 1 > 0 > c̃(boxi).
Then w(i) < 0 and 0 < w(j) so that εj − εi 6∈ J .

Finally, analyze

R3 ∩ P3 = {εj + εi | i < j and −w(i) > w(j)} ∩ {εj + εi | 0 < i < j, cj = −ci + 1}.

Since 0 ≤ ci and cj = −ci + 1 ≥ ci, we have 0 ≤ ci ≤ 1/2. Since the entries of c are in Z or in
1
2 + Z, the possibilities for (ci, cj) are (0, 1) and (1

2 ,
1
2), and the possibilities for (c̃(boxi), c̃(boxj))
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are (0, 1), (0,−1), (1
2 ,±

1
2), or (−1

2 ,±
1
2).

Case 1: c̃(boxj) = 1 and c̃(boxi) = 0.
If boxj is NW of boxi then 0 < w(j) < w(i) so that −w(i) < 0 < w(j) and εj + εi 6∈ J .
If boxj is SE of boxi then 0 < w(i) < w(j) so that −w(i) < 0 < w(j) and εj + εi 6∈ J .

Case 2: c̃(boxj) = −1 and c̃(boxi) = 0.
If boxj is NW of boxi then −w(j) < w(i) so that −w(i) < w(j) and εj + εi 6∈ J .
If boxj is SE of boxi then −w(j) > w(i) so that −w(i) > w(j) and εj + εi ∈ J .

Case 3: c̃(boxj) = 1
2 and c̃(boxi) = 1

2 .
Then 0 < w(i) < w(j) so that −w(i) < 0 < w(j) and εj + εi 6∈ J .

Case 4: c̃(boxj) = −1
2 and c̃(boxi) = 1

2 .

This case cannot occur since, when indexing the boxes of λ/S(0),
the boxes of shifted content −1

2 are numbered before the boxes of shifted content 1
2 .

Case 5: c̃(boxj) = 1
2 and c̃(boxi) = −1

2 .
If boxj is NW of boxi then w(i) < 0 and w(j) < −w(i) so that εj + εi ∈ J .
If boxj is SE of boxi then w(i) < 0 and −w(i) < w(i) so that εj + εi 6∈ J .

Case 6: c̃(boxj) = −1
2 and c̃(boxi) = −1

2 .
Then 0 < −w(j) < −w(i) and w(j) < 0 < −w(i) so that εj + εi ∈ J .

This analysis shows that J = R(wS)∩P (c) = (R1∩P1)t (R2∩P2)t (R3∩P3) is as given in (5.29).
A consequence of the description of J in (5.29) is that J = R(wS)∩ P (c) is independent of the

choice of S ∈ T λk . It follows that all composition factors of Bλ
k are isomorphic to H

(z,c,J)
k .

Let S, T ∈ T λk such that vS and vT have the same eigenvalues for W0, . . . ,Wk. By defini-

tion of T λk , S(k) = T (k) = λ. Since WkvS = −qc̃(S(k)/S(k−1))vS = −qc̃(λ/S(k−1))vS and WkvT =

−qc̃(T (k)/T (k−1))vT = −qc̃(λ/T (k−1))vT , we have c̃(λ/T (k−1)) = c̃(λ/S(k−1)) which implies that T (k−1) =
S(k−1). Using this and the fact that the eigenvalues of Wk−1 on vS and vT are the same, implies
similarly that T (k−2) = S(k−2). Induction gives that

S(0) = T (0), . . . , S(k) = T (k) so that S = T.

Thus dim((Bλ
k )γ) ≤ 1 (in the notation of (3.1)) and Bλ

k
∼= H

(z,c,J)
k as Hext

k -modules.

In the course of the proof of Theorem 5.5 we have also established the following result, which
deserves mention.

Corollary 5.6. Keeping the notations of Theorem 5.5, let λ ∈ P(k) and S ∈ T λk , and let wS be the
signed permutation defined in (5.34). Then

T λk −→ F (c,J)

S 7−→ wS
is a bijection.

Example 3. Let M = L(ac) = L(6) and N = L(bd) = L(3) so that

a = 6, c = 1, b = 3, d = 1, r1 = 3
2 , and r2 = 11

2 .

The partition λ = (10, 8) is in P(k) with k = 9. Then we draw λ as the (marked) partition

λ = (10, 8) = . Here, S
(0)
max = (6, 3)
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is indicated by the shaded boxes. The boxes of λ/S
(0)
max have

indexing 3 1 2 4

5

6

7 8 9
,

and shifted contents - 32 - 12
1
2

3
2

5
2

5
2

7
2

9
2

11
2
.

Example 4. Let M = L(ac) = L(54) and N = L(bd) = L(33) so that

a = 5, c = 4, b = 3 d = 3, r1 = 3
2 , and r2 = 15

2 .

The partition λ = (9, 9, 6, 6, 6, 2, 1, 1, 1) is in P(k) with k = 12. For this partition S
(0)
max =

(7, 6, 5, 5, 3, 2, 1); and one tableau S ∈ T λk with S(0) = S
(0)
max (where the shaded portion of λ corre-

sponds to S(0)) is

S =

r1

−r1

−r2

r2

1 2
3 4 5

6
7

8 9 10

11
12

; and

r1

−r1

−r2

r2

8 11
6 7 9

5
4

3 1 2

10
12

indicates the indexing of the boxes in λ/S
(0)
max. The contents of the boxes S(i)/S(i−1) for i =

1, . . . , k are 7, 8, 5, 6, 7, 3, 2,−1, 0, 1,−7,−8; and since −1
2(a − c + b − d) = −1

2 , the shifted con-

tents c̃(S(i)/S(i−1)) for i = 1, . . . , k are

13

2
,

15

2
,

9

2
,

11

2
,

13

2
,

5

2
,

3

2
, −3

2
, −1

2
,

1

2
, −15

2
, −17

2
,

respectively. The sum of the contents of the boxes in S
(0)
max is 1, the sum of the contents of the boxes

in λ is 23, c0 = −1
2(12(5− 4 + 3− 3) + 5 · 4(5− 4) + 3 · 3(3− 3)) + 24 = 8,

z = q16, and c = (1
2 ,

1
2 ,

3
2 ,

3
2 ,

5
2 ,

9
2 ,

11
2 ,

13
2 ,

13
2 ,

15
2 ,

15
2 ,

17
2 )
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is the sequence of absolute values of the shifted contents, arranged in increasing order. Using (5.34),

wS =

(
1 2 3 4 5 6 7 8 9 10 11 12
−9 10 −8 7 6 3 4 1 5 −11 2 −12

)
,

P (c) =


ε3 , ε4, ε10 , ε11, ε2 − ε−1,

ε3 − ε1, ε4 − ε1, ε3 − ε2 , ε4 − ε2 , ε5 − ε3, ε5 − ε4 ,

ε7 − ε6, ε8 − ε7 , ε9 − ε7,

ε10 − ε8 , ε11 − ε8, ε10 − ε9 , ε11 − ε9 , ε12 − ε10 , ε12 − ε11 ,

 ,

R(wS) =



ε1, ε3 , ε10 , ε12

ε10 − ε1, ε12 − ε1, ε3 − ε2 , ε4 − ε2 , ε5 − ε2, ε6 − ε2, ε7 − ε2, ε8 − ε2, ε9 − ε2, ε10 − ε2,

ε11 − ε2, ε12 − ε2, ε10 − ε3, ε12 − ε3, ε5 − ε4 , ε6 − ε4, ε7 − ε4, ε8 − ε4, ε9 − ε4, ε10 − ε4,

ε11 − ε4, ε12 − ε4, ε6 − ε5, ε7 − ε5, ε8 − ε5, ε9 − ε5, ε10 − ε5, ε11 − ε5, ε12 − ε5, ε8 − ε6,

ε10 − ε6, ε11 − ε6, ε12 − ε6, ε8 − ε7 , ε10 − ε7, ε11 − ε7, ε12 − ε7, ε10 − ε8 , ε12 − ε8,

ε10 − ε9 , ε11 − ε9 , ε12 − ε9, ε12 − ε10 , ε12 − ε11 ,

ε3 + ε1, ε4 + ε1, ε5 + ε1, ε6 + ε1, ε7 + ε1, ε8 + ε1, ε9 + ε1, ε10 + ε1, ε11 + ε1, ε12 + ε1,
ε10 + ε2, ε12 + ε2, ε4 + ε3, ε5 + ε3, ε6 + ε3, ε7 + ε3, ε8 + ε3, ε9 + ε3, ε10 + ε3, ε11 + ε3,
ε12 + ε3, ε10 + ε4, ε12 + ε4, ε10 + ε5, ε12 + ε5, ε10 + ε6, ε12 + ε6, ε10 + ε7, ε12 + ε7,
ε10 + ε8, ε12 + ε8, ε10 + ε9, ε12 + ε9, ε11 + ε10, ε12 + ε10, ε12 + ε11,



,

and J = R(wS)∩P (c) consists of the outlined elements of P (c) (which are the same as the outlined
elements of R(wS)). Another T ∈ T λk is (again, with T (0) indicated by the shaded boxes)

T =

r1

−r1

−r2

r2

4

2

31

10
7
8

6 9 12

5
11

.

Keeping the setting of Theorem 5.5, Proposition 3.1 associates a configuration of 2k boxes to

(c, J). This configuration can be described in terms of the data of λ ∈ P(k) as follows. With S
(0)
max

as defined just before (5.28), let rot(λ/S
(0)
max) be the 180◦ rotation of the skew shape λ/S

(0)
max. Then

the configuration of boxes κ corresponding to (c, J) is κ = rot(λ/S(0)
max) ∪ λ/S(0)

max, (5.35)

so that it is the (disjoint) union of two skew shapes λ/S
(0)
max and rot(λ/S

(0)
max), placed with

rot(λ/S(0)) northwest of λ/S(0),

λ/S(0) positioned so that the contents of its boxes are (c̃(S(1)/S(0)), . . . , c̃(S(k)/S(k−1))),

rot(λ/S(0)) positioned so that the contents of its boxes are (−c̃(S(k)/S(k−1)), . . . ,−c̃(S(1)/S(0))),
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and with markings placed at the NE corners of the rectangles B and B′ corresponding to λ/S(0)

(in the notation of (5.15)). The resulting doubled skew shape is symmetric under the 180◦ rota-
tion which sends a box on diagonal ci to a box on diagonal −ci. In the case of Example 4 the
corresponding configuration of boxes is

κ =

1
2

− 1
2

− 17
2

17
2

− 15
2

15
2

=

1
2

− 1
2

− 17
2

17
2

− 15
2

15
2

This configuration of boxes also appeared in Example 2.
For generically large a, b, c, d, there will be examples of λ, µ ∈ P(k) with λ 6= µ and Bλ

k
∼= Bµ

k as
Hext
k -modules; see Example 5. This is because the eigenvalues of P on M ⊗N are not sufficient to

distinguish the components of M ⊗N as a gln-module. It could be helpful to further extend Hext
k

and consider an algebra Z(Uqgln)⊗Hk acting on M ⊗N ⊗ V ⊗k.

Example 5. Let a = c = 6 and b = d = 4,

λ(k) = (11 + k, 10, 8, 8, 6, 6, 5, 3, 3, 1) and µ(k) = (11 + k, 9, 9, 8, 7, 6, 4, 3, 2, 2), i.e.

λ(k) =

k

· · ·

and µ(k) =

k

· · ·

.

Then λ(k) 6= µ(k) but, as Hext
k -modules,

B
λ(k)
k
∼= B

µ(k)
k
∼= H

(z,c,∅)
k , where c = (11, 12, . . . , 11 + k − 1) and z = q28+k(k+21).

Recall from (5.23) that

M ⊗N ⊗ V ⊗k ∼=
⊕
λ∈P(k)

L(λ)⊗Bλ
k as (Uqg,Hext

k )-bimodules.

A consequence of Theorem 3.3(b) is the following construction of the irreducible Hext
k -modules Bλ

k .
Keeping the setting and notation of (5.31), for λ ∈ P(k) and S ∈ T λk , let

sjS be the path from (ac) to λ that differs from S only at S(j). (5.36)
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The path sjS is unique if it exists: if S = ((ac) → S(0) → S(1) → · · · → S(k)) then S(j+1) is
obtained by adding a box to S(j), and (sjS)(j) is obtained by moving a box of S(j) to the position
of the added box in S(j+1). In the case that j = 0, the paths s0S and S satisfy (s0S)(1) = S(1) and
the partitions (s0S)(0) and S(0) in P(0) differ by the placement of one box, with

c̃((s0S)(1)/(s0S)(0)) = −c̃(S(1)/S(0)), (5.37)

where the shifted content of a box c̃(box) is as defined in (5.28).

Corollary 5.7. Keep the conditions of Theorems 5.4 and 5.5. In particular, assume that the
genericity conditions of (5.22) hold so that q is not a root of unity, a, b, c, d ∈ Z>0 and (a + c) −
(b+ d) 6∈ {0,±1,±2}. Let λ ∈ P(k). Then Bλ

k has a basis {vS | S ∈ T λk } such that the Hext
k -action

is given by

PvS = q2e0(T )vS , ZivS = q2c(S(i)/S(i−1))vS ,

TivS = [Ti]S,SvS +
√
−([Ti]S,S − q)([Ti]S,S + q−1) vsiS , for i = 1, . . . , k − 1,

Y1vS = [Y1]S,SvS +
√
−([Y1]S,S − q−2d)([Y1]S,S − q2b) vs0S ,

X1vS = [X1]S,SvS + q−2c(S(1)/S(0))q(a−c+b−d)
√
−([X1]S,S − q2a)([X1]S,S − q−2c) vs0S ,

where vsjS = 0 if sjS does not exist, and

[Ti]S,S =
q − q−1

1− q2(c(S(i)/S(i−1))−c(S(i+1)/S(i)))
,

[Y1]S,S =
(q2b + q−2d)− (q2a + q−2c)q2(b−d)q−2c(S(1)/S(0))

1− q2(a−c+b−d)q−4c(S(1)/S(0))
,

[X1]S,S =
(q2a + q−2c)− (q2b + q−2d)q2(a−c)q−2c(S(1)/S(0))

1− q2(a−c+b−d)q−4c(S(1)/S(0))
.

Proof. The appropriate basis of Bλ
k is the one given in Proposition 5.2 and used also in the proof of

Theorem 5.5. It is only necessary to convert from the notation vw in Theorem 3.3 to the notation
vS using the bijection in Corollary 5.6. Recall from (5.21) that

a1 = q2a, a2 = q−2c, b1 = q2b, b2 = q−2d,

t
1
2 = q, t

1
2
k = a

1
2
1 (−a2)−

1
2 = −iqa+c, and t

1
2
0 = b

1
2
1 (−b2)−

1
2 = −iqb+d.

From (3.12) and (5.32),

γw−1(i)vw = Φ(Wi)vS = −q−(a−c+b−d)q2c(S(i)/S(i−1))vS .

From (2.18), (2.9), and (h), Y1 = b
1
2
1 (−b2)

1
2T0 = iqb−dT0 and X1 = (a1 + a2) − a1a2Y1Z

−1
1 =

q2a + q−2c − q2(a−c)Y1Z
−1
1 . With these conversions, the formulas from (3.13) and (3.14) become

TivS = Tivw = [Ti]S,SvS + [Ti]siS,SvsiS , for i = 1, . . . , k − 1,

Y1vS = iqb−dT0vw = [Y1]S,SvS + [Y1]s0S,Svs0S , and

X1vS =
(
q2a + q−2c − q2(a−c)Y1Z

−1
1

)
vS =

(
q2a + q−2c − q2(a−c)q−2c(S(1)/S(0))Y1

)
vS

= [X1]S,SvS − [X1]s0S,Svs0S ,
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with

[Ti]S,S = [Ti]ww =
t
1
2 − t−

1
2

1− γw−1(i)γ
−1
w−1(i+1)

=
q − q−1

1− q2(c(S(i)/S(i−i))−c(S(i+1)/S(i)))
,

[Y1]S,S = iqb−d[T0]ww = iqb−d
(t

1
2
0 − t

− 1
2

0 ) + (t
1
2
k − t

− 1
2

k )γ−1
w−1(1)

1− γ−2
w−1(1)

= iqb−d(−i)(q(b+d) + q−(b+d))− (q(a+c) + q−(a+c))qa−c+b−dq−2c(S(1)/S(0))

1− q2(a−c+b−d)q−4c(S(1)/S(0))

=
(q2b + q−2d))− (q2a + q−2c)q2(b−d)q−2c(S(1)/S(0))

1− q2(a−c+b−d)q−4c(S(1)/S(0))
, and

[X1]S,S = q2a + q−2c − q2(a−c)q−2c(S(1)/S(0))[Y1]S,S

= q2a + q−2c − q2(a−c)q−2c(S(1)/S(0)) (q2b + q−2d)− (q2a + q−2c)q2(b−d)q−2c(S(1)/S(0))

1− q2(a−c+b−d)q−4c(S(1)/S(0))

=
(q2a + q−2c)− (q2b + q−2d)q2(a−c)q−2c(S(1)/S(0))

1− q2(a−c+b−d)q−4c(S(1)/S(0))
.

On the two-dimensional subspace spanC{vS , vs0S} the action of T0 in the basis {vS , vs0S} is a
symmetric matrix [T0], and so the matrix of Y1 in this basis is [Y1] = iqb−d[T0] is also symmetric.
The action of Z1 is by a diagonal matrix [Z1], so [Z1]t = [Z1]. Therefore, using X1 = Z1Y

−1
1 from

(2.9) and X1 = (a1 + a2)− a1a2X
−1
1 from (h), we have ([X1]−1)t = ([Y1][Z1]−1)t = ([Z1]−1)t[Y1]t =

[Z1]−1[Y1] and so

[Z1][X1]t[Z1]−1 = [Z1]((a1 + a2)− a1a2[Z1]−1[Y1])[Z1]−1 = [X1].

Thus

[Z1]S,S [X1]s0S,S [Z−1
1 ]s0L,s0S = [X1]S,s0S and − [X1]S,s0S [X1]s0S,S = ([X1]S,S − a1)([X1]S,S − a2),

since [X1] is a 2× 2 matrix with eigenvalues a1 and a2 (as in the proof of Theorem 3.3). Thus

[X1]s0S,S =
√

([X1]s0S,S)2 =
√

[X1]S,s0S [Z1]−1
S,S [X1]s0S,S [Z1]s0S,s0S

=
√

[Z1]−1
S,S [Z1]s0Ss0S

√
−([X1]S,S − q2a)([X1]S,S − q−2c).

By (5.37), c((s0S)(1)/(s0S)(0)) = −c(S(1)/S(0)) + (a− c+ b− d), so that√
[Z1]−1

S,S [Z1]s0S,s0S = q−c(S
(1)/S(0))qc((s0S)(1)/(s0S)(0)) = q−2c(S(1)/S(0))+(a−c+b−d).

Thus

[X1]s0S,S = q−2c(S(1)/S(0))q(a−c+b−d)
√
−([X1]S,S − q2a)([X1]S,S − q−2c).
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