# Comparing formulas for type $GL_n$ Macdonald polynomials Supplement

email: guwg@student.unimelb.edu.au Weiving Guo Arun Ram email: aram@unimelb.edu.au

Dedicated to Hélène Barcelo

#### Abstract

This paper is a supplement to [GR21], containing examples, remarks and additional material that could be useful to researchers working with Type  $GL_n$  Macdonald polynomials. In the course of our comparison of the alcove walk formula and the nonattacking fillings formulas for type  $GL_n$ Macdonald polynomials we did many examples and significant analysis of the literature. In the preparation of [GR21] it seemed sensible to produce a document with focus and this material was removed. This is paper resurrects and organizes that material, in hopes that others may also find it useful.

Key words — Macdonald polynomials, affine Hecke algebras, tableaux

# Contents

0

| 0        | Intr | oducti  | on                                                                                               | 3        |
|----------|------|---------|--------------------------------------------------------------------------------------------------|----------|
| 1        | Syn  | nmetri  | zation, $H$ decomposition of $\mathbb{C}[X]$ and KZ-families                                     | <b>4</b> |
|          | 1.1  | The $H$ | $\mathbb{C}$ -modules $\mathbb{C}[X]^{\lambda}$                                                  | 4        |
|          | 1.2  | Symm    | etrization of $E_{\mu}$ for $\mu \in \mathbb{Z}^n$                                               | 5        |
|          | 1.3  | The K   | Z-family basis of $\mathbb{C}[X]^{\lambda}$                                                      | 6        |
|          |      | 1.3.1   | Examples of the elements $E_{\mu}$ and $f_{\mu}$ in $\mathbb{C}[X]^{(2,1,0)}$ .                  | 8        |
|          |      | 1.3.2   | $P_{(2,1,0)}$ as a symmetrization of $E_{(2,1,0)}$                                               | 8        |
|          |      | 1.3.3   | Symmetrizations for $\mu$ with distinct parts when $n = 3$                                       | 9        |
|          |      | 1.3.4   | Examples of the $gf_{\mu}$ condition for a KZ-family                                             | 10       |
| <b>2</b> | Box  | æs, arr | ns, legs and counting terms                                                                      | 10       |
|          |      | 2.0.1   | Common terminology.                                                                              | 10       |
|          |      | 2.0.2   | Examples of box diagrams.                                                                        | 11       |
|          |      | 2.0.3   | Formulas for $\#Nleg_{\mu}(i,j)$ and $\#Narm_{\mu}(i,j)$                                         | 11       |
|          |      | 2.0.4   | Relating HHL arms and legs to Macdonald arms and legs                                            | 11       |
|          |      | 2.0.5   | Formulas for the number of alcove walks $\#AW^z_{\mu}$ and nonattacking fillings $\#NAF^z_{\mu}$ | 11       |
|          | 2.1  | The co  | blumn strict tableaux formula for $P_{\lambda}$                                                  | 12       |
|          |      | 2.1.1   | Comparing numbers of terms in formulas for $P_{\lambda}$                                         | 13       |
|          |      |         |                                                                                                  |          |

AMS Subject Classifications: Primary 05E05; Secondary 33D52.

| 3        | Convertin      | g fillings and alcove walks to paths and pipe dreams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14           |
|----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|          | 3.0.1          | Hyperplanes and alcoves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14           |
|          | 3.0.2          | Bijection $W \leftrightarrow W \cdot \frac{1}{n} \rho \leftrightarrow \{\text{alcoves}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14           |
|          | 3.0.3          | Reflections in $W$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15           |
|          | 3.0.4          | Paths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15           |
|          | 3.0.5          | Paths corresponding to nonattacking fillings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15           |
|          | 3.0.6          | Paths corresponding to alcove walks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15           |
|          | 3.0.7          | Pipe dreams corresponding to nonattacking fillings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16           |
|          | 3.0.8          | Alcove walks, nonattacking fillings and paths for $E_{(3,0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17           |
|          | 3.0.9          | Alcove walks, nonattacking fillings and pipe dreams for $E_{(2,0.1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18           |
|          | 3.0.10         | Alcove walks, nonattacking fillings and pipe dreams for $E_{(1,2,0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19           |
| 4        | Reduced v      | words and inversions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20           |
|          | 4.0.1          | Examples of the inversion set $Inv(w)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20           |
|          | 4.0.2          | Relations in the affine Weyl group $\dot{W}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20           |
|          | 4.0.3          | The "affine Weyl group" and the "extended affine Weyl group"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21           |
|          | 4.0.4          | The elements $u_{\mu}$ , $v_{\mu}$ , $z_{\mu}$ and $t_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22           |
|          | 4.0.5          | Relating $u_{\mu}$ , $v_{\mu}$ , $z_{\mu}$ to $u_{\lambda}$ , $v_{\lambda}$ , $z_{\lambda}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22           |
|          | 4.0.6          | Inversions of $t_{\varepsilon_1}$ , $t_{-\varepsilon_1}$ and $t_{\varepsilon_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22           |
|          | 4.0.7          | The elements $u_{\mu}$ and $v_{\mu}$ for $\mu = (0, 4, 5, 1, 4) \dots $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23           |
|          | 4.0.8          | The box greedy reduced word for $u_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24           |
|          | 4.0.9          | Inversions of $u_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25           |
|          | 4.0.10         | The column-greedy reduced word for $u_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25           |
| <b>5</b> | The step-      | by-step and box-by-box recursions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26           |
|          | 5.0.1          | Examples of the step-by-step recursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26           |
|          | 5.0.2          | Examples of the box by box recursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26           |
|          | 5.0.3          | An example of a $2^{j-1}$ to j term compression when $j = 3 \dots \dots \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27           |
|          | 5.0.4          | Check of the norm statistic in the step by step recursion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27           |
|          | 5.0.5          | Check of the statistic for $E_{\varepsilon_j}^z$ where $z(j) = j + k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28           |
| 6        | Type GL        | DAArt, DAHA and the polynomial representation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28           |
| Ŭ        | 601            | Example to check the eigenvalues of $Y_i$ on $E_{ii}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28           |
|          | 6.0.2          | The elements $X^{\omega_r}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30           |
|          | 6.0.3          | Type $GL_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30           |
| =        | A J J          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01           |
| 1        | Additiona      | $\mathbf{E}_{\mathbf{r}} = \mathbf{E}_{\mathbf{r}} $ | 31<br>91     |
|          | 7.0.1          | For $m = 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31<br>20     |
|          | 7.0.2          | Solice small $L_{\mu}$ for $n = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 32<br>- 29 |
|          | 7.0.3          | $E_{\lambda}$ and $I_{\lambda}$ when $\lambda$ is a partition with 5 boxes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 34<br>- 99 |
|          | 1.0.4<br>7.0 K | Fractional polynomials $L_{\mu}$ and $\Gamma_{\mu}$ when $\mu$ is a single column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 33<br>- 34 |
|          | 7.0.0<br>7.0.6 | $E_{\mu}$ for a single box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04<br>25     |
|          | 7.0.0 $7.0.7$  | The nonattacking fillings for $E^z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36<br>       |
|          | 7 0 8          | The nonattacking fillings for $E_{\varepsilon_i}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36           |
|          | 7 0 9          | The nonattacking fillings for $E_{2\varepsilon_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37           |
|          | 1.0.0          | The homovershifts minipo for $\mathcal{L}_{\varepsilon_{j_1}+\varepsilon_{j_2}}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01           |

| 8 | 3 Queue tableaux |                                                                    |    |  |  |  |  |  |  |  |  |  |
|---|------------------|--------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
|   | 8.0.1            | An instance of compression of NAFs – Motivation for Queue Tableaux | 38 |  |  |  |  |  |  |  |  |  |
|   | 8.0.2            | Queue tableaux                                                     | 38 |  |  |  |  |  |  |  |  |  |
|   | 8.0.3            | Multiline queues                                                   | 38 |  |  |  |  |  |  |  |  |  |
|   | 8.0.4            | Compression not captured by NAFs or QT                             | 39 |  |  |  |  |  |  |  |  |  |
|   | 8.0.5            | Comparing #NAF and #QT for $(r, 0,, 0)$ and $(r,, r, 0)$ .         | 39 |  |  |  |  |  |  |  |  |  |

# 0 Introduction

This paper is a supplement to [GR21], containing examples, remarks and additional material that could be useful to researchers working with Type  $GL_n$  Macdonald polynomials. In the course of our comparison of the alcove walk formula and the nonattacking fillings formulas for type  $GL_n$  Macdonald polynomials we did many examples and significant analysis of the literature. In the preparation of [GR21] it seemed sensible to produce a document with focus and this material was removed. This is paper resurrects and organizes that material, in hopes that others may also find it useful.

- 1. The material in Section 1: Several colleagues have asked us questions about permuted basement Macdonald polynomials and KZ-families (the permuted basement Macdonald polynomials are called relative Macdonald polynomials in this paper). These questions are helpfully considered in the context of the results of the two paragraphs following equation (6.6) in Macdonald's Séminaire Bourbaki article [Mac95] and Sections 5.4 and 5.5 of Macdonald's followup book [Mac03] treating the fully general case. In hopes of making these results more accessible, in Section 1 we have recast these completely in the type  $GL_n$  and included their proofs (which are not difficult). These results are the *H*-decomposition in Section 1.1, symmetrization statement in Proposition 1.1, and the KZ-family characterization in Proposition 1.2. We hope that these type  $GL_n$  specific expositions of these results can be helpful to the community.
- 2. The material in Section 2: This section has a focus on counting the number of alcove walks and the number of nonattacking fillings, in order to compare the number of terms that appear in alcove walks formula and the nonattacking fillings formula for Macdonald polynomials. Some explicit formulas for these counts, which may not have been widely noticed before, are included.
- 3. The material in Section 3: This section explains how to recast the alcove walks and nonattacking fillings into path form and pipe dream form. Pictures are provided.
- 4,5,6. The material in Sections 4, 5 and 6: These sections provide explicit examples of the main results of [GR21]: the inversions and the box-greedy reduced word for  $u_{\mu}$  proved in [GR21, Proposition 2.2], the step-by-step and box-by-box recursions for computing Macdonald polynomials in [GR21, Proposition 4.1 and 4.3] and some specific examples to help support the exposition of the type  $GL_n$  double affine Hecke algebra (DAHA) given in [GR21, Section 5].
  - 7. The material in Section 7: In this final section we provide additional explicit expansions of Macdonald polynomials for special cases: n = 2, n = 3, a single column, partitions with 3 boxes, and explicit nonattacking fillings and their weights for  $E_{\mu}$  where  $\mu$  has less than 3 boxes.
  - 8. Section 8 contains some brief remarks about the queue tableaux and multiline queues which appear in [CMW18, Section 1.2 and Definition A.2].

A small warning: Even though they all have a Type A root system, type  $SL_n$  Macdonald polynomials, type  $PGL_n$  Macdonald polynomials and type  $GL_n$  Macdonald polynomials are all different

(though the relationship is well known and not difficult). We should stress that this paper is specific to the  $GL_n$ -case and some results of this paper do not hold for Type  $SL_n$  or type  $PGL_n$  unless properly modified.

We thank L. Williams and M. Wheeler for bringing our attention to [CMW18] and [BW19], both of which were important stimuli during our work. We are also very grateful for the encouragement, questions, and discussions from A. Hicks, S. Mason, O. Mandelshtam, Z. Daugherty, Y. Naqvi, S. Assaf, and especially A. Garsia and S. Corteel, which helped so much in getting going and keeping up the energy. We thank S. Billey, Z. Daugherty, C. Lenart and J. Saied for very useful specific comments for improving the exposition. A. Ram extends a very special and heartfelt thank you to P. Diaconis who has provided unfailing support and advice and honesty and encouragement.

# **1** Symmetrization, *H* decomposition of $\mathbb{C}[X]$ and KZ-families

Let  $q, t^{\frac{1}{2}} \in \mathbb{C}^{\times}$ . Following the notation of [Mac, Ch. VI (3.1)], let  $T_{q^{-1},x_1}$  be the operator on  $\mathbb{C}[x_1^{\pm 1},\ldots,x_n^{\pm 1}]$  given by

$$T_{q^{-1},x_n}h(x_1,\ldots,x_n) = h(x_1,\ldots,x_{n-1},q^{-1}x_n).$$

The symmetric group  $S_n$  acts on  $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$  by permuting the the variables  $x_1, \ldots, x_n$ . Define operators  $T_1, \ldots, T_{n-1}, g$  and  $g^{\vee}$  on  $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$  by

$$T_{i} = t^{-\frac{1}{2}} \left( t - \frac{tx_{i} - x_{i+1}}{x_{i} - x_{i+1}} (1 - s_{i}) \right), \qquad g = s_{1} s_{2} \cdots s_{n-1} T_{q^{-1}, x_{n}}, \qquad g^{\vee} = x_{1} T_{1} \cdots T_{n-1}, \qquad (1.1)$$

where  $s_1, \ldots, s_{n-1}$  are the simple transpositions in  $S_n$ . The Cherednik-Dunkl operators are

$$Y_1 = gT_{n-1} \cdots T_1, \quad Y_2 = T_1^{-1} Y_1 T_1^{-1}, \quad Y_3 = T_2^{-1} Y_2 T_2^{-1}, \quad \dots, \quad Y_n = T_{n-1}^{-1} Y_{n-1} T_n^{-1}.$$
(1.2)

For  $\mu \in \mathbb{Z}^n$  the nonsymmetric Macdonald polynomial  $E_{\mu}$  is the (unique) element  $E_{\mu} \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$  such that

$$Y_i E_{\mu} = q^{-\mu_i} t^{-(\nu_{\mu}(i)-1) + \frac{1}{2}(n-1)} E_{\mu}, \quad \text{and the coefficient of } x_1^{\mu_1} \cdots x_n^{\mu_n} \text{ in } E_{\mu} \text{ is } 1, \quad (1.3)$$

where  $v_{\mu} \in S_n$  is the minimal length permutation such that  $v_{\mu}\mu$  is weakly increasing. Let  $\mu = (\mu_1, \ldots, \mu_n)$  and let  $z \in S_n$ .

The relative Macdonald polynomial 
$$E^z_{\mu}$$
 is  $E^z_{\mu} = t^{-\frac{1}{2}(\ell(zv_{\mu}^{-1}) - \ell(v_{\mu}^{-1}))}T_z E_{\mu}.$  (1.4)

Let  $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in \mathbb{Z}^n$ .

The symmetric Macdonald polynomial 
$$P_{\lambda}$$
 is  $P_{\lambda} = \sum_{\nu \in S_n \lambda} t^{\frac{1}{2}\ell(z_{\nu})} T_{z_{\nu}} E_{\lambda},$  (1.5)

where the sum is over rearrangements  $\nu$  of  $\lambda$  and  $z_{\nu} \in S_n$  is minimal length such that  $\nu = z_{\nu}\lambda$ .

### **1.1** The *H*-modules $\mathbb{C}[X]^{\lambda}$

Let H be the algebra generated by the operators  $T_1, \ldots, T_{n-1}$  and  $Y_1, \ldots, Y_n$  (so that H is an affine Hecke algebra) and let

$$\tau_i^{\vee} = T_i + \frac{t^{-\frac{1}{2}}(1-t)}{1-Y_i^{-1}Y_{i+1}} \text{ for } i \in \{1, \dots, n-1\}.$$

As H-modules

$$\mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}] = \bigoplus_{\lambda} \mathbb{C}[X]^{\lambda} \quad \text{where} \quad \mathbb{C}[X]^{\lambda} = \operatorname{span}\{E_{\mu} \mid \mu \in S_n\lambda\}.$$

and the direct sum is over decreasing  $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n) \in \mathbb{Z}^n$ . A description of the action of H on  $\mathbb{C}[X]^{\lambda}$  is given by the following. Let  $\mu \in \mathbb{Z}^n$  and, with notations as in (1.3), let

$$a_{\mu} = q^{\mu_i - \mu_{i+1}} t^{v_{\mu}(i) - v_{\mu}(i+1)},$$
  

$$a_{s_i\mu} = q^{\mu_{i+1} - \mu_i} t^{v_{\mu}(i+1) - v_{\mu}(i)},$$
 and 
$$D_{\mu} = \frac{(1 - ta_{\mu})(1 - ta_{s_i\mu})}{(1 - a_{\mu})(1 - a_{s_i\mu})}.$$

Assume that  $\mu_i > \mu_{i+1}$ . By using the identity  $E_{s_i\nu} = t^{\frac{1}{2}}\tau_i^{\vee}E_{\nu}$  if  $\nu_{i+1} > \nu_i$  from [GR21, (3.5)], the eigenvalue from (1.3) and [GR21, Proposition 5.5 (5.23)], it is straightforward to compute that

$$Y_{i}^{-1}Y_{i+1}E_{\mu} = a_{\mu}E_{\mu}, \qquad t^{\frac{1}{2}}\tau_{i}^{\vee}E_{\mu} = E_{s_{i}\mu}, \qquad \text{and} \qquad t^{\frac{1}{2}}T_{i}E_{\mu} = -\frac{1-t}{1-a_{\mu}}E_{\mu} + E_{s_{i}\mu}, \qquad t^{\frac{1}{2}}T_{i}^{\vee}E_{s_{i}\mu} = D_{\mu}E_{\mu}, \qquad t^{\frac{1}{2}}T_{i}E_{s_{i}\mu} = D_{\mu}E_{\mu} + \frac{1-t}{1-a_{s_{i}\mu}}E_{s_{i}\mu}.$$
(1.6)

Now assume that  $\mu_i = \mu_{i+1}$ . Then  $v_{\mu}(i+1) = v_{\mu}(i) + 1$  and  $a_{\mu} = t^{-1}$  so that

$$Y_i^{-1}Y_{i+1}E_{\mu} = t^{-1}E_{\mu}, \qquad (t^{\frac{1}{2}}\tau_i^{\vee})E_{\mu} = 0, \qquad \text{and} \qquad (t^{\frac{1}{2}}T_i)E_{\mu} = tE_{\mu}.$$
(1.7)

These formulas make explicit the action of H on  $\mathbb{C}[X]^{\lambda}$  in the basis  $\{E_{\mu} \mid \mu \in S_n \lambda\}$ . The formulas in (1.6) are the type  $GL_n$  special cases of [Mac03, (5.4.3),(5.6.6)].

### **1.2** Symmetrization of $E_{\mu}$ for $\mu \in \mathbb{Z}^n$

If  $z \in S_n$  and

$$z = s_{i_1} \cdots s_{i_\ell}$$
 is a reduced word, let  $T_z = T_{i_1} \cdots T_{i_\ell}$ 

Let  $w_0$  be the longest element of  $S_n$  so that

$$w_0(i) = n - i + 1$$
, for  $i \in \{1, \dots, n\}$ , and  $\ell(w_0) = \frac{n(n-1)}{2} = \binom{n}{2}$ 

Following [Mac03, (5.5.7), (5.5.16), (5.5.17)], let

$$\mathbf{1}_{\mathbf{0}} = t^{-\frac{1}{2}\ell(w_0)} \sum_{z \in S_n} t^{\frac{1}{2}\ell(z)} T_z, \quad \text{so that} \quad T_i \mathbf{1}_0 = \mathbf{1}_0 T_i = t^{\frac{1}{2}} \mathbf{1}_0 \quad \text{for } i \in \{1, \dots, n-1\}, \quad (1.8)$$

and

$$\mathbf{1}_{0}^{2} = W_{0}(t)\mathbf{1}_{0}, \quad \text{where} \quad W_{0}(t) = \sum_{z \in S_{n}} t^{\ell(z)}$$
(1.9)

is the Poincaré polynomial for  $S_n$ .

For  $\mu \in \mathbb{Z}^n$ , the symmetrization of  $E_{\mu}$  is (see [Mac03, (5.7.1)] and [Mac95, Remarks after (6.8)])

$$F_{\mu} = \mathbf{1}_{0} E_{\mu} = t^{-\frac{1}{2}\ell(w_{0})} \sum_{z \in S_{n}} t^{\frac{1}{2}(\ell(z) - \ell(zv_{\mu}^{-1}) + \ell(v_{\mu}^{-1})} E_{\mu}^{z},$$
(1.10)

so that  $F_{\mu}$  is a (weighted) sum of the relative Macdonald polynomials  $E_{\mu}^{z}$  defined in (1.4)). The following Proposition shows that  $F_{\mu}$  is always, up to an explicit constant factor, equal to the symmetric Macdonald polynomial  $P_{\lambda}$  (defined in (1.5)). Proposition 1.1 is the specialization of [Mac95, remarks after (6.8)] and [Mac03, (5.7.2)] to our setting. **Proposition 1.1.** Let  $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}^n$ . Let  $\lambda = (\lambda_1, \ldots, \lambda_n)$  be the weakly decreasing rearrangement of  $\mu$  and let  $z_{\mu} \in S_n$  be minimal length such that  $\mu = z_{\mu}\lambda$ . Let

$$S_{\lambda} = \{ y \in S_n \mid y\lambda = \lambda \}$$
 and  $W_{\lambda}(t) = \sum_{y \in S_{\lambda}} t^{\ell(y)}.$ 

Then

$$P_{\lambda} = \frac{t^{\frac{1}{2}\ell(w_0)}}{W_{\lambda}(t)} \Big(\prod_{(i,j)\in \text{Inv}(z_{\mu})} \frac{1-q^{\lambda_i-\lambda_j}t^{j-i}}{1-q^{\lambda_i-\lambda_j}t^{j-i+1}}\Big) F_{\mu}$$

*Proof.* The proof is by induction on  $\ell(z_{\mu})$ . The base case  $z_{\mu} = 1$  has  $\mu = \lambda$  and  $v_{\lambda} = w_0 z_{\lambda}$  so that

$$F_{\lambda} = \mathbf{1}_{0}E_{\lambda} = t^{-\frac{1}{2}\ell(w_{0})} \Big(\sum_{u \in S_{n}/S_{\lambda}} \sum_{v \in S_{\lambda}} t^{\frac{1}{2}\ell(x)+\ell(y)}T_{x}T_{y}\Big)E_{\lambda}$$
$$= t^{-\frac{1}{2}\ell(w_{0})} \Big(\sum_{u \in S_{n}/S_{\lambda}} t^{\frac{1}{2}\ell(x)}T_{x}\Big)W_{\lambda}(t)E_{\lambda} = t^{-\frac{1}{2}\ell(w_{0})}W_{\lambda}(t)P_{\lambda},$$

where  $T_y E_{\lambda} = t^{\frac{1}{2}\ell(y)} E_y$  is a consequence of (1.7) and the last equality is (1.5). For the induction step, assume that  $\mu$  is not weakly decreasing and let  $i \in \{1, \ldots, n-1\}$  be such that  $\mu_i < \mu_{i+1}$ . Then  $z_{s_i\mu} = s_i z_{\mu}$  and  $\ell(z_{s_i\mu}) = \ell(z_{\mu}) - 1$ . Using  $E_{\mu} = t^{\frac{1}{2}} \tau_i^{\vee} E_{s_i\mu}$  and  $\mathbf{1}_0 T_i = \mathbf{1}_0 t^{\frac{1}{2}}$  from (1.6) and (1.7) gives

$$F_{\mu} = \mathbf{1}_{0}E_{\mu} = \mathbf{1}_{0}t^{\frac{1}{2}}\tau_{i_{1}}E_{s_{i}\mu} = \mathbf{1}_{0}\left(t^{\frac{1}{2}}T_{i} + \frac{1-t}{1-Y_{i}^{-1}Y_{i+1}}\right)E_{s_{i}\mu} = \mathbf{1}_{0}\left(t + \frac{1-t}{1-Y_{i}^{-1}Y_{i+1}}\right)E_{s_{i}\mu}$$
$$= \mathbf{1}_{0}\frac{1-tY_{i}^{-1}Y_{i+1}}{1-Y_{i}^{-1}Y_{i+1}}E_{s_{i}\mu} = \mathbf{1}_{0}\frac{1-tq^{\mu_{i+1}-\mu_{i}}t^{\nu_{\mu}(i+1)-\nu_{\mu}(i)}}{1-q^{\mu_{i+1}-\mu_{i}}t^{\nu_{\mu}(i+1)-\nu_{\mu}(i)}}E_{s_{i}\mu} = \frac{1-q^{\mu_{i+1}-\mu_{i}}t^{\nu_{\mu}(i+1)-\nu_{\mu}(i)+1}}{1-q^{\mu_{i+1}-\mu_{i}}t^{\nu_{\mu}(i+1)-\nu_{\mu}(i)}}E_{s_{i}\mu}$$

and the result follows by induction (see Section 1.3.3 for an example).

#### **1.3** The KZ-family basis of $\mathbb{C}[X]^{\lambda}$

For  $\mu \in \mathbb{Z}^n$ , let  $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$  be the decreasing rearrangement of  $\mu$  and let  $z_{\mu} \in S_n$  be minimal length such that  $\mu = z_{\mu}\lambda$ . Define

$$f_{\mu} = E_{\lambda}^{z_{\mu}} = t^{\frac{1}{2}\ell(z_{\mu})} T_{z_{\mu}} E_{\lambda}.$$
 (1.11)

It follows from the identities in the last column of (1.6) that

 $\{f_{\mu} \mid \mu \in S_n \lambda\}$  is another basis of  $\mathbb{C}[X]^{\lambda}$ .

The following Proposition says that the  $\{f_{\mu} \mid \mu \in \mathbb{Z}^n\}$  form a KZ-family, in the terminology of [KT06, Def. 3.3] (see also [CMW18, Def. 1.13], [CdGW15, (17), (18), (19)], [CdGW16, Def. 2]).

**Proposition 1.2.** Let  $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ . Let  $i \in \{1, \ldots, n-1\}$  and let  $T_i$  and g be as defined in (1.1). Then

$$t^{\frac{1}{2}}T_{i}f_{\mu} = \begin{cases} f_{s_{i}\mu}, & \text{if } \mu_{i} > \mu_{i+1}, \\ tf_{\mu}, & \text{if } \mu_{i} = \mu_{i+1}, \end{cases} \quad and \quad gf_{\mu} = q^{-\mu_{n}}f_{(\mu_{n},\mu_{1},\dots,\mu_{n-1})}.$$

*Proof.* Assume  $\mu_i > \mu_{i+1}$ . Then  $z_{s_i\mu} = s_i z_\mu$  and  $\ell(z_{s_i\mu}) = \ell(z_\mu) + 1$  so that

$$t^{\frac{1}{2}}T_{i}f_{\mu} = t^{\frac{1}{2}}T_{i}t^{\frac{1}{2}\ell(z_{\mu})}T_{z_{\mu}}E_{\lambda} = t^{\frac{1}{2}\ell(z_{s_{i}\mu})}T_{z_{s_{i}\mu}}E_{\lambda} = f_{s_{i}\mu}$$

Assume  $\mu_i = \mu_{i+1}$ . Then there exists  $j \in \{1, \ldots, n-1\}$  such that  $s_j \lambda = \lambda$  and  $s_i z_{\mu} = z_{\mu} s_j$  (so that  $s_i \mu = s_i z_{\mu} \lambda = z_{\mu} s_j \lambda$ ). Then

$$t^{\frac{1}{2}}T_i f_{\mu} = t^{\frac{1}{2}}T_i t^{\frac{1}{2}\ell(z_{\mu})} T_{z_{\mu}} E_{\lambda} = t^{\frac{1}{2}\ell(z_{\mu})} T_{z_{\mu}} t^{\frac{1}{2}} T_j E_{\lambda} = t^{\frac{1}{2}\ell(z_{\mu})} T_{z_{\mu}} t E_{\lambda} = t f_{\mu}.$$

(c) Let  $\mu = (\mu_1, \ldots, \mu_n)$  and let *i* and *j* be such that  $\lambda_i$  is the first part of  $\lambda$  equal to  $\mu_n$  and  $\lambda_j$  is the last part of  $\lambda$  equal to  $\mu_n$ . Thus  $\mu_n = \lambda_i = \lambda_{i+1} = \cdots = \lambda_j$ . Write  $z_{\mu} = zs_{n-1} \cdots s_j$  with  $z \in S_{n-1}$  and let  $c_n = s_1 \cdots s_{n-1}$ . Then, using  $v_{\lambda}(j) = 1 + (j-i) + n - j = n - i + 1$  from [GR21, Proposition 2.1(a)],

$$\begin{split} gf_{\mu} &= gt^{\frac{1}{2}\ell(z_{\mu})}T_{z_{\mu}}E_{\lambda} = gt^{\frac{1}{2}\ell(z)}T_{z}t^{\frac{1}{2}(n-j)}T_{n-1}\cdots T_{j}E_{\lambda} = t^{\frac{1}{2}(n-j)}gt^{\frac{1}{2}\ell(z)}T_{z}g^{-1}gT_{n-1}\cdots T_{j}E_{\lambda} \\ &= t^{\frac{1}{2}(n-j)}(gt^{\frac{1}{2}\ell(z)}T_{z}g^{-1})T_{1}\cdots T_{j-1}(T_{j-1}^{-1}\cdots T_{1}^{-1}gT_{n-1}\cdots T_{j})E_{\lambda} \\ &= t^{\frac{1}{2}(n-j)}(t^{\frac{1}{2}\ell(z)}T_{cnzc_{n}^{-1}})T_{1}\cdots T_{j-1}q^{-\lambda_{j}}t^{-(\nu_{\lambda}(j)-1)+\frac{1}{2}(n-1)}E_{\lambda} \\ &= t^{\frac{1}{2}(n-j)}(t^{\frac{1}{2}\ell(z)}T_{cnzc_{n}^{-1}})T_{1}\cdots T_{j-1}q^{-\lambda_{j}}t^{-(\nu_{\lambda}(j)-1)+\frac{1}{2}(n-1)}E_{\lambda} \\ &= q^{-\lambda_{j}}t^{\frac{1}{2}(n-j)-(n-i+1-1)+\frac{1}{2}(n-1)}(t^{\frac{1}{2}\ell(z)}T_{cnzc_{n}^{-1}})T_{1}\cdots T_{i-1}t^{\frac{1}{2}(j-i)}E_{\lambda} \\ &= q^{-\mu_{n}}t^{-\frac{1}{2}j+i-\frac{1}{2}}(t^{\frac{1}{2}\ell(z)}T_{cnzc_{n}^{-1}})T_{1}\cdots T_{i-1}E_{\lambda} = q^{-\mu_{n}}f_{(\lambda_{i},\mu_{1},\dots,\mu_{n-1})} = q^{-\mu_{n}}f_{(\mu_{n},\mu_{1},\dots,\mu_{n-1})}, \end{split}$$

where the next to last equality follows from  $s_1 \cdots s_{i-1}(\lambda_1, \ldots, \lambda_n) = (\lambda_i, \lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n)$ and  $c_n z c_n^{-1}(\lambda_i, \lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots, \lambda_n) = (\lambda_i, \mu_1, \ldots, \mu_{n-1}).$ 

# **1.3.1** Examples of the elements $E_{\mu}$ and $f_{\mu}$ in $\mathbb{C}[X]^{(2,1,0)}$ .

$$\begin{split} E_{(2,1,0)} &= x_1^2 x_2 + \left(\frac{1-t}{1-qt^2}\right) qx_1 x_2 x_3, \\ E_{(2,0,1)} &= x_1^2 x_3 + \left(\frac{1-t}{1-qt}\right) x_1^2 x_2 + \left(\frac{1-t}{1-qt}\right) qx_1 x_2 x_3, \\ E_{(1,2,0)} &= x_1 x_2^2 + \left(\frac{1-t}{1-qt}\right) x_1 x_2^2 + \left(\frac{1-t}{1-qt^2}\right) qx_1 x_2 x_3, \\ E_{(0,2,1)} &= x_2^2 x_3 + \left(\frac{1-t}{1-qt}\right) x_1 x_2^2 + \left(\frac{1-t}{1-q^2t^2}\right) x_1^2 x_3 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) x_1^2 x_2 \\ &\quad + \left(\left(\frac{1-t}{1-qt}\right) + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) q\right) x_1 x_2 x_3, \\ E_{(1,0,2)} &= x_1 x_3^2 + \left(\frac{1-t}{1-qt}\right) x_1^2 x_3 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) q\right) x_1 x_2 x_3, \\ E_{(1,0,2)} &= x_1 x_3^2 + \left(\frac{1-t}{1-qt}\right) x_1^2 x_3 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) q\right) x_1 x_2 x_3, \\ E_{(0,1,2)} &= x_2 x_3^2 + \left(\frac{1-t}{1-qt}\right) x_2^2 x_3 + \left(\frac{1-t}{1-qt}\right) x_1 x_3^2 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) x_1^2 x_3 \\ &\quad + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) qt x_1 x_2^2 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) x_1 x_2^2 \\ &\quad + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) qt x_1 x_2^2 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) x_1 x_2^2 \\ &\quad + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right)^2 qx_1 x_2 x_3 + \left(\frac{1-t}{1-q^2t^2}\right) \left(\frac{1-t}{1-qt}\right) x_1 x_2 x_3, \\ f_{(2,1,0)} &= E_{(2,1,0)} = x_1^2 x_2 + q \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(2,0,1)} &= t^{\frac{1}{2}} T_{s_1} E_{(2,1,0)} = x_1 x_2^2 + t^{-1} \frac{(1-t)qt^2}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(2,0,1)} &= t^{\frac{1}{2}} T_{s_2} E_{(2,1,0)} = x_1 x_3^2 + t^{-1} \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(0,2,1)} &= t^{\frac{1}{2}} T_{s_1} T_{s_2} E_{(2,1,0)} = x_1 x_3^2 + \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(0,2,1)} &= t^{\frac{2}{2}} T_{s_1} T_{s_2} E_{(2,1,0)} = x_1 x_3^2 + \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(0,2,1)} &= t^{\frac{2}{2}} T_{s_1} T_{s_2} E_{(2,1,0)} = x_2 x_3 + \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(0,1,2)} &= t^{\frac{2}{3}} T_{s_1} T_{s_2} T_{s_1} E_{(2,1,0)} = x_2 x_3 + \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(0,1,2)} &= t^{\frac{2}{3}} T_{s_1} T_{s_2} T_{s_1} E_{(2,1,0)} = x_2 x_3 + \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3, \\ f_{(0,1,2)} &= t^{\frac{2}{3}} T_{s_1} T_{s_2} T_{s_1} E_{(2,1,0)} = x_2 x_3 + \frac{($$

1.3.2  $P_{(2,1,0)}$  as a symmetrization of  $E_{(2,1,0)}$ 

When n = 3 then

$$W_0(t) = \sum_{w \in S_3} t^{\ell(w)} = 1 + t + t + t^2 + t^2 + t^3 = (1+t)(1+t+t^2) = \frac{(1-t^2)(1-t^3)}{(1-t)(1-t)}, \text{ and}$$
  
$$\mathbf{1}_0 = t^{-\frac{3}{2}} + t^{-\frac{2}{2}}T_1 + t^{-\frac{2}{2}}T_2 + t^{-\frac{1}{2}}T_1T_2 + t^{-\frac{1}{2}}T_2T_1 + T_1T_2T_1.$$

Since  $W_{(2,1,0)} = \{1\}$  then  $W_{(2,1,0)}(t) = 1$  and

$$P_{(2,1,0)} = \frac{t^{\frac{3}{2}}}{W_{(2,1,0)}(t)} \mathbf{1}_0 E_{(2,1,0)} = t^{\frac{3}{2}} \mathbf{1}_0 t^{-\frac{3}{2}} \tau_\pi^{\vee} \tau_\pi^{\vee} \tau_1^{\vee} \tau_\pi^{\vee} \mathbf{1},$$

and, with  $f_{(2,1,0)}, f_{(1,2,0)}, \dots, f_{(0,1,2)}$  as in Section 1.3.1,

$$\begin{split} P_{(2,1,0)} &= (1 + t^{\frac{1}{2}}T_1 + t^{\frac{1}{2}}T_2 + t^{\frac{2}{2}}T_1T_2 + t^{\frac{2}{2}}T_2T_1 + t^{\frac{3}{2}}T_1T_2T_1)E_{(2,1,0)} \\ &= f_{(2,1,0)} + f_{(1,2,0)} + f_{(2,0,1)} + f_{(1,0,2)} + f_{(0,2,1)} + f_{(0,1,2)} \\ &= (x_1^2x_2 + q\frac{(1-t)}{1-qt^2})x_1x_2x_3) + (x_1x_2^2 + qt\frac{(1-t)}{(1-qt^2)}x_1x_2x_3) + (x_1^2x_3 + qt\frac{(1-t)}{(1-qt^2)}x_1x_2x_3) \\ &+ (x_1x_3^2 + \frac{(1-t)}{(1-qt^2)}x_1x_2x_3) + (x_2^2x_3 + \frac{(1-t)}{(1-qt^2)}x_1x_2x_3) + (x_2x_3^2 + t\frac{(1-t)}{(1-qt^2)}x_1x_2x_3) \\ &= x_1^2x_2 + x_1x_2^2 + x_1^2x_3 + x_1x_3^2 + x_2^2x_3 + x_2x_3^2 + \left(\frac{(1-t^2)}{(1-qt)}\frac{(1-q^2t)}{(1-qt^2)} + \frac{(1-t)}{(1-qt)}\frac{(1-q^2)}{(1-qt)}\right)x_1x_2x_3. \end{split}$$

# **1.3.3** Symmetrizations for $\mu$ with distinct parts when n = 3.

For example, if n = 3 and  $\lambda_1 > \lambda_2 > \lambda_3$  then  $W_{\lambda} = \{1\}$  and  $W_{\lambda}(t) = 1$  and  $w_0 = s_1 s_2 s_1$  and  $\ell(w_0) = 3$ . So

$$\begin{split} F_{(\lambda_{1},\lambda_{2},\lambda_{3})} &= t^{\frac{3}{2}} \mathbf{1}_{0} E_{(\lambda_{1},\lambda_{2},\lambda_{3})} = P_{(\lambda_{1},\lambda_{2},\lambda_{3})}, \\ F_{(\lambda_{2},\lambda_{1},\lambda_{3})} &= t^{\frac{3}{2}} \left( \frac{1 - tq^{\lambda_{1} - \lambda_{2}} t^{2 - 1}}{1 - q^{\lambda_{1} - \lambda_{2}} t^{2 - 1}} \right) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ F_{(\lambda_{1},\lambda_{3},\lambda_{2})} &= t^{\frac{3}{2}} \left( \frac{1 - tq^{\lambda_{2} - \lambda_{3}} t^{3 - 2}}{1 - q^{\lambda_{2} - \lambda_{3}} t^{3 - 2}} \right) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ F_{(\lambda_{2},\lambda_{3},\lambda_{1})} &= t^{\frac{3}{2}} \left( \frac{1 - tq^{\lambda_{1} - \lambda_{3}} t^{3 - 1}}{1 - q^{\lambda_{1} - \lambda_{3}} t^{3 - 1}} \right) \left( \frac{1 - tq^{\lambda_{1} - \lambda_{2}} t^{2 - 1}}{1 - q^{\lambda_{1} - \lambda_{3}} t^{3 - 1}} \right) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ F_{(\lambda_{3},\lambda_{1},\lambda_{2})} &= t^{\frac{3}{2}} \left( \frac{1 - tq^{\lambda_{1} - \lambda_{3}} t^{3 - 1}}{1 - q^{\lambda_{1} - \lambda_{3}} t^{3 - 1}} \right) \left( \frac{1 - tq^{\lambda_{2} - \lambda_{3}} t^{3 - 2}}{1 - q^{\lambda_{2} - \lambda_{3}} t^{3 - 2}} \right) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ F_{(\lambda_{3},\lambda_{2},\lambda_{1})} &= t^{\frac{3}{2}} \left( \frac{1 - tq^{\lambda_{1} - \lambda_{2}} t^{2 - 1}}{1 - q^{\lambda_{1} - \lambda_{2}} t^{2 - 1}} \right) \left( \frac{1 - tq^{\lambda_{1} - \lambda_{3}} t^{3 - 1}}{1 - q^{\lambda_{1} - \lambda_{3}} t^{3 - 2}} \right) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \end{split}$$

since, for example, using

$$v_{\lambda}(1) = 3, v_{\lambda}(2) = 2, v_{\lambda}(3) = 1, \text{ and } Y_i^{-1}Y_j E_{(\lambda_1, \lambda_2, \lambda_3)} = q^{\lambda_i - \lambda_j} t^{v_{\lambda}(i) - v_{\lambda}(j)} E_{(\lambda_1, \lambda_2, \lambda_3)}$$

and  $v_{\lambda}(i) - v_{\lambda}(j) = (n - i + 1) - (n - j + 1) = i - j$ ,

$$\begin{split} F_{(\lambda_{2},\lambda_{1},\lambda_{3})} &= \mathbf{1}_{0} t^{\frac{1}{2}} \tau_{1}^{\vee} E_{(\lambda_{1},\lambda_{2},\lambda_{3})} = \mathbf{1}_{0} \Big( t^{\frac{1}{2}} T_{1} + \frac{(1-t)}{1-Y_{1}^{-1}Y_{2}} \Big) E_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ &= \mathbf{1}_{0} \Big( t + \frac{(1-t)}{1-Y_{1}^{-1}Y_{2}} \Big) E_{(\lambda_{1},\lambda_{2},\lambda_{3})} = \mathbf{1}_{0} \Big( \frac{1-tY_{1}^{-1}Y_{2}}{1-Y_{1}^{-1}Y_{2}} \Big) E_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ &= \mathbf{1}_{0} \Big( \frac{1-tq^{\lambda_{1}-\lambda_{2}}t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}}t^{2-1}} \Big) E_{(\lambda_{1},\lambda_{2},\lambda_{3})} = \Big( \frac{1-tq^{\lambda_{1}-\lambda_{2}}t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}}t^{2-1}} \Big) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ F_{(\lambda_{2},\lambda_{3},\lambda_{1})} &= \mathbf{1}_{0} t^{\frac{1}{2}} \tau_{2}^{\vee} t^{\frac{1}{2}} \tau_{1}^{\vee} E_{(\lambda_{1},\lambda_{2},\lambda_{3})} = \mathbf{1}_{0} \Big( \frac{1-tY_{2}^{-1}Y_{3}}{1-Y_{2}^{-1}Y_{3}} \Big) t^{\frac{1}{2}} \tau_{1}^{\vee} E_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ &= \mathbf{1}_{0} t^{\frac{1}{2}} \tau_{1}^{\vee} \Big( \frac{1-tY_{1}^{-1}Y_{3}}{1-Y_{1}^{-1}Y_{3}} \Big) E_{(\lambda_{1},\lambda_{2},\lambda_{3})} = \mathbf{1}_{0} t^{\frac{1}{2}} \tau_{1}^{\vee} \Big( \frac{1-tq^{\lambda_{1}-\lambda_{3}}t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}}t^{3-1}} \Big) E_{(\lambda_{1},\lambda_{2},\lambda_{3})} \\ &= \Big( \frac{1-tq^{\lambda_{1}-\lambda_{3}}t^{3-1}}{1-q^{\lambda_{1}-\lambda_{3}}t^{3-1}} \Big) \Big( \frac{1-tq^{\lambda_{1}-\lambda_{2}}t^{2-1}}{1-q^{\lambda_{1}-\lambda_{2}}t^{2-1}} \Big) P_{(\lambda_{1},\lambda_{2},\lambda_{3})} \end{split}$$

# **1.3.4** Examples of the $gf_{\mu}$ condition for a KZ-family.

Let n = 3 and  $\lambda = (2, 1, 0)$ . Then  $v_{\lambda}(1) = 3$ ,  $v_{\lambda}(2) = 2$  and  $v_{\lambda}(3) = 1$  and

$$Y_i E_{(2,1,0)} = q^{-\lambda_i} t^{-(v_\lambda(i)-1) + \frac{1}{2}(n-1)} E_{(2,1,0)}.$$

Then

$$Y_1 = gT_2T_1, \qquad Y_2 = T_1^{-1}gT_2, \quad Y_3 = T_2^{-1}T_1^{-2}g,$$

Since

$$\begin{split} f_{(2,1,0)} &= E_{(2,1,0)}, & f_{(1,2,0)} = t^{\frac{1}{2}} T_1 E_{(2,1,0)}, & f_{(2,0,1)} = t^{\frac{1}{2}} T_2 E_{(2,1,0)}, \\ f_{(0,2,1)} &= t^{\frac{2}{2}} T_1 T_2 E_{(2,1,0)}, & f_{(1,0,2)} = t^{\frac{2}{2}} T_2 T_1 E_{(2,1,0)}, & f_{(0,1,2)} = t^{\frac{3}{2}} T_1 T_2 T_1 E_{(2,1,0)}, \end{split}$$

then

$$\begin{split} gf_{(2,1,0)} &= gE_{(2,1,0)} = T_1T_2(T_2^{-1}T_1^{-1}g)E_{(2,1,0)} = T_1T_2Y_3E_{(2,1,0)} = q^{-0}t^1T_1T_2E_{(2,1,0)} = f_{(0,2,1)}, \\ gf_{(1,2,0)} &= gt^{\frac{1}{2}}T_1E_{(2,1,0)} = t^{\frac{1}{2}}T_2gE_{(2,1,0)} = t^{\frac{1}{2}}T_2tT_1T_2E_{(2,1,0)} = f_{(0,1,2)}, \\ gf_{(2,0,1)} &= gt^{\frac{1}{2}}T_2E_{(2,1,0)} = t^{\frac{1}{2}}T_1T_1^{-1}gT_2E_{(2,1,0)} = t^{\frac{1}{2}}T_1Y_2E_{(2,1,0)} = t^{\frac{1}{2}}T_1q^{-1}t^{-1+1}E_{(2,1,0)} = q^{-1}f_{(1,2,0)}, \\ gf_{(0,2,1)} &= gt^{\frac{2}{2}}T_1T_2E_{(2,1,0)} = t^{\frac{2}{2}}T_2gT_2E_{(2,1,0)} = t^{\frac{2}{2}}T_2T_1q^{-1}t^0E_{(2,1,0)} = q^{-1}f_{(1,0,2)}, \\ gf_{(1,0,2)} &= t^{\frac{2}{2}}gT_2T_1E_{(2,1,0)} = t^{\frac{2}{2}}Y_1E_{(2,1,0)} = t^{\frac{2}{2}}q^{-2}t^{-2+1}E_{(2,1,0)} = q^{-2}f_{(2,1,0)}, \\ gf_{(0,1,2)} &= t^{\frac{3}{2}}gT_1T_2T_1E_{(2,1,0)} = t^{\frac{3}{2}}T_1gT_2T_1E_{(2,1,0)} = t^{\frac{3}{2}}T_1q^{-2}t^{-1}E_{(2,1,0)} = q^{-2}f_{(1,2,0)}. \end{split}$$

# 2 Boxes, arms, legs and counting terms

### 2.0.1 Common terminology.

$$\begin{split} \mathbb{Z}_{\geq 0}^n &= \{ \mu = (\mu_1, \dots, \mu_n) \mid \mu_i \in \mathbb{Z}_{\geq 0} \} \\ \mathbb{Z}_{> 0}^n &= \{ \mu = (\mu_1, \dots, \mu_n) \mid \mu_i \in \mathbb{Z}_{> 0} \} \\ \mathbb{Z}^n &= \{ \mu = (\mu_1, \dots, \mu_n) \mid \mu_i \in \mathbb{Z} \} \\ (\mathbb{Z}^n)^+ &= \{ (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n \mid \mu_1 \geq \mu_2 \geq \dots \geq \mu_n \} \\ (\mathbb{Z}_{\geq 0}^n)^+ &= \{ (\mu_1, \dots, \mu_n) \in \mathbb{Z}_{\geq 0}^n \mid \mu_1 \geq \mu_2 \geq \dots \geq \mu_n \} \\ \end{split}$$
 is the set of *weak compositions*, is the set of *strong compositions*, is the *lattice of integral weights*, is the set of *dominant integral weights*, is the set of *dominant integral weights*, is the set of *partititions of length \leq n*.

### 2.0.2 Examples of box diagrams.

If  $\lambda = (5, 4, 4, 1, 0)$  and  $\mu = (0, 4, 5, 1, 4)$  then



To conform to [Mac, p.2], we draw the box (i, j) as a square in row i and column j using the same coordinates as are usually used for matrices.

The cylindrical coordinate of the box (i, j) is the number i + nj.

### **2.0.3** Formulas for $\#Nleg_{\mu}(i,j)$ and $\#Narm_{\mu}(i,j)$

Using cylindrical coordinates for boxes define, for a box  $b \in dg(\mu)$ ,

$$\operatorname{attack}_{\mu}(b) = \{b - 1, \dots, b - n + 1\} \cap \widehat{dg}(\mu), \tag{2.1}$$

$$\operatorname{Nleg}_{\mu}(b) = (b + n\mathbb{Z}_{>0}) \cap dg(\mu) \quad \text{and}$$

$$(2.2)$$

$$\operatorname{Narm}_{\mu}(b) = \{ a \in \operatorname{attack}_{\mu}(b) \mid \#\operatorname{Nleg}_{\mu}(a) \le \#\operatorname{Nleg}_{\mu}(b) \}.$$

$$(2.3)$$

As in [HHL06, (15)], the number of elements of  $Nleg_{\mu}(i, j)$  and  $Narm_{\mu}(i, j)$  are

 $\# \text{Nleg}_{\mu}(i,j) = \#\{(i,j') \in dg(\mu) \mid j' > j\} = \mu_i - j,$   $\# \text{Narm}_{\mu}(i,j) = \#\{(i',j) \in dg(\mu) \mid i' < i \text{ and } \mu_{i'} \le \mu_i\} + \#\{(i',j-1) \in \widehat{dg}(\mu) \mid i' > i \text{ and } \mu_{i'} < \mu_i\},$ where  $\widehat{dg}(\mu) = dg(\mu) \cup \{(1,0), \dots, (n,0)\}.$ 

#### 2.0.4 Relating HHL arms and legs to Macdonald arms and legs.

If  $\mu$  is decreasing so that  $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$  then  $\mu$  is a partition and

$$\#\operatorname{Narm}_{\mu}(i,j) = \mu'_{j-1} - i = \operatorname{leg}_{\mu}(i,j-1) \quad \text{and} \quad \#\operatorname{Nleg}_{\mu}(i,j) = \mu_i - j = \operatorname{arm}_{\mu}(i,j).$$

If  $\mu$  is increasing so that  $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$  then  $w_0\mu = (\mu_n, \dots, \mu_1)$  is a partition and

$$\# \operatorname{Narm}_{\mu}(i,j) = (w_0 \mu)'_j - (n-i) \\ = \operatorname{leg}_{w_0 \mu}(n-i,j)$$
 and 
$$\# \operatorname{Nleg}_{\mu}(i,j) = \mu_i - j = (w_0 \mu)_{n-i} - j \\ = \operatorname{arm}_{w_0 \mu}(n-i,j)$$

(see [HHL06, remarks before (17)] and [Hgl06, p. 136, remarks before Figure 6]).

# 2.0.5 Formulas for the number of alcove walks $\#AW^z_{\mu}$ and nonattacking fillings $\#NAF^z_{\mu}$

The motivation for computing  $\#AW^z_{\mu}$  and  $\#NAF^z_{\mu}$  is that the alcove walks formula and the nonattacking fillings formulas for the relative Macdonald polynomial  $E^z_{\mu}$  are, respectively,

$$E^z_{\mu} = \sum_{p \in AW^z_{\mu}} \operatorname{wt}(p) \quad \text{and} \quad E^z_{\mu} = \sum_{T \in \operatorname{NAF}^z_{\mu}} \operatorname{wt}(T).$$

(see [GR21, Theorem 1.1]). The number of terms in the first formula is  $\#AW^z_{\mu}$  and the number of terms in the second formula is  $\#NAF^z_{\mu}$ .

For a box  $(i, j) \in dg(\mu)$  define  $u_{\mu}(i, j)$  by the equation

$$u_{\mu}(i,j) + 1 = n - \#\operatorname{attack}_{\mu}(i,j).$$

Since  $\# \operatorname{attack}_{\mu}(i,j) = \#\{i' \in \{1,\ldots,i-1\} \mid \mu_{i'} \geq j\} + \#\{i' \in \{i+1,\ldots,n\} \mid \mu_{i'} \geq j-1\}$  then

$$u_{\mu}(i,j) = \#\{i' \in \{1,\ldots,i-1\} \mid \mu_{i'} < j \le \mu_i\} + \#\{i' \in \{i+1,\ldots,n\} \mid \mu_{i'} < j-1 < \mu_i\}).$$

Let  $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$  and  $z \in S_n$ . By [GR21, Proposition (2.2)] and the definition of alcove walks and nonattacking fillings in [GR21, (1.11) and (1.7)],

$$\# AW_{\mu}^{z} = 2^{\ell(u_{\mu})} = \prod_{(i,j)\in\mu} 2^{u_{\mu}(i,j)} \quad \text{and} \quad \# NAF_{\mu}^{z} = \prod_{(i,j)\in\mu} (u_{\mu}(i,j)+1).$$
(2.4)

(The right hand side does not depend on the choice of z.) For example (as in [CMW18, Table 1]),

$$\# \mathrm{NAF}_{(4,3,3,3,2,2,1,1,0,0)}^{z} = \begin{pmatrix} 1 \cdot 3 \cdot 5 \cdot 7 \\ \cdot 1 \cdot 3 \cdot 5 \\ \cdot 1 \cdot 3 \cdot 5 \\ \cdot 1 \cdot 3 \cdot 5 \\ \cdot 1 \cdot 3 \\ \cdot 1 \cdot 3 \\ \cdot 1 \\ \cdot 1 \end{pmatrix} = 3189375, \quad \text{for } z \in S_{10}.$$

### 2.1 The column strict tableaux formula for $P_{\lambda}$

Let  $\lambda$  and  $\mu$  be partitions such that  $\lambda \supseteq \mu$  and  $\lambda/\mu$  is a horizontal strip. Following [Mac, Ch. VI §7 Ex. 2(b)], define

$$\psi_{\lambda/\mu} = \prod_{1 \le i < j \le \ell(\mu)} \frac{(q^{\mu_i - \mu_j} t^{j-i+1}; q)_{\infty} (q^{\lambda_i - \lambda_{j+1}} t^{j-i+1}; q)_{\infty} (q^{\lambda_i - \mu_j + 1} t^{j-i}; q)_{\infty} (q^{\mu_i - \lambda_{j+1} + 1} t^{j-i}; q)_{\infty}}{(q^{\mu_i - \mu_j + 1} t^{j-i}; q)_{\infty} (q^{\lambda_i - \lambda_{j+1} + 1} t^{j-i}; q)_{\infty} (q^{\lambda_i - \mu_j} t^{j-i+1}; q)_{\infty} (q^{\mu_i - \lambda_{j+1} + 1} t^{j-i+1}; q)_{\infty}}.$$

where the infinite product  $(x;q)_{\infty} = (1-x)(1-xq)(1-xq^2)\cdots$ . A column strict tableau of shape  $\lambda$  is a filling  $T: dg(\lambda) \to \{1, \ldots, n\}$  such that

$$T(i,j) \leq T(i,j+1) \qquad \text{and} \qquad T(i,j) < T(i+1,j).$$

For a column strict tableau T define

$$\psi_T = \prod_{i=1}^{'} \psi_{\lambda^{(i)}/\lambda^{(i-1)}} \quad \text{where} \quad \lambda^{(i)} = \{ u \in dg(\lambda) \mid T(u) \le i \}.$$

Then [Mac, Ch. VI (7.13')] gives

$$P_{\lambda} = \sum_{T} \psi_T x^T, \quad \text{where} \quad x^T = x_1^{\#(1 \text{s in } T)} \cdots x_n^{\#(n \text{s in } T)}.$$
 (2.5)

By [Mac, Ch. 1 §3 Ex. 4], this formula for  $P_{\lambda}$  has

$$\prod_{b \in \lambda} \frac{n + c(b)}{h(b)} \quad \text{terms, where} \quad \begin{array}{c} c(b) \text{ is the content of the box } b, \\ h(b) \text{ is the hook length at the box } b. \end{array}$$

### 2.1.1 Comparing numbers of terms in formulas for $P_{\lambda}$ .

Let  $\lambda = (\lambda_1, \dots, \lambda_n)$  be a partition and write  $\lambda = (0^{m_0} 1^{m_1} 2^{m_2} \cdots)$  so that  $m_i$  is the number of rows of  $\lambda$  of length *i*. Then number of elements of the orbit  $S_n \lambda$  (the number of rearrangements of  $\lambda$ ) is

$$\operatorname{Card}(S_n\lambda) = \frac{n!}{m_{\lambda}!}, \quad \text{where} \quad m_{\lambda}! = m_0!m_1!m_2!\cdots.$$

By (1.5), the symmetric Macdonald polynomial is given by  $P_{\lambda} = \sum_{\nu \in S_n \lambda} E_{\lambda}^z$ , and using the alcove walks formula for  $E_{\lambda}^z$  and the nonattacking fillings formulas for  $E_{\lambda}^z$  provide formulas for  $P_{\lambda}$  with

$$\frac{n!}{m_{\lambda}!} \cdot \# AW_{\lambda}^{z} \text{ terms}, \quad \text{and} \quad \frac{n!}{m_{\lambda}!} \cdot \# NAF_{\lambda}^{z} \text{ terms}, \quad \text{respectively}$$

Alternatively, by Proposition 1.1, there is a constant (const) such that

$$P_{\lambda} = (const) \sum_{\nu \in S_n \lambda} E^z_{rev(\lambda)}, \quad \text{where} \quad \begin{array}{l} \text{if } \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k, 0, \dots, 0) \text{ with } \lambda_k \neq 0 \\ \text{then } rev(\lambda) = (\lambda_k, \dots, \lambda_2, \lambda_1, 0, \dots, 0). \end{array}$$

Then using the alcove walks formula for  $E^z_{rev(\lambda)}$  and the nonattacking fillings formulas for  $E^z_{rev(\lambda)}$  provide formulas for  $P_{\lambda}$  with

$$\frac{n!}{m_{\lambda}!} \cdot \# AW_{rev(\lambda)}^{z} \text{ terms,} \quad \text{and} \quad \frac{n!}{m_{\lambda}!} \cdot \# NAF_{rev(\lambda)}^{z} \text{ terms,} \quad \text{respectively.}$$

Let  $\lambda$  be a partition. Let  $\lambda' = (\lambda'_1, \ldots, \lambda'_k)$  be the conjugate partition to  $\lambda$  so that  $\lambda'_j$  is the length of the *j*th column of  $\lambda$ . For  $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k, 0, \ldots, 0)$  with  $\lambda_k \neq 0$  let  $rev(\lambda) = (\lambda_k, \ldots, \lambda_2, \lambda_1, 0, \ldots, 0)$ . Then  $u_{\lambda}(i, 1) = u_{rev(\lambda)}(i, 1) = 0$  and if j > 1 then  $u_{\lambda}(i, j) = n - \lambda'_{j-1}$  and  $u_{rev(\lambda)}(i, j) = n - \lambda'_j$ . Thus

$$\#AW_{\lambda} = \prod_{\substack{(i,j)\in\lambda\\j>1}} 2^{n-\lambda'_{j-1}}, \quad \#NAF_{\lambda} = \prod_{\substack{(i,j)\in\lambda\\j>1}} (n-\lambda'_{j-1}+1), \quad \#NAF_{rev(\lambda)} = \prod_{\substack{(i,j)\in\lambda\\j>1}} (n-\lambda'_{j}+1),$$

and

$$t(\lambda) = n! \cdot \prod_{\substack{(i,j) \in \lambda \\ j > 1}} (n - \lambda'_{j-1} + 1), \quad c(\lambda) = \prod_{\substack{(i,j) \in \lambda \\ j > 1}} \frac{2^{n - \lambda'_{j-1}}}{n - \lambda'_{j-1} + 1}, \quad r(\lambda) = \prod_{\substack{(i,j) \in \lambda \\ j > 1}} \frac{n - \lambda'_j + 1}{n - \lambda'_{j-1} + 1}$$

are formulas for the values provided in the table in [Len08, end of §3] (Lenart assumes that the parts of  $\lambda$  are distinct so that  $m_{\lambda}! = 1$ ). For example, if  $\lambda = (5, 4, 2, 1, 0)$  as in the last row of Lenart's table then

$$t(\lambda) = 5! \cdot \begin{pmatrix} 1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \\ 1 \cdot 2 \cdot 3 \cdot 4 \\ 1 \cdot 2 \\ 1 \end{pmatrix}, \quad c(\lambda) = \frac{\begin{pmatrix} 2^0 \cdot 2^1 \cdot 2^2 \cdot 2^3 \cdot 2^3 \\ 2^0 \cdot 2^1 \\ 2^0 \end{pmatrix}}{\begin{pmatrix} 1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \\ 1 \cdot 2 \cdot 3 \cdot 4 \\ 1 \cdot 2 \\ 1 \end{pmatrix}}, \quad r(\lambda) = \frac{\begin{pmatrix} 1 \\ 1 \cdot 3 \\ 1 \cdot 3 \cdot 4 \cdot 4 \\ 1 \cdot 3 \cdot 4 \cdot 4 \\ 1 \cdot 3 \cdot 4 \cdot 4 \cdot 5 \end{pmatrix}}{\begin{pmatrix} 1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \\ 1 \cdot 2 \cdot 3 \cdot 4 \\ 1 \cdot 2 \\ 1 \end{pmatrix}},$$

so that  $t(\lambda) = 552960$ ,  $c(\lambda) = \frac{128}{9} \approx 14.222$  and  $r(\lambda) = \frac{15}{2} = 7.5$ . To compare this with the number of column strict tableaux of shape  $\lambda = (5, 4, 2, 1, 0)$  (the number of terms in the formula for  $P_{\lambda}$  in (2.5)),

$$\prod_{b\in\lambda} \frac{n+c(b)}{h(b)} = \frac{\begin{pmatrix} 5\cdot 6\cdot 7\cdot 8\cdot 9\\ 4\cdot 5\cdot 6\cdot 7\\ 3\cdot 4\\ 2 \end{pmatrix}}{\begin{pmatrix} 8\cdot 6\cdot 4\cdot 3\cdot 1\\ 6\cdot 4\cdot 2\cdot 1\\ 3\cdot 1\\ 1 \end{pmatrix}} = 5\cdot 7\cdot 3\cdot 5\cdot 7 = 3675, \quad \text{and} \quad \frac{552960}{3675} = 150.465.$$

# 3 Converting fillings and alcove walks to paths and pipe dreams

#### 3.0.1 Hyperplanes and alcoves

Let  $\mathbb{R}^n = \mathfrak{a}_{\mathbb{R}}^* = \mathbb{R}\varepsilon_1 + \cdots + \mathbb{R}\varepsilon_n$ . For  $i, j, k \in \{1, \ldots, n\}$  with i < j and  $\ell \in \mathbb{Z}$  define

$$\mathfrak{a}^{\varepsilon_i^{\vee}-\varepsilon_j^{\vee}+\ell K} = \{(\mu_1,\ldots,\mu_n) \in \mathbb{R}^n \mid \mu_i - \mu_j = -\ell\}, \text{ and} \\ \mathfrak{a}^{\epsilon_k^{\vee}+\ell K} = \{(\mu_1,\ldots,\mu_n) \in \mathbb{R}^n \mid \mu_k = -\ell\}.$$

$$(3.1)$$

The union of these hyperplanes is

$$\mathcal{H} = \{(\mu_1, \dots, \mu_n) \in \mathbb{R}^n \mid \text{if } i, j \in \{1, \dots, n\} \text{ and } i \neq j \text{ then } \mu_i \notin \mathbb{Z} \text{ and } \mu_i - \mu_j \notin \mathbb{Z}\}.$$

An *alcove* is a connected component of

$$\mathbb{R}^n - \mathcal{H}$$
, the complement of the hyperplanes listed in (3.1).

The fundamental alcove is

$$A_1 = \{ \mu = (\mu_1, \dots, \mu_n) \in \mathbb{R}^n \mid \mu_1 - \mu_n \in \mathbb{R}_{>0} \text{ and if } i \in \{1, \dots, n\} \text{ then } \mu_i \in \mathbb{R}_{(-1,0)} \}$$

For n = 2, some pictures of these hyperplanes and paths in  $\mathfrak{a}_{\mathbb{R}}^* \cong \mathbb{R}^2$  are in section 3.0.8.

**3.0.2** Bijection  $W \leftrightarrow W \cdot \frac{1}{n} \rho \leftrightarrow \{\text{alcoves}\}$ 

Let W be the group of n-periodic permutations and define an action of  $W_{GL_n}$  on  $\mathbb{R}^n$  by

$$\pi(\mu_1, \dots, \mu_n) = (\mu_n + 1, \mu_1, \dots, \mu_n),$$
and
$$s_i(\mu_1, \dots, \mu_n) = (\mu_1, \dots, \mu_{i-1}, \mu_{i+1}, \mu_i, \mu_{i+1}, \dots, \mu_n), \quad \text{for } i \in \{1, \dots, n-1\}.$$
(3.2)

Let

$$p = \left(\frac{n-1}{2}, \frac{n-3}{2}, \dots, \frac{-(n-1)}{2}\right) = (n-1, n-2, \dots, 1, 0) - \frac{n-1}{2}(1, 1, \dots, 1).$$
(3.3)

Then the maps

and so we can identify W with the set of alcoves and with the orbit  $W \cdot \frac{1}{n}\rho$ . The statement in (3.4) holds because the stabilizer of  $\frac{1}{n}\rho$  under the action of W on  $\mathbb{R}^n$  is  $\{1\}$ .

### **3.0.3** Reflections in W.

For any pair  $(j,k) \in \mathbb{Z} \times \mathbb{Z}$  with  $j \neq k$  define

$$s_{jk}(j) = k$$
,  $s_{jk}(k) = (j)$ ,  $s_{jk}(i) = i$  if  $i \neq j \mod n$  and  $i \neq k \mod n$ .

If 
$$i \in \{1, \dots, n-1\}$$
 and  $t_{\mu}v = ((\mu_1)_{v(1)}, (\mu_2)_{v(2)}, \dots, (\mu_n)_{v(n)})$  then  
 $s_i t_{\mu}v = ((\mu_1)_{v(1)}, \dots, (\mu_{i-1})_{v(i-1)}, (\mu_{i+1})_{v(i+1)}, (\mu_i)_{v(i)}, (\mu_{i+2})_{v(i+2)}, \dots, (\mu_n)_{v(n)}),$ 

so that, in extended one-line notation,  $s_i$  acts by switching the *i*th and (i + 1)st components. The

hyperplane  $\mathfrak{a}^{\beta^{\vee}}$  between  $t_{\mu}vA_1$  and  $s_it_{\mu}vA_1$  has root  $\beta^{\vee} = \varepsilon_{v(i+1)}^{\vee} - \varepsilon_{v(i)}^{\vee} + (\mu_i - \mu_{i+1})K$ .

#### 3.0.4 Paths.

A path is a piecewise linear function  $\gamma \colon \mathbb{R}_{[0,a]} \to \mathbb{R}^n$ , where  $a \in \mathbb{R}_{>0}$  and  $\mathbb{R}_{[0,a]} = \{t \in \mathbb{R} \mid 0 \le t \le a\}$ . The concatenation of paths  $\gamma_1 \colon \mathbb{R}_{[0,a]} \to \mathfrak{h}^*_{\mathbb{R}}$  and  $\gamma_2 \colon \mathbb{R}_{[0,b]} \to \mathfrak{h}^*_{\mathbb{R}}$  is the path

$$\gamma_1 \gamma_2 \colon \mathbb{R}_{[0,a+b]} \to \mathfrak{h}_{\mathbb{R}}^* \qquad \text{given by} \qquad (\gamma_1 \gamma_2)(t) = \begin{cases} \gamma_1(t), & \text{if } i \in \mathbb{R}_{[0,a]}, \\ \gamma_1(a) + \gamma_2(t-a), & \text{if } t \in \mathbb{R}_{[a,a+b]}. \end{cases}$$

#### 3.0.5 Paths corresponding to nonattacking fillings.

The straight line path to  $0 \rightarrow \varepsilon_i$  is

If T is a nonattacking filling of type  $(z, \mu)$  then the word, or path, of T is

$$\vec{x}_T = \prod_{u \in \mu} x_{T(u)}$$
 taken in increasing order of cylindrical coordinate.

The path, or word,

$$\vec{x}_T = x_{i_1} x_{i_2} \cdots x_{i_\ell}$$
 is  $0 \to \varepsilon_{i_1} \to (\varepsilon_{i_1} + \varepsilon_{i_2}) \to \cdots \to \varepsilon_{i_1} + \cdots + \varepsilon_{i_\ell}$ 

as a sequence of straight line segments.

#### 3.0.6 Paths corresponding to alcove walks.

Define paths  $\omega \colon \mathbb{R}_{[0,1]} \to \mathbb{R}^n$  and  $c_\alpha \colon \mathbb{R}_{[0,1]} \to \mathbb{R}^n$  and  $f_\alpha \colon \mathbb{R}_{[0,1]} \to \mathbb{R}^n$  by

$$\omega(t) = \frac{t}{n}(1, 1, \dots, 1), \qquad c_{\alpha}(t) = t\alpha \quad \text{and} \quad f_{\alpha}(t) = \begin{cases} t\alpha, & \text{if } 0 \le t \le \frac{1}{2}, \\ (1-t)\alpha, & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Let  $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$  and  $z \in S_n$ . Let  $s_{\pi} = \pi$  and let  $\vec{u}_{\mu} = s_{i_1} \cdots s_{i_r}$  be a reduced word for  $u_{\mu}$ . An *alcove walk* of type  $(z, \vec{u}_{\mu})$  is

a sequence 
$$p = (p_0, p_1, \dots, p_r)$$
 of elements of  $W$  such that (3.5)

 $p_0 = z$ ; if  $s_{i_k} = \pi$  then  $p_k = p_{k-1}\pi$ ; and if  $s_{i_k} \neq \pi$  then  $p_k \in \{p_{k-1}, p_{k-1}s_{i_k}\}$ . The path corresponding to p is

$$\gamma_{\beta_1} \cdots \gamma_{\beta_\ell}, \quad \text{where} \quad \gamma_{\beta_j} = \begin{cases} f_{p_{k-1}\alpha_{i_k}}, & \text{if } p_k = p_{k-1}, \\ c_{p_{k-1}\alpha_{i_k}}, & \text{if } p_k = p_{k-1}s_{i_k}, \\ \omega, & \text{if } p_k = p_{k-1}\pi, \end{cases}$$
(3.6)

See §6.0.3 for pictures in  $\mathbb{R}^2$ , for n = 2. The pictures of paths for n = 3 in sections 3.0.9 and 3.0.9 are projections from  $\mathbb{R}^3$  to the plane  $\{(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{R}^3 \mid \gamma_1 + \gamma_2 + \gamma_3 = 0\}$ .

### 3.0.7 Pipe dreams corresponding to nonattacking fillings

Let  $\mu \in \mathbb{Z}_{\geq 0}^n$ . A filling of  $dg(\mu)$  is a function  $T: dg(\mu) \to \{1, \ldots, n\}$ . If the filling is nonattacking, then it satisfies the column distinct condition,

if 
$$j \in \mathbb{Z}_{>0}$$
 and  $(i, j), (i', j) \in D$  then  $T(i, j) \neq T(i', j)$ , (CD)

and so the filling T can be converted into a pipe dream  $P: \{1, \ldots, n\} \times \mathbb{Z}_{>0} \to \{1, \ldots, n\}$  by setting

$$P(k,j) = i \qquad \text{if and only if} \qquad T(i,j) = k, \tag{3.7}$$

and putting P(k, j) = 0 if there does not exist  $i \in \{1, ..., n\}$  such that T(i, j) = k. (This bijection is given in [BW19, (5.10)] and [CMW18, Definition A.6]. In [CMW18, Definition A.6] the pipe dreams are the *multiline queues* and the fillings are the Queue Tableaux and in [BW19, (5.10)] the pipe dreams are the  $\mu$ -legal configurations.) The column distinct condition on T is exactly the condition that P obtained in this way is a function.

For example,

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 3 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 1 | 2 | 2 | 2 |
| 3 |   |   | 3 |   |   | 3 |   |   | 3 |   |   |

are the 4 nonattacking fillings of  $\mu = (2, 2, 0)$ . Converting these to pipe dreams gives

| 1 | ´1 | 1 | 1   | \ | (1) | 1 | 1 \ |     | (1) | 1 | 2   | \ | $\left( 1 \right)$ | 1 | 0 \ |
|---|----|---|-----|---|-----|---|-----|-----|-----|---|-----|---|--------------------|---|-----|
|   | 2  | 2 | 2   |   | 2   | 2 | 0   | ) ( | 2   | 2 | 1   |   | 2                  | 2 | 2   |
|   | 3  | 0 | 0 , | ) | 3   | 0 | 2 , | )   | 3   | 0 | 0 / | / | 3                  | 0 | 1 / |

The example in [BW19, Figure 5] has

|         | 1 |   |   |   |   |   |                               | (1)        | 2 | 2 | 2 | 0 | 0 \ |
|---------|---|---|---|---|---|---|-------------------------------|------------|---|---|---|---|-----|
|         | 2 | 1 | 1 | 1 | 2 |   |                               | 2          | 0 | 5 | 0 | 2 | 0   |
| filling | 3 | 3 |   |   |   |   | with corresponding pipe dream | 3          | 3 | 0 | 5 | 5 | 0   |
|         | 4 | 4 | 4 | 5 | 4 | 4 |                               | 4          | 4 | 4 | 0 | 4 | 4   |
|         | 5 | 5 | 2 | 3 | 3 |   |                               | $\sqrt{5}$ | 5 | 0 | 4 | 0 | 0/  |

and the picture of this pipe dream from [BW19, Figure 5] is



([BW19] index rows bottom to top instead of top to bottom). The example in [CMW18, Figures 3 and 12] has

nonattacking filling 
$$T = \begin{bmatrix} 6 & 6 & 5 & 3 & & \\ 1 & 1 & 6 & & \\ 2 & 2 & 2 & 2 & & \\ 7 & 7 & 4 & & \\ 8 & 8 & & & \\ 3 & & & & \\ 4 & & & & \\ 5 & & & & & \\ \end{bmatrix}$$
 and pipe dream  $P = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 3 & 3 & 3 & 0 \\ 6 & 0 & 0 & 1 \\ 7 & 0 & 4 & 0 \\ 8 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 4 & 4 & 0 & 0 \\ 5 & 5 & 0 & 0 \end{pmatrix}$ 

and the picture of this pipe dream (multiline queue in the terminology of [CMW18]) from [CMW18, Fig. 3] is



# 3.0.8 Alcove walks, nonattacking fillings and paths for $E_{(3,0)}$

The explicit expansion of  $E_{(3,0)}$  is

$$E_{(3,0)} = x_1^3 + \left(\frac{1-t}{1-q^2t}\right)q^2x_1x_2^2 + \left(\left(\frac{1-t}{1-qt}\right)q + \left(\frac{1-t}{1-q^2t}\right)\left(\frac{1-t}{1-qt}\right)q^2\right)x_1^2x_2 + \left(\left(\frac{1-t}{1-qt}\right)q + \left(\frac{1-t}{1-q^2t}\right)\left(\frac{1-t}{1-qt}\right)q^2\right)x_1^2x_2 + \left(\left(\frac{1-t}{1-qt}\right)q + \left(\frac{1-t}{1-qt}\right)q^2\right)x_1^2x_2 + \left(\frac{1-t}{1-qt}\right)q^2\right)x_1^2x_2 + \left(\frac{1-t}{1-qt}\right)q^2 + \left(\frac{1-$$

The nonattacking fillings, words, paths, alcove walks and corresponding weights for  $E_{(3,0)}$  are



The first row contains the nonattacking fillings. The second row contains the words of the nonattacking fillings. The red paths are the paths corresponding to the words of the nonattacking fillings, and the blue paths are the paths corresponding to the alcove walks. We used a shortened notation for the alcove walks so that

$$\pi s_1 \pi s_1 \pi$$
represents the alcove walk  $(1, \pi, \pi s_1, \pi s_1 \pi, \pi s_1 \pi s_1, \pi s_1 \pi s_1 \pi),$   

$$\pi s_1 \pi 1 \pi$$
represents the alcove walk  $(1, \pi, \pi s_1, \pi s_1 \pi, \pi s_1 \pi, \pi s_1 \pi^2),$   

$$\pi 1 \pi s_1 \pi$$
represents the alcove walk  $(1, \pi, \pi, \pi^2, \pi^2 s_1, \pi^2 s_1 \pi),$   

$$\pi 1 \pi 1 \pi$$
represents the alcove walk  $(1, \pi, \pi, \pi^2, \pi^2, \pi^3).$ 

The last row contains the weights of the alcove walks (which are the same as the weights of the nonattacking fillings to illustrate that the factors of the form  $\left(\frac{1-t}{1-q^at^b}\right)$  are in bijection with the folds of the blue path.

# 3.0.9 Alcove walks, nonattacking fillings and pipe dreams for $E_{(2,0.1)}$

In the orthogonal projection from  $\mathbb{R}^3$  to the plane

$$\{(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{R}^3 \mid \gamma_1 + \gamma_2 + \gamma_3 = 0\}$$

(so that we can draw 2-dimensional pictures), the straight line paths  $x_1, x_2, x_3$  to  $\varepsilon_1, \varepsilon_2, \varepsilon_3$ , respectively, are pictured as



The explicit expansion of  $E_{(2,0,1)}$  is

$$E_{(2,0,1)} = x_1 x_3 x_1 + \frac{1-t}{1-qt} x_1 x_2 x_1 + qt \frac{1-t}{1-qt^2} x_1 x_3 x_2 + q \frac{1-t}{1-qt} \frac{1-t}{1-qt^2} x_1 x_2 x_3 x_2 + q \frac{1-t}{1-qt} \frac{1-t}{1-qt^2} x_1 x_2 x_3 x_3 + q \frac{1-t}{1-qt} \frac{1-t}{1-qt^2} x_1 x_2 x_3 + q \frac{1-t}{1-qt} \frac{1-t}{1-qt} \frac{1-t}{1-qt} x_1 x_2 x_3 + q \frac{1-t}{1-qt} \frac{1-t}{1-qt} \frac{1-t}{1-qt} \frac{1-t}{1-qt} x_1 x_2 x_3 + q \frac{1-t}{1-qt} \frac{1-t}{1$$



The nonattacking fillings, words, paths, alcove walks and corresponding weights for  $E_{(2,0,1)}$  are

where we have used the same shortened notation for alcove walks as in the table in Section 3.0.8. The sections of type  $\omega$  in the paths corresponding to the alcove walks (see (3.6)) are not visible in these pictures since the pictures are in a projection orthogonal to the direction of  $\omega$ .

# 3.0.10 Alcove walks, nonattacking fillings and pipe dreams for $E_{(1,2,0)}$

The explicit expansion of  $E_{(1,2,0)}$  is

$$E_{(1,2,0)} = x_1 x_2 x_2 + \frac{1-t}{1-qt} x_1 x_2 x_1 + q \frac{(1-qt^2)}{(1-qt)} \frac{(1-t)}{(1-qt^2)} x_1 x_2 x_3$$

The nonattacking fillings, words, paths, alcove walks and corresponding weights for  $E_{(1,2,0)}$  are



where we have used the same shortened notation for alcove walks as in the table in Section 3.0.8. The sections of type  $\omega$  in the paths corresponding to the alcove walks (see (3.6)) are not visible in these pictures since the pictures are in a projection orthogonal to the direction of  $\omega$ . For this example, there are 4 alcove walks and 3 nonattacking fillings.

# 4 Reduced words and inversions

### **4.0.1** Examples of the inversion set Inv(w).

Define *n*-periodic permutations  $\pi$  and  $s_0, s_1, \ldots, s_{n-1} \in W$  by

$$\pi(i) = i + 1, \quad \text{for } i \in \mathbb{Z}, \tag{4.1}$$

$$s_i(i) = i + 1,$$
  
 $s_i(i+1) = i,$  and  $s_i(j) = j$  for  $j \in \{0, 1, \dots, i-1, i+2, \dots, n-1\}.$  (4.2)

An *inversion* of a bijection  $w \colon \mathbb{Z} \to \mathbb{Z}$  is

$$(j,k) \in \mathbb{Z} \times \mathbb{Z}$$
 with  $j < k$  and  $w(j) > w(k)$ .

and the affine root corresponding to an inversion

$$(i,k) = (i,j+\ell n)$$
 with  $i,j \in \{1,\ldots,n\}$  and  $\ell \in \mathbb{Z}$ , is  $\beta^{\vee} = \varepsilon_i^{\vee} - \varepsilon_j^{\vee} + \ell K.$  (4.3)

Let n = 3. The element

$$w = s_1 s_2$$
 has  $w(1) = 2, w(2) = 3, w(3) = 1,$ 

and w(1) > w(3) and w(2) > w(3) and

$$\operatorname{Inv}(w) = \{\alpha_2^{\vee}, s_2\alpha_1^{\vee}\} = \{\varepsilon_2^{\vee} - \varepsilon_3^{\vee}, \varepsilon_1^{\vee} - \varepsilon_3^{\vee}\}.$$

The element

$$w = s_2 s_1$$
 has  $w(1) = 3$ ,  $w(2) = 1$ ,  $w(3) = 2$ ,

and w(1) > w(2) and w(1) > w(3) and

$$\operatorname{Inv}(w) = \{\alpha_1^{\vee}, s_1 \alpha_2^{\vee}\} = \{\varepsilon_1^{\vee} - \varepsilon_2^{\vee}, \varepsilon_1^{\vee} - \varepsilon_3^{\vee}\}.$$

These are examples of [GR21, (2.11)].

#### 4.0.2 Relations in the affine Weyl group W

The following relations are useful when working with n-periodic permutations.

#### **Proposition 4.1.** Then

$$s_0 = t_{\varepsilon_1^{\vee} - \varepsilon_n^{\vee}} s_{n-1} \cdots s_2 s_1 s_2 \cdots s_{n-1}, \qquad t_{\varepsilon_1^{\vee}} = \pi s_{n-1} \cdots s_2 s_1, \tag{4.4}$$

and 
$$t_{\varepsilon_{i+1}^{\vee}} = s_i t_{\varepsilon_i^{\vee}} s_i, \qquad \pi s_i \pi^{-1} = s_{i+1},$$
 (4.5)

for  $i \in \{1, ..., n-1\}$ .

*Proof.* Proof of (4.4): If  $i \notin \{1, n\}$ 

$$t_{\varepsilon_1^{\vee}-\varepsilon_n^{\vee}}s_{n-1}\cdots s_2s_1s_2\cdots s_{n-1}(i)t_{\varepsilon_1^{\vee}-\varepsilon_n^{\vee}}(i)=i=s_0(i).$$

If i = 1 then

$$t_{\varepsilon_1^{\vee} - \varepsilon_n^{\vee}} s_{n-1} \cdots s_2 s_1 s_2 \cdots s_{n-1}(1) = t_{\varepsilon_1^{\vee} - \varepsilon_n^{\vee}}(n) = n - n = 0 = s_0(1).$$

and, if i = n then

$$t_{\varepsilon_1^{\vee}-\varepsilon_n^{\vee}}s_{n-1}\cdots s_2s_1s_2\cdots s_{n-1}(n) = t_{\varepsilon_1^{\vee}-\varepsilon_n^{\vee}}(1) = 1 + n = s_0(n),$$

For  $i \in \{2, \ldots, n\}$ 

 $\pi s_{n-1} \cdots s_1(i) = \pi(i-1) = i = t_{\varepsilon_1}(i),$  and  $\pi s_{n-1} \cdots s_1(1) = \pi(n) = n+1 = t_{\varepsilon_1}(1).$ Proof of (4.5):

$$\begin{split} s_i t_{\varepsilon_i^{\vee}} s_i(i) &= s_i t_{\varepsilon_i^{\vee}}(i+1) = s_i(i+1) = i = t_{\varepsilon_{i+1}^{\vee}}(i), \\ s_i t_{\varepsilon_i^{\vee}} s_i(i+1) &= s_i t_{\varepsilon_i^{\vee}}(i) = s_i(i+n) = i+1+n, = t_{\varepsilon_{i+1}^{\vee}}(i+1), \\ s_i t_{\varepsilon_i^{\vee}} s_i(j) &= s_i t_{\varepsilon_i^{\vee}}(j) = s_i(j) = j = t_{\varepsilon_{i+1}^{\vee}}(j), & \text{if } j \in \{1, \dots, n\} \text{ and } j \notin \{i, i+1\}. \end{split}$$

Finally,

$$\pi s_i \pi^{-1}(i) = \pi s_i(i-1) = \pi(i) = i+1 = s_{i+1}(i), \text{ and}$$
$$\pi s_i \pi^{-1}(i+1) = \pi s_i(i) = \pi(i+1) = i+2 = s_{i+1}(i+1).$$

#### 4.0.3 The "affine Weyl group" and the "extended affine Weyl group"

The type  $GL_n$  affine Weyl group W is generated by  $s_1, \ldots, s_n$  and  $\pi$ . The group W contains also  $s_0$  and all the elements  $t_{\mu}$  for  $\mu \in \mathbb{Z}^n$ . The projection homomorphism is the group homomorphism  $\vdots W \to S_n$  given by

$$\overline{t_{\mu}v} = v, \quad \text{for } \mu \in \mathbb{Z}^n \text{ and } v \in S_n.$$
 (4.6)

The type  $PGL_n$ -affine Weyl group is the subgroup  $W_{PGL_n}$  generated by  $s_0, s_1, \ldots, s_{n-1}$ .

$$W_{PGL_n} = \{ t_{\mu}v \mid \mu = (\mu_1, \dots, \mu_n) \in \mathbb{Z}^n \text{ with } \mu_1 + \dots + \mu_n = 0 \text{ and } v \in S_n \}, \quad \text{and} \\ W_{GL_n} = W = \{ t_{\mu}v \mid \mu \in \mathbb{Z}^n, v \in S_n \} = \{ \pi^h w \mid h \in \mathbb{Z}, w \in W_{PGL_n} \}.$$

Then

$$W_{GL_n} = \mathbb{Z}^n \rtimes S_n = \Omega \ltimes W_{PGL_n}, \quad \text{where} \quad \Omega = \{\pi^h \mid h \in \mathbb{Z}\} \quad \text{with} \quad \Omega \cong \mathbb{Z}.$$

The symbols  $\ltimes$  and  $\rtimes$  are brief notations whose purpose is to indicate that the relations in (4.5) hold.

The group  $W_{PGL_n}$  is also a quotient of  $W_{GL_n}$ , by the relation  $\pi = 1$ . The type  $SL_n$  affine Weyl group is the quotient of  $W_{GL_n}$  by the relation  $\pi^n = 1$ . This is equivalent to putting a relation requiring

$$t_{\mu} = t_{\nu}$$
 if  $\mu_i = \nu_i \mod n$  for  $i \in \{1, \ldots, n\}$ .

As explained in [St67, Ch. 3, Exercise after Corollary 5], there is a Chevalley group  $G_d$  for each positive integer d dividing n. The group  $G_d$  is a central extension of  $PGL_n$  by  $\mathbb{Z}/d\mathbb{Z}$  (so that  $G_1 = PGL_n$  and  $G_n = SL_n$ ). Each of these groups  $G_d$  has an affine Weyl group  $W_{G_d}$ . The group  $W_{G_d}$  is the quotient of  $W_{GL_n}$  by the relation  $\pi^d = 1$ , and is an extension of  $W_{PGL_n}$  by  $\mathbb{Z}/d\mathbb{Z}$ . The group  $W_{PGL_n}$  is sometimes called the "affine Weyl group of type A" and the groups  $W_{GL_n}$  and  $W_{G_d}$  for  $d \neq 1$  are sometimes called the "extended affine Weyl groups of type A". We prefer the more specific terminologies "affine Weyl group of type  $PGL_n$ " for  $W_{PGL_n}$ , "affine Weyl group of type  $SL_n$ " for  $W_{SL_n}$ , "affine Weyl group of type  $GL_n$ " for  $W_{GL_n}$ , and "affine Weyl group of type  $PGL_n \times (\mathbb{Z}/d\mathbb{Z})$ " for  $W_{G_d}$  (the symbol  $\times$  indicates a central extension).

### 4.0.4 The elements $u_{\mu}$ , $v_{\mu}$ , $z_{\mu}$ and $t_{\mu}$ .

Let  $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$  and let  $u_{\mu}$  be the minimal length *n*-periodic permutation such that

$$u_{\mu}(0, 0, \dots, 0) = (\mu_1, \dots, \mu_n)$$

Let  $\lambda = (\lambda, \ldots, \lambda_n)$  be the weakly decreasing rearrangement of  $\mu$  and let

$$z_{\mu} \in S_n$$
 be minimal length such that  $z_{\mu}\lambda = \mu$ , and let

 $v_{\mu} \in S_n$  be minimal length such that  $v_{\mu}\mu$  is weakly increasing.

Let  $t_{\mu} \colon \mathbb{Z} \to \mathbb{Z}$  be the *n*-periodic permutation determined by

$$t_{\mu}(1) = 1 + n\mu_1, \quad t_{\mu}(2) = 2 + n\mu_2, \quad \dots, \quad t_{\mu}(n) = n + n\mu_n.$$
 (4.7)

### **4.0.5** Relating $u_{\mu}$ , $v_{\mu}$ , $z_{\mu}$ to $u_{\lambda}$ , $v_{\lambda}$ , $z_{\lambda}$ .

Let  $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$  with  $\lambda_1 \ge \dots \ge \lambda_n$ . Let  $S_\lambda = \{w \in S_n \mid w\lambda = \lambda\}$  be the stabilizer of  $\lambda$  in  $S_n$ . Let

 $w_0$  be the longest element in  $S_n$ ,  $w_0 = w^{\lambda} w_{\lambda}$  and  $w_{\lambda}$  the longest length element in  $S_{\lambda}$ , and so that  $w^{\lambda}$  the minimal length element in the coset  $w_0 S_{\lambda}$ ,  $\binom{n}{2} = \ell(w_0) = \ell(w^{\lambda}) + \ell(w_{\lambda}).$ 

Let  $\mu \in \mathbb{Z}^n$  and let  $\lambda$  be the decreasing rearrangement of  $\lambda$ . Let  $z_{\mu} \in S_n$  be minimal length such that  $\mu = z_{\mu}\lambda$ . Then  $z_{\lambda} = 1$ ,

$$t_{\mu} = u_{\mu}v_{\mu} = (z_{\mu}u_{\lambda})v_{\mu} \quad \text{and} \quad t_{\lambda} = u_{\lambda}v_{\lambda} = u_{\lambda}(w^{\lambda})^{-1}, \quad \text{with}$$
$$\ell(t_{\mu}) = \ell(u_{\mu}) + \ell(v_{\mu}) = \ell(z_{\mu}) + \ell(u_{\lambda}) + \ell(v_{\mu}) \quad \text{and} \quad \ell(t_{\lambda}) = \ell(u_{\lambda}) + \ell((w^{\lambda})^{-1}).$$

Using that  $z_{\mu}t_{\lambda}z_{\mu}^{-1} = t_{z_{\mu}\lambda} = t_{\mu}$  gives that the elements  $u_{\mu}$  and  $v_{\mu}$  are given in terms of  $z_{\mu}$ ,  $u_{\lambda}$  and  $w^{\lambda}$  by

$$u_{\mu} = z_{\mu}u_{\lambda} \quad \text{and} \quad v_{\mu} = v_{\lambda}z_{\mu}^{-1} = (w^{\lambda})^{-1}z_{\mu}^{-1} = (z_{\mu}w^{\lambda})^{-1} = (z_{\mu}w_{0}w_{\lambda})^{-1} = w_{\lambda}w_{0}z_{\mu}^{-1}$$
  
since  $v_{\lambda} = (w^{\lambda})^{-1}$  and  $v_{\lambda} = v_{\mu}z_{\mu}$  with  $\ell((w_{\lambda})^{-1}) = \ell(v_{\lambda}) = \ell(v_{\mu}) + \ell(z_{\mu}).$ 

### **4.0.6** Inversions of $t_{\varepsilon_1}$ , $t_{-\varepsilon_1}$ and $t_{\varepsilon_2}$

Let  $t_{\mu}$  be as in (4.7) and let  $\varepsilon_i = (0, \dots, 0, 1, 0, \dots, 0)$  where the 1 appears in the *i*th position. Then

$$t_{\varepsilon_{1}} = (1_{1}, 0_{2}, \dots, 0_{n}) = \begin{pmatrix} 1 & 2 & \cdots & n \\ n+1 & 2 & \cdots & n \end{pmatrix} = \pi s_{n-1} \cdots s_{1},$$
  
$$t_{-\varepsilon_{1}} = (-1_{1}, 0_{2}, \dots, 0_{n}) = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1-n & 2 & \cdots & n \end{pmatrix} = s_{1} \cdots s_{n-1} \pi^{-1},$$
  
$$t_{\varepsilon_{1}}s_{1} = (0_{2}, 1_{1}, 0_{3}, \dots, 0_{n}) = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 1+n & 3 & \cdots & n \end{pmatrix} = \pi s_{n-1} \cdots s_{2},$$
  
$$s_{1}t_{\varepsilon_{1}} = (1_{2}, 0_{1}, 0_{3}, \dots, 0_{n}) = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2+n & 1 & 3 & \cdots & n \end{pmatrix} = s_{1}\pi s_{n-1} \cdots s_{1},$$
  
$$t_{\varepsilon_{2}} = s_{1}t_{\varepsilon_{1}}s_{1} = (0_{1}, 1_{2}, 0_{3}, \dots, 0_{n}) = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2+n & 3 & \cdots & n \end{pmatrix} = s_{1}\pi s_{n-1} \cdots s_{2},$$

and

$$\begin{aligned} \operatorname{Inv}(t_{\varepsilon_{1}}) &= \{(1,2),(1,3),\ldots,(1,n)\} \\ &= \{\alpha_{1}^{\vee},s_{1}\alpha_{2}^{\vee},\ldots,s_{1}\cdots s_{n-2}\alpha_{n-1}^{\vee}\} = \{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee},\varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee},\ldots,\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee}\} \\ \operatorname{Inv}(t_{-\varepsilon_{1}}) &= \{(2-n,1),(3-n,1),\ldots,(n-n,1)\} = \{(n,1+n),(n-1,1+n),\ldots,(2,1+n)\} \\ &= \{\pi\alpha_{n-1}^{\vee},\pi s_{n-1}\alpha_{n-2}^{\vee},\ldots,\pi s_{n-1}\cdots s_{2}\alpha_{1}^{\vee}\} \\ &= \{\varepsilon_{n}^{\vee}-(\varepsilon_{1}^{\vee}-K),\varepsilon_{n-1}^{\vee}-(\varepsilon_{1}^{\vee}-K),\ldots,\varepsilon_{2}^{\vee}-(\varepsilon_{1}^{\vee}-K)\} \\ \operatorname{Inv}(t_{\varepsilon_{1}}s_{1}) &= \{(2,3),\ldots,(2,n)\} \\ &= \{\alpha_{2}^{\vee},s_{2}\alpha_{3}^{\vee},\ldots,s_{2}\cdots s_{n-2}\alpha_{n-1}^{\vee}\} = \{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee},\varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee},\ldots,\varepsilon_{2}^{\vee}-\varepsilon_{n}^{\vee}\} \\ \operatorname{Inv}(s_{1}t_{\varepsilon_{1}}) &= \{(1,2),(1,3),\ldots,(1,n),(1-n,2)\} = \{(1,2),(1,3),\ldots,(1,n),(1,2+n)\} \\ &= \{\alpha_{1}^{\vee},s_{1}\alpha_{2}^{\vee},\ldots,s_{1}\cdots s_{n-2}\alpha_{n-1}^{\vee},s_{1}\cdots s_{n-2}s_{n-1}\pi^{-1}\alpha_{1}^{\vee}\} \\ &= \{\varepsilon_{1}^{\vee}-\varepsilon_{2}^{\vee},\varepsilon_{1}^{\vee}-\varepsilon_{3}^{\vee},\ldots,\varepsilon_{1}^{\vee}-\varepsilon_{n}^{\vee},(\varepsilon_{1}^{\vee}+K)-\varepsilon_{2}^{\vee}\} \\ \operatorname{Inv}(t_{\varepsilon_{2}}) &= \{((2,3),\ldots,(2,n),(2-n,1)\} = \{((2,3),\ldots,(2,n),(2,1+n)\} \\ &= \{\alpha_{2}^{\vee},s_{2}\alpha_{3}^{\vee},\ldots,s_{2}\cdots s_{n-2}\alpha_{n-1}^{\vee},s_{2}\cdots s_{n-2}s_{n-1}\pi^{-1}\alpha_{1}^{\vee}\} \\ &= \{\varepsilon_{2}^{\vee}-\varepsilon_{3}^{\vee},\varepsilon_{2}^{\vee}-\varepsilon_{4}^{\vee},\ldots,\varepsilon_{2}^{\vee}-\varepsilon_{n}^{\vee},(\varepsilon_{2}^{\vee}+K)-\varepsilon_{1}^{\vee}\}, \end{aligned}$$

where we have used

$$s_1 \cdots s_{n-1} \pi^{-1} \alpha_1^{\vee} = s_1 \cdots s_{n-1} \pi^{-1} (\varepsilon_1^{\vee} - \varepsilon_2^{\vee}) = s_1 \cdots s_{n-1} ((\varepsilon_n^{\vee} + K) - \varepsilon_1^{\vee}) = (\varepsilon_1^{\vee} + K) - \varepsilon_2^{\vee}, \quad \text{and}$$
$$s_2 \cdots s_{n-1} \pi^{-1} \alpha_1^{\vee} = s_2 \cdots s_{n-1} ((\varepsilon_n^{\vee} + K) - \varepsilon_1^{\vee}) = (\varepsilon_2^{\vee} + K) - \varepsilon_1^{\vee}.$$

**4.0.7** The elements  $u_{\mu}$  and  $v_{\mu}$  for  $\mu = (0, 4, 5, 1, 4)$ 

Let  $u_{\mu}$ ,  $v_{\mu}$ ,  $z_{\mu}$  and  $t_{\mu}$  be as in Section 4.0.4. If  $\mu = (0, 4, 5, 1, 4)$  then  $\lambda = (5, 4, 4, 1, 0)$ , and

 $z_{\mu} = s_2 s_4 s_1 s_2 s_3 s_4 \quad \text{since} \quad (5, 4, 4, 1, 0) \stackrel{s_1 s_2 s_3 s_4}{\rightarrow} (0, 5, 4, 4, 1) \stackrel{s_4}{\rightarrow} (0, 5, 4, 1, 4) \stackrel{s_2}{\rightarrow} (0, 4, 5, 1, 4),$ 

$$v_{\mu} = s_4 s_2 s_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix} \quad \text{with} \quad \begin{aligned} v_{\mu}(1) &= 1 = 1, \\ v_{\mu}(2) &= 3 = 1 + \#\{1\}, \\ v_{\mu}(3) &= 5 = 1 + \#\{1,2\} + \#\{4\}, \\ v_{\mu}(4) &= 2 = 1 + \#\{1\}, \\ v_{\mu}(5) &= 4 = 1 + \#\{2,4\}, \end{aligned}$$

Then  $v_{\mu} = (0_1, 0_3, 0_5, 0_3, 0_4)$  and

$$\operatorname{Inv}(v_{\mu}) = \{(2,4), (3,4), (3,5)\} = \{\alpha_{3}^{\vee}, s_{3}\alpha_{2}^{\vee}, s_{3}s_{2}\alpha_{4}^{\vee}\} = \{\varepsilon_{3}^{\vee} - \varepsilon_{4}^{\vee}, \varepsilon_{2}^{\vee} - \varepsilon_{4}^{\vee}, \varepsilon_{3}^{\vee} - \varepsilon_{5}^{\vee}\}.$$

Then, with n = 5,

$$v_{\mu}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 2 & 5 & 3 \end{pmatrix} = (0_1, 0_4, 0_2, 0_5, 0_3) \text{ and}$$
$$u_{\mu} = t_{\mu}v_{\mu}^{-1} = (0_1, 4_3, 5_5, 1_2, 4_4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 + n & 2 + 4n & 5 + 4n & 3 + 5n \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 10 & 25 & 28 \end{pmatrix}$$

Then

$$\ell(t_{\lambda}) = \begin{pmatrix} (5-4) + (5-4) + (5-1) + (5-0) \\ +(4-4) + (4-1) + (4-0) \\ +(4-1) + (4-0) \\ +(1-0) \end{pmatrix} = 26 = \ell(t_{\mu}) = \ell(u_{\mu}) + \ell(v_{\mu})$$

with

$$\ell(u_{\mu}) = 6 + 7 \cdot 2 + 3 = 23, \quad \ell(v_{\mu}) = 3, \quad \ell(z_{\mu}) = 6.$$

The decreasing rearrangement of  $\mu = (0, 4, 5, 1, 4)$  is  $\lambda = (5, 4, 4, 1, 0)$  and

$$z_{\lambda} = 1, \quad w_{\lambda} = s_2, \quad v_{\lambda} = w_0 s_2$$

# 4.0.8 The box greedy reduced word for $u_{\mu}$ .

If  $\mu = (0, 4, 5, 1, 4)$  then the box greedy reduced word for  $u_{\mu}$  is

and the length of  $u_{\mu}$  is

 $\ell(u_{\mu}) = 6 + 14 + 3 = 23$ , since  $\ell(\pi) = 0$  and  $\ell(s_i) = 1$ .

Using one-line notation for *n*-periodic permutations, the computation verifying the expression for  $u_{\mu}^{\Box}$  is

$$\begin{array}{l} (0_1, 4_3, 5_5, 1_2, 4_4) \stackrel{s_1}{\to} (4_3, 0_1, 5_5, 1_2, 4_4) \stackrel{\pi^{-1}}{\to} \\ (0_1, 5_5, 1_2, 4_4, 3_3)) \stackrel{s_1}{\to} (5_5, 0_1, 1_2, 4_4, 3_3)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 1_2, 4_4, 3_3, 4_5)) \stackrel{s_1}{\to} (1_2, 0_1, 4_4, 3_3, 4_5)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 4_4, 3_3, 4_5, 0_2)) \stackrel{s_1}{\to} (4_4, 0_1, 3_3, 4_5, 0_2)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 3_3, 4_5, 0_2, 3_4)) \stackrel{s_1}{\to} (3_3, 0_1, 4_5, 0_2, 3_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 4_5, 0_2, 3_4, 2_3)) \stackrel{s_1}{\to} (4_5, 0_1, 0_2, 3_4, 2_3)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 3_4, 2_3, 3_5)) \stackrel{s_2}{\to} (0_1, 3_4, 0_2, 2_3, 3_5)) \stackrel{s_1}{\to} (3_4, 0_1, 0_2, 2_3, 3_5)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 3_5, 2_4, 1_3)) \stackrel{s_2}{\to} (0_1, 2_3, 0_2, 3_5, 2_4)) \stackrel{s_1}{\to} (2_3, 0_1, 0_2, 2_4, 1_3)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 3_5, 2_4, 1_3)) \stackrel{s_2}{\to} (0_1, 2_4, 0_2, 1_3, 2_5)) \stackrel{s_1}{\to} (2_4, 0_1, 0_2, 1_3, 2_5)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 1_3, 2_5, 1_4)) \stackrel{s_2}{\to} (0_1, 1_3, 0_2, 2_5, 1_4)) \stackrel{s_1}{\to} (1_3, 0_1, 0_2, 2_5, 1_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 1_3, 2_5, 1_4)) \stackrel{s_2}{\to} (0_1, 1_4, 0_2, 0_3, 1_5)) \stackrel{s_1}{\to} (1_4, 0_1, 0_2, 0_3, 1_5)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 1_4, 0_3, 1_5)) \stackrel{s_2}{\to} (0_1, 1_4, 0_2, 0_3, 1_5)) \stackrel{s_1}{\to} (1_4, 0_1, 0_2, 0_3, 1_5)) \stackrel{s_1}{\to} (1_5, 0_1, 0_2, 0_3, 0_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 0_3, 1_5, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 1_5, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 1_5, 0_2, 0_3, 0_4)) \stackrel{s_1}{\to} (1_5, 0_1, 0_2, 0_3, 0_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 0_3, 1_5, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 1_5, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 1_5, 0_2, 0_3, 0_4)) \stackrel{s_1}{\to} (1_5, 0_1, 0_2, 0_3, 0_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 0_3, 1_5, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 1_5, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 1_5, 0_2, 0_3, 0_4)) \stackrel{s_1}{\to} (1_5, 0_1, 0_2, 0_3, 0_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 0_3, 1_5, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 1_5, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 1_5, 0_2, 0_3, 0_4)) \stackrel{s_1}{\to} (1_5, 0_1, 0_2, 0_3, 0_4)) \stackrel{\pi^{-1}}{\to} \\ (0_1, 0_2, 0_3, 1_5, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 0_3, 0_4) \stackrel{s_2}{\to} (0_1, 0_2, 0_3, 0_4)) \stackrel{s_2}{\to} (0_1, 0_2, 0_3, 0_4) \stackrel{s_2}{\to} (0_1, 0_2, 0_3, 0_4) \stackrel{s_2$$

### 4.0.9 Inversions of $u_{\mu}$ .

If  $\mu = (0, 4, 5, 1, 4)$  then the inversion set of  $u_{\mu}$  is

$$\operatorname{Inv}(u_{\mu}) = \begin{vmatrix} \varepsilon_{3}^{\vee} - \varepsilon_{1}^{\vee} + 4K \\ \varepsilon_{3}^{\vee} - \varepsilon_{1}^{\vee} + 5K \\ \varepsilon_{5}^{\vee} - \varepsilon_{1}^{\vee} + 5K \\ \varepsilon_{5}^{\vee} - \varepsilon_{1}^{\vee} + 4K \\ \varepsilon_{5}^{\vee} - \varepsilon_{2}^{\vee} + 2K \\ \varepsilon_{5}^{\vee} - \varepsilon_{2}^{\vee} + 3K \\ \varepsilon_{5}^{\vee} - \varepsilon_{2}^{\vee} + 2K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + 2K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + 2K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + 2K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + 2K \\ \varepsilon_{4}^{\vee} - \varepsilon_{2}^{\vee} + K \\ \varepsilon_{4}^{$$

The following is an example that executes the last line of the proof of [GR21, Proposition 2.2]. The factor of  $s_1$  in the factorization  $u_{\mu} = s_1 \pi u_{(0,5,1,4,3)}$  gives the root

$$\begin{split} u_{(0,5,1,4,3)}^{-1} \pi^{-1}(\varepsilon_1^{\vee} - \varepsilon_2^{\vee}) &= u_{(0,5,1,4,3)}^{-1} \pi^{-1}(\varepsilon_1^{\vee} - \varepsilon_2^{\vee}) = u_{(0,5,1,4,3)}^{-1}((\varepsilon_5^{\vee} + K) - \varepsilon_1^{\vee}) \\ &= v_{(0,5,1,4,3)} t_{(0,5,1,4,3)}^{-1}(\varepsilon_5^{\vee} - \varepsilon_1^{\vee} + K) = v_{(0,5,1,4,3)}(\varepsilon_5^{\vee} + 3K - (\varepsilon_1^{\vee} + 0K) + K) \\ &= \varepsilon_3^{\vee} - \varepsilon_1^{\vee} + 4K, \qquad \text{since } v_{(0,5,1,4,3)}(5) = 3. \end{split}$$

### 4.0.10 The column-greedy reduced word for $u_{\mu}$ .

Let  $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ . Let  $J = (j_1 < \ldots < j_r)$  be the sequence of positions of the nonzero entries of  $\mu$  and let  $\nu$  be the composition defined by

$$\nu_j = \mu_j - 1$$
 if  $j \in J$  and  $\nu_k = 0$  if  $k \notin J$ ,

so that  $\nu$  is the composition which has one fewer box than  $\mu$  in each (nonempty) row. Define the column-greedy reduced word for the element  $u_{\mu}$  inductively by setting

$$u_{\mu}^{\downarrow} = \Big(\prod_{m=1}^{r} s_{j_{m}-1} \cdots s_{m+1} s_{m}\Big) \pi^{r} u_{\nu}^{\downarrow}, \tag{4.9}$$

where the product is taken in increasing order.

For example, if  $\lambda = (5, 4, 4, 1, 0)$  then  $z_{\lambda} = 1$ ,  $w_{\lambda} = s_2$ ,  $v_{\lambda} = w_0 s_2$  and the column greedy reduced word for  $u_{\lambda}$  is

The computation verifying the expression for  $u_{\lambda}^{\downarrow}$  is

$$\begin{array}{c} (5,4,4,1,0) \stackrel{\pi^{-4}}{\to} \\ (0,4,3,3,0) \stackrel{s_1s_2s_3}{\to} (4,3,3,0,0) \stackrel{\pi^{-3}}{\to} \\ (0,0,3,2,2) \stackrel{s_2s_1s_3s_2s_4s_3}{\to} (3,2,2,0,0) \stackrel{\pi^{-3}}{\to} \\ (0,0,2,1,1) \stackrel{s_2s_1s_3s_2s_4s_3}{\to} (2,1,1,0,0) \stackrel{\pi^{-3}}{\to} \\ (0,0,2,0,0) \stackrel{s_2s_1}{\to} (1,0,0,0,0) \stackrel{\pi^{-1}}{\to} (0,0,0,0,0) \end{array}$$

If  $\mu = (0, 4, 5, 1, 4)$  then the column greedy reduced word for  $u_{\mu}$  is

$$u_{\mu}^{\downarrow} = s_1 s_2 s_3 s_4 \pi^4 \cdot s_1 s_2 s_4 s_3 \pi^3 \cdot s_2 s_1 s_3 s_2 s_4 s_3 \pi^3 \cdot s_2 s_1 s_3 s_2 s_4 s_3 \pi^3 \cdot s_3 s_2 s_1 \pi.$$

This follows from (4.8) by using that  $\pi s_i \pi^{-1} = s_{i+1}$ .

# 5 The step-by-step and box-by-box recursions

### 5.0.1 Examples of the step-by-step recursion

Examples illustrating [GR21, Proposition 4.1(a)] are

$$E_{(1,0,0,1,0,0)}^{(156234)} = x_1 E_{(0,0,1,0,0,0)}^{(562341)}, \qquad E_{(1,0,0,1,0,0)}^{(516234)} = x_5 E_{(0,0,1,0,0,0)}^{(162345)}, \qquad E_{(1,0,0,1,0,0)}^{(651234)} = x_6 E_{(0,0,1,0,0,0)}^{(512346)}$$

An example illustrating [GR21, Proposition 4.1(b)] with  $zs_i < z$  is

$$\begin{split} E_{(0,0,1,1,0,0)}^{(561234)} &= E_{(0,1,0,1,0,0)}^{(516234)} + \left(\frac{1-t}{1-qt^{5-2}}\right) qt^{5-2}t^{-3}E_{(0,1,0,1,0,0)}^{(561234)} \\ &= E_{(0,1,0,1,0,0)}^{(516234)} + \left(\frac{1-t}{1-qt^{5-2}}\right) qE_{(0,1,0,1,0,0)}^{(561234)}, \end{split}$$

with  $\mu = (0, 0, 1, 1, 0, 0)$  and z = (561234),

$$zv_{\mu}^{-1} = (563412), \quad v_{\mu}^{-1} = (125634), \quad zv_{s_{2}\mu}^{-1} = (513462), \quad v_{s_{2}\mu}^{-1} = (135624),$$

and

$$-\frac{1}{2}\left(\ell(zv_{\mu}^{-1}) - \ell(v_{\mu}^{-1}) - \ell(zv_{s_{2}\mu}^{-1}) + \ell(v_{s_{2}\mu}^{-1})\right) = -\frac{1}{2}\left(12 - 4 - 7 + 5\right) = -\frac{1}{2} \cdot 6 = -3.$$

An example illustrating [GR21, Proposition 4.1(b)] with  $zs_i > z$  is

$$E_{(0,1,0,1,0,0)}^{(561234)} = E_{(1,0,0,1,0,0)}^{(651234)} + \left(\frac{1-t}{1-qt^{5-1}}\right) E_{(1,0,0,1,0,0)}^{(561234)}$$

with  $\mu = (0, 1, 0, 1, 0, 0)$  and z = (561234),

$$zv_{\mu}^{-1} = (513462), \quad v_{\mu}^{-1} = (135624), \quad zv_{s_{1}\mu}^{-1} = (613452), \quad v_{s_{1}\mu}^{-1} = (235614),$$

and

$$-\frac{1}{2}\left(\ell(zv_{\mu}^{-1}) - \ell(v_{\mu}^{-1}) - \ell(zv_{s_{1}\mu}^{-1}) + \ell(v_{s_{1}\mu}^{-1})\right) = -\frac{1}{2}\left(7 - 5 - 8 + 6\right) = 0.$$

### 5.0.2 Examples of the box by box recursion

An example executing the box-by-box recursion is provided just after Theorem 1.1. in [GR21].

# **5.0.3** An example of a $2^{j-1}$ to j term compression when j = 3

In order to check the powers of t in [GR21, Lemma 4.2] compute  $\tau_2^{\vee} \tau_1^{\vee} E_{\gamma}$ ,

$$\begin{split} \tau_{2}^{\vee}\tau_{1}^{\vee}E_{\gamma} &= C_{-\beta_{2}^{\vee}}(T_{1}+f_{-\beta_{1}^{\vee}})E_{\gamma} = C_{-\beta_{2}^{\vee}}T_{1}E_{\gamma} + f_{-\beta_{1}^{\vee}}C_{-\beta_{2}^{\vee}}E_{\gamma} \\ &= C_{-\beta_{2}^{\vee}}T_{1}E_{\gamma} + c_{-\beta_{2}^{\vee}}f_{-\beta_{1}^{\vee}}E_{\gamma} = (T_{2}+f_{-\beta_{2}^{\vee}})T_{1}E_{\gamma} + c_{-\beta_{2}^{\vee}}f_{-\beta_{1}^{\vee}}E_{\gamma} \\ &= T_{2}T_{1}E_{\gamma} + f_{-\beta_{2}^{\vee}}T_{1}E_{\gamma} + t^{-\frac{1}{2}}f_{-\beta_{2}^{\vee}}E_{\gamma} \\ &= T_{2}T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}(t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{-\frac{2}{2}}E_{\gamma}). \end{split}$$

Now replace  $T_2 = T_2^{-1} + (t^{\frac{1}{2}} - t^{-\frac{1}{2}})$  to get

$$\begin{split} \tau_{2}^{\vee}\tau_{1}^{\vee}E_{\gamma} &= (T_{2}^{-1} + (t^{\frac{1}{2}} - t^{-\frac{1}{2}}))T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}(t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{-\frac{2}{2}}E_{\gamma}) \\ &= T_{2}^{-1}T_{1}E_{\gamma} + (t - 1 + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}})t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}t^{-\frac{2}{2}}E_{\gamma} \\ &= T_{2}^{-1}T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}d_{-\beta_{2}^{\vee}}t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}t^{-\frac{2}{2}}E_{\gamma}, \end{split}$$

and then replacing  $T_1$  in the first term by  $T_1 = T_1^{-1} + (t^{\frac{1}{2}} - t^{-\frac{1}{2}})$ 

$$\begin{split} \tau_{2}^{\vee}\tau_{1}^{\vee}E_{\gamma} &= T_{2}^{-1}(T_{1}^{-1} + t^{-\frac{1}{2}}(t-1))E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}d_{-\beta_{2}}t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}t^{-\frac{2}{2}}E_{\gamma} \\ &= T_{2}^{-1}T_{1}^{-1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}d_{-\beta_{2}}t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{-\frac{1}{2}}(1-t)t^{-\frac{1}{2}}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}t^{-\frac{2}{2}}E_{\gamma} \\ &= T_{2}^{-1}T_{1}^{-1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}d_{-\beta_{2}}t^{-\frac{1}{2}}T_{1}E_{\gamma} + (t-1+t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}})t^{-\frac{2}{2}}E_{\gamma} \\ &= T_{2}^{-1}T_{1}^{-1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}d_{-\beta_{2}}t^{-\frac{1}{2}}T_{1}E_{\gamma} + t^{\frac{1}{2}}f_{-\beta_{2}^{\vee}}t^{-\frac{2}{2}}E_{\gamma}. \end{split}$$

#### 5.0.4 Check of the norm statistic in the step by step recursion

This is an example which is helpful for checking the coefficients in [GR21, Proposition 4.3] and its proof. Let

$$\mu = (0, 0, 1, 1, 0, 0), \quad \gamma = (1, 0, 0, 1, 0, 0), \quad \nu = (0, 0, 1, 0, 0, 0) \quad \text{and} \quad z = y = (561234).$$

Then

$$\begin{array}{ll} v_{\mu}^{-1} = (125634), & \ell(v_{\mu}^{-1}) = 2 + 2 = 4, \\ yv_{\mu}^{-1} = (563412), & \ell(yv_{\mu}^{-1}) = 4 + 4 + 2 + 2 = 12, \\ v_{\gamma}^{-1} = (235614), & \ell(v_{\mu}^{-1}) = 1 + 1 + 2 + 2 = 6, \\ ys_2s_1v_{\gamma}^{-1} = (563412) & \ell(ys_2s_1v_{\gamma}^{-1}) = 4 + 4 + 2 + 2 = 12, \\ ys_1v_{\gamma}^{-1} = (513462) & \ell(ys_1v_{\gamma}^{-1}) = 4 + 1 + 1 + 1 = 7, \\ yv_{\gamma}^{-1} = (613452) & \ell(yv_{\gamma}^{-1}) = 5 + 1 + 1 + 1 = 8. \end{array}$$

Then j = 3 and

$$\begin{split} E_{\mu}^{y} &= t^{-\frac{1}{2}(\ell(yv_{\mu})-\ell(v_{\mu}^{-1})-(3-1)}T_{y}\tau_{2}^{\vee}\tau_{1}^{\vee}E_{\gamma} = t^{-\frac{1}{2}(12-4-2)}T_{y}\tau_{2}^{\vee}\tau_{1}^{\vee}E_{\gamma}, \\ E_{\gamma}^{ys_{2}s_{1}} &= t^{-\frac{1}{2}(\ell(ys_{2}s_{1}v_{\gamma}^{-1})-\ell(v_{\gamma}^{-1})}T_{ys_{2}s_{1}}E_{\gamma} = t^{-\frac{1}{2}(12-6)}T_{ys_{2}s_{1}}E_{\gamma} = t^{-\frac{6}{2}}T_{y}T_{2}^{-1}T_{1}^{-1}E_{\gamma} \\ E_{\gamma}^{ys_{1}} &= t^{-\frac{1}{2}(\ell(ys_{1}v_{\gamma}^{-1})-\ell(v_{\gamma}^{-1})}T_{ys_{1}}E_{\gamma} = t^{-\frac{1}{2}(7-6)}T_{ys_{1}}E_{\gamma} = t^{-\frac{1}{2}}T_{y}T_{1}E_{\gamma} \\ E_{\gamma}^{y} &= t^{-\frac{1}{2}(\ell(yv_{\gamma}^{-1})-\ell(v_{\gamma}^{-1})}T_{y}E_{\gamma} = t^{-\frac{1}{2}(8-6)}T_{y}E_{\gamma} = t^{-\frac{2}{2}}T_{y}E_{\gamma} \end{split}$$

so that

$$\begin{split} t^{\frac{6}{2}}E^y_{\mu} &= t^{\frac{6}{2}}E^{ys_2s_1}_{\gamma} + d_{-\beta_1^{\vee}}f_{-\beta_1^{\vee}}t^{\frac{1}{2}}E^{ys_1}_{\gamma} + t^{-\frac{1}{2}}d_{-\beta_1^{\vee}}f_{-\beta_1^{\vee}}t^{\frac{2}{2}}E^y_{\gamma} \\ &= t^{\frac{6}{2}}E^{ys_2s_1}_{\gamma} + \frac{1-t}{1-qt^{5-2}}qt^{5-2}E^{ys_1}_{\gamma} + \frac{1-t}{1-qt^{5-2}}qt^{5-2}E^y_{\gamma} \end{split}$$

giving

$$E^y_{\mu} = E^{ys_2s_1}_{\gamma} + \frac{1-t}{1-qt^{5-2}}qE^{ys_1}_{\gamma} + \frac{1-t}{1-qt^{5-2}}qE^y_{\gamma}$$

as in the second line of the example in 5.0.2.

# 5.0.5 Check of the statistic for $E_{\varepsilon_j}^z$ where z(j) = j + k

This is an example of [GR21, Proposition 4.3] with

$$\mu = \varepsilon_j, \quad \gamma = \varepsilon_1, \quad y = s_{j+(k-1)} \cdots s_j.$$

Then

$$v_{\mu} = s_{n-1} \cdots s_j, \quad v_{\gamma} = s_{n-1} \cdots s_1, \quad v_{\mu}^{-1} = s_j \cdots s_{n-1}, \quad v_{\gamma}^{-1} = s_1 \cdots s_{n-1}$$
  
Then  $yv_{\mu}^{-1} = s_{j+k} \cdots s_{n-1}$  and  $\ell(yv_{\mu}^{-1}) = (n-1) - (j-1) - k$  and

$$\ell(yv_{\mu}^{-1}) - \ell(v_{\mu}^{-1}) - (j-1) = ((n-1) - (j-1) - k) - ((n-1) - (j-1)) = -k - (j-1).$$
  
Then  $yc_a^{-1}c_jv_{\mu}^{-1} = ((s_{j+(k-1)}\cdots s_j)(s_a\cdots s_{j-1})(s_j\cdots s_{n-1})$  and

$$\ell(yc_a^{-1}c_jv_\mu^{-1}) = (j-1+k-(j-1)) + ((j-1)-(a-1)) + (n-1-(j-1)) = (n-1)-(a-1)+k.$$
  
So

$$\begin{split} \ell(yc_a^{-1}c_jv_\mu^{-1}) - \ell(yv_\mu^{-1}) - \ell(c_a^{-1}c_j) &= (n-1) - (a-1) + k - ((n-1) - (j-1) - k) - ((j-1) - (a-1)) \\ &= 2k. \end{split}$$

Thus

$$\begin{split} E^{z}_{\mu} &= E^{y}_{\mu} = x_{y(j)} E^{yc_{n}}_{\nu} + \frac{(1-t)}{1-q^{\mu_{j}} t^{v_{\mu}(j)-(j-1)}} \sum_{a=0}^{j-1} t^{\frac{1}{2} \cdot 2k} x_{y(a)} E^{yc_{a}^{-1}c_{n}}_{\nu} \\ &= x_{y(j)} + \frac{(1-t)}{1-q^{\mu_{j}} t^{v_{\mu}(j)-(j-1)}} \sum_{a=0}^{j-1} t^{k} x_{y(a)}. \end{split}$$

# **6** Type $GL_n$ DAArt, DAHA and the polynomial representation

# 6.0.1 Example to check the eigenvalues of $Y_i$ on $E_{\mu}$

The box greedy reduced words for  $u_{(2,1,0)}$ ,  $u_{(2,0,1)}$  and  $u_{(1,2,0)}$  are

$$u_{(2,1,0)}^{\square} = \begin{vmatrix} \overline{\pi} & \overline{s_1\pi} \\ \overline{\pi} & u_{(2,0,1)}^{\square} = \begin{vmatrix} \overline{\pi} & \overline{s_1\pi} \\ & u_{(1,2,0)}^{\square} = \begin{vmatrix} \overline{\pi} \\ \overline{\pi} \\ \overline{s_1\pi} \end{vmatrix} \quad u_{(1,2,0)}^{\square} = \begin{vmatrix} \overline{\pi} \\ \overline{\pi} \\ \overline{s_2s_1\pi} \end{vmatrix}$$

Using  $u_{\mu} = t_{\mu}v_{\mu}^{-1}$  to carefully compute  $v_{\mu}^{-1}$ :

$$u_{(2,1,0)} = \pi^2 s_1 \pi = t_{\varepsilon_1} s_1 s_2 t_{\varepsilon_1} s_1 s_2 s_1 t_{\varepsilon_1} s_1 s_2$$
  
=  $t_{\varepsilon_1} t_{\varepsilon_2} s_1 s_2 s_1 s_2 s_1 t_{\varepsilon_1} s_1 s_2$   
=  $t_{\varepsilon_1} t_{\varepsilon_2} s_2 t_{\varepsilon_1} s_1 s_2$   
=  $t_{2\varepsilon_1 + \varepsilon_2} s_2 s_1 s_2$ , so  $v_{(2,1,0)}^{-1} = s_2 s_1 s_2$ .

$$u_{(2,0,1)} = \pi s_1 \pi s_1 \pi = t_{\varepsilon_1} s_1 s_2 s_1 t_{\varepsilon_1} s_1 s_2 s_1 t_{\varepsilon_1} s_1 s_2$$
  
=  $t_{\varepsilon_1} t_{\varepsilon_3} s_1 s_2 s_1 s_1 s_2 s_1 t_{\varepsilon_1} s_1 s_2$   
=  $t_{2\varepsilon_1 + \varepsilon_3} s_1 s_2$ , so  $v_{(2,0,1)}^{-1} = s_1 s_2$ .

$$u_{(1,2,0)} = \pi^2 s_2 s_1 \pi = t_{\varepsilon_1} s_1 s_2 t_{\varepsilon_1} s_1 s_2 s_2 s_1 t_{\varepsilon_1} s_1 s_2$$
  
=  $t_{\varepsilon_1 + 2\varepsilon_2} s_1 s_2 s_1 s_2$   
=  $t_{\varepsilon_1 + 2\varepsilon_2} s_2 s_1$ , so  $v_{(1,2,0)}^{-1} = s_2 s_1$ .

Using

$$\begin{aligned} u_{(2,1,0)} &= t_{(2,1,0)} s_1 s_2 s_1 = t_{(2,1,0)} v_{(2,1,0)}^{-1}, & u_{(2,0,1)} = t_{(2,0,1)} s_1 s_2 = t_{(2,0,1)} v_{(2,0,1)}^{-1}, \\ u_{(1,2,0)} &= t_{(1,2,0)} s_2 s_1 = t_{(1,2,0)} v_{(1,2,0)}^{-1}, & u_{(0,2,1)} = t_{(0,2,1)} s_2 = t_{(0,2,1)} v_{(0,2,1)}^{-1}, \\ u_{(1,0,2)} &= t_{(1,0,2)} s_2, = t_{(1,0,2)} v_{(1,0,2)}^{-1}, & u_{(0,1,2)} = t_{(0,1,2)} = t_{(0,1,2)} v_{(0,1,2)}^{-1}, \end{aligned}$$

and the relations

$$Y_1 \tau_{\pi}^{\vee} = q^{-1} \tau_{\pi}^{\vee} Y_3, \qquad Y_2 \tau_{\pi}^{\vee} = \tau_{\pi}^{\vee} Y_1, \qquad Y_3 \tau_{\pi}^{\vee} = \tau_{\pi}^{\vee} Y_2,$$

then

$$\begin{split} Y_{1}E_{(2,1,0)} &= t^{-\frac{3}{2}}Y_{1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}Y_{3}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}Y_{2}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} \\ &= t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}Y_{1}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-2}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} = q^{-2}t^{-(3-1)+\frac{1}{2}(3-1)}E_{(2,1,0)}, \\ Y_{2}E_{(2,1,0)} &= t^{-\frac{3}{2}}Y_{2}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}\tau_{\pi}^{\vee}Y_{1}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} \\ &= t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}Y_{3}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\tau_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} \\ &= t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} \\ &= t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\tau_{1}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} = t^{-\frac{3}{2}}q^{-1}\tau_{\pi}^{\vee}\tau_{\pi}^{\vee}\mathbf{1}_{\pi}^{\vee}\mathbf{1} = t^{-(1-1)+\frac{1}{2}(3-1)}E_{(2,1,0)}. \end{split}$$

Then

$$\begin{split} Y_{1}E_{(1,2,0)} &= t^{\frac{1}{2}}Y_{1}\tau_{1}^{\vee}E_{(2,1,0)} = t^{\frac{1}{2}}\tau_{1}^{\vee}Y_{2}E_{(2,1,0)} = q^{-1}t^{-(2-1)+\frac{1}{2}(3-1)}E_{(1,2,0)}, \\ Y_{2}E_{(1,2,0)} &= t^{\frac{1}{2}}Y_{2}\tau_{1}^{\vee}E_{(2,1,0)} = t^{\frac{1}{2}}\tau_{1}^{\vee}Y_{1}E_{(2,1,0)} = q^{-2}t^{-(3-1)+\frac{1}{2}(3-1)}E_{(1,2,0)}, \\ Y_{3}E_{(1,2,0)} &= t^{\frac{1}{2}}Y_{3}\tau_{1}^{\vee}E_{(2,1,0)} = t^{\frac{1}{2}}\tau_{1}^{\vee}Y_{3}E_{(2,1,0)} = q^{-0}t^{-(1-1)+\frac{1}{2}(3-1)}E_{(1,2,0)}, \end{split}$$

and  $v_{(1,2,0)}(1) = s_1 s_2(1) = s_1(1) = 2$ ,  $v_{(1,2,0)}(2) = s_1 s_2(2) = s_1(3) = 3$  and  $v_{(1,2,0)}(3) = s_1 s_2(3) = s_1(2) = 1$ .

### **6.0.2** The elements $X^{\omega_r}$ .

For  $i \in \{1, \ldots, n\}$  let  $\omega_i = \varepsilon_1 + \cdots + \varepsilon_i$ . Then

$$X^{\omega_i} = X^{\varepsilon_1 + \dots + \varepsilon_i} = (g^{\vee})^i T_{w_i}^{-1}, \quad \text{where} \quad w_i = \begin{pmatrix} 1 & \cdots & i & i+1 & \cdots & n \\ i+1 & \cdots & n & 1 & \cdots & i \end{pmatrix}$$

In W, the element  $t_{\omega_i} = \pi^i w_i$ . There are two favorite choices of reduced word for  $w_i$ , which are

$$w_{i} = (s_{i} \cdots s_{n-1})(s_{i-1} \cdots s_{n-2}) \cdots (s_{1} \cdots s_{n-i}) = (s_{i} \cdots s_{1})(s_{i+1} \cdots s_{2}) \cdots (s_{n-1} \cdots s_{n-i})$$

For example, if n = 6 then

$$\begin{split} w_1 &= s_5 s_4 s_3 s_2 s_1, \\ w_2 &= (s_4 s_3 s_2 s_1) (s_5 s_4 s_3 s_2) = (s_4 s_5) (s_3 s_4) (s_2 s_3) (s_1 s_2) \\ w_3 &= (s_3 s_2 s_1) (s_4 s_3 s_2) (s_5 s_4 s_3) = (s_3 s_4 s_5) (s_2 s_3 s_4) (s_1 s_2 s_3) \\ w_4 &= (s_2 s_1) (s_3 s_2) (s_4 s_3) (s_5 s_4) = (s_2 s_3 s_4 s_5) (s_1 s_2 s_3 s_4) \\ w_5 &= s_1 s_2 s_3 s_4 s_5 \\ w_6 &= 1, \end{split}$$

and

$$\begin{split} X^{\omega_1} &= g^{\vee} T_5^{-1} T_4^{-1} T_3^{-1} T_2^{-1} T_1^{-1}, \\ X^{\omega_2} &= (g^{\vee})^2 (T_4^{-1} T_3^{-1} T_2^{-1} T_1^{-1}) (T_5^{-1} T_4^{-1} T_3^{-1} T_2^{-1}) \\ &= (g^{\vee})^2 (T_4^{-1} T_5^{-1}) (T_3^{-1} T_4^{-1}) (T_2^{-1} T_3^{-1}) (T_1^{-1} T_2^{-1}) \\ X^{\omega_3} &= (g^{\vee})^3 (T_3^{-1} T_2^{-1} T_1^{-1}) (T_4^{-1} T_3^{-1} T_2^{-1}) (T_5^{-1} T_4^{-1} T_3^{-1}) \\ &= (g^{\vee})^3 (T_3^{-1} T_4^{-1} T_5^{-1}) (T_2^{-1} T_3^{-1} T_4^{-1}) (T_1^{-1} T_2^{-1} T_3^{-1}) \\ X^{\omega_4} &= (g^{\vee})^4 (T_2^{-1} T_1^{-1}) (T_3^{-1} T_2^{-1}) (T_4^{-1} T_3^{-1}) (T_5^{-1} T_4^{-1}) \\ &= (g^{\vee})^4 (T_2^{-1} T_3^{-1} T_4^{-1} T_5^{-1}) (T_1^{-1} T_2^{-1} T_3^{-1} T_4^{-1}) \\ X^{\omega_5} &= (g^{\vee})^5 T_1^{-1} T_2^{-1} T_3^{-1} T_4^{-1} T_5^{-1} \\ X^{\omega_6} &= (g^{\vee})^6. \end{split}$$

### 6.0.3 Type *GL*<sub>2</sub>

For type  $GL_2$ ,  $X_1 = g^{\vee} T_1^{-1}$  and  $X_2 = T_1 X_1 T_1 = T_1 g^{\vee}$  and  $X_1 X_2 = (g^{\vee})^2$ ,  $X_1^{k+1} T_1 = (g^{\vee} T_1^{-1})^k g^{\vee}$ ,  $(T_1 g^{\vee})^k = X_2^k$ .

The box greedy reduced words for the first few cases are

$$u_{(1,0)}^{\Box} = \begin{vmatrix} \overline{\pi} & u_{(0,1)}^{\Box} = \end{vmatrix} \xrightarrow{s_1 \pi} u_{(2,0)}^{\Box} = \begin{vmatrix} \overline{\pi} & \overline{s_1 \pi} \\ \overline{\pi} & u_{(1,1)}^{\Box} = \begin{vmatrix} \overline{\pi} & u_{(0,2)}^{\Box} = \end{vmatrix} \xrightarrow{s_1 \pi} u_{(3,0)}^{\Box} = \begin{vmatrix} \overline{\pi} & \overline{s_1 \pi} \\ \overline{\pi} & \overline{s_1 \pi} \end{vmatrix}$$

In this case the construction of  $E_{\mu}$  as  $E_{\mu} = t^{\frac{1}{2}\ell(v_{\mu}^{-1})} \tau_{u_{\mu}}^{\vee} \mathbf{1}$  in [GR21, Proposition 5.7] is

$$E_{(k+h,k)} = t^{-\frac{1}{2}} (\tau_{\pi}^{\vee})^{2k} (\tau_{\pi}^{\vee} \tau_{1}^{\vee})^{h-1} \tau_{\pi}^{\vee} \mathbf{1} \quad \text{and} \quad E_{(k,k+h)} = (\tau_{\pi}^{\vee})^{2k} (\tau_{1}^{\vee} \tau_{\pi}^{\vee})^{h} \mathbf{1}, \qquad \text{with } \tau_{\pi}^{\vee} = g^{\vee}.$$

Let  $h \in \mathbb{Z}_{>0}$ . The nonattacking fillings and words for  $E_{(h,0)}$  and  $E_{(0,h)}$  are

# 7 Additional examples

7.0.1 Formulas for  $E_{\mu}$  when n = 2.

$$\begin{split} E_{(0,0)} &= 1, \\ E_{(1,0)} &= x_1, \\ E_{(0,1)} &= x_2 + \left(\frac{1-t}{1-qt}\right) x_1, \\ E_{(1,1)} &= x_1 x_2, \\ E_{(2,0)} &= x_1^2 + \left(\frac{1-t}{1-qt}\right) q x_1 x_2, \\ E_{(0,2)} &= x_2^2 + \left(\frac{1-t}{1-q^2t}\right) x_1^2 + \left(\left(\frac{1-t}{1-qt}\right) + \left(\frac{1-t}{1-q^2t}\right) \left(\frac{1-t}{1-qt}\right) q\right) x_1 x_2, \\ E_{(3,0)} &= x_1^3 + \left(\frac{1-t}{1-q^2t}\right) q^2 x_1 x_2^2 + \left(\left(\frac{1-t}{1-qt}\right) q + \left(\frac{1-t}{1-q^2t}\right) \left(\frac{1-t}{1-qt}\right) q^2\right) x_1^2 x_2. \end{split}$$

Then [Mac03, (6.2.7) and (6.28)] provides the general formula as follows. Let

$$(x;q)_{\infty} = (1-x)(1-xq)(1-xq^2)\cdots, \quad (x;q)_r = \frac{(x;q)_{\infty}}{(q^r x;q)_{\infty}}, \text{ and } \begin{bmatrix} s\\r \end{bmatrix} = \frac{(q;q)_s}{(q;q)_r(q;q)_{s-r}}$$

Let  $k \in \mathbb{Z}_{>0}$  and let  $t = q^k$ . Then

$$E_{(0,m)} = \begin{bmatrix} k+m \\ m \end{bmatrix}^{-1} \sum_{i+j=m} \begin{bmatrix} k+i-1 \\ i \end{bmatrix} \begin{bmatrix} k+j \\ j \end{bmatrix} x_1^j x_2^j$$
$$E_{(m+1,0)} = \begin{bmatrix} k+m \\ m \end{bmatrix}^{-1} \sum_{i+j=m} \begin{bmatrix} k+i-1 \\ i \end{bmatrix} \begin{bmatrix} k+j \\ j \end{bmatrix} q^i x_1^{j+1} x_2^i$$

Since  $t = q^k$ , it appears that t must be a power of q. But this is not really the case since we may rewrite these formulas using

$$\begin{bmatrix} k+m \\ m \end{bmatrix} = \frac{(q;q)_{k+m}}{(q;q)_m(q;q)_k} = \frac{(q;q)_{\infty}(q^m;q)_{\infty}(q^k;q)_{\infty}}{(q^{k+m};q)_{\infty}(q;q)_{\infty}(q;q)_{\infty}} = \frac{(q^m;q)_{\infty}(t;q)_{\infty}}{(tq^m;q)_{\infty}(q;q)_{\infty}} = \frac{(t;q)_m}{(q;q)_m}$$

and

$$\begin{bmatrix} k+i-1\\ i \end{bmatrix} \begin{bmatrix} k+j\\ j \end{bmatrix} = \frac{(q^i;q)_{\infty}(tq^{-1};q)_{\infty}}{(tq^{i-1};q)_{\infty}(q;q)_{\infty}} \frac{(q^j;q)_{\infty}(t;q)_{\infty}}{(tq^j;q)_{\infty}(q;q)_{\infty}} = \frac{(q^i;q)_{\infty}(q^j;q)_{\infty}(tq^{-1};q)_{\infty}(t;q)_{\infty}}{(q;q)_{\infty}(tq^{i-1};q)_{\infty}(tq^j;q)_{\infty}}$$

# 7.0.2 Some small $E_{\mu}$ for n = 3.

$$\begin{split} E_{(0,0,0)} &= 1, \\ E_{(1,0,0)} &= x_1, \\ E_{(0,1,0)} &= x_2 + \left(\frac{1-t}{1-qt^2}\right)x_1, \\ E_{(0,0,1)} &= x_3 + \left(\frac{1-t}{1-qt}\right)(x_2 + x_1) \\ E_{(1,1,0)} &= x_1x_2, \\ E_{(1,0,1)} &= x_1x_3 + \left(\frac{1-t}{1-qt^2}\right)x_1x_2, \\ E_{(0,1,1)} &= x_2x_3 + \left(\frac{1-t}{1-qt}\right)(x_1x_3 + x_1x_2), \\ E_{(2,0,0)} &= x_1^2 + \left(\frac{1-t}{1-qt}\right)q(x_1x_3 + x_1x_2), \\ E_{(2,2,0)} &= x_1^2x_2^2 + \left(\frac{1-t}{1-qt^2}\right)qx_1^2x_2x_3 + \left(\frac{1-t}{1-qt^2}\right)qx_1x_2^2x_3 \end{split}$$

and  $E_{(2,1,0)}, E_{(2,0,1)}, E_{(1,2,0)}, E_{(0,2,1)}, E_{(1,0,2)}, E_{(0,1,2)}$  are given in section 1.3.1. Additionally,

$$P_{(1,0,0)} = m_1 = x_1 + x_2 + x_3,$$
  

$$P_{(2,0,0)} = m_{1^2} + \frac{(1-q^2)(1-t)}{(1-q)(1-tq)}m_2,$$
  

$$P_{(1,1,0)} = m_{1^2} = x_1x_2 + x_1x_3 + x_2x_3$$

where  $m_{\lambda} = \sum_{\mu \in S_n \lambda} x^{\mu}$  is the monomial symmetric function so that  $m_2 = x_1^2 + x_2^2 + x_3^2$ .

# **7.0.3** $E_{\lambda}$ and $P_{\lambda}$ when $\lambda$ is a partition with 3 boxes.

Letting  $x^g amma = x_1^{\gamma_1} \cdots x_n \gamma_n$  if  $\gamma = (\gamma_1, \dots, \gamma_n)$ , let

 $m_{\lambda} = \sum_{\gamma \in S_n \lambda} x^{\gamma}$ , be the monomial symmetric function (orbit sum).

**Proposition 7.1.** Let  $\varepsilon_i = (0, \ldots, 0, 1, 0, \ldots, 0)$  where the 1 appears in the *i*th spot. Then

$$\begin{split} E_{3\varepsilon_{1}} &= x_{1}^{3} + \left(\frac{1-t}{1-q^{2}t}\right)q^{2}\sum_{k\in\{2,\dots,n\}} x_{1}x_{k}^{2} + \left(\frac{1-t}{1-qt}\right)\left(1 + \left(\frac{1-t}{1-q^{2}t}\right)q\right)q\sum_{k\in\{2,\dots,n\}} x_{1}^{2}x_{k} \\ &+ \left(\frac{1-t}{1-qt}\right)\left(\frac{1-t}{1-q^{2}t}\right)(1+q)q^{2}\sum_{\{k,\ell\}\subseteq\{2,\dots,n\}} x_{1}x_{k}x_{\ell}, \\ E_{2\varepsilon_{1}+\varepsilon_{2}} &= x_{1}^{2}x_{n} + \left(\frac{1-t}{1-qt^{2}}\right)q(x_{1}x_{2}x_{n}+\dots+x_{1}x_{2}x_{4}+x_{1}x_{2}x_{3}), \\ E_{\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}} &= x_{1}x_{2}x_{3}, \end{split}$$

$$P_{3\varepsilon_{1}} = m_{3} + \frac{(1-q^{3})}{(1-tq^{2})} \Big(\frac{1-t}{1-q}\Big) m_{21} + \frac{(1-q^{3})}{(1-tq^{2})} \frac{(1-q^{2})}{(1-tq)} \Big(\frac{1-t}{1-q}\Big)^{2} m_{1^{3}},$$
  

$$P_{2\varepsilon_{1}+\varepsilon_{2}} = m_{21} + \Big(\frac{(1-t^{2})}{(1-qt)} \frac{(1-q^{2}t)}{(1-qt^{2})} + \frac{(1-t)}{(1-q)} \frac{(1-q^{2})}{(1-qt)}\Big) m_{1^{3}},$$

 $P_{\varepsilon_1+\varepsilon_2+\varepsilon_3}=m_{1^3}=e_3,$  where  $e_r$  denotes the elementary symmetric function.

*Proof.* From [GR21, Proposition 3.5(b)],

$$E_{2\varepsilon_n} = x_n^2 + \left(\frac{1-t}{1-q^2t}\right) \sum_{k \in \{1,\dots,n-1\}} x_k^2 + \left(\frac{1-t}{1-qt}\right) \left(1 + \left(\frac{1-t}{1-q^2t}\right)q\right) \sum_{k \in \{1,\dots,n-1\}} x_k x_n + \left(\frac{1-t}{1-qt}\right) \left(\frac{1-t}{1-q^2t}\right) (1+q) \sum_{\{k,\ell\} \subseteq \{1,\dots,n-1\}} x_k x_\ell,$$

and applying [GR21, Proposition 5.8(c)] gives the formula for  $E_{3\varepsilon_1} = E_{\pi 2\varepsilon_n}$ . Similarly, from [GR21, Proposition 3.5(c)],

$$E_{\varepsilon_1+\varepsilon_n} = x_1 x_n + \left(\frac{1-t}{1-qt^2}\right) (x_1 x_{n-1} + \dots + x_1 x_3 + x_1 x_2),$$

and applying [GR21, Proposition 5.8(c)] gives the formula for  $E_{2\varepsilon_1+\varepsilon_2} = E_{\pi(\varepsilon_1+\varepsilon_n)}$  in the statement. The formula for  $E_{\varepsilon_1+\varepsilon_2+\varepsilon_3}$  follows from the first statement of Proposition 7.2.

For  $r \in \mathbb{Z}_{\geq 0}$  and  $\mu \in \mathbb{Z}_{\geq 0}^n$  define

$$(x;q)_r = (1-x)(1-xq)(1-xq^2)\cdots(1-xq^{r-1})$$
 and  $(x;q)_\mu = (x;q)_{\mu_1}\cdots(x;q)_{\mu_n}$ 

(when r = 0 then  $(x; q)_0 = 1$ ). As proved in [Mac, Ch. VI equation (4.9) and Ch. VI §2 Ex. 1], if  $r \in \mathbb{Z}_{>0}$  then

$$P_{\varepsilon_1+\dots+\varepsilon_r} = e_r = m_{1^r}$$
 and  $P_{r\varepsilon_1} = \sum_{|\mu|=r} \frac{(q;q)_r}{(t;q)_r} \frac{(t;q)_\mu}{(q;q)_\mu} m_\mu$ .

By [Mac, Ch. VI (4.3) and (4.10)], the formula for  $P_{2\varepsilon_1+\varepsilon_2}$  follows from the formula for  $P_{(2,1,0)}$  in 3 variables given at the end of section 1.3.1.

# 7.0.4 Macdonald polynomials $E_{\mu}^{z}$ and $P_{\mu}$ when $\mu$ is a single column.

**Proposition 7.2.** Let  $r \in \{1, ..., n\}$  and let  $\omega_r = \varepsilon_1 + \cdots + \varepsilon_r$ .

$$E_{\varepsilon_1 + \dots + \varepsilon_r} = x_1 x_2 \cdots x_i.$$

Let  $W^{\omega_r}$  be the set of  $z \in S_n$  such that z is the minimal length element of its coset  $z(S_r \times S_{n-r})$  in  $S_n$ . If  $z \in W^{\omega_r}$  then

$$z = \begin{pmatrix} 1 & 2 & \cdots & r & r+1 & \cdots & n \\ i_1 & i_2 & \cdots & i_r & j_1 & \cdots & j_{n-r} \end{pmatrix} \quad with \quad \begin{array}{c} i_1 < i_2 < \cdots < i_r \text{ and} \\ j_1 < j_2 < \cdots < j_{n-r} \end{array}$$

and

$$t^{\frac{1}{2}\ell(z)}T_z E_{\omega_r} = x_{i_1} \dots x_{i_r} \qquad and \qquad P_{\omega_r} = \sum_{z \in W^{\omega_r}} t^{\frac{1}{2}\ell(z)}T_z E_{\omega_r} = e_r,$$

is the rth elementary symmetric function.

*Proof.* Since

$$v_{\varepsilon_1+\dots+\varepsilon_r}^{-1} = \begin{pmatrix} 1 & \cdots & r & r+1 & \cdots & n \\ r+1 & \cdots & n & 1 & \cdots & r \end{pmatrix} \quad \text{with} \quad \ell(v_{\varepsilon_1+\dots+\varepsilon_r}^{-1}) = (n-r)r,$$

and  $u_{\varepsilon_1+\cdots+\varepsilon_r} = \pi^r$  then

$$E_{\varepsilon_1 + \dots + \varepsilon_r} = t^{-\frac{1}{2}(n-r)r} (\tau_{\pi}^{\vee})^r \mathbf{1} = t^{-\frac{1}{2}(n-r)r} (g^{\vee})^r \mathbf{1} = t^{-\frac{1}{2}(n-r)r} X_1 \cdots X_r T_{v_{\varepsilon_1 + \dots + \varepsilon_r}}^{-1} \mathbf{1}, = x_1 \cdots x_r.$$

A reduced word for z is  $z = (s_{i_1-1}\cdots s_1)(s_{i_2-1}\cdots s_2)\cdots (s_{i_r-1}\cdots s_r)$ . Then

$$\begin{aligned} t^{\frac{1}{2}\ell(z)}T_{z}E_{\omega_{r}} &= ((t^{\frac{1}{2}}T_{i_{1}-1})\cdots(t^{\frac{1}{2}}T_{1}))\cdot((t^{\frac{1}{2}}T_{i_{2}-1})\cdots(t^{\frac{1}{2}}T_{2}))\cdots((t^{\frac{1}{2}}T_{i_{r}-1})\cdots(t^{\frac{1}{2}}T_{r}))(x_{1}x_{2}\cdots x_{r}) \\ &= ((t^{\frac{1}{2}}T_{i_{1}-1})\cdots(t^{\frac{1}{2}}T_{1}))\cdot((t^{\frac{1}{2}}T_{i_{2}-1})\cdots(t^{\frac{1}{2}}T_{2}))\cdots((t^{\frac{1}{2}}T_{i_{r-1}-1})\cdots(t^{\frac{1}{2}}T_{r-1}))(x_{1}x_{2}\cdots x_{r-1}x_{i_{r}}) \\ &= ((t^{\frac{1}{2}}T_{i_{1}-1})\cdots(t^{\frac{1}{2}}T_{1}))\cdot((t^{\frac{1}{2}}T_{i_{2}-1})\cdots(t^{\frac{1}{2}}T_{2}))\cdots((t^{\frac{1}{2}}T_{i_{r-2}-1})\cdots(t^{\frac{1}{2}}T_{r-2}))(x_{1}x_{2}\cdots x_{r-2}x_{i_{r-1}}x_{i_{r}}) \\ &= \cdots = x_{i_{1}}x_{i_{2}}\cdots x_{i_{r}}. \end{aligned}$$

The last equality then follows from (1.5).

# 7.0.5 $E_{\mu}^{z}$ for a single box

**Proposition 7.3.** Let  $j \in \{1, \ldots, n\}$  and let  $z \in S_n$ . Then

$$E_{\varepsilon_j}^z = c_j x_{z(j)} + \dots + c_2 x_{z(2)} + c_1 x_{z(1)}$$

where

$$c_{a} = \begin{cases} \left(\frac{1-t}{1-qt^{n-j+1}}\right)qt^{C(a)}, & \text{if } z(j) < z(a), \\ \left(\frac{1-t}{1-qt^{n-j+1}}\right)t^{C(a)}, & \text{if } z(j) > z(a), \\ 1, & \text{if } z(j) = z(a). \end{cases}$$

with

$$C(a) = \begin{cases} \{k \in \{j+1,\dots,n\} \mid z(k) < z(j) < z(a) \text{ or } z(j) < z(a) < z(k)\}, & \text{if } z(j) < z(a), \\ \{k \in \{j+1,\dots,n\} \mid z(j) > z(k) > z(a)\}, & \text{if } z(j) > z(a), \end{cases}$$

*Proof.* The proof is by induction on  $\ell(z)$ . If z = 1 then  $T_z = 1$  and the formula is the same as given in [GR21, Proposition 3.5(a)] for  $E_{\varepsilon_j}$ . Let  $r \in \{1, \ldots, n-1\}$  such that  $s_r z > z$ . Recall

$$t^{\frac{1}{2}}T_{r}(x_{\ell}) = \begin{cases} x_{r+1}, & \text{if } \ell = r, \\ tx_{r} + (t-1)x_{r+1}, & \text{if } \ell = r+1, \\ tx_{\ell}, & \text{otherwise.} \end{cases}$$
(7.1)

$$t^{-\frac{1}{2}}T_r(x_\ell) = \begin{cases} t^{-1}x_{r+1}, & \text{if } r = \ell, \\ x_r + (1 - t^{-1})x_{r+1}, & \text{if } \ell = r+1, \\ x_\ell, & \text{otherwise.} \end{cases}$$
(7.2)

Write

$$t^{-\frac{1}{2}(\ell(zv_{\varepsilon_{j}}^{-1})-\ell(v_{\varepsilon_{j}}^{-1})}E_{\varepsilon_{j}}^{z} = \sum_{i=1}^{n} c_{i}^{z} x_{z(i)}$$

Then

$$t^{\frac{1}{2}}T_r(c_a^z x_r + c_b^z x_{r+1}) = c_a^z x_{r+1} + c_b^z(tx_r + (t-1)x_{r+1}) = tc_b^z x_r + (c_b^z(t-1) + c_a^z)x_{r+1},$$
  
giving  $c_a^{s_r z} = tc_b^z$  and  $c_b^{s_r z} = c_b^z(t-1) + c_a^z.$ 

$$t^{-\frac{1}{2}}T_r(c_a^z x_r + c_b^z x_{r+1}) = t^{-1}c_a^z x_{r+1} + c_b^z(x_r + (1 - t^{-1})x_{r+1}) = c_b^z x_r + (c_b^z(1 - t^{-1}) + t^{-1}c_a^z)x_{r+1}$$
  
giving  $c_a^{srz} = c_b^z$  and  $c_b^{srz} = c_b^z(1 - t^{-1}) + t^{-1}c_a^z$ .

Let

$$a = z^{-1}(r)$$
 and  $b = z^{-1}(r+1)$  so that  $b = (s_r z)^{-1}(r)$  and  $a = (s_r z)^{-1}(r+1)$ 

Assume  $s_r z > z$  so that a < b.

| (lll) | z(j) < r     | a < j | b < j | $c_a^z = c_b^z$     | multiply by $t^{-\frac{1}{2}}T_r$ | $c_a^{s_r z} = c_b^{s_z} = c_a^z$               |
|-------|--------------|-------|-------|---------------------|-----------------------------------|-------------------------------------------------|
| (llg) | z(j) < r     | a < j | b > j | $c_b^z = 0$         | multiply by $t^{-\frac{1}{2}}T_r$ | $c_a^{s_r z} = 0, \ c_b^{s_r z} = t^{-1} c_a^z$ |
| (lgg) | z(j) < r     | a > j | b > j | $c_a^z = c_b^z = 0$ | multiply by $t^{-\frac{1}{2}}T_r$ | $c_a^{s_r z} = c_b^{s_r z} = 0$                 |
| (ele) | z(j) = r     | a = j | b > j | $c_a^z=1,\ c_b^z=0$ | multiply by $t^{\frac{1}{2}}T_r$  | $c_a^{s_r z} = 0, \ c_b^{s_r z} = 1,$           |
| (flf) | z(j) = r + 1 | a < j | b = j | $c_{b}^{z} = 1$     | multiply by $t^{-\frac{1}{2}}T_r$ |                                                 |
| (gll) | z(j) > r+1   | a < j | b < j | $c_a^z = c_b^z$     | multiply by $t^{-\frac{1}{2}}T_r$ | $c_a^{s_r z} = c_b^{s_z} = c_a^z$               |
| (glg) | z(j) > r+1   | a < j | b > j | $c_b^z = 0$         | multiply by $t^{-\frac{1}{2}}T_r$ | $c_a^{s_r z} = 0, \ c_b^{s_r z} = t^{-1} c_a^z$ |
| (ggg) | z(j) > r+1   | a > j | b > j | $c_a^z = c_b^z = 0$ | multiply by $t^{-\frac{1}{2}}T_r$ | $c_a^{s_r z} = c_b^{s_r z} = 0$                 |

Now we need to show that the statistics C(a) provide the same recursions.

In the case (flf), r + 1 = z(j) > z(a) = r with C(a) = 0 and  $r = (s_r z)(j) < (s_r z)(a) = r + 1$  and C(a) = n - j. So

$$c_j^z = 1$$
,  $c_a^z = \left(\frac{1-t}{1-qt^{n-j+1}}\right)t^0$  and  $c_j^{s_r z} = 1$ ,  $c_a^{s_r z} = \left(\frac{1-t}{1-qt^{n-j+1}}\right)qt^{n-j}$ 

since

$$\begin{split} c_a^{s_r z} &= (1-t^{-1}) + t^{-1} \Big( \frac{1-t}{1-qt^{n-j+1}} \Big) t^0 \\ &= \Big( \frac{1-t}{1-qt^{n-j+1}} \Big) (-t^{-1}(1-qt^{n-j+1}) + t^{-1}) = \Big( \frac{1-t}{1-qt^{n-j+1}} \Big) qt^{n-j}. \end{split}$$

Some examples are

$$(t^{\frac{1}{2}}T_{i+(k-1)})\cdots(t^{\frac{1}{2}}T_{i})E_{\varepsilon_{i}} = x_{i+k} + \frac{(1-t)}{(1-qt^{n-(i-1)})}t^{k}(x_{i-1}+\cdots+x_{1}),$$
  
$$(t^{-\frac{1}{2}}T_{i-k})\cdots(t^{-\frac{1}{2}}T_{i-1})E_{\varepsilon_{i}}$$
  
$$= x_{i-k} + \frac{(1-t)}{(1-qt^{n-(i-1)})}\Big(qt^{n-i}(x_{i}+x_{i-1}+\cdots+x_{i-(k-1)}) + (x_{i-(k+1)}+\cdots+x_{1})\Big),$$

### **7.0.6** The nonattacking fillings for $E_{\varepsilon_i}$ .

The box greedy reduced word for  $u_{\varepsilon_i}$  is



# 7.0.7 The nonattacking fillings for $E_{\varepsilon_i}^z$ .

If z(i) = i + k then the *i* non-attacking fillings are

If z(i) = i - k then the *i* non-attacking fillings are

# **7.0.8** The nonattacking fillings for $E_{2\varepsilon_i}$

The box greedy reduced word for  $u_{2\varepsilon_i}$  is

$$u_{2\varepsilon_{i}}^{\Box} = (s_{i-1}\cdots s_{1}\pi)(s_{n-1}\cdots s_{1}\pi) =$$
$$\begin{array}{c} \Box \\ \vdots \\ \Box \\ \end{array}$$

The case  $E_{2\varepsilon_i}$  has  $i \cdot n$  nonattacking fillings and  $2^{n+i-2}$  alcove walks. There are no covid triples for any of the nonattacking fillings so that  $t^{covid(T)} = t^0 = 1$ , and  $q^{maj(T)} = q^1 = q$  exactly when T(i, 1) < T(i, 2).

7.0.9 The nonattacking fillings for 
$$E_{\varepsilon_{j_1}+\varepsilon_{j_2}}$$
.

Let  $j_1, j_2 \in \{1, \ldots, n\}$  with  $j_1 < j_2$ . The box greedy reduced word for  $u_{\varepsilon_{j_1} + \varepsilon_{j_2}}$  is



 $E_{\varepsilon_{j_1}+\varepsilon_{j_2}}$  has  $j_1(j_2-1)$  nonattacking fillings and  $2^{j_1-1}2^{j_2-2}$  alcove walks.

# 8 Queue tableaux

### 8.0.1 An instance of compression of NAFs – Motivation for Queue Tableaux.

In [GR21, Proposition 3.5(c)], if  $j_1 = j_2 - 1$  then the third and fifth summands disappear to give

$$\begin{split} E_{\varepsilon_{j_2-1}+\varepsilon_{j_2}} &= x_{j_2-1}x_{j_2} + \left(\frac{1-t}{1-qt^{n-(j_2-1)}}\right) \sum_{k=1}^{j_2-2} x_k x_{j_2} + \left(\frac{1-t}{1-qt^{n-(j_2-2)}}\right) \left(\frac{1-t}{1-qt^{n-(j_2-1)}} + t\right) \sum_{k=1}^{j_2-2} x_k x_{j_2-1} \\ &+ \left(\frac{1-t}{1-qt^{n-(j_2-2)}}\right) \left(\frac{1-t}{1-qt^{n-j_1}}\right) (1+t) \sum_{\{k,\ell\} \subseteq \{1,\dots,j_2-2\}} x_k x_\ell \\ &= x_{j_2-1}x_{j_2} + \left(\frac{1-t}{1-qt^{n-(j_2-1)}}\right) \sum_{k=1}^{j_2-2} x_k x_{j_2} + \left(\frac{1-t}{1-qt^{n-(j_2-2)}}\right) \left(\frac{1-qt^{n-(j_2-2)}}{1-qt^{n-(j_2-1)}}\right) \sum_{k=1}^{j_2-2} x_k x_{j_2-1} \\ &+ \left(\frac{1-t}{1-qt^{n-(j_2-2)}}\right) \left(\frac{1-t}{1-qt^{n-(j_2-1)}}\right) (1+t) \sum_{\{k,\ell\} \subseteq \{1,\dots,j_2-2\}} x_k x_\ell \end{split}$$

which is an example of the additional cancellation that occurs when there are adjacent rows of equal length and illustrates the the difference between nonattacking fillings and queue tableaux.

#### 8.0.2 Queue tableaux

Following (and slightly generalizing) [CMW18, Definition A.1], a queue tableau of shape  $(z, \mu)$  is a nonattacking filling T of  $(z, \mu)$  such that

(QT) If 
$$\mu_i = \mu_{i-1} = \dots = \mu_{i-r}$$
 then  $T(i,j) \notin \{T(i-1,j-1),\dots,T(i-r,j-1)\}$ .

If the parts of  $\mu$  are distinct then a queue tableau is no different than a nonattacking filling. More generally, if  $\mu_i \neq \mu_{i+1}$  for  $i \in \{1, \ldots, n-1\}$  then a queue tableau is no different than a nonattacking filling.

#### 8.0.3 Multiline queues

The *multiline queue* corresponding to a queue tableau T is the pipe dream P corresponding to T under the map given in (3.7), namely

$$P(k,j) = i$$
 if and only if  $T(i,j) = k$ 

The example in [CMW18, Figures 3 and 12] has

queue tableau
 
$$T = \begin{bmatrix} 6 & 5 & 3 & & & \\ 1 & 1 & 6 & & & \\ 2 & 2 & 2 & & \\ 7 & 7 & 4 & & \\ 8 & 8 & & & \\ 3 & & & \\ 4 & & & \\ 5 & & & & \\ \end{bmatrix}$$
 and pipe dream
  $P = \begin{pmatrix} 2 & 2 & 0 & 0 \\ 3 & 3 & 3 & 0 \\ 6 & 0 & 0 & 1 \\ 7 & 0 & 4 & 0 \\ 8 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 4 & 4 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ \end{pmatrix}$ 

The picture of this pipe dream from [CMW18, Figures 3] is



### 8.0.4 Compression not captured by NAFs or QT

Let  $AW_{\mu} = AW_{\mu}^{id}$ ,  $NAF_{\mu} = NAF_{\mu}^{id}$ , and  $QT_{\mu} = QT_{\mu}^{id}$ . The example

$$#AW_{(2,2,1,1,0,0)} = 16, #NAF_{(2,2,1,1,0,0)} = 9 \text{ and } #QT_{(2,2,1,1,0,0)} = 7.$$

is provided in [CMW18, Figure 4]). The equalities (see (see [GR21, Proposition 5.8])

$$\begin{split} E_{(2,0,1)}(x_1, x_2, x_3; q, t) &= (x_1 x_2 x_3)^2 E_{(1,2,0)}(x_3^{-1}, x_2^{-1}, x_1^{-1}; q, t), \quad \text{and} \\ E_{(2,2,0)}(x_1, x_2, x_3; q, t) &= q^{-1} E_{(2,0,1)}(x_3, x_1, x_2; q, t) \end{split}$$

indicate that if one provides a formula for  $E_{(1,2,0)}$  then there are formulas for  $E_{(2,0,1)}$  and  $E_{(2,2,0)}$  with exactly the same number of terms. For these cases,

$$\begin{split} &\# AW_{(1,2,0)} = 4, \quad \# NAF_{(1,2,0)} = 3, \quad \# QT_{(1,2,0)} = 3. \\ &\# AW_{(2,0,1)} = 4, \quad \# NAF_{(2,0,1)} = 4, \quad \# QT_{(2,0,1)} = 4. \\ &\# AW_{(2,2,0)} = 4, \quad \# NAF_{(2,2,0)} = 4, \quad \# QT_{(2,2,0)} = 3. \end{split}$$

Thus  $\mu = (2, 0, 1)$  is a case where possible compression is not realized by either the NAFs or the QT.

8.0.5 Comparing #NAF and #QT for  $(r, 0, \ldots, 0)$  and  $(r, \ldots, r, 0)$ .

Since  $u_{(r,0,\dots,0)} = \pi (s_{n-1} \cdots s_1 \pi)^{r-1}$  and  $u_{(r,r,\dots,r,0)} = \pi^{n-1} (s_1 \pi)^{(n-1)(r-1)}$  then

$$\begin{aligned} &\# AW_{(r,0,0,\dots,0)} = (2^{n-1})^{r-1}, & \# NAF_{(r,0,0,\dots,0)} = n^{r-1}, & \# QT_{(r,0,0,\dots,0)} = n^{r-1}, \\ &\# AW_{(r,r,\dots,r,0)} = (2^{n-1})^{r-1}, & \# NAF_{(r,r,\dots,r,0)} = (2^{n-1})^{r-1}, & \# QT_{(r,r,\dots,r,0)} = n^{r-1}. \end{aligned}$$

To see the last equality: In a queue tableau of shape (r, r, ..., r, 0), for each column after the first, we get to choose the position of the  $j \in \{1, ..., n\}$  that did not appear in the column before (*n* choices total for each column).

# References

- [Al16] P. Alexandersson, Non-symmetric Macdonald polynomials and Demazure-Lusztig operators, Sém. Lothar. Combin. B76d (2019), arXiv:1602.05153.
- [BW19] A. Borodin and M. Wheeler, Nonsymmetric Macdonald polynomials via integrable vertex models, arXiv:1904.06804. 0, 3.0.7, 3.0.7
- [Bou] N. Bourbaki, Groupes et algèbres de Lie, vol. 4–6, Masson 1981, MR0647314
- [CdGW15] L. Cantini, J. de Gier and M. Wheeler, Matrix product formula for Macdonald polynomials, J. Phys. A Math. Theor., 48 (2015) 384001, arXiv:1505.00287, MR3400909 1.3
- [CdGW16] L. Cantini, J. de Gier and M. Wheeler, Matrix product formula and sum rule for Macdonald polynomials, dmtcs:6419 - Discrete Mathematics & Theoretical Computer Science, April 22, 2020, DMTCS Proceedings, 28th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016) arXiv:1602.04392. 1.3
- [Che95] I. Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 1995, no. 10, 483-515, MR1358032, arXiv: 9505029.
- [CMW18] S. Corteel, O. Mandelshtam and L. Williams, From multiline queues to Macdonald polynomials via the exclusion process, arXiv:1811.01024. 0, 1.3, 2.0.5, 3.0.7, 3.0.7, 8.0.2, 8.0.3, 8.0.4
- [Fe11] J.P. Ferreira, Row-strict quasisymmetric Schur functions, characterizations of Demazure atoms, and permuted basement nonsymmetric Macdonald polynomials, Ph.D. thesis U.C. Davis (2011), MR3022565, arXiv:1303.3619.
- [GR21] W. Guo and A. Ram, Comparing formulas for type  $GL_n$  Macdonald polynomials, arXiv: 2104.02942. (document), 0, 1.1, 1.3, 2.0.5, 4.0.1, 4.0.9, 5.0.1, 5.0.2, 5.0.3, 5.0.4, 5.0.5, 6.0.3, 7.0.3, 7.0.5, 8.0.1, 8.0.4
- [Hg106] J. Haglund, The q, t-Catalan numbers and the space of diagonal harmonics, with an appendix on the combinatorics of Macdonald polynomials, University Lecture Series 41 Amer. Math. Soc. 2008, ISBN: 978-0-8218-4411-3, available at https://www.math.upenn.edu/~jhaglund/, MR2371044. 2.0.4
- [HHL06] J. Haglund, M. Haiman and N. Loehr, A combinatorial formula for non-symmetric Macdonald polynomials, Amer. J. Math. 130 (2008) 359-383, MR2405160, arXiv:math.CO/0601693. 2.0.3, 2.0.4
- [KT06] M. Kasatani and Y. Takeyama, The quantum Knizhnik-Zamolodchikov equation and nonsymmetric Macdonald polynomials, Noncommutativity and singularities, 249-262, Adv. Stud. Pure Math., 55 Math. Soc. Japan, Tokyo, (2009) and Funkcial. Ekvac. 50 (2007) 491-509, MR2463501 and MR2381328, arXiv:math/0608773. 1.3
- [Kn96] F. Knop, integrality of two variable Kostka functions, J. Reine Angew. Math. 482 (1997) 177-189, MR1427661, arXiv:q-alg/9603027
- [KS96] F. Knop and S. Sahi, A recursion and a combinatorial formula for Jack polynomials, Invent. Math.128 (1997) 9?22, MR1437493, arXiv:q-alg/9610016.
- [Len08] C. Lenart, On combinatorial formulas for Macdonald polynomials, Adv. Math. 220 (2009) 324-340, MR2462843, arXiv:0804.4716. 2.1.1

- [Len10] C. Lenart, Haglund-Haiman-Loehr type formulas for Hall-Littlewood polynomials of type B and C, Algebra Number Theory 4 (2010) 887-917, MR2776877, arXiv:0904.2407.
- [Mac] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford Mathematical Monographs, Oxford University Press, New York, 1995. ISBN: 0-19-853489-2, MR1354144. 1, 2.0.2, 2.1, 2.1, 7.0.3
- [Mac95] I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki 1994/95, Astérisque 237 (1996) Exp. No. 797, 4, 189-207. MR1423624. 0, 1.2, 1.2
- [Mac03] I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics 157 Cambridge University Press 2003, ISBN: 0-521-82472-9, MR1976581. 0, 1.1, 1.2, 1.2, 1.2, 7.0.1
- [Ra03] A. Ram, Affine Hecke algebras and generalized standard Young tableaux, Special issue celebrating the 80th birthday of Robert Steinberg, J. Algebra 230 (2003) 367-415, MR1976700; this paper is a revised and combined version of the 1998 preprints arXiv:0401323 and arXiv:0401329.
- [RY08] A. Ram and M. Yip, A combinatorial formula for Macdonald polynomials, Adv. Math. 226 (2011) 309-331, arXiv:0803.1146, MR2735761.
- [Sa96] S. Sahi, Interpolation, integrality and generalization of Macdonald's polynomials, Int. Math. Res. Notices 10 (1996) 457-471, MR1399411
- [St67] R. Steinberg, Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson. Revised and corrected edition of the 1968 original [MR0466335], University Lecture Series 66 American Mathematical Society, Providence, RI, 2016. ISBN: 978-1-4704-3105-1. 4.0.3