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Abstract

Let G be a finite group. Let H,K be subgroups of G and H\G/K the dou-
ble coset space. Let Q be a probability on G which is constant on conjugacy
classes (Q(s−1ts) = Q(t)). The random walk driven by Q on G projects to
a Markov chain on H\G/K. This allows analysis of the lumped chain using
the representation theory of G. Examples include coagulation-fragmentation
processes and natural Markov chains on contingency tables. Our main example
projects the random transvections walk on GLn(q) onto a Markov chain on Sn

via the Bruhat decomposition. The chain on Sn has a Mallows stationary dis-
tribution and interesting mixing time behavior. The projection illuminates the
combinatorics of Gaussian elimination. Along the way, we give a representation
of the sum of transvections in the Hecke algebra of double cosets. Some exten-
sions and examples of double coset Markov chains with G a compact group are
discussed.
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1 Introduction

The main results of this paper develop tools which allow projecting a random walk
on a group to a Markov chain on special equivalence classes of the group. Then
Fourier analysis on the group can be harnessed to give sharp analysis of rates of
convergence to stationary for the Markov chain on equivalence classes.
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Example 1.1 (Coagulation-Fragmentation Processes). In chemistry and physics,
coagulation-fragmentation processes are models used to capture the behavior of
‘blobs’ that combine and break up over time. These processes are used in population
genetics to model the merging and splitting of family groups. A simple mean field
model considers n unlabeled particles in a partition λ = (λ1, . . . , λk), λ1 ≥ λ2 ≥
. . . ≥ λk > 0,

∑k
i=1 λi = n. At each step of the process, a pair of particles is chosen

uniformly at random and the partition evolves according to the rules:

1. If the particles are in distinct blocks, combine the blocks.

2. If the particles are in the same block, break the block uniformly into two
blocks.

3. If the same particle is chosen twice, do nothing.

This defines a Markov chain on partitions of n. Natural questions are:

• What is the stationary distribution π(λ)?

• How does the process evolve?

• How long to reach stationarity?

All of this is available by considering the random transpositions process on the
symmetric group Sn. The transition probabilities for this process are constant on
conjugacy classes; the conjugacy classes are indexed by partitions; and the conjugacy
class containing the current permutation of the walk evolves as the coagulation-
fragmentation process on partitions. The answers are:

• The stationary distribution is π(λ) =
∏n
i=1 1/(iaiai!) for a partition λ with ai

parts of size i.

• Starting at λ = 1n, the pieces evolve as the connected components of a growing
Erdős-Rényi random graph.

• It takes order n log(n) steps to reach stationarity.

The coagulation-fragmentation process is a special case of a double coset walk:
Let G be a finite group, H,K subgroups of G. The equivalence relation

s ∼ t ⇐⇒ hsk = t, h ∈ H, k ∈ K

partitions the group into double cosets H\G/K. Let Q(s) be a probability on
G. That is, 0 ≤ Q(s) ≤ 1 for all s ∈ G and

∑
s∈GQ(s) = 1. Further assume

Q(s) a class function: it is constant on conjugacy classes, i.e. Q(s) = Q(t−1st) for
all s, t ∈ G. The probability Q defines a random walk on G by multiplication by
random elements chosen according to Q. In other words, the random walk is induced
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by convolution, Q∗k(s) =
∑

t∈GQ(t)Q∗(k−1)(st−1) and a single transition step has
probability P (x, y) = Q(yx−1).

This random walk induces a random process on the space of double cosets. While
usually a function of a Markov chain is no longer a Markov chain, in this situation the
image of the random walk on H\G/K is Markov. Section 2.2 proves the following
general result. Throughout, we pick double coset representatives x ∈ G and write x
for HxK.

Theorem 1.2. For Q(s) = Q(t−1st) a probability on G, the induced process on
H\G/K is Markov with the following properties.

(1) The transitions are

P (x, y) = Q(HyKx−1), x, y ∈ H\G/K.

(2) The stationary distribution is

π(x) =
|HxK|
|G|

.

(3) If Q(s−1) = Q(s), then P is reversible with respect to π:

π(x)P (x, y) = π(y)P (y, x).

(4) Suppose Q is concentrated on a single conjugacy class C (that is, Q(s) = δC(s)/|C|).
Then the eigenvalues of P (x, y) are among the set{

χλ(C)
χλ(1)

}
λ∈Ĝ

,

where Ĝ is the set of all irreducible representations of G and χλ is the character
of the irreducible representation indexed by λ.

(5) The multiplicity of χλ(C)/χλ(1) is

mλ = 〈χλ|H , 1〉 · 〈χλ|K , 1〉 .

Here 〈χλ|H , 1〉 is the number of times the trivial representation appears when
χλ is restricted to H.

(6) For any time ` > 0,

∑
x∈H\G/K

π(x)‖P `x − π‖2TV ≤
1

4

∑
λ6=1

mλ

∣∣∣∣χλ(C)
χλ(1)

∣∣∣∣2` .
4



This theorem shows that the properties of the induced chain are available via
the character theory of G. It is proved with variations and extensions in Section
2.2. The main example is introduced next.

Example 1.3 (GLn(q) and Gaussian Elimination). Fix a prime power q and let
GLn(q) be the invertible n × n matrices over Fq. Let H = K = B be the Borel
subgroup: upper-triangular matrices in GLn(q). A classical result is the Bruhat
decomposition,

GLn(q) =
⊔
ω∈Sn

BωB,

where ω is the permutation matrix for the permutation ω ∈ Sn. This means the
double cosets B\GLn(q)/B are indexed by permutations. As explained in Section
2.5 below, the permutation ω associated to M ∈ GLn(q) is the ‘pivotal’ permu-
tation when M is reduced to upper-triangular form by row reduction (Gaussian
elimination).

The set of transvections Tn,q is the conjugacy class containing the basic row
operations I + θEij ; here θ ∈ Fq, and Eij is the matrix with a 1 in position (i, j)
and zeroes everywhere else (so I + θEij acts by adding θ times row i to row j).
Hildebrand [38] gave sharp convergence results for the Markov chain on GLn(q)
generated by the class function Q(M) = δT (M)/|Tn,q|. He shows that n steps are
necessary and sufficient for convergence to the uniform distribution, for any q. Of
course, convergence of the lumped chain on B\GLn(q)/B might be faster. The
results we found surprised us. Careful statements are included below. At a high
level, we found:

• Starting from a ‘typical’ state x ∈ Sn, order log(n)/ log(q) steps are neces-
sary and sufficient for convergence. This is an exponential speed-up from the
original chain.

• Starting from id, order n steps are necessary and sufficient for convergence.

• Starting from ω0, the reversal permutation, order log(n)/(2 log(q)) steps are
necessary and sufficient for convergence.

To simplify the statement of an honest theorem, let us measure convergence in the
usual chi-square or L2 distance:

χ2
x(`) =

∑
y

(
P `(x, y)− πq(y)

)2
πq(y)

.

In Section 3, the usual total variation distance is treated as well.
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Theorem 1.4. The random transvections walk on GLn(q) induces a Markov chain
P (x, y) on Sn ∼= B\GLn(q)/B with stationary distribution.

πq(ω) = qI(ω)/[n]q!, [n]q! := (1 + q)(1 + q + q2) . . . (1 + q + . . .+ qn−1),

for ω ∈ Sn, where I(ω) is the number of inversions in ω.
Furthermore, if log(q) > 6/n then the following statements are true.

(a) (Typical Start) If ` ≥ (log(n) + c)/(log(q)− 6/n) for any c > 0, then∑
x∈Sn

π(x)χ2
x(`) ≤ (ee

−c − 1) + e−2c.

Conversely, for any ` ∑
x∈Sn

π(x)χ2
x(`) ≥ (n− 1)2q−4`.

These results show order logq(n) steps are necessary and sufficient for conver-
gence.

(b) (Starting from id) If ` ≥ (n log(q)/2 + c)/(log(q)− 6/n), c > 0, then

χ2
id(`) ≤ (ee

−2c − 1) + e−2c.

Conversely, for any `,

χ2
id(`) ≥ (qn−1 − 1)(n− 1)q−4`.

These results show that order n steps are necessary and sufficient for convergence
starting from the identity.

(c) (Starting from ω0) If ` ≥ (log(n)/2 + c)/(log(q)− 6/n) for c ≥ 2
√

2, then there
is a universal constant K > 0 (independent of q, n) such that

χ2
ω0

(`) ≤ −2K log(1− e−c) +Ke−nc.

Conversely, for any `,

χ2
ω0

(`) ≥ q−(n−2)(n− 1)(qn−1 − 1)q−4`.

These results show that order logq(n)/2 steps are necessary and sufficient for
convergence starting from ω0.

Remark. Note that while Hildebrand’s result of order n convergence rate was in-
dependent of n, the rates in Theorem 1.4 depend on q.
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The stationary distribution πq is the Mallows measure on Sn. This measure has
a large enumerative literature; see [24] Section 3 for a review or [66]. It is natural to
ask what the induced chain ‘looks like’ on Sn. After all, the chain induced by random
transpositions on partitions has a simple description and is of general interest. Is
there a similarly simple description of the chain in Sn? This question is treated in
Section 5 using the language of Hecke algebras.

Theorem 1.5. Let Hn(q) be the Hecke algebra corresponding to the B\GLn(q)/B
double cosets and D =

∑
T∈Tn,q T ∈ Hn(q) be the sum of all transvections. Then,

D = (n− 1)qn−1 − [n− 1]q + (q − 1)
∑

1≤i<j≤n
qn−1−(j−i)Tij ,

with Tij in the Hecke algebra.

This gives a probabilistic description of the induced chain on Sn. Roughly stated,
from ω ∈ Sn pick (i, j), j < i, with probability proportional to q−(j−i) and transpose i
and j in ω using the Metropolis algorithm. This description is explained in Section
5; see also [19]. The probabilistic description is crucial in obtaining good total
variation lower bounds for Theorem 1.4.

Outline Section 2 develops and surveys background material on double cosets,
Markov chains (proving Theorem 1.2), transpositions and coagulation-fragmentation
processes, transvections, and Gaussian elimination. Theorem 1.4 is proven in Section
3. Theorem 1.5 is proved in Section 5 using a row reduction; an alternative proof
is contained Section 6 using symmetric function theory. Section 7 contains another
Markov chain from a lumping of the transvections chain, and Section 8 surveys
further examples – contingency tables and extensions of the GLn results to finite
groups of Lie type, for which the Bruhat decomposition holds and there are natural
analogs of transvections. Of course, there are an infinite variety of groups G,H,K,
and we also indicate extensions to compact groups.

Notation Throughout, q will be a prime power. For a positive integer n, define
the quantities

[n]q :=
qn − 1

q − 1
= qn−1 + qn−2 + . . .+ q + 1, [n]q! := [n]q[n− 1]q . . . [1]q.

Sometimes the subscript q will be omitted when it is obvious from context.

Acknowledgements The authors thank Sourav Chatterjee, David Craven, Jason
Fulman, Bob Guralnick, Jimmy He, Marty Isaacs, Zhihan Li, Martin Liebeck, James
Parkinson, and Nat Theme and for helpful discussions. M.S. was supported by a
Lieberman Fellowship at Stanford University. P.D. was partially supported by NSF
grant DMS-1954042.
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2 Background

This section gives the basic definitions and tools needed to prove our main results.
Section 2.1 gives background on double cosets. In Section 2.2, Markov chains are
reviewed and Theorem 1.2 is proved, along with extensions. Section 2.3 reviews
the coagulation-fragmentation literature along with the random transpositions lit-
erature. Section 2.4 develops what we need about transvections and Section 2.5
connects the Bruhat decomposition to Gaussian elimination.

2.1 Double Cosets

Let H,K be subgroups of a finite group G. The double coset decomposition is a
standard tool of elementary group theory with applications in representation theroy
and number theory (Hecke algebras). For a detailed survey, see [24] or [15]. Double
cosets can have very different sizes and [24], [50] develop a probabilistic and enumer-
ative theory. For present applications, an explicit description of the double cosets
are needed.

Example 2.1. Let Sλ, Sµ be parabolic subgroups of the symmetric group Sn. Here
λ = (λ1, . . . , λI) and µ = (µ1, . . . , µJ) are partitions of n. The subgroup Sλ consists
of all permutations in which the first λ1 elements may only be permuted amongst
each other, the next λ1 + 1, . . . , λ1 + λ2 elements may only be permuted amongst
each other, and so on. It is a classical fact that the double cosets Sλ\Sn/Sµ are in
bijection with ‘contingency tables’ – arrays of non-negative integers with row sums
λ and column sums µ. See [41], Section 1.3. For proofs and much discussion of
the connections between the group theory and applications and statistics see [24],
Section 5. Random transpositions on Sn induces a natural Markov chain on these
tables, see Chapter 3 of [62].

Example 2.2. Let M be a finite group, G = M ×M , and H = K = M embedded
diagonally as subgroups of G (that is, {(m,m) : m ∈M}). The conjugacy classes in
G are products of classes in M . In the double coset equivalency classes, note that

(s, t) ∼ (id, s−1t) ∼ (id, k−1s−1tk),

and so double cosets can be indexed by conjugacy classes of M . If Q1 is a conjugacy
invariant probability on M , then Q = Q1 × δid is conjugacy invariant on G. The
random walk on G induced by Q maps to the random walk on M induced by Q1. In
this way, the double coset walks extend conjugacy invariant walks on M . Example
1 in the introduction is a special case.

Of course, the conjugacy classes in M (and so the double cosets) can be difficult
to describe. Describing the conjugacy classes of Un(q) – the unit upper-triangular
matrices in GLn(q) – is a well known ‘wild’ problem. See [2] or [18] for background
and details.
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Example 2.3. Let G be a finite group of Lie type, defined over Fq, with Weyl group
W . Let B be the Borel subgroup (maximal solvable subgroup). Take H = K = B.
The Bruhat decomposition gives

G =
⊔
ω∈W

BωB,

so the double cosets are indexed by W . See [11], Chapter 8, for a clear development
in the language of groups with a (B,N) pair.

Conjugacy invariant walks on G have been carefully studied in a series of papers
by David Gluck, Bob Guralnick, Michael Larsen, Martin Liebeck, Aner Shalev,
Pham Tiep and others. These authors develop good bounds on the character ratios
needed. See [31] for a recent paper with careful reference to earlier work. Of course,
Example 2 with G = GLn(q),W = Sn is a special case. The present paper shows
what additional work is needed to transfer results from G to W .

The double cosets form a basis for the algebra of H −K bi-invariant functions
L(H\G/K) with product

f ? g(s) =
∑
t

f(t)g(st−1).

This is usually developed for H = K [15], [12], [16] but the extra flexibility is useful.
We add a caveat: When H = K, the algebra of bi-invariant functions (into C)
is semi-simple and with a unit. This need not be the case for general H and K.
David Craven tried all pairs of subgroups of S4 and found examples which were
not semi-simple. For instance, H = D8 (generated by {(34), (14)(23), (13)(24)})
and K = C2 × C2 ⊂ S4 (generated by {(14)(23), (13)(24)}) give an algebra with no
unit which is not semi-simple. This occurs even for some pairs of distinct parabolic
subgroups of Sn. There are also distinct pairs of parabolics where the algebra is
semi-simple. Determining when this occurs is an open question.

Further examples are in Section 8. Since the theory is developed for general
H,K,G there is a large set of possibilities. What is needed are examples where the
double cosets are indexed by familiar combinatorial objects and the walks induced
on H\G/K are of independent interest.

2.2 Markov Chain Theory

Let H,K be subgroups of a finite group G, and Q a probability on G. See [46] for
an introduction to Markov chains; see [16] or [56] for random walks on groups.

Proposition 2.4. Let Q be a probability on G which is H-conjugacy invariant
(Q(s) = Q(h−1sh) for h ∈ H, s ∈ G). The image of the random walk driven by Q
on G maps to a Markov chain on H\G/K with transition kernel

P (x, y) = Q(HyKx−1).
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The stationary distribution of P is π(x) = |HxK|/|G|. If Q(s) = Q(s−1) then (P, π)
is reversible.

Proof. The kernel P is well-defined; that is, it is independent of the choice of double
coset representatives for x, y. Dynkin’s criteria ([43] Chapter 6, [51]) says that the
image of a Markov chain in a partitioning of the state space is Markov if and only if
for any set in the partition and any point in a second set, the chance of the original
chain moving from the point to the first set is constant for points in the second set.

Fixing x, y, observe

Q(HyK(hxk)−1) = Q(HyKx−1h−1) = Q(HyKx−1).

If the uniform distribution on G is stationary for the walk generated by Q, then
the stationary distribution of the lumped chain is π(x) = |HxK|/|G|. Finally, any
function of a reversible chain is reversible and Q(s) = Q(s−1) gives reversibility of
the walk on G.

Remark. A different sufficient condition for Proposition 2.4 is Q(sh) = Q(s) for
all s ∈ G, h inH.

Remark. Usually, a function of a Markov chain is not Markov. For relevant dis-
cussion of similar ‘orbit chains’, see [9].

In all of our examples, the measure Q is a class function (Q(s) = Q(t−1st) for
all s, t,∈ G), which is a stronger requirement than that in Proposition 2.4. The
eigenvalues of the walk on G can be given in terms of the irreducible complex
characters of G. Let Ĝ be an index set for these characters. We write λ ∈ Ĝ and
χλ(C) for the character value at the conjugacy class C. Let

βλ =
1

χλ(1)

∑
s∈G

Q(s)χρ(s).

If Q is simply concentrated on a single conjugacy class C, then βλ is the character
ratio

βλ =
χλ(C)
χλ(1)

.

For a review of a large relevant literature on character ratios and their applications,
see [31].

The restriction of χλ to H is written χλ|H and 〈χλ|H , 1〉 is the number of times
the trivial representation of H appears in χλ|H . By reciprocity, this is

〈
χλ, IndGH(1)

〉
,

where IndGH is the induced representation from H to G.

Proposition 2.5. Let Q be a class function on G. The induced chain P (x, y) of
Proposition 2.4 has eigenvalues

βλ =
1

χλ(1)

∑
s∈G

Q(s)χρ(s), (1)
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with multiplicity
mλ = 〈χλ|H , 1〉 · 〈χλ|K , 1〉 . (2)

The average square total variation distance to stationarity satisfies∑
x

π(x)‖P `x − π‖2TV ≤
1

4

∑
λ∈Ĝ,λ 6=1

mλβ
2`
λ . (3)

Proof. The eigenvalues of a lumped chain are always some subset of the eigenvalues
of the original chain. To determine the multiplicity of the eigenvalue βλ in the
lumped chain, fix λ : G→ GLdλ(k) an irreducible representation of G over the field
k. Let M = Mλ be the dλ × dλ matrix representation of λ. That is, each entry
Mij : G → k is a function of G. These functions are linearly independent and can
be chosen to be orthogonal with respect to

〈f1, f2〉 :=
1

|G|
∑
g∈G

f1(g)f2(g)

(see Chapter 3 of [61]). Let Vλ be the space of all linear combinations of the functions
Mij . If f ∈ Vλ, then

Pf(x) =
∑
y∈G

P (x, y)f(y) = βλf(x)

That is, Vλ is the eigenspace for the eigenvalue βλ and it has dimension d2
λ = χλ(1)2.

In the lumped chain on H\G/K, a basis for the eigenspace for eigenvalue βλ
are the H × K invariant functions in Vλ [9]. To determine the dimension of this
subspace, note that G × G can act on Vλ by fg1,g2(x) = f(g−1

1 xg2). This gives a
representation of G × G on Vλ. The matrix of this representation is isomorphic to
M ⊗M , since Mij(s

−1tu) = Mij(s
−1)Mij(t)Mij(u).

This representation restricts to a representation MH ⊗MK of H ×K, and the
dimension of the H ×K invariant functions in Vλ is the multiplicity of the trivial
representation on MH ⊗MK . This is

〈χλ|H ⊗ χλ|K , 1〉 = 〈χλ|H , 1〉 · 〈χλ|K , 1〉 .

To note the total variation inequality, let 1 = β1 ≥ β2 ≥ · · · ≥ βn ≥ · · · ≥ β|Sn| ≥
−1 be the eigenvalues with eigenfunctions fj (chosen to be orthonormal with respect
to π), we have

χ2
x(`) =

∑
j 6=1

fj(x)2β2`
j ,

where ‖ · ‖2,π denotes the `2 norm with respect to the distribution π. Multiplying
by π(x) and summing over all x in the state space gives∑

x

π(x)

∥∥∥∥P `xπ − 1

∥∥∥∥2

2,π

=
∑
x

π(x)
∑
j 6=1

fj(x)2β2`
j =

∑
λ6=1

mλβ
2`
λ , (4)
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using orthonormality of fj . The total variation bound arises since 4‖P `x − π‖2TV ≤
‖P `x/π − 1‖22,π.

Remark. By a classical bound, for any starting state x

4‖P `x − π‖2TV ≤
1

π(x)
β2`
∗ ,

with β∗ = maxλ 6=1 |βλ|. Since π(x) varies widely, this bound can be useful or very
off! See the examples in Section 3.

In applications, the rate of convergence to stationarity can vary greatly as a
function of the starting state. The classical bound can be useful when π(x)−1 is not
too large. The average case bound (3), while sharp, is dominated by starting states
with large π(x). We do not have (at present) an accurate upper bound for a general
starting state. However, for the special case where H = K = B the Borel subgroup
of a finite group of Lie Type (e.g. Example 1.3 of the introduction) a useful bound
is derived in [19]. This is detailed in Section 3 where Example 1.3 is treated.

2.3 Random Transpositions and Coagulation-Fragmentation Pro-
cesses

Let G = Sn be the symmetric group. The random transpositions Markov chain,
studied in [22] is generated by the measure

Q(ω) =


1/n ω = id

2/n2 ω = (ij), i < j

0 otherwise

.

This was the first Markov chain where a sharp cut-off for convergence to stationarity
was observed. A sharp, explicit rate is obtained in [57]. They show

‖Q∗` − u‖TV ≤ 2e−c, ` =
1

2
n(log(n) + c).

The asymptotic ‘profile’ (the limit of ‖Q∗` − u‖TV as a function of c for n large) is
determined in [65]. Schramm [59] found a sharp parallel between random transpo-
sitions and the growth of an Erdős-Rényi random graph: Given vertices 1, 2, . . . , n,
for each transposition (i, j) chosen, add an edge from vertices i to j to generate
a random graph. See [6] for extensions and a comprehensive review. The results,
translated by the coagulation-fragmentation description of the cycles, give a full and
useful picture for the simple mean-field model described in the introduction.

It must be emphasized that this mean field model is a very special case of
coagulation-fragmentation models studied in the chemistry-physics-probability lit-
erature. These models study the dynamics of particles diffusing in an ambient space,
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and allow general collision kernels (e.g. particles close in space may be more likely
to join). The books by Bertoin [7] and Pitman [52] along with the survey paper of
Aldous [3] are recommended for a view of the richness of this subject. On the other
hand, the sharp rates of convergence results available for the mean field model are
not available in any generality.

Other lumpings of random transpositions include classical urn models – the
Bernoulli-Laplace model [23], [28], and random walks on phylogenetic trees [26].
The sharp analysis of random transpositions transfers, via comparison theory, to
give good rates of convergence for quite general random walks on the symmetric
group [20], [37]. For an expository survey, see [17].

There is a healthy applied mathematics literature on coagulation-fragmentation.
A useful overview which treats discrete problems such as the ones treated here is [5].
A much more probabilistic development of the celebrated Becker-Doring version of
the problem is in [39]. This develops rates of convergence using coupling. See also
[27] for more models with various stationary distributions on partitions.

2.4 Transvections

Fix n, a prime p, and q = pa for some positive integer a. A transvection is an
invertible linear transformation of Fnq which fixes a hyperplane but is not the iden-
tity. Transvections are convenient generators for the group SLn(q) because they
generalize the basic row operations of linear algebra. These properties are carefully
developed in [64] Chapter 1, 9; [4] Chapter 4.

Using coordinates, let a,v ∈ Fnq be two non-zero vectors with a>v = 0. A
transvection, denoted Ta,v ∈ GLn(q) is the linear map such that

Ta,v(x) = x + v(a>x), x ∈ Fnq .

It adds a multiple of v to x, the amount depending on the ‘angle’ between a and
x. As a matrix, Ta,v = [a1v a2v . . . anv] = I + va>. Multiplying a by a non-zero
constant and dividing v by the same constant doesn’t change Ta,v. Let us agree to
normalize v by making its last non-zero coordinate equal to 1. Let Tn,q ⊂ SLn(q)
be the set of all transvections.

An elementary count shows

|Tn,q| =
(qn − 1)(qn−1 − 1)

q − 1
. (5)

It is easy to generate T ∈ Tn,q uniformly: Pick v ∈ Fnq uniformly, discarding
the zero vector. Normalize v so the last non-zero coordinate, say index j, is equal
to 1. Pick a1, a2, . . . , aj−1, aj+1, . . . an uniformly in Fn−1

q − {0} and set aj so that

a>v = 0. Clearly Ta,v fixes the hyperplane {x : a>x = 0}.
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Example 2.6. Taking v = e1,a = e2 gives the transvection with matrix

Te1,e2 =


1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . . 0

0 0 0 . . . 1

 .

This acts on x by adding the second coordinate to the first. Similarly, the basic row
operation of adding θ times the ith coordinate to the jth is given by Tej ,θei .

Lemma 2.7. The set of transvections Tn,q is a conjugacy class in GLn(q).

Proof. Let M ∈ GLn(q), so MTe2,e1M
−1 is conjugate to Te2,e1 . Then,

MTe2,e1M
−1(x) = M(M−1x + (M−1x)2e1) = x + (M−1x)2Me1

Let a be the second column of (M−1)Te2,e1 and v the first column of M and check
this last is Ta,v (and a>v = 0). Thus, transvections form a conjugacy class.

2.5 Gaussian Elimination and the Bruhat Decomposition

The reduction of a matrix M ∈ GLn(q) to standard form by row operations is a
classical topic in introductory linear algebra courses. It gives efficient, numerically
stable ways to solve linear equations, compute inverses, and calculate determinants.
There are many variations.

Example 2.8. Consider the sequence of row operations

M =

0 3 2
1 2 0
3 0 5

→
0 3 2

1 2 0
0 −6 5

→
0 3 2

1 2 0
0 0 9

→
1 2 0

0 3 2
0 0 9

 = U.

The first step subtracts 3 times row 2 from row 3, multiplication by

L1 =

1 0 0
0 1 0
0 −3 1

 .

The second step adds 2 times row 1 to row 3, multiplication by

L2 =

1 0 0
0 1 0
2 0 1

 .
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The third (pivot) step brings the matrix to upper triangular form by switching rows
1 and 2, multiplication by

ω1 =

0 1 0
1 0 0
0 0 1

 .

This gives ω1L2L1M = U =⇒ M = L−1
2 L−1

1 ω−1
1 U = LωU with L = L−1

2 L−1
1 , ω =

ω−1
1 .

If L,B are the subgroups of lower and upper triangular matrices in GLn(q), this
gives

GLn(q) =
⊔
ω∈Sn

LωB (6)

Any linear algebra book treats these topics. A particularly clear version which
uses Gaussian elimination as a gateway to Lie theory is in Howe [40]. Articles by
Lusztig [47] and Strang [63] have further historical, mathematical, and practical
discussion.

Observe that carrying out the final pivoting step costs dc(ω, id) operations where
dc(ω, id), the Cayley distance of ω to the identity, is the minimum number of trans-
positions required to sort ω (with arbitrary transpositions (i, j) allowed). Cayley
proved dc(ω, id) = n−#cycles in ω (see [17]). In the example above n = 3, ω = 213
has two cycles and 3− 2 = 1 – one transposition sorts ω.

How many pivot steps are needed ‘on average’? This becomes the question of the
number of cycles in a pick from Mallows measure πq. Surprisingly, this is a difficult
question. Following partial answers by Gladkich and Peled [30], this problem is
solved in [36]. This shows that when q > 1 the limiting behavior of the number of
even cycles under πq depends has an approximate normal distribution with mean
and variance proportional to n. However, the number of odd cycles has bounded
mean and variance.

The Bruhat Decomposition In algebraic group theory one uses

GLn(q) =
⊔
ω∈Sn

BωB. (7)

This holds for any semi-simple group over any field with B replaced by the Borel
group (the largest solvable subgroup) and Sn replaced by the Weyl group.

Let ω0 =
(

1 2 ··· n
n n−1 ··· 1

)
be the reversal permutation in Sn. Since L = ω0Bω0, (7) is

equivalent to the LU decomposition (6). Given M ∈ GLn(q), Gaussian elimination
on ω0M can be used to find ω0M ∈ Lω′U and thus M ∈ BωB with ω = ω0ω

′.
The subgroup B gives rise to the quotient GLn(q)/B. This may be pictured as

the space of ‘flags’. Here a flag F consists of an increasing sequence of subspaces
F = F1 ⊂ F2 ⊂ . . . ⊂ Fn with dim(Fi) = i. Indeed, GLn(q) operates transitively on
flags and the subgroup fixing the standard flag E = 〈e1〉 ⊂ 〈e1, e2〉 . . . ⊂ 〈e1, . . . , en〉
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is exactly B. This perspective will be further explained and used in Section 7 to
study a function of the double coset Markov chain on B\GLn(q)/B.

Remark. The double-cosets of GLn(q) define equivalence classes for any subgroup
of GLn(q). For the matrices SLn(q) with determinant 1, these double-cosets again
induce the Mallows distribution on permutations. More precisely, for x ∈ SLn(q), let
[x]SLn(q) = {x′ ∈ SLn(q) : x′ ∈ BxB} be the equivalence class created by the double-
coset relation B\GLn(q)/B, within SLn(q). Note that two matrices x, x′ ∈ SLn(q)
could be in the same double coset with x′ = b1xb2, but b1, b2 /∈ SLn(q) (necessarily,
det(b1) = det(b2)−1).

Then, |[ω]SLn(q)|/|SLn(q)| = pq(ω). This follows since |GLn(q)| = (q − 1) ·
|SLn(q)|, and |BωB| = (q − 1) · |[ω]SLn(q)|. If M ∈ GLn(q) and M ∈ BωB, then
M/det(M) ∈ [ω]SLn(q). Conversely, for each M ∈ SLn(q) there are (q − 1) unique
matrices in GLn(q) created by multiplying M by 1, 2, . . . , q − 1.

3 Double Coset Walks on B\GLn(q)/B
Throughout this section, B is the group of upper triangular matrices in GLn(q),
Tn,q is the conjugacy class of transvections in GLn(q). This gives the probability
measure on GLn(q) defined by

Q(M) =

{
1
|Tn,q | if M ∈ Tn,q
0 else

.

Note the random transvections measure Q is supported on SLn(q), a subgroup
of GLn(q). This means that the random walk on GLn(q) driven by Q is not er-
godic (there is zero probability of moving x to y if x, y are matrices with different
determinants). However, Q is a class function on GLn(q) since transvections form
a conjugacy class. The image of the uniform distribution on SLn(q) mapped to
B\GLn(q)/B is the Mallows measure πq(ω) = qI(ω)/[n]q!.

Section 3.1 introduces the definition of the Markov chain as multiplication in
the Hecke algebra, which is further explained in Section 5. Section 3.3 gives com-
binatorial expressions for the eigenvalues and their multiplicities, needed to apply
Theorem 1.2 for this case. Section 4.2 shows that for the induced Markov chain on
Sn, starting from id ∈ Sn, order n steps are necessary and sufficient for convergence.
Section 4.3 studies the chain starting from the reversal permutation, for which only
order log(n)/2 log(q) steps are required. Finally, Section 4.4 considers starting from
a ‘typical’ element, according to the stationary distribution, for which log(n)/ log(q)
steps are necessary and sufficient.

These results can be compared to Hildebrand’s Theorem 1.1 [38] which shows
that the walk driven by Q on GLn(q) converges in n+ c steps (uniformly in q). Our
results thus contribute to the program of understanding how functions of a Markov
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chain behave and how the mixing time depends on the starting state. In this case,
changing the starting state gives an exponential speed up.

3.1 Hecke Algebras and the Metropolis Algorithm

The set of B − B double cosets of GLn(q) has remarkable structure. For ω ∈ Sn,
let Tω = BωB. Linear combinations of double cosets form an algebra (over C, for
example).

Definition 3.1. The Iwahori-Hecke algebra Hn(q) is spanned by the symbols {Tω}ω∈Sn
and generated by Ti = Tsi for si = (i, i+ 1), 1 ≤ i ≤ n− 1, with the relations{

TsiTω = Tsiω if I(siω) = I(ω) + 1,

TsiTω = qTsiω + (q − 1)Tω if I(siω) = I(ω)− 1
, (8)

where I(ω) is the usual length function on Sn (I(siω) = I(ω)± 1).

Consider the flag space F = G/B. The group GLn(q) acts on the left of F . One
can see Hn(q) acting on the right of F and in fact

Hn(q) = EndGLn(q)(GLn(q)/B).

The Hecke algebra is the full commuting algebra of GLn(q) acting on GLn(q)/B.
Because transvections form a conjugacy class, the sum of transvections is in the
center of the group algebra C[GLn(q)], and so it may be regarded as an element of
Hn(q). This will be explicitly delineated and the character theory of Hn(q) used to
do computations.

3.2 The Metropolis Connection

The relations (8) can be interpreted probabilistically. Consider what (8) says as
linear algebra: Left multiplication by Tsi can take ω to ω or siω. The matrix of this
map (in the basis {Tω}ω∈Sn) has ω, ω′ entry

1 if I(siω) = I(ω) + 1, ω′ = siω

q if I(siω) = I(ω)− 1, ω′ = ω

q − 1 if I(siω) = I(ω)− 1, ω′ = siω

0 otherwise

.

For example, on GL3(q) using the ordered basis Tid, Ts1 , Ts2 , Ts1s2 , Ts2s1 , Ts1s2s1 ,
the matrix of left multiplication by s1 is

Ts1 =



0 q 0 0 0 0
1 q − 1 0 0 0 0
0 0 0 q 0 0
0 0 1 q − 1 0 0
0 0 0 0 0 q
0 0 0 0 1 q − 1

 .
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The first column has a 1 in row s1 because I(s1) > I(id). The second column has
entries q and q − 1 in the first two rows because I(s2

1) = I(id) < I(s1).
We can also write the matrices for multiplication defined by Ts2 and Ts1s2s1 as

Ts2 =



0 0 q 0 0 0
0 0 0 0 q 0
1 0 q − 1 0 0 0
0 0 0 0 0 q
0 1 0 0 q − 1 0
0 0 0 1 0 q − 1



Ts1s2s1 =



0 0 0 0 0 q3

0 0 0 q2 0 q2(q − 1)
0 0 0 0 q2 q2(q − 1)
0 q 0 q(q − 1) q(q − 1) q(q − 1)2

0 0 q q(q − 1) q(q − 1) q(q − 1)2

1 q − 1 q − 1 (q − 1)2 (q − 1)2 (q − 1)3 + q(q − 1)

 .

Observe that all three matrices above have constant row sums (q, q2, and q3

respectively). Dividing by these row sums gives three Markov transition matrices:
M1,M2, and M121 = M1M2M1.

These matrices have a simple probabilistic interpretation: Consider, for q = 1/q,
the matrix defined

M1 =



0 1 0 0 0 0
q 1− q 0 0 0 0
0 0 0 1 0 0
0 0 q 1− q 0 0
0 0 0 0 0 1
0 0 0 0 q 1− q

 .

The description of this Markov matrix is: From ω, propose s1ω:

• If I(s1ω) > I(ω), go to s1ω.

• If I(s1ω) < I(ω), go to s1ω with probability 1/q, else stay at ω.

This is exactly the Metropolis algorithm on Sn for sampling from πq(ω) with the
proposal given by the deterministic chain ‘multiply by s1’. The matrices Mi, 1 ≤
i ≤ n− 1 have a similar interpretation, and satisfy

πq(ω)Mi(ω, ω
′) = πq(ω

′)Mi(ω
′, ω).

The Metropolis algorithm always results in a reversible Markov chain. See [21] for
background. It follows that any product of {Mi} and any convex combination of
such products yields a πq reversible chain. Note also that the Markov chain on Sn
is automatically reversible since it is induced by a reversible chain on GLn.
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Corollary 3.2. The random transvections chain on GLn(q) lumped to B−B cosets
gives a πq reversible Markov chain on Sn.

Proof. Up to normalization, the matrix D in Theorem 1.5 is a positive linear com-
bination of Markov chains corresponding to multiplication by

T(i,j) = TsiTsi+1 · · ·Tsj−2Tsj−1Tsj−2 · · ·Tsi+1Tsi .

This yields a combination of the reversible chains MiMi+1 . . .Mj−1 . . .Mi.

Example 3.3. The transition matrix of the transvections chain on GL3(q) lumped
to S3 is 1

|Tn,q |D, with D defined

D = (2q2 − q − 1)I+

(q − 1)



0 q2 q2 0 0 q3

q q(q − 1) 0 q2 q2 q2(q − 1)
q 0 q(q − 1) q2 q2 q2(q − 1)
0 q q 2q(q − 1) q(q − 1) q2 + q(q − 1)2

0 q q q(q − 1) 2q(q − 1) q2 + q(q − 1)2

1 q − 1 q − 1 q + (q − 1)2 q + (q − 1)2 (q − 1)3 + 3q(q − 1)

 .

When q = 2, the lumped chain has transition matrix

1

21



5 4 4 0 0 8
2 7 0 4 4 4
2 0 7 4 4 4
0 2 2 9 2 6
0 2 2 2 9 6
1 1 1 3 3 12

 .

We report that this example has been verified by several different routes including
simply running the transvections chain, computing the double coset representative
at each step and estimating the transition rates from a long run of the chain.

Remark. The random transvections Markov chain on Sn is the ‘q-deformation’
of random transpositions on Sn. That is, as q tends to 1, the transition matrix
tends to the transition matrix of random transpositions. To see this, recall |Tn,q| =
(qn − 1)(qn−1 − 1)/(q − 1) and use L’Hopitals rule to note, for any integer k,

lim
q→1+

(q − 1)2qk(q − 1)`

(qn − 1)(qn−1 − 1)
=

{
0 if ` > 0

1
n(n−1) if ` = 0

.

The interpretation of multiplication on the Hecke algebra as various ‘systematic
scan’ Markov chains is developed in [19], [10]. It works for other types in several
variations. We are surprised to see it come up naturally in the present work.

The following corollary provides the connection to [55, (3.16),(3.18),(3.20)] and
[19, Proposition 4.9].
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Corollary 3.4. Let J1 = 1 and let Jk = Tsk−1
· · ·Ts2Ts1Ts1Ts2 · · ·Tsk−1

, for k ∈
{2, . . . , n}. Then

D =

n∑
k=1

qn−k(Jk − 1).

Proof. Using that Jk = Tsk−1
Jk−1Tsk−1

, check, by induction, that

Jk = qk−1 + (q − 1)

k−1∑
j=1

qj−1T(j,k).

Thus

n∑
k=1

qn−k(Jk − 1) = 0 +

n∑
k=2

(
qn−k+(k−1) − qn−k + (q − 1)

k−1∑
j=1

qn−k+j−1T(j,k)

)
= (n− 1)qn−1 − [n− 1]q + (q − 1)D(21n−2) = D,

where D(21n−2) :=
∑

i<j q
(n−1)−(j−i)T(i,j).

3.3 Eigenvalues and Multiplicities

Hildebrand [38] determined the eigenvalues of the random walk driven by Q on
GLn(q). His arguments use MacDonald’s version of J.A. Green’s formulas for the
characters of GLn(q) along with sophisticated use of properties of Hall-Littlewood
polynomials. Using the realization of the walk on the Hecke algebra, developed
below in Section 5, and previous work of Ram and Halverson [34], we can find
cleaner formulas and proofs. Throughout, we have tried to keep track of how things
depend on both q and n (the formulas are more simple when q = 2).

Theorem 3.5. (a) The eigenvalues βλ of the Markov chain P (x, y) driven by the
random transvections measure Q on B\GLn(q)/B are indexed by partitions λ `
n. These are

βλ =
1

|Tn,q|

(
qn−1

∑
b∈λ

qct(b) − qn − 1

q − 1

)
, (9)

with b ranging over the boxes of the partition λ. For the box in row i and column
j, the content is defined as ct(b) = j − i, as in [48].

(b) The multiplicity of βλ for the induced Markov chain on B\GLn(q)/B is f2
λ,

where

fλ =
n!∏

b∈λ h(b)
. (10)

Here h(b) is the hook length of box b [48].
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(c) The multiplicity of βλ for the Markov chain induced by Q on GLn(q)/B is

dλ = fλ ·
[n]q!∏

b∈λ[h(b)]q
. (11)

The argument uses the representation of the Markov chain as multiplication on
the Hecke algebra. This is developed further in Section 5.

Proof. (a): Let D be the sum of transvections as in Theorem 1.5. By [34] (3.20), the
irreducible representation Hλ

n of Hn indexed by λ has a ‘seminormal basis’ {vT | Ŝλn}
such that JkvT = qk−1qc(T (k))vT , where T (k) is the box containing k in T . Thus,

DvT =
n∑
k=1

qn−k(qk−1qc(T (k)) − 1)vT =

(
−
(
qn − 1

q − 1

)
+

n∑
k=1

qn−1qc(T (k))

)
vT .

(b): The dimension of the irreducible representation of Hn indexed by λ is the
same as the dimension of the irreducible representation of Sn indexed by λ, which
is well-known as the hook-length formula:

dim(Hλ
n) = Card(Sλn) =

n!∏
b∈λ h(b)

.

(c): With G = GLn(q), H = Hn, the result follows since

dim(Gλ) =
[n]q!∏

b∈λ[h(b)]q
and 1GB =

∑
λ∈Ŝn

Gλ ⊗Hλ.

Example 3.6. Equation 9 for some specific partitions gives

β(n) =
1

|Tn,q|

(
qn−1 ·

(
qn − 1

q − 1

)
− qn − 1

q − 1

)
= 1

β(n−1,1) =
1

|Tn,q|

(
qn−1

(
q−1 +

qn−1 − 1

q − 1

)
− qn − 1

q − 1

)
=
qn−2 − 1

qn−1 − 1

β(n−2,12) =
1

|Tn,q|

(
qn−1

(
q−1 + q−2 +

qn−2 − 1

q − 1

)
− qn − 1

q − 1

)
=
qn−3 − 1

qn−1 − 1

β(n−2,2) =
1

|Tn,q|

(
qn−1

(
1 + q−1 +

qn−2 − 1

q − 1

)
− qn − 1

q − 1

)
=
qn−2 − 1

qn − 1

β(2,1n−2) =
1

|Tn,q|

(
qn−1

(
1 + q + q−1 + q−2 + . . .+ q−(n−2)

)
− qn − 1

q − 1

)
=

q − 1

qn−1 − 1

β(1n) =
1

|Tn,q|

(
qn−1(q0 + q−1 + . . .+ q−(n−1))− qn − 1

q − 1

)
= 0.
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The following simple lemma will be used several times in the following sections.
It uses the usual majorization partial order (moving up boxes) on partitions of n,
[48]. For example, when n = 4 the ordering is 1111 ≺ 211 ≺ 22 ≺ 31 ≺ 4.

Lemma 3.7. The eigenvalues βλ of Theorem 3.5 are monotone increasing in the
majorization order.

Proof. Moving a single box (at the corner of the diagram of λ) in position (i, j)
to position (i′, j′) necessitates i′ < i and j′ > j, and so qj−i < qj

′−i′ . Since any
λ ≺ λ′ can be obtained by successively moving up boxes, the proof is complete. For
example,

λ = λ′ =

The partition 1n = (1, 1, . . . , 1) is the minimal element in the partial order, and
since β(1n) = 0, we have the following:

Corollary 3.8. For any λ,
βλ ≥ 0.

Corollary 3.9. If λ = λ1 ≥ λ2 ≥ . . . ≥ λk > 0 is a partition of n with λ1 =
n− j, j ≤ n/2, then

βλ ≤ β(n−j,j) =
qj(qn−j−1 − 1)(qn−j − 1) + (qn−2 − 1)(qj − 1)

(qn−1 − 1)(qn − 1)

≤ q−j(1 + q−(n−2j+1))(1 + q−(n−1))(1 + q−(n−2)).

Proof. The first inequality follows from Lemma 3.7. The formula for β(n−j,j) is a
simple calculation from Equation (9). Recall the elementary inequalities:

1

qr
<

1

qr − 1
<

1

qr−1
,

1

1− q−r
= 1 +

1

qr − 1
< 1 + q−(r−1).

These give the inequality for β(n−j,j):

β(n−j,j) =
qj(qn−j−1 − 1)(qn−j − 1) + (qn−2 − 1)(qj − 1)

(qn−1 − 1)(qn − 1)

≤
(
qjqn−j−1qn−j + qn−2qj

qn−1qn

)
1

(1− q−(n−1))(1− q−n)

≤ (q−j + q−(n−j+1)))(1 + q−(n−2))(1 + q−(n−1)).
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In the following sections we will use a further bound from Corollary 3.9.

Corollary 3.10. Define κn,q,j := (1 + q−(n−2j+1))(1 + q−(n−1))(1 + q−(n−2)) and

αn,q := max
1≤j≤n/2

log(κn,q,j)

j
.

Then for all n, q,

αn,q ≤
6

n
.

Proof. Using 1 + x ≤ ex, there is the initial bound

κn,q,j ≤ exp
(
q−(n−2j+1) + q−(n−1) + q−(n−2)

)
≤ exp

(
3q−(n−2j)

)
,

which uses that j ≥ 1 and so (n− 2) ≥ (n− 2j). Then,

log(κn,q,j)

j
≤ 3q−(n−2j)

j
.

With f(x) = 3q−(n−2x)/x, we have

f ′(x) =
3q−(n−2x)(2x log(q)− 1)

x2
.

Since 2 log(2) > 1, we see that f(x) is increasing for x ≥ 1 and any q ≥ 2. Thus, for
1 ≤ j ≤ n/2, f(j) is maximized for j = n/2, which gives

αn,q ≤ max
1≤j≤n/2

3q−(n−2j)

j
≤ 6

n
.

4 Mixing Time Analysis

In this section, the eigenvalues from Section 3.3 are used to give bounds on the
distance to stationarity for the random transvections Markov chain on Sn. Section
4.1 reviews the tools which are needed for the bounds from specific starting states.
Section 4.2 proves results for the chain started from the identity element, Section
4.3 proves results for the chain started from the reversal permutation, and Section
4.4 contains bounds for the average over all starting states.
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4.1 Eigenvalue Bounds

The following result from [19] will be the main tool for achieving bounds on the
chi-square distance of the chain from different starting states.

Proposition 4.1 (Proposition 4.8 in [19]). Let H be the Iwahori-Hecke algebra
corresponding to a finite real reflection group W . Let K be a reversible Markov
chain on W with stationary distribution π determined by left multiplication by an
element of H (also denoted by K). The following identities are true:

(a) χ2
x(`) = q−2I(x)

∑
λ 6=1 tλχ

λ
H(Tx−1K2`Tx), x ∈W ,

(b)
∑

x∈W π(x)χ2
x(`) =

∑
λ 6=1 dλχ

λ
H(K2`),

where χλH are the irreducible characters, tλ the generic degrees, and dλ the dimen-
sions of the irreducible representations of H.

In general the right-hand-side of (a) could be difficult to calculate, but it sim-
plifies for the special cases x = id, x = ω0. These calculations, and the analysis of
the sum, are contained in the following sections. Figure 1 shows the exact values
for the chi-squared distance after several steps, from different starting states.

Figure 1: The quantities χ2
x(`) for x = id, ω0, and

∑
x πq(x)χ2

x(`) when n = 4, q = 3,
for timesteps ` = 1, 2, 3.

The right hand side of the equations in Proposition 4.1 will involve the following
quantities, defined for λ ` n:

• nλ =
∑|λ|

i=1(i− 1)λi,

• cλ =
∑

b∈λ c(b), where c(b) = j − i if box b is in column j and row i

• tλ = qnλ · rλ, where rλ =
[n]q !∏
b∈λ[hb]q

, [k]q = (qk − 1)/(q − 1) and [k]q! =

[k]q · [k − 1]q . . . [2]q.
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• fλ, which is the number of standard Young tableau of shape λ. The formula
is

fλ =
n!∏

b∈λ h(b)
.

Table 1 shows these values for n = 4 and general q. From this example we can
observe that cλ is increasing with respect to the partial order on partitions, while
nλ is decreasing.

λ fλ nλ tλ cλ βλ

(4) 1 0 1 6 1

(3, 1) 3 1 q(q3−1)
q−1 2 q2−1

q3−1

(2, 2) 2 2 q2(q4−1)
q2−1

0 q2−1
q4−1

(2, 1, 1) 3 3 q3(q3−1)
q−1 -2 q−1

q3−1

(1, 1, 1, 1) 1 6 q6 -6 0

Table 1: The quantities involved in the eigenvalue and multiplicity calculations for
n = 4.

Let us record that

β(n−1,1) =
qn−2 − 1

qn−1 − 1
, t(n−1,1) = q · q

n−1 − 1

q − 1
and f(n−1,1) = n− 1. (12)

Since n! ≤ nn = en logn then
n!

en log(n)
≤ 1. (13)

We will use the following bounds from [19, Lemma 7.2]:

tλ ≤ q−(λ12 )+(n2)fλ,
∑
λ`n

f2
λ = n!. (14)

In addition, we need the following bounds for sums of fλ. Part (b) of the below
proposition is Lemma 7.2(b) in [19]; the proof there is incomplete so we give the
simple proof below.

Proposition 4.2. (a) There is a constant K > 0 such that for all 1 ≤ j ≤ n,

∑
λ:λ1=n−j

fλ ≤
nj√
j!
· K
j
e2
√

2j .

(b) For 1 ≤ j ≤ n, ∑
λ:λ1=n−j

f2
λ ≤

n2j

j!
.
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Proof. Recall that fλ is the number of standard tableau of shape λ, i.e. the elements
1, 2, . . . , n are arranged in the shape λ so that rows are increasing left to right and
columns are increasing top to bottom. If λ1 = n − j, then there are

(
n
j

)
ways to

choose the elements not in the first row of the tableau. For a fixed partition λ, the
number of ways of arranging the remaining j elements is at most the number of
Young tableau corresponding to the partition of j created from the remaining rows
of λ. This number is at most

√
j! (Lemma 3 in [22]). Thus,∑

λ:λ1=n−j
fλ ≤

(
n

j

)
·
√
j! · p(j),

where p(j) is equal to the number of partitions of j. It is well-known that log(p(n)) ∼
B ·
√
n for a constant B. More precisely, from (2.11) in [35], there is a constant K > 0

such that for all n ≥ 1,

p(n) <
K

n
e2
√

2n.

This gives (a).
For part (b), we again use the inequality fλ ≤

(
n
j

)
fλ∗ , where λ∗ = (λ2, . . . , λk)

is the partition of j determined by the rest of λ after the first row. Then,

∑
λ:λ1=n−j

f2
λ ≤

(
n

j

)2 ∑
λ∗`j

f2
λ∗ =

(
n

j

)2

· j! =

(
n!

(n− j)!j!

)2

· j! ≤ n2j

j!
.

Proposition 4.3. The function s(λ) := qcλtλ is monotone with respect to the partial
order on partitions. For any λ ` n,

s(λ) ≤ q(
n
2).

Proof. Suppose that λ ≺ λ̃ and λ̃ is obtained from λ by ‘moving up’ one box.
Suppose the box at position (i, j) is moved to (i′, j′), with i′ < i, j′ > j.

Let g(λ) = cλ + nλ. Then,

c
λ̃

= cλ + (j′ − j) + (i− i′)
n
λ̃

= nλ − (i− 1) + (i′ − 1) = nλ + (i′ − i).

This implies that

g(λ̃) = g(λ) + (j′ − j) + (i− i′)− (i− 1) + (i′ − 1) = g(λ) + (j′ − j).
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Now, consider the change in rλ. The hook-lengths of λ̃ are:

h̃(i, j) = h(i, j)− 1 = 0, h̃(i′, j′) = h(i, j) + 1 = 1

h̃(k, j) = h(k, j)− 1, k < i, k 6= i′

h̃(i, l) = h(i, l)− 1, l < j

h̃(k, j′) = h(k, j′) + 1, k < i′

h̃(i′, l) = h(i′, l) + 1, l < j′, l 6= j

and h̃(k, l) = h(k, l) for all other boxes b = (k, l). Thus,∑
b

h̃(b)−
∑
b

h(b) = (j′ − 1) + (i′ − 1)− (i− 1)− (j − 1)

= (j′ − j) + (i′ − i).

Using the inequalities qr−1 < (qr − 1) < qr, we have

r(λ̃) =
[n]q!(q − 1)n∏
b(q

h(b) − 1)

≤ [n]q!(q − 1)n

q
∑
b h̃(b)−n

=
1

q(j′−j)+(i′−i)−n
[n]q!(q − 1)n

q
∑
b h(b)

≤ 1

q(j′−j)+(i′−i)−n
[n]q!(q − 1)n∏
b(q

h(b) − 1)
=

1

q(j′−j)+(i′−i)−n r(λ).

Combining this with the result for g(λ):

s(λ̃) = qg(λ̃)rλ = qg(λ)+(j′−j) · 1

q(j′−j)+(i′−i)−n r(λ) = s(λ)qi−i
′+n > s(λ),

since i > i′.
Assuming the monotonicity, then if λ1 ≥ n/2 we have s(λ) ≤ s((λ1, n−λ1)). To

calculate this quantity:

g(λ) ≤ g((λ1, n− λ1)) = c(λ1,n−λ1) + n(λ1,n−λ1)

=

(
λ(λ1 − 1)

2
+

(n− λ1 − 1)(n− λ1 − 2)

2
− 1

)
+ (n− λ1)

=

(
λ1

2

)
+

(
n− λ1

2

)
=
n(n− 1)

2
− λ1(n− λ1).

For rλ, note that the hook lengths of (λ1, n− λ1) are

λ1 + 1, λ1, . . . , 2λ1 − n+ 2

2λ1 − n, 2λ1 − n− 1, . . . , 3, 2, 1

n− λ1, n− λ1 − 1, . . . , 3, 2, 1
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If λ1 = n− j, we see the terms that cancel:

r(λ1,n−λ1) =
[n]q!∏
b[h(b)]q

=
(qn − 1)(qn−1 − 1) . . . (q − 1)∏

b(q
h(b) − 1)

=
(qn − 1)(qn−1 − 1) . . . (qλ1+2 − 1) · (q2λ1−n+1 − 1)

(qn−λ1 − 1)(qn−λ−1 − 1) . . . (q − 1)

<
q
∑j−2
k=0(n−k)+(n−2j+1)

q
∑j
k=1 k−j

= q
1
2

(j−1)(2(n+1)−j)+(n−2j+1)− 1
2
j(j+1)+j

= qj(n−j−1)+j = qj(n−j) = qλ1(n−λ1).

This uses the inequality qr−1 < qr − 1 < qr. Thus, if λ1 ≥ n/2, we have shown

s(λ) = qg(λ)rλ ≤ q(
n
2)−λ1(n−λ1) · qλ1(n−λ1) = q(

n
2).

Now suppose λ1 ≤ n/2, so s(λ) ≤ s((n/2, n/2)) (assume n is even). To calculate
this,

g(λ) ≤ g((n/2, n/2)) = c(n/2,n/2) + n(n/2,n/2)

=
(n/2− 1)n/2

2
+

(n/2− 2)(n/2− 1)

2
− 1 +

n

2
=
n2

4
− n

2
.

To bound rλ, use the same calculation as before to get

r(n/2,n/2) ≤ qn
2/4,

and so in total s((n/2, n/2)) ≤ qn2/2−n/2 = q(
n
2).

4.2 Starting from id

Theorem 4.4. Let P be the Markov chain on Sn induced by random transvections
on GLn(q).

(a) For tλ, βλ defined in Theorem 3.5, we have

4‖P `id − πq‖2TV ≤ χ2
id(`) =

∑
λ`n,λ 6=(n)

tλfλβ
2`
λ .

(b) Let αn,q be as in Corollary 3.10 and n, q such that log(q) > 6/n. Then if

` ≥ n log(q)/2+log(n)+c
(log(q)−αn,q) , c > 0, we have

χ2
id(`) ≤ (ee

−2c − 1) + e−cn
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(c) For any ` ≥ 1,
χ2
id(`) ≥ (qn−1 − 1)(n− 1)q−4`.

(d) If ` ≤ n/8, then for fixed q and n large,

‖P `id − πq‖TV ≥ 1− o(1). (15)

Theorem 4.4 shows that restricting the random transvections walk from GLn(q)
to the double coset space only speeds things up by a factor of 2, when started from
the identity. Hildebrand [38] shows that the total variation distance on all of GLn(q)
is only small after n+ c steps. Note this is independent of q.

Proof. (a): The inequality follows from Proposition 4.1 (b):

χ2
id(`) = q−2I(id)

∑
λ 6=(n)

tλχ
λ
H(TidK

2`Tid)

=
∑
λ 6=(n)

tλχ
λ
H(K2`) =

∑
λ 6=(n)

tλfλβ
2`
λ .

(b): From Corollary 3.9 if λ1 = n− j, then βλ ≤ κn,q,jq−j , where

κn,q,j = (1 + q−(n−2j+1))(1 + q−(n−1))(1 + q−(n−2)).

Using the bound on tλ from (14), for 1 ≤ j ≤ bn/2c, we have∑
λ:λ1=n−j

tλfλβ
2`
λ ≤ (κn,q,jq

−j)2`
∑

λ:λ1=n−j
q−(n−j2 )+(n2)f2

λ

≤ (κn,q,jq
−j)2`qnj−j(j+1)/2 · n

2j

j!

≤ 1

j!
exp

(
−2`j

(
log(q)− log(κn,q,j)

j

)
+ log(q)(nj − j(j + 1)/2) + 2j log(n)

)
≤ 1

j!
exp (−2`j (log(q)− αn,q) + log(q)(nj − j(j + 1)/2) + 2j log(n)) .

(16)

Recall the final inequality follows since αn,q := max1≤j≤n/2 log(κn,q,j)/j. If ` =
n log(q)/2+log(n)+c

(log(q)−αn,q) , then the exponent in Equation (16) is

−2j (n log(q)/2 + log(n) + c) + log(q)(nj − j(j + 1)/2) + 2j log(n)

= −j(2c+ log(q)(j + 1)/2).

This gives
bn/2c∑
j=1

∑
λ:λ1=n−j

tλfλβ
2`
λ ≤

bn/2c∑
j=1

e−2jc

j!
≤ ee−2c − 1.
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Next we need to consider the partitions λ with λ1 ≤ n/2. For these partitions,

βλ ≤ β(n/2,n/2) ≤ κn,q,n/2q−n/2,

Then we have

n−1∑
j=n/2

∑
λ:λ1=n−j

tλfλβ
2`
λ ≤ β2`

(n/2,n/2)

n−1∑
j=n/2

∑
λ:λ1=n−j

tλfλ

≤ β2`
(n/2,n/2)

n−1∑
j=n/2

∑
λ:λ1=n−j

qnj−j(j+1)/2f2
λ

≤ n! · exp

(
−2`(n/2)

(
log(q) +

κn,q,n/2

n/2

)
+ n2/2

)
≤ exp

(
−n(n log(q)/2 + log(n) + c) + n2/2

)∑
λ`n

f2
λ

≤ n! exp
(
−n(n log(q)/2 + log(n) + c) + n2/2

)
,

using
∑

λ f
2
λ = n! and that if n/2 ≤ j ≤ n, then

nj − j(j + 1)/2 ≤ n2 − n2/4 < n2 − n(n+ 1)/2 ≤ n2/2,

since the function is increasing in j. Note also that if q ≥ 3 then log(q) > 1 and
n! ≤ nn = elog(n). To finish the bound,

n−1∑
j=n/2

∑
λ:λ1=n−j

tλfλβ
2`
λ ≤ exp

(
n log(n)− n(n log(q)/2 + log(n) + c) + n2/2

)
= exp

(
−(n2/2)(log(q)− 1)− cn

)
≤ e−cn.

(c): The lower bound comes from considering the λ = (n− 1, 1) term from the
sum in (a). Using the quantities (12), this gives

χ2
id(`) =

∑
λ 6=(n)

tλfλβ
2`
λ ≥ t(n−1,1)f(n−1,1)β

2`
(n−1,1)

= q · q
n−1 − 1

q − 1
(n− 1)

(
qn−2 − 1

qn−1 − 1

)2`

≥ (qn−1 − 1)(n− 1)q−4`.

This uses that (qn−2 − 1)/(qn−1 − 1) ≥ q−2.
(d): From the alternative version of the walk on the Hecke algebra, involving

D/|Tn,q| with D from 1.5, the walk proceeds by picking a transposition (i, j), i < j
with probability proportional to

q−(j−i)

and multiplying by Tij . As described in Section 3.2, multiplication by Tij cor-
responds to proposing the transposition (i, j) and proceeding via the Metropolis
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algorithm. Thus, multiplication by Tij induces at most 2(j − i) inversions, always
less than 2n. From [22] Theorem 5.1, under πq, a typical permutation has

(
n
2

)
− n−q
q+1 +

O(
√
n) inversions (and the fluctuations are Gaussian about this mean). If ` = n/8,

the measure P `id(·) is concentrated on permutations with at most n2/4 inversions
and πq is concentrated on permutations with order n2/2− (n− 1)/(q+ 1) +O(

√
n)

inversions.

4.3 Starting from ω0

Theorem 4.5. Let P be the Markov chain on Sn induced by random transvections
on GLn(q), and let ω0 ∈ Sn be the reversal permutation in Sn.

(a) With tλ, cλ, βλ defined in Section 3.3,

4‖P `ω0
− πq‖2TV ≤ χ2

ω0
(`) = q−(n2)

∑
λ 6=(n)

qcλtλfλβ
2`
λ .

(b) Let αn,q be as in Corollary 3.10 and n, q such that log(q) > 6/n. If ` ≥
(log(n)/2 + c)/(log(q)− αn,q) for c > 0 with c ≥ 2

√
2 then

χ2
ω0

(`) ≤ −2K log(1− e−c) +
√
Ke−nc,

for a universal constant K > 0 (independent of q, n).

(c) For any ` ≥ 1,
χ2
ω0

(`) ≥ q−(n−2)(n− 1)(qn−1 − 1)q−4`.

Remark. Theorem 4.5 shows that the Markov chain has a cutoff in its approach
to stationarity in the chi-square metric. It shows the same exponential speed up as
the walk started at a typical position (Theorem 4.6 below), and indeed is faster by
a factor of 2. This is presumably because it starts at the permutation ω0, at which
the stationary distribution πq is concentrated, instead of ‘close to ω0’.

Proof of Theorem 4.5. (a): By Proposition 4.9 in [19], if ω0 is the longest element
of W then

ρλ(T 2
ω0

) = qI(ω0)+cλId,
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where ρλ is the irreducible representation indexed by λ. Using this and 4.1 (a),

χ2
ω0

(`) = q−2I(ω0)
∑
λ 6=1

tλχ
λ
H(Tω−1

0
K2`Tω0)

= q−2I(ω0)
∑
λ 6=1

tλχ
λ
H(K2`Tω0Tω−1

0
)

= q−2I(ω0)
∑
λ 6=1

tλχ
λ
H(K2`T 2

ω0
)

= q−2I(ω0)
∑
λ 6=1

tλχ
λ
H(K2`qcλ+I(ω0))

= q−I(ω0)
∑
λ 6=1

qcλtλχ
λ
H(K2`) = q−I(ω0)

∑
λ 6=1

qcλtλfλβ
2`
λ ,

since K ∈ Z(H), i.e. K commutes with all elements of the Hecke algebra.
(b): Suppose λ1 = n − j for 1 ≤ j ≤ n/2. Recall the definition s(λ) = qcλtλ.

From Proposition 4.3, s(λ) ≤ q(
n
2). Then,

q−(n2)
∑

λ:λ1=n−j
qcλtλfλβ

2`
λ = q−(n2)

∑
λ:λ1=n−j

s(λ)fλβ
2`
λ

≤ (κn,q,jq
−j)2`q−(n2)

∑
λ:λ1=n−j

q(
n
2)fλ

≤ (κn,q,jq
−j)2`

∑
λ:λ1=n−j

fλ

≤ (κn,q,jq
−j)2` · n

j

√
j!
· K
j
e2
√

2j

≤ K√
j!

exp

(
−2`j

(
log(q)− log(κn,q,j)

j

)
+ (j − 1) log(n) + 2

√
2j

)
.

The third inequality uses Proposition 4.2 for
∑

λ:λ1=n−j fλ. Recall αn,q := max1≤j≤n/2 log(κn,q,j)/j.
If ` = (log(n)/2 + c)/(log(q)− αn,q), then the bound becomes

n/2∑
j=1

q−(n2)
∑

λ:λ1=n−j
qcλtλfλβ

2`
λ ≤

n/2∑
j=1

K√
j!

exp
(
−j log(n)− 2jc+ (j − 1) log(n) + 2

√
2j
)

≤ 2K

n/2∑
j=1

e−2jc+2
√

2j

j
,

using the loose bound
√
j! > j/2 for all j ≥ 1. With the assumption that c ≥ 2

√
2,
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we have −2jc+ 2
√

2j ≤ −jc for all j ≥ 1. Finally,

2K

n/2∑
j=1

e−jc

j
≤ 2K

∞∑
j=1

e−jc

j

= −2K log(1− e−c).

Now for the λ with λ1 ≥ n/2, we have

n−1∑
j=n/2

∑
λ:λ1=n−j

q−(n2)qcλtλfλβ
2`
λ ≤ β2`

(n/2,n/2)

n−1∑
j=n/2

∑
λ:λ1=n−j

fλ

≤ β2`
(n/2,n/2)

∑
λ`n

fλ

≤ β2`
(n/2,n/2)

(∑
λ`n

f2
λ

)1/2

· p(n)1/2,

where p(n) is equal to the number of partitions of n (the inequality is Cauchy-

Schwartz). Since p(n) ≤ K
n e

2
√

2n for a constant K > 0 ([35]) and
∑

λ`n f
2
λ = n!,

this gives

≤
√
n! ·

√
K

n
exp

(√
2n− 2`(n/2)

(
log(q)−

κn,q,n/2

n/2

))
≤
√
n! ·

√
K

n
exp

(√
2n− n log(n)/2− 2nc

)
≤
√
K exp

(
−nc− n(c−

√
2n−1/2)

)
,

since
√
n! ≤ en log(n)/2. Since c > 2

√
2, then the bound is ≤

√
Ke−nc for any n ≥ 1.

(c): A lower bound comes from using (12) for the lead term on the right hand
side of (a):

χ2
ω0

(`) ≥ q−(n2)qc(n−1,1)t(n−1,1)f(n−1,1)β
2`
(n−1,1)

= q−(n2)q(
n−1
2 )+1 · q q

n−1 − 1

q − 1
· (n− 1)

(
qn−2 − 1

qn−1 − 1

)2`

≥ q−(n−2)(qn−1 − 1)(n− 1)q−4`.

4.4 Starting from a Typical Site

In analyzing algorithms used repeatedly for simulations, as the algorithm is used, it
approaches stationarity. This means the quantity∑

x∈Sn

πq(x)‖P `x − πq‖TV
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is of interest. For the problem under study, πq is concentrated near ω0 so we expect
rates similar to those in Theorem 4.5.

Theorem 4.6. Let P be the Markov chain on Sn induced by random transvections
on GLn(q).

(a) With fλ, βλ defined in Section 3.3,(∑
x∈Sn

πq(x)‖P `x − πq‖TV

)2

≤ 1

4

∑
x∈Sn

πq(x)χ2
x(`) =

1

4

∑
λ 6=(n)

f2
λβ

2`
λ .

(b) Let αn,q be as in Corollary 3.10 and n, q such that log(q) > 6/n. If ` ≥ (log(n)+
c)/(log(q)− αn,q), c > 0, then∑

x∈Sn

πq(x)χ2
x(`) ≤ (ee

−c − 1) + e−cn.

(c) For any ` ≥ 1, ∑
x∈Sn

πq(x)χ2
x(`) ≥ (n− 1)2q−4`.

Proof. (a): This is simply a restatement of 4.1 part (b).
(b): We will divide the sum depending on the first entry of the partition. By

Proposition 4.2, we have the bound (true for any 1 ≤ j ≤ n)∑
λ:λ1=n−j

f2
λ ≤

n2j

j!
.

Combining this with Corollary 3.9, for j ≤ bn/2c,∑
λ:λ1=n−j

β2`
λ f

2
λ ≤

∑
λ:λ1=n−j

β2`
(n−j,j)f

2
λ ≤ β2`

(n−j,j) ·
n2j

j!

≤ κ2`
n,q,jq

−2`j · n
2j

j!
=

1

j!
exp (2`(log(κn,q,j)− j log(q)) + 2j log(n))

=
1

j!
exp

(
2`j

(
log(κn,q,j)

j
− log(q)

)
+ 2j log(n)

)
Define

αn,q := max
1≤j≤n/2

log(κn,q,j)

j
,

so then if ` = (log(n) + c)/(log(q)− αn,q), the bound is

≤ 1

j!
exp (2`j(αn,q − log(q)) + 2j log(n))

=
1

j!
exp (−2j log(n)− 2jc+ 2j log(n)) =

e−2jc

j!
.
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Then summing over all possible j gives

bn/2c∑
j=1

∑
λ:λ1=n−j

f2
λβ

2`
λ ≤

bn/2c∑
j=1

e−2jc

j!
≤
(
ee
−c − 1

)
.

Now we have to bound the contribution from partitions λ with λ1 ≤ n/2. Be-
cause βλ is monotone with respect to the order on partitions, we have for all λ such
that λ1 ≤ n/2,

βλ ≤ β(n/2,n/2) ≤ κn,q,n/2q−n/2,

since λ � (n/2, n/2) (assuming without essential loss that n is even). Then,

n−1∑
j=n/2

∑
λ:λ1=n−j

f2
λβ

2`
λ ≤ β2`

(n/2,n/2)

∑
λ

f2
λ

≤ n! · exp

(
2`(n/2)(log(q) +

κn,q,n/2

n/2
)

)
≤ n! · exp (−n(log(n) + c))

≤ e−cn,

using
∑

λ f
2
λ = n! ≤ nn.

(c): The sum is bounded below by the term for λ = (n− 1, 1). This is

f2
(n−1,1) · β

2`
(n−1,1) = (n− 1)2

(
qn−2 − 1

qn−1 − 1

)2`

≥ (n− 1)2q−4`.
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5 Hecke Algebra Computations

This section proves Theorem 1.5 which describes the transvections Markov chain on
Sn as multiplication in the Hecke algebra from Definition 3.1. This is accomplished
through careful row reduction.

5.1 Overview

Let C[G] denote the group algebra for G = GLn(q). This is the space of functions
f : G→ C, with addition defined (f+g)(s) = f(s)+g(s) and multiplication defined
by

f1 ∗ f2(s) =
∑
t∈G

f1(t)f2(st−1).

Equivalently, C[G] = span{g | g ∈ G} and we can write an element f =
∑

g cgg for
cg ∈ C, so f(g) = cg.

Define elements in C[G]:

1B =
1

|B|
∑
x∈B

x, Tω =
1

|B|
∑

x∈BωB
x, ω ∈ Sn.

Note that if b ∈ B, then

b1B = 1Bb = 1B, 1
2
B = 1B.

If g ∈ BωB, so g = b1ωb2, then

1Bg1B = 1Bb1ωb21B = 1Bω1B

=
1

|B|2
∑

b1,b2∈B
b1ωb2

=
1

|B|2
|B|2

|BωB|
∑

x∈BωB
x

=
|B|
|BωB|

1

|B|
∑

x∈BωB
x =

|B|
|BωB|

1

|B|
Tω = q−I(ω)Tω.

The Hecke algebra is Hn(q) = 1BC[G]1B and has basis {Tω | ω ∈ Sn}. Note
that Hn(q) are all functions in C[G] which are B−B invariant, i.e. f(b1gb2) = f(g).

Now let P be the transition matrix for G defined by multiplying by a random
transvection. We can also write this

P =
1

|Tn,q|
∑

T∈Tn,q

MT ,

where MT is the transition matrix ‘multiply by T ’. In other words, MT (x, y) =
1(y = Tx).
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Then P defines a linear transform on the space C[G], with respect to the basis
{g | g ∈ G}. The matrix MT is just the function: Multiply by T in the group algebra.
This means P is equivalent to multiplication by 1

|Tn,q |D, with D =
∑

T∈Tn,q T as an

element in C[G]. The Markov chain lumped to Sn = B\GLn(q)/B is then equivalent
to multiplication by D on Hn(q). Since D is the sum of all elements in a conjugacy
class, it is in the center Z(C[G]). This means if g ∈ BωB, then

1B(Dg)1B = D1Bω1B = (D1B)q−I(ω)Tω.

In conclusion, to determine how D acts in Hn(q), we can compute D1B. The
remainder of the section proves the following.

Theorem 5.1. Let D =
∑

T∈Tn,q T ∈ C[G]. Then,

D1B =
(
(n− 1)qn−1 − [n− 1]q

)
1B + (q − 1)

∑
1≤i<j≤n

qn−1−(j−i)Tij .

5.2 Row Reduction

Let G = GLn(q) and B be the upper triangular matrices. For 1 ≤ i ≤ n − 1 and
c ∈ Fq, define yi(c) ∈ G by

yi(c) =

i i+ 1



1
. . .

1
i c 1

i+ 1 1 0
1

. . .

1

.

That is, multiplication on the left by yi(c) acts by adding c times the ith row to the
(i+ 1)th row, then permuting the i and i+ 1 rows.

Let ω ∈ Sn. We can write the reduced word ω = si1 . . . si` , for si = (i, i+ 1) the
simple reflections. Then,

BωB = {Byi1(c1) . . . yi`(c`)B | c1, . . . , c` ∈ Fq} ,

and |BωB|/|B| = qI(ω) and G =
⊔
ω∈Sn BωB.

This provides a very useful way for determining the double coset that a matrix
M belongs to, which just amounts to performing row reduction by mulitplying by
different matrices yi(c).
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5.3 Transvections

For every transvection T ∈ Tn,q we can perform row operations, multiplying by yi(c),
to determine which double coset T belongs to.

A transvection is defined by two vectors a,v ∈ Fnq with v>a = 0, with the last
non-zero entry of v normalized to be 1. Assume this entry is at position j. Assume
the first non-zero entry of a is at position i. That is, the vectors look like:

a = (0, . . . , 0, ai, ai+1, . . . , an)>, ai 6= 0,

v = (v1, . . . , vj−1, 1, 0, . . . , 0)>.

Let Ta,v = Id+va>. We consider the possible cases for i and j to prove the following
result.

Proposition 5.2. Let Ta,v = I+va> be the transvection defined by non-zero vectors
a,v with v>a = 0 and the last nonzero entry of v equal to 1. If j > i, then

Ta,v ∈ Bsj−1 · · · si+1sisi+1 · · · sj−1B

exactly when the last nonzero entry of v is vj and the first nonzero entry of a is ai.

Proof. Case 1 i > j: If i > j, then Ta,v ∈ B. To see this, suppose k > l. Then

Ta,v(k, l) = (va>)k,l = vkal = 0,

because vkal can only be non-zero if k ≤ j < i ≤ l. Now, we can count how many
transvections satisfy this. There are (q − 1)qn−i choices for a (because ai must be
non-zero) and qj−1 choices for v (because vj is fixed at 1). In total for this case,
there are

n−1∑
j=1

n∑
i=j+1

(q − 1)qn−iqj−1 = (q − 1)
n−1∑
j=1

qj−1(qn−j−1 + qn−j−2 + . . .+ q + 1)

= (q − 1)

n−1∑
j=1

qj−1 q
n−j − 1

q − 1
=

n−1∑
j=1

(qn−1 − qj−1)

= (n− 1)qn−1 − (1 + q + . . .+ qn−1) = (n− 1)qn−1 − [n− 1]q.

Case 2 i = j: In this case, v>a = ai 6= 0. This does not satisfy the condition
v>a = 0, so this case cannot occur.
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Case 3 i < j: If i < j, then the transvection is of the form

Ta,v =

1 . . . j . . . i . . . n



1
... Id ∗ ∗

i
... Na,v ∗
j

... Id
n

.

Where

Na,v =


1 + aivi ai+1vi ai+2vi · · · ajvi
aivi+1 1 + ai+1vi+1 ai+2vi+1 · · · ajvi+1

...
...

ai ai+1 · · · 1 + aj


Let b be the j − i+ 1× j − i+ 1 matrix

b =


ai ai+1 . . . aj−1 −1− aj
0 1 . . . 0 −vi+1

0 0
. . .

...
0 0 0 1 −vj−1

0 0 0 0 −a−1
i


Then,

Ta,v = yj−1(vj−1) . . . yi+1(vi+1) · yi(1 + a−1
i ) · yi+1(−ai+1a

−1
i ) . . . yj−1(−aj−1a

−1
i ) ·A,

where A is the upper-triangular matrix

A =


Id ∗ ∗

0 b ∗

0 0 Id

.

See Appendix A for details of this row reduction calculation.
To count how many transvections fit this case:

• qn−i choices for ai+1, . . . , an.
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• q − 1 choices of ai

• qi−1 choices of v1, . . . , vi−1.

• qj−1−i choices of vi, . . . , vj−1 to satisfy aivi + . . .+ vj−1aj−1 + aj = 0.

The total is

qn−i(q − 1)qi−1qj−1−i = (q − 1)qn−i+j−2

= (q − 1)qn−1−(j−i)q2(j−1−i)+1

= (q − 1)qn−1−(j−i)qI(sij)

Proposition 5.2 now enables the proof of Theorem 5.1.

Proof of Theorem 5.1. Let C[G] be the group algebra of G = GLn(q), and Z(C[G])
the center. Then since transvections are a conjugacy class, the sum of transvections
is in the center,

D =
∑
a,v

Ta,v ∈ Z(C[G]).

Since D commutes with every element of C[G], we can compute,

D1B = D12
B = 1BD1B

=
∑
a,v

1BTa,v1B

=
∑
a,v:
i>j

1BTa,v1B +
∑
a,v:
i<j

Ta,v1B

=
∑
a,v:
i>j

1B +
∑
a,v:
i<j

1Bsij1B

= ((n− 1)qn−1 − [n− 1]q)1B +
∑

1≤i<j≤n
(q − 1)qn−1−(j−i)qI(sij)1Bsij1B

= ((n− 1)qn−1 − [n− 1]q)1B + (q − 1)
∑

1≤i<j≤n
qn−1−(j−i)Tsij .

6 Symmetric Function Calculation

Section 6.1 introduces symmetric functions which will be used in Section 6.2 to com-
pute D, the element in the center of the group algebra C[GLn(q)] which corresponds
to the conjugacy class of transvections. This gives a different proof of Theorem 5.1.
Sections 6.3 and 6.4 check and motivate the computation by computing D explicitly
for n = 2 and n = 3.
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6.1 Symmetric Functions

For λ = (λ1, . . . , λn) ∈ Zn≥0 with λ1 ≥ · · · ≥ λn ≥ 0 define the Hall-Littlewood
polynomial by

Pλ = Pλ(x; 0, t) =
1

vλ(t)

∑
w∈Sn

w
(
xλ11 · · ·x

λn
n

∏
1≤i<j≤n

xi − txj
xi − xj

)
where vλ(t) is the normalization that make the coefficient of xλ in Pλ equal to 1.
For λ = (1m12m2 . . .) define

Qλ = bλ(t)Pλ where bλ(t) =
∏̀
i=1

ϕmi(t) with ϕm(t) = (1−t)(1−t2) · · · (1−tm).

The monomial symmetric functions mλ and the Schur functions sλ are given by

mλ = Pλ(x; 0, 1) and sλ = Pλ(x; 0, 0),

the evaluations of Pλ at t = 1 and t = 0, respectively. For r ∈ Z≥0 define qr by the
generating function

∑
r∈Z≥0

qrz
r =

n∏
i=1

1− txiz
1− xiz

and define qν = qµ1 · · · qµn , for ν = (ν1, . . . , νn) ∈ Zn≥0.

The Big Schurs are defined by the n× n determinant (see [48, Ch. III (4.5)])

Sλ = Sλ(x; t) = det(qλi−i+j).

Define aµν(t), Kλµ(0, t) and Lνλ(t) by

Qµ(x; 0, t) =
∑
ν

aµν(t)mν Qµ(x; 0, t) =
∑
λ

Kλµ(0, t)Sλ and qν(x; t) =
∑
λ

Lνλ(t)sλ.

By [48, (4,8) and (4.10)], 〈qν ,mµ〉0,t = δνµ and 〈sλ, Sµ〉 = δλµ in the inner product
〈, 〉0,t of [48, Ch. III] so that

Lνλ(t) = 〈qν , Sλ〉 which gives Sλ =
∑
ν

Lνλ(t)mν .

Thus
Qµ =

∑
ν

(∑
λ

Kλµ(0, t)Lνλ(t)
)
mν .

We have

s(1n) = m(1n) = P(1n) and

s(21n−2) = P(21n−2) + (t+ t2 + · · ·+ tn−1)P(1n) = m(21n−2) + (n− 1)m(1n)
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giving

P(1n) = m(1n) and P(21n−2) = m(21n−2) +((n−1)− (t+ t2 + · · ·+ tn−1))m(1n).

Thus

Q(1n) = b(1n)(t)m(1n) and

Q(21n−2) = b(21n−2)(t)
(
m(21n−2]) + ((n− 1)− (t+ t2 + · · ·+ tn−1))m(1n)

)
,

and so a(21n−2)ν(t) = b(21n−2)(t)ã(21n−2)ν , where

ã(21n−2)ν(t) =
∑
λ

Kλµ(0, t)Lνλ(t) =


1, if ν = (21n−2),

(n− 1)− (t+ t2 + · · ·+ tn−1), if ν = (1n),

0, otherwise.

(17)

6.2 A Character Computation

Let Fq be the finite field with q elements, G = GLn(q) the group of n× n invertible
matrices with entries in F and let B be the subgroup of upper triangular matrices.
Then

Card(B) = (q − 1)nq
1
2
n(n−1) and

Card(G) = (qn − 1)(qn − q) · · · (qn − qn−1) = q
1
2
n(n−1)(q − 1)(q2 − 1) · · · (qn − 1)

By [48, Ch. II (1.6) and Ch. IV (2.7)],

Card(ZG(u(21n−2))) = q|(21n−2)|+2n(21n−2)(1− q−1) · (1− q−1)(1− q−2) · · · (1− q−(n−2))

= qn+(n−1)(n−2)q−1− 1
2

(n−1)(n−2)(q − 1)2(q2 − 1)(q3 − 1) · · · (qn−2 − 1)

= qn−1+ 1
2

(n−1)(n−2)(q − 1)2(q2 − 1)(q3 − 1) · · · (qn−2 − 1)

= q
1
2
n(n−1)(q − 1)2(q2 − 1)(q3 − 1) · · · (qn−2 − 1),

so that

Card(T ) =
Card(G)

|ZG(u(21n−2))|
=

(qn−1 − 1)(qn − 1)

(q − 1)
=

(qn−1 − 1)(qn − 1)

(q − 1)
.

and

|B|
|ZG(u(21n−1))|

=
(q − 1)

[n− 2]!
, where [n− 2]! =

(1− q) · · · (1− qn−2)

(1− q)n−2
.
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Let 1GB = IndGB(triv) be the representation of G obtained by inducing the trivial
representation from B to G. As above, the Hecke algebra is H = EndG(1GB). The
algebra H has basis {Tw | w ∈ Sn} with multiplication determined by

TskTw =

{
(q − 1)Tw + qTskw, if I(skw) < I(w),

Tskw, if I(skw) > I(w).

As a (G,H)-bimodule,

1GB
∼=
⊕
λ

Gλ ⊗Hλ,

where the sum is over partitions of n, Gλ is the irreducible G-module indexed by λ
and Hλ is the irreducible H-module indexed by λ.

Let T be the conjugacy class of transvections in G = GLn(q). A favorite repre-
sentative of T is u(21n−2) = I +E12, where I denotes the identity matrix and E12 is
the matrix with 1 in the (1, 2) entry and 0 elsewhere. Let

D =
∑
g∈T

g, an element of Z(C[G]),

where Z(C[G]) denotes the center of the group algebra of G. The element D acts
on 1GB by ∑

λ

χλG(T )

χλG(1)
· idGλ⊗Hλ ,

where idGλ⊗Hλ is the operator that acts by the identity on the component Gλ⊗Hλ

and by 0 on Gµ ⊗Hµ for µ 6= λ.
Let zλ be the element of H that acts on Hλ by the identity and by 0 on Hµ for

µ 6= λ. With an abuse of notation, let D ∈ H be given by

D =
∑
λ

χλG(T )

χλG(1)
zλ, so that D acts on 1GB the same way that C does.

(Note previously D referred to element in the group algebra.)
Use cycle notation for permutations in Sn so that (i, j) denotes the transposition

in Sn that switches i and j.

D(21n−2) =
∑
i<j

q(n−1)−(j−i)T(i,j).

Note that at q = 1 this specializes to the sum of the transpositions in the group
algebra of the symmetric group. Use cycle notation for permutations. Then

Tsk(T(k,j)+qT(k+1,j)) = qT(k,k+1,j)+q(q−1)T(k,j)+qT(k+1,k,j) = (T(k,j)+qT(k+1,j))Tsk , if k + 1 < j,

Tsk(qT(i,k)+T(i,k+1)) = qT(i,k,k+1)+q(q−1)T(i,k+1)+qT(i,k+1,k) = (qT(i,k)+T(i,k+1))Tsk , if i < k,
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and TskT(k,k+1) = T(k,k+1)Tsk so that

if k ∈ {1, . . . , n− 1} then TskD(21n−2) = D(21n−2)Tsk .

So D(21n−2) ∈ Z(H).
These arguments now give a different proof of Theorem 5.1, restated below.

Theorem 6.1. Assume n ≥ 2. Then

D = (n− 1)qn−1 − [n− 1] + (q − 1)D(21n−2).

Proof. In terms of the favorite basis {Tw | w ∈ Sn} of H, the element zλ is given by
(see [14, (68.29)] or [32, (1.6)])

zλ =
1

|G/B|
∑
w∈Sn

χλG(1)q−I(w)χλH(Tw−1)Tw.

Thus, the expansion of D in terms of the basis {Tw | w ∈ Sn} of H is

D =
1

|G/B|
∑
λ

∑
w∈Sn

χλG(T )

χλG(1)
χλG(1)q−I(w)χλH(Tw−1)Tw

=
|B|
|G|

∑
w∈Sn

(∑
λ

χλG(T )χλH(Tw−1)
)
q−I(w)Tw

=
|B|
|G|

Card(T )
∑
w∈Sn

(∑
λ

χλG(u21n−2)χλH(Tw−1)
)
q−I(w)Tw

=
|B|

|ZG(u(21n−1))|
∑
w∈Sn

(∑
λ

χλG(u21n−2)χλH(Tw−1)
)
q−I(w)Tw. (18)

For a partition ν let γν be the favorite permutation of cycle type ν (a minimal length
permutation which has cycle type ν). By [54, Th. 4.14],

qn

(q − 1)I(ν)
qν(0; q−1) =

∑
λ

χλH(Tγ−1
ν

)sλ so that χλH(Tγ−1
ν

) =
qn

(q − 1)I(ν)
Lνλ(q−1),

since ν is a partition of n. By [33, Theorem 4.9(c)],

χλG(uµ) = qn(µ)Kλµ(0, q−1)

Thus∑
λ

χλG(u21n−2)χλH(Tγ−1
ν

) =
∑
λ

qn(21n−2)Kλ(21n−2)(0, q
−1)

qn

(q − 1)I(ν)
Lνλ(q−1)

=
∑
λ

q
1
2

(n−1)(n−2)+n

(q − 1)I(ν)
Kλ(21n−2)(0, q

−1)Lνλ(q−1) =
q

1
2

(n−1)(n−2)+n

(q − 1)I(ν)
a(21n−2)ν(q−1).
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Plugging this into (18), the coefficient of Tγν in D is

|B|
|ZG(u(21n−1))|

q
1
2

(n−1)(n−2)+n

(q − 1)I(ν)
a(21n−2)ν(q−1)q−I(γν) =

(q − 1)

[n− 2]!

q
1
2

(n−1)(n−2)+n

(q − 1)I(ν)
a(21n−2)ν(q−1)q−(|ν|−I(ν))

=
q

1
2

(n−1)(n−2)(q − 1)

[n− 2]!

qI(ν)

(q − 1)I(ν)
a(21n−2)ν(q−1)

Now use (17),

b(21n−2)(q
−1) = (1−q−1)(1−q−1) · · · (1−q−(n−2)) = q−1− 1

2
(n−1)(n−2)(q−1)n−1[n−2]!,

and

ã(21n−2)ν(q−1) =


1, if ν = (21n−2),

(n− 1)− q1−n (qn−1 − 1)

q − 1
, if ν = (1n),

0, otherwise,

to get that the coefficient of Tγν in D is

(q − 1)

[n− 2]!
q

1
2

(n−1)(n−2) qI(ν)

(q − 1)I(ν)
q−1− 1

2
(n−1)(n−2)(q − 1)n−1[n− 2]! · ã(21n−2)ν(q−1)

= (q − 1)n−I(ν)qI(ν)−1ã(21n−2)ν(q−1) =


(q − 1)qn−2, if ν = (21n−2),

(n− 1)qn−1 − [n− 1]q, if ν = (1n),

0, otherwise,

Since ã(21n−2)ν(q−1) is 0 unless ν = (1n) or ν = (21n) and since the coefficient of
Tγ(21n−2)

= Ts1 in D(21n−2) is qn−2 then it follows from [29, (2.2) Main Theorem]
that

D = (n− 1)qn−1 − [n− 1]q + (q − 1)D(21n−2).

6.3 The Example for n = 2

If n = 2 then H = span{1, Ts1} with (1 + Ts1)(q − Ts1) = 0 and

z(2) =
1

1 + q
(1 + Ts1) and z(12) =

q

1 + q
(1− q−1Ts1).

In this case Z(H) = H and D(2) = T(1,2) = Ts1 = qz(2) − z(12).
So D(2) = Ts1 and H has basis {1, Ts1} and

1 ·D(2) = 1 · Ts1 = Ts1 ,

Ts1 ·D(2) = Ts1 · Ts1 = (q − 1)Ts1 + q,
so that

(
0 q
1 q − 1

)
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is the matrix for multiplying by D(2). The character values are

χ
(12)
G (u(12)) = qn(12)K(12)(12)(0, q

−1) = q1 · 1 = q,

χ
(12)
G (u(2)) = qn(2)K(12)(2)(0, q

−1) = q0 · 0 = 0,

χ
(2)
G (u(12)) = qn(12)K(2)(12)(0, q

−1) = q1 · q−1 = 1,

χ
(2)
G (u(2)) = qn(2)K(2)(2)(0, q

−1) = q0 · 1 = 1,

giving that C acts on 1GB the same way as

D = Card(T )
( χ(12)(u(2))

χ(12)(u(12))
z(12) +

χ(2)(u(2))

χ(2)(u(12))
z(2)

)
=

Card(G)

Card(ZG(u(2)))

(0

q
z(12) +

1

1
z(2)

)
=

(q2 − 1)(q2 − q)
q2+0(1− q−1)

z(2) =
(q2 − 1)(q − 1)

q − 1
z(2) = (q2 − 1)

1

1 + q
(1 + Ts1)

= (q − 1)(1 +D(2)).

and the matrix for multiplying by D in the basis {1, Ts1} is

(q − 1)

((
1 0
0 1

)
+

(
0 q
1 q − 1

))
= (q − 1)

(
1 q
1 q

)
.

In this case |B| = (q − 1)2q and |ZG(u2)| = q(q − 1) so that

|B|
|ZG(u2)|

= (q − 1).

Then

χ(12)(Tγ(12)) = χ(12)(1) = 1, χ(12)(Tγ(2)) = χ(12)(Ts1) = −1,

χ(2)(Tγ(12)) = χ(2)(1) = 1, χ(2)(Tγ(2)) = χ(2)(Ts1) = q,

so that∑
λ

χλG(u2)χλH(1) = χ
(2)
G (u2)χ

(2)
H (Tγ(12)) + χ

(12)
G (u2)χ

(12)
H (Tγ(12)) = 1 · 1 + 0 · 1 = 1,

∑
λ

χλG(u2)χλH(Ts1) = χ
(2)
G (u2)χ

(2)
H (Tγ(2)) + χ

(12)
G (u2)χ

(12)
H (Tγ(2)) = 1 · q + 0 · (−1) = q,

so that the coefficient of 1 in D is (q − 1) · 1 · qI(1) = (q − 1) · 1 · 1 = (q − 1) and the
coefficient of Ts1 is (q − 1) · q · q−I(s1) = (q − 1). Thus

D = (q − 1)(1 + Ts1).

For n = 2, Theorem 6.1 says that

D = (q − 1)
(
(q − 1)−2q2a(2)(12)(q

−1) + (q − 1)−1qD(2)

)
= q−2

(
(q − 1)2(1− q−1) + (q − 1)D(2)

)
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6.4 The Example of n = 3

If n = 3 then H = span{1, Ts1 , Ts2 , Ts1s2 , Ts2s1 , Ts1s2s1} with

(1 + Ts1)(q − Ts1) = 0, (1 + Ts2)(q − Ts2) = 0 and Ts1Ts2Ts1 = Ts2Ts1Ts2 .

Then

z(3) =
1

[3]!
(1 + Ts1 + Ts2 + Ts2s1 + Ts1s2 + Ts1s2s1),

z(13) =
q3

[3]!
(1− q−1Ts1 − q−1Ts2 + q−2Ts2s1 + q−2Ts1s2 − q−3Ts1s2s1)

z(21) = 1− z(3) − z(13).

Then

(q + 1)D(21) = (q + q2)Ts1 + (q + q2)Ts2 + (q + 1)Ts1s2s1 = [3]!(qz(3) − z(12))− (q − q3) · 1

=
[3]!

[3]!
((q − q3) + (q + q2)Ts1 + (q + q2)Ts2 + 0 + 0 + (q + 1)Ts1s2s1)− (q − q3)

= (q + 1)(qTs1 + qTs2 + Ts1s2s1)

and the brute force computation showing that D(21) = qTs1+qTs2+Ts1s2s1 commutes
with Ts1 is

Ts1D(21) = q(q − 1)Ts1 + q2 + qTs1s2 + (q − 1)Ts1s2s1 + qTs2s1

D(21)Ts1 = q(q − 1)Ts1 + q2 + qTs2s1 + (q − 1)Ts1s2s1 + qTs1s2 .

In this computation already, some flags in Bs1B are ending up in Bs1s2s1B after the
application of D(21).

In the basis {1, Ts1 , Ts2 , Ts1s2 , Ts2s1 , Ts1s2s1}, the matrices of multiplication by
Ts1 and Ts2 are

0 q 0 0 0 0
1 q − 1 0 0 0 0
0 0 0 q 0 0
0 0 1 q − 1 0 0
0 0 0 0 0 q
0 0 0 0 1 q − 1

 and



0 0 q 0 0 0
0 0 0 0 q 0
1 0 q − 1 0 0 0
0 0 0 0 0 q
0 1 0 0 q − 1 0
0 0 0 1 0 q − 1


The matrix of multiplication by Ts1s2s1 is

0 0 0 0 0 q3

0 0 0 0 q2 q2(q − 1)
0 0 0 q2 0 q2(q − 1)
0 0 q q(q − 1) q(q − 1) q(q − 1)2

0 q 0 q(q − 1) q(q − 1) q(q − 1)2

1 q − 1 q − 1 (q − 1)2 (q − 1)2 (q − 1)3 + q(q − 1)


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where the last column comes from the computation

Ts1s2s1Ts1Ts2Ts1 =
(
(q − 1)Ts1s2s1 + qTs1s2

)
Ts2s1

=
(
((q − 1)2Ts1s2s1 + q(q − 1)Ts2s1) + (q(q − 1)Ts1s2 + q2Ts1)

)
Ts1

= ((q − 1)3Ts1s2s1 + q(q − 1)2Ts1s2) + (q(q − 1)2Ts2s1 + q2(q − 1)Ts2)

+ q(q − 1)Ts1s2s1 + (q2(q − 1)Ts1 + q3)

Thus the matrix of multiplication by D21 = qTs1 + qTs2 + Ts1s2s1 is

0 q2 q2 0 0 q3

q q(q − 1) 0 0 2q2 q2(q − 1)
q 0 q(q − 1) 2q2 0 q2(q − 1)
0 0 2q 2q(q − 1) q(q − 1) q2 + q(q − 1)2

0 2q 0 q(q − 1) 2q(q − 1) q2 + q(q − 1)2

1 q − 1 q − 1 q + (q − 1)2 q + (q − 1)2 (q − 1)3 + 3q(q − 1)


with 1 + 2(q − 1) + 2q + 2(q − 1)2 = 2q2 − 4q + 2 + 4q − 2 + 1 = 2q2 + 1 and
(q−1)3+3q(q−1) = q3−3q2+3q−1+3q2−3q = q3−1 so that the bottom row sums to
q3−1+2q2+1 = q3+2q2 Thus the matrix of D = (n−1)qn−1−[n−1]+(q−1)D(21) =
2q2 − (q + 1) + (q − 1)D = (q − 1)(2q + 1) + (q − 1)D which has row sums

(q − 1)



(2q + 1) + (2q2 + q3)
(2q + 1) + (2q2 + q3)
(2q + 1) + (2q2 + q3)

(2q + 1) + (2q + 3q(q − 1) + q2 + q3 − 2q2 + q)
(2q + 1) + (2q + 3q(q − 1) + q2 + q3 − 2q2 + q)

(2q + 1) + (q3 + 2q2))


and

Card(T ) =
(qn−1 − 1)(qn − 1)

q − 1
=

(q2 − 1)(q3 − 1)

q − 1
= (q−1)(q+1)(q2+q+1) = (q−1)(q3+2q2+2q+1).

Let
M2 = Ts1Ts1 and M3 = Ts2Ts1Ts1Ts2

so that

M2 = (q−1)Ts1+q and M3 = Ts2((q−1)Ts1+q)Ts2 = (q−1)Ts2s1s2+q(q−1)Ts2+q2,

giving

q(M2 − 1) + (M3 − 1) = (q − 1)(Ts1s2s1 + qTs2 + qTs1) + 2q2 − q − 1

= (3− 1)q3−1 − [3− 1] + (q − 1)D(21) = D.
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Let’s work out the qµ and the matrix L. By definition

∑
r

qr(x; t)zr =
n∏
i=1

1− txiz
1− xiz

(∑
k

(−1)kekt
kzk

)(∑
`

h`z
`
)

= (1− zte1 + z2t2e2 − t3z3e3 + · · · )(1 + h1z + h2z
2 + · · · )

giving q0 = 1, q1 = h1 − te1 = (1− t)s(1),

q2 = t2e2 − tzh1e1 + h2 = t2(s(12) − t(s(12) + s(2)) + s(2) = (1− t)
(
(−t)s(12) + s(2)

)
and

q3 = (−t)3e3 + (−t)2h1e2 + (−t)h2e1 + h3

= (−t)3s(13) + (−t)2(s(21) + s(13)) + (−t)(s(3) + s(21) + s(3))

= (1− t)
(
(−t)2s(13) + (−t)s(21) + s(3)

)
.

Thus

q(12) = q2
1 = (1− t)2(s(12) + s(2)), q(2) = (1− t)

(
(−t)s(12) + s(2)

)
q(13) = q3

1 = (1− t)3(s(13) + 2s(21) + s(3)

)
,

q(21) = q2q1 = (1− t)2((−t)(s(13) + s(21)) + (s(3) + s(21))) = (1− t)2((−t)s(13) + (1− t)s(21) + s(3)),

q3 = (1− t)
(
(−t)2s(13) + (−t)s(21) + s(3)

)
.

Then

χ
(12)
H (Tγ(12)) = 1 =

1

(1− q−1)2
(1− q−1)2 =

q2

(q − 1)2
L(12)(12)(q

−1),

χ
(2)
H (Tγ(12)) = 1 =

1

(1− q−1)2
(1− q−1)2 =

q2

(q − 1)2
L(12)(2)(q

−1),

χ
(12)
H (Tγ(2)) = −1 =

q

(1− q−1)
(1− q−1)(−q−1) =

q2

(q − 1)
L(2)(12)(q

−1),

χ
(2)
H (Tγ(2)) = q =

q

(1− q−1)
(1− q−1) =

q2

(q − 1)
L(2)(2)(q

−1),
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χ
(13)
H (Tγ(13)) = 1 =

1

(1− q−1)3
(1− q−1)3 =

1

(1− q−1)3
L(13)(3)(q

−1),

χ
(21)
H (Tγ(13)) = 2 =

1

(1− q−1)3
(1− q−1)3 · 2 =

1

(1− q−1)3
L(13)(21)(q

−1),

χ
(3)
H (Tγ(13)) = 1 =

1

(1− q−1)3
(1− q−1)3 =

1

(1− q−1)3
L(13)(3)(q

−1),

χ
(13)
H (Tγ(21)) = −1 =

q

(1− q−1)2
(1− q−1)2(−q−1) =

q3

(q − 1)2
L(21)(13)(q

−1),

χ
(21)
H (Tγ(21)) = 1− q =

q

(1− q−1)2
(1− q−1)2(1− q−1) =

q3

(q − 1)2
L(21)(21)(q

−1),

χ
(3)
H (Tγ(21)) = q =

q

(1− q−1)2
(1− q−1)2 · 1 =

q3

(q − 1)2
L(21)(3)(q

−1),

χ
(13)
H (Tγ(3)) = 1 =

q2

(1− q−1)
(1− q−1)(−q−1)2 =

q3

(q − 1)
L(3)(13)(q

−1),

χ
(21)
H (Tγ(3)) = −q =

q2

(1− q−1)
(1− q−1)(−q−1) =

q3

(q − 1)
L(3)(21)(q

−1),

χ
(3)
H (Tγ(3)) = q2 =

q2

(1− q−1)
(1− q−1) · 1 =

q3

(q − 1)
L(3)(21)(q

−1),

Since

χ
(13)
G (u(21)) = qn(21)K(13)(21)(0, q

−1) = q · 0 = 0,

χ
(21)
G (u(21)) = qn(21)K(21)(21)(0, q

−1) = q · 1 = q,

χ
(3)
G (u(21)) = qn(21)K(3)(21)(0, q

−1) = q · q−1 = 1,

and

χ
(13)
G (u(13)) = qn(13)K(13)(13)(0, q

−1) = q3 · 1 = q3,

χ
(21)
G (u(13)) = qn(13)K(21)(13)(0, q

−1) = q3 · (q−1 + q−2) = q2 + q,

χ
(3)
G (u(13)) = qn(13)K(3)(13)(0, q

−1) = q3 · q−3 = 1,
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then C acts the same way as

D =
(qn−1 − 1)(qn − 1)

(q − 1)

( 0

q3
z(13) +

q

q2 + q
z(21) + z(3)

)
=

(q2 − 1)(q3 − 1)

(q − 1)

( 1

q + 1
z(21) + z(3)

)
=

(q2 − 1)(q3 − 1)(q − 1)

(q − 1)(q2 − 1)

(
1− z(3) − z(13) + (q + 1)z(3)

)
= (q3 − 1)

(
1− z(13) + qz(3)

)
=

(q3 − 1)

[3]!

(
[3]!− (q3 − q2Ts1 − q2Ts2 + qTs1s2 + qTs2s1 − Ts1s2s1)
+q(1 + Ts1 + Ts2 + Ts1s2 + Ts2s1 + Ts1s2s1)

)
=

(q3 − 1)

[3]!

(
([3]!− q3 + q) + (q2 + q)Ts1 + (q2 + q)Ts2 + (1 + q)Ts1s2s1

)
=

(q3 − 1)

[3]!
([3]!− q3 + q) +

(q3 − 1)

[3]!
(1 + q)D(21) = (q3 − 1) +

(q − 1)

(1 + q)
(q − q3) +

(q3 − 1)

[3]!

(q2 − 1)

(q − 1)
D(21)

= (q3 − 1)− q(q − 1)2 + (q − 1)D(21) = 2q2 − q − 1 + (q − 1)D(21)

= (3− 1)q3−1 − (q + 1) + (q − 1)D(21).

Then∑
λ

χλ(u(21))χ
λ
H(Tγ(13)) = χ(13)(u(21))χ

(13)
H (Tγ(13)) + χ(21)(u(21))χ

(21)
H (Tγ(13)) + χ(3)(u(21))χ

(3)
H (Tγ(13))

= 0 · 1 + q · 2 + 1 · 1 = 2q + 1,∑
λ

χλ(u(21))χ
λ
H(Tγ(21)) = χ(13)(u(21))χ

(13)
H (Tγ(21)) + χ(21)(u(21))χ

(21)
H (Tγ(21)) + χ(3)(u(21))χ

(3)
H (Tγ(21))

= 0 · (−1) + q · (1− q) + 1 · q = 2q − q2,∑
λ

χλ(u(21))χ
λ
H(Tγ(3)) = χ(13)(u(21))χ

(13)
H (Tγ(3)) + χ(21)(u(21))χ

(21)
H (Tγ(3)) + χ(3)(u(21))χ

(3)
H (Tγ(3))

= 0 · 1 + q · (−q) + 1 · q2 = 0,

7 A Single Coset Lumping

This section develops the correspondence between B\GLn(q)/B double-cosets and
flags, and describes the random transpositions Markov chain in this setting. This
description is useful for analyzing specific features of the Markov chain. If {ωt}t≥0

is the induced chain on Sn, then {ωt(1)}t≥0 is a process on {1, . . . , n}. Thinking of
ω ∈ Sn as a deck of cards, this is the evolution of the label of the ‘top card’. It
is the lumping of the chain on Sn onto cosets Sn/Sn−1. The main result, Lemma
7.7 below, shows that the top card takes only a bounded number of steps to reach
stationarity.
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7.1 Flag Representation

The subgroup B gives rise to the quotient GLn(q)/B. This may be pictured as the
space of ‘flags’.

Definition 7.1. Here a flag F consists of an increasing sequence of subspaces F =
F1 ⊂ F2 ⊂ . . . ⊂ Fn with dim(Fi) = i. The standard flag is

E = 〈e1〉 ⊂ 〈e1, e2〉 . . . ⊂ 〈e1, . . . , en〉 .

Indeed, GLn(q) operates transitively on flags and the subgroup fixing the stan-
dard flag is exactly B. There is a useful notion of ‘distance’ between two flags F, F ′

which defines a permutation.

Definition 7.2. Let F, F ′ be two flags. The Jordan-Holder permutation ω(F, F ′)
is a permutation ω = ω(F, F ′) ∈ Sn defined by ω(i) = j if j is the smallest index
such that

Fi−1 + F ′j ⊇ Fi.

The Jordan-Holder permutation distance satisfies

ω(F, F ′) = ω(MF,MF ′), M ∈ GLn(q) ω(F, F ′) = ω(F ′, F )−1. (19)

A thorough development with full proofs is in [1].

Lemma 7.3. For M ∈ GLn(q) and E the standard flag,

M ∈ BωB ⇐⇒ ω = ω(E,ME).

7.2 Top Label Chain

This representation is useful for analyzing a further projection of the chain on Sn:
Let {ωt}t≥0 denote the Markov chain on Sn. Let P1(·, ·) denote the marginal tran-
sition probabilities of the first position. That is,

P1(j, k) = P(ωt+1(1) = k | ωt(1) = j), j, k ∈ {1, . . . , n}.

If ω ∼ πq, then the marginal distribution on {1, . . . , n} of the first card ω(1):

πq,1(j) := P (ω(1) = j) =
∑

ω:ω(1)=j

qI(ω)

[n]q!
=

qj−1

1 + q + . . .+ qn−1
.

Lemma 7.4. For 1 ≤ i, j ≤ n,

P1(i, j) =


(q−1)2qn+j−3

(qn−1)(qn−1−1)
i 6= j

(qn−1−1)2+(q−1)2(qi−1−1)qn−2

(qn−1)(qn−1−1)
i = j

.
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Remark. Observe that for i 6= j the transition probabilities can be written

P1(i, j) =
qj−1

(qn − 1)/(q − 1)

(
(q − 1)qn−2

qn−1 − 1

)
= πq,1(j) ·

(
(q − 1)qn−2

qn−1 − 1

)
P1(j, j) = πq,1(j) ·

(
(q − 1)qn−2

qn−1 − 1

)
+

(
1− (q − 1)qn−2

qn−1 − 1

)
.

Write p := ((q − 1)qn−2)/(qn−1 − 1). This provides another description of the
Markov chain: At each step, flip a coin which gives heads with probability p, tails
with probability 1 − p. If heads, move to a random sample from πq,1. Otherwise,
don’t move.

Remark. Though the Markov chain P1 on {1, . . . , n} was defined via lumping from
a chain on the group GLn(q) with q > 1 a prime power, note that the transitions are
well-defined even for q < 1. If q < 1 then the Mallows measure πq is concentrated
at the identity permutation and P1(i, j) is largest for j = 1. Note also that the
description in Remark 7.2 is also valid, since p = ((q − 1)qn−2)/(qn−1 − 1) < 1 for
an q > 0.

Proof. If ω(1) = i, then a flag representing the double coset has F1 = ei. Recall that
a transvection T defined by vectors v,a has T (ei) = ei + aiv. The first coordinate
in the new permutation is the smallest j such that

ei + aiv ⊂ 〈e1, . . . , ej〉 .

There are two cases when this smallest j is equal to i:

1. ai = 0, and v can be anything: There are (qn−1 − 1) possibilities for a such
that ai = 0. Then there are (qn−1 − 1)/(q − 1) possibilities for v.

2. ai 6= 0 and v is such that aivi 6= −1 and vk = 0 for all k > i. Note that if
i = 1, then this is not possible. Since the nonzero entry at the largest index
in v is normalized to be 1, there are two further possibilities:

• If vi = 1, then there are (q− 2) possibilities for ai, (qi−1− 1) possibilities
for the rest of v (note that it’s not allowed for the rest of v to be 0,
because then we could not get a>v = 0), and then qn−2 possibilities for
the rest of a.

• If vi = 0, then there are (qi−1 − 1)/(q − 1) possibilities for v and then
(q − 1)qn−2 possibilities for a.

In summary, if i 6= 1, then

P1(i, i) =
1

|Tn,q|

(
(qn−1 − 1)(qn−1 − 1)

q − 1
+ (qi−1 − 1)(q − 2)qn−2 +

(qi−1 − 1)(q − 1)qn−2

q − 1

)
=

(qn−1 − 1)2 + (q − 1)2(qi−1 − 1)qn−2

(qn − 1)(qn−1 − 1)
.
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Now if i 6= j we consider the two possibilities.

1. i > j: This transition will occur if ai · vi = −1 and v is such that vj > 0
and vk = 0 for all j < k < i. Since the v is normalized so that the entry
at the largest index is. 1, this requires vi = 1 and ai = −1. There are then
(q−1)qj−1 such v, and for each v there are qn−2 possibilities for a. This gives
in total

(q − 1)qn+j−3.

2. i < j: This transition will occur if ai 6= 0, vj = 1 and vk = 0 for k > j. There
are qj−1 possibilities for v and then (q− 1)qn−2 possibilities for a, so again in
total

(q − 1)qn+j−3.

In summary, for any i 6= j,

P1(i, j) =
(q − 1)qn+j−3

|Tn,q|
=

(q − 1)2qn+j−3

(qn − 1)(qn−1 − 1)
.

Lemma 7.5. Let P1 be the Markov chain from Lemma 7.4 with stationary distri-
bution πq,1. Then P1 has eigenvalues {1, β} with

β =
qn−2 − 1

qn−1 − 1
.

The eigenvalue β has multiplicity n− 1. If q > 1 is fixed and n large, then β ∼ 1/q.

Proof. Call P1(i, j) = cj , and remember this is constant across all i 6= j. Then
P1(i, i) = pi = 1−

∑
j 6=i cj . Let M be the matrix with column j constant cj , so the

rows are constant [c1, . . . , cn] and let r =
∑
cj be the constant row sum. Note we

can write our transition matrix as

T = (1− r)I +M.

Note that the diagonal entries of this matrix match what we want since T (i, i) =
(1− r) + ci = 1−

∑
j 6=i cj = pi.

Since M has constant columns/rows it has null-space of dimension n− 1. That
is, we can find n− 1 vectors v2, v3, . . . vn such that vM = 0. Then

vT = v((1− r)I +M) = (1− r)v

(and remember of course the other eigenvector is the stationary distribution, with
eigenvalue 1). This says that there is only one eigenvalue β = 1−r, with multiplicity
n− 1 – eigenfunctions are basis of null space of M . The eigenvalue β is

β = 1−
∑
j

(q − 1)2qn+j−3

(qn − 1)(qn−1 − 1)
= 1− qn−2(q − 1)

qn−1 − 1
=
qn−2 − 1

qn−1 − 1
.

Note that this is the largest eigenvalue of the full chain on Sn.
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Remark. This lumping comes from the embedding Sn−1 ⊂ Sn as all permutations
which fix the first coordinate. Then the coset space Sn/Sn−1 consists of equivalence
classes of permutations which have the same label in the first element. Similarly, we
could consider the embedding Sn−2 ⊂ Sn as all permutations which fix the first two
coordinates. This would induce a Markov chain on the space of {(a, b) : 1 ≤ a, b,≤
n, a 6= b}; we have not attempted to find the more complicated transitions of this
chain.

7.3 Mixing Time

The mixing time of the Markov chain P1 is very fast; the chain reaches stationarity
within a constant number of steps (the constant depends on q but not on n). This
can be proven using a strong stationary time.

Strong Stationary Time An strong stationary time for a Markov chain is a
random stopping time τ at which the chain is distributed according to the stationary
distribution. That is, if (Xt)t≥0 is a Markov chain on Ω with stationary distribution
π, then τ satisfies

P (τ = t,Xτ = y | X0 = x) = P (τ = t | X0 = x)π(y), x, y ∈ Ω.

In words, Xτ has distribution π and is independent from τ . See Section 6.4 of [46].
A strong stationary time is very powerful for bounding convergence time. Intu-

itively, once the strong stationary time is reached the chain has mixed, so the mixing
time is bounded by the random time τ . This idea is formalized in the following.

Proposition 7.6 (Proposition 6.10 from [46]). If τ is a strong stationary time for
a Markov chain P on state space Ω, then for any time t,

max
x∈Ω
‖P t(x, ·)− π‖TV ≤ max

x∈Ω
P (τ > t | X0 = x) .

For most Markov chains it is very difficult to find an obvious strong stationary
time. A simple one exists for the chain P1, using the alternate description from
Remark 7.2.

To restate the alternate description, let p := ((q − 1)qn−2)/(qn−1 − 1). Let
{Rt}t≥1 be a sequence Bernoulli(p) random variables. The Markov chain {Xt}t≥0

defined by P1 can be coupled with the random variables Rt by: Given Xt,

1. If Rt+1 = 1, sample Z ∼ πq,1 and set Xt+1 = Z.

2. If Rt+1 = 0, set Xt+1 = Xt.

Lemma 7.7. With {Rt}t≥1 defined above, the random time τ = inf{t > 0 : Rt = 1}.
is a strong stationary time for {Xt}t≥0. If

t = c · qn−1 − 1

(q − 1)qn−2
, c > 0,
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then
P(τ > t) < e−c.

Proof. By the alternate distribution of the Markov chain P1, whenever Rt = 1, the
next state Xt is a sample from πq,1. That is,

Xt | {Rt = 1} ∼ πq,1.

Clearly then

P(τ = t,Xτ = y | X0 = x) = P(τ = t | X0 = x)πq,1(y),

and τ is a strong stationary time. The time τ is a Geometric random variable with
parameter p. Note also that τ is independent of the starting state X0. Then,

P(τ > t) = (1− p)t ≤ e−pt

= exp

(
−t(q − 1)qn−2

(qn−1 − 1)

)
≤ e−c,

for t = c · qn−1−1
(q−1)qn−2 .

8 Some Extensions

The main example treated above has G = GLn(q) and H = K the Borel subgroup.
As explained in Theorem 1.2 for any finite group, any subgroups H,K, and any
H-conjugacy invariant probability measure Q on G (Q(hsh−1) = Q(s) for all s ∈
G, h ∈ H), the walk on G generated by Q, lumped to double cosets H\G/K =: X
gives a Markov chain on X with transition kernel

K(x,A) = Q(HAKx−1), A ⊂ X ,

and stationary distribution the image of Haar measure on G.
There are many possible choices of G,H,K, and Q. This gives rise to the problem

of making choices and finding interpretations that will be of interest. This section
briefly describes a few examples: Gelfand pairs, contingency tables, the extension
from GLn(q) to finite Chevally groups, and a continuous example On−1\On/On−1.
We have high hopes that further interesting examples will emerge.

8.1 Parabolic Subgroups of GLn

In, [42] the authors enumerate the double cosets of GLn(q) generated by parabolic
subgroups.

Definition 8.1. Let α = (α1, . . . , αk) be a partition of n. The parabolic subgroup
Pα ⊂ GLn(q) consists of all invertible block upper-triangular matrices with diagonal
block sizes α1, . . . , αk
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Section 4 of [42] shows that if α, β are two partitions of n, the double cosets
Pα\GLn(q)/Pβ are indexed by contingency tables with row sums α and column
sums β. Proposition 4.37 contains the size of a double-coset which corresponds to
the table T , with θ = 1/q

θ−n
2+

∑
1≤i<i′≤I,1≤j<j′≤J TijTi′j′ (1− θ)n ·

∏I
i=1[αi]θ!

∏J
j=1[βj ]θ!∏

i,j [Mij ]θ!
, I = |α|, J = |β|.

(20)
Dividing (20) by (1− θ)n and sending θ → 1 recovers the usual Fisher-Yates distri-
bution for partitions α, β.

For α = (n− 1, 1), β = (1n), the contingency tables Pα\GLn(q)/Pβ are uniquely
determined by the position of the single 1 in the second row. That is, the space is
in bijection with the set {1, 2, . . . , n}. If T j denotes a table with the 1 in the second
row in column j, i.e. T j2j = 1, T j2k = 0 for all k 6= j, then Equation (20) becomes

q−n+n2−(j−1)(q − 1)n · [n− 1]1/q! = q(
n
2)−(j−1) q

n − qn−1

qn − 1
·
n∏
k=1

(1− qk),

which uses

[n− 1]1/q! =
((1/q)n−1 − 1)((1/q)n−2 − 1) . . . (1/q − 1)

(1/q − 1)n−1
=

n−1∏
i=1

qi − 1

qi − qi−1

=
qn − qn−1

qn − 1
·
n∏
i=1

qi − 1

qi − qi−1
=
qn − qn−1

qn − 1
· 1

q(
n
2)(q − 1)n

·
n∏
k=1

(1− qk).

Dividing by |GLn(q)| = (q − 1)nq(
n
2) · [n]q gives

q−(j−1) · (qn − qn−1)(q − 1)

(qn − 1)2(q − 1)n

n∏
k=1

(qk − 1).

We initially thought that this distribution would match πq,1, and that the ‘follow
the top card’ chain in Section 7 was equivalent to the induced chain on double
cosets Pα\GLn(q)/Pβ from random transvections on GLn(q). However, this does
not appear to be the case; πq,1(j) is proportional to q(j−1), whereas the distribution
induced on {1, 2, . . . , n} via Pα\GLn(q)/Pβ gives probability of j proportional to
q(j−1). It remains an open problem to investigate probability distributions and
Markov chains on the double cosets of GLn(q) from parabolic subgroups. In a
reasonable sense, for finite groups of Lie type, parabolic subgroups or close cousins
are the only systematic families which can occur; see [60].

8.2 Gelfand Pairs

A group G with subgroup H is a Gelfand pair if the convolution of H-biinvariant
functions is commutative. Probability theory for Gelfand pairs was initiated by
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Letac [45] and Sawyer [58] who studied the induced chain on

GLn(Zp)\GLn(Qp)/GLn(Zp)

as simple random walk on a p-ary tree. Many further examples of finite Gelfand
pairs appear in [23], [16], [12]. These allow analysis of classical problems such as the
Bernoulli-Laplace Model of diffusion and natural walks on phylogenetic trees. The
literature cited above contains a large number of concrete examples waiting to be
interpreted. For surprising examples relating Gelfand pairs, conjugacy class walks
on a ‘dual group’, and ‘folding’, see [44].

We also note that Gelfand pairs occur more generally for compact and non-
compact groups. For example, On/On−1 is Gelfand and the spherical functions
become the spherical harmonics of classical physics (this example is further discussed
in Section 8.5 below). Gelfand pairs are even useful for large groups such as S∞ and
U∞, which are not locally compact; see [8] and [49] for resesarch in this direction.

8.3 Contingency Tables

Simper [62] considers the symmetric group Sn with parabolic subgroups Sλ and
Sµ, for λ = (λ1, . . . , λI), µ = (µ1, . . . , µJ) partitions of n. Then Sλ\Sn/Sµ can
be interpreted as I × J contingency tables {Tij}1≤i≤I,1≤j≤J with row sums λ and
column sums µ. Such tables appear in every kind of applied statistical work. See
[24] Section 5 for references. The stationary distribution,

π(T ) =
1

n!

∏
i,j

λi!µj !

Tij !
,

is the familiar Fisher-Yates distribution underlying ‘Fisher’s exact test for indepen-
dence’. Markov chains with the Fisher-Yates distribution as stationary were studied
in [25]. If Q is the random transposition measure on Sn, [62] uses knowledge of the
Q chain to give an eigen-analysis of the chain induced by Q on contingency tables.

8.4 Chevalley Groups

Let G be a finite Chevalley group (a finite simple group of Lie type). These come
equipped with natural notions of Borel subgroups B and Weyl groups W . The
Bruhat decomposition

G =
⊔
ω∈W

BωB

is in force, and conjugacy invariant probabilities Q on G induce Markov chains on
W . Let U be a minimal unipotent conjugacy class in G ([11], Chapter 5) and Q
the uniform probability on U . Conjugacy invariance implies that convolving by Q
induces an element of EndG(G/B). This may be indentified with the Hecke algebra
of B-biinvariant functions. James Parkinson has shown us that the argument of
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Section 2.4 (for the computation of D in the Hecke algebra) goes through for a
general Chevalley groups G over a finite field Fq. Although a similar formula holds
in full generality, for simplicity we will state it in the equal parameter case (non
twisted) and when G is not of type Cn with character lattice equal to the root
lattice. Let θ be the highest root and let Xθ = {xθ(c) | c ∈ Fq} be the corresponding
root subgroup. The conjugacy class of xθ(1) is an analogue, for general Chevalley
groups, of the conjugacy class of transvections in GLn(q). The sum of the elements
in the conjugacy class of xθ(1) provides a Markov chain on B\G/B which acts the
same way as

D = (q − 1)
∑
α∈Φ+

l

q
1
2

(I(sθ)−I(sα))(1 + Tsα),

where θ is the highest root, Φ+
l is the set of positive long roots, and sβ denotes

the reflection in the root β and Tw is the element of the Iwahori-Hecke algebra for
B\G/B corresponding to the element w in the Weyl group.

Following the ideas in [19], the Tsα can be interpreted via the Metropolis algo-
rithm applied to the problem of sampling from the stationary distribution π(x) =
Z−1qI(x) on W by choosing random generators. We have not worked out any further
examples but would be pleased if someone would.

8.5 A Continuous Example

Most of the generalities above extend to compact groups G and closed subgroups
H,K 6= G. Then, X = H\G/K is a compact space and an H-conjugacy invariant
probability Q on G induces a Markov chain on X.

To consider a simple example, let G = On, the usual orthogonal group over R and
H = K = On−1 embedded as all m ∈ On fixing the ‘North pole’ e1 = (1, 0, 0 . . . , 0)>.
Then, On/On−1 can be thought of as the (n−1)-sphere Sn−1. The double coset space
On−1\On/On−1 codes up the ‘latitude’ – Consider the sphere On/On−1 defined by
‘circles’ orthogonal to e1.

Then On−1\On/On−1 simply codes which circle contains a given point on the
sphere. Thus, On−1\On/On−1 may be identified with [−1, 1].

Represent a uniformly chosen point on the sphere as x = z/‖z‖ with z =
(z1, z2, . . . , zn) independent standard normals. The latitude is z1/‖z‖ and so π(x)
is the distribution of the square root of a β(1/2, (n − 1)/2) distribution on [−1, 1].
When n = 3, π(x) is uniform on [−1, 1] (Theorem of Archimedes).

One simple choice for a driving measure Q on On is ‘random reflections’. In
probabilistic language, this is the distribution of I − 2UU>, with U uniform on
Sn−1. There is a nice probabilistic description of the induced walk on the sphere.

Lemma 8.2. The random reflections measure on Sn−1 has the following equivalent
description:
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e1

Figure 2: The space On/On−1 is defined by the circles on the sphere orthogonal to
e1.

• From x ∈ Sn−1, pick a line ` through x uniformly. With probability 1, `
intersects the sphere in a unique point y. Move to y.

x

y

Figure 3: Illustration of procedure from Lemma 8.2.

Remark. As the lemma shows, there is a close connection between the walk gen-
erated from Q and the popular ‘princess and monster’ algorithm. See [13]. These
algorithms proceed in general convex domains. We know all the eigenvalues of the
walk on the sphere and can give sharp rates of convergence.

The induced chain on [−1, 1] ∼= On−1\On/On−1 is obtained by simply report-
ing the latitude of y. Thanks to Sourav Chatterjee for the following probabilistic
description. For simplicity, it is given here for n = 3 (so π(x) is uniform on [−1, 1]).
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Lemma 8.3. For n = 3, the Markov chain on [−1, 1] described above is; From
x0 ∈ [−1, 1], the chain jumps to

X1 := (1− 2U2
1 )x0 + 2(cos(πU2))|U1|

√
1− U2

1

√
1− x2

0

where U1, U2 are i.i.d. uniform on [−1, 1] random variables. (We have checked that
the uniform distribution is stationary using Monte Carlo.)

Remark. For a detailed analysis of the random reflections walk on On (including
all the eigenvalues), see [53].
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A Row reduction for GLn(q)

Explicit row reduction can be performed on a general transvection to determine
which B − B double coset it lies in. This allows computing transition probabilities
using the combinatorics of possible transvections, which is elementary but tedious.

Proposition A.1. Let Ta,v = I + va> be the transvection defined by non-zero
vectors a,v with v>a = 0 and the last nonzero entry of v equal to 1. If j > i, then

Ta,v ∈ Bsj−1 · · · si+1sisi+1 · · · sj−1B

exactly when the last nonzero entry of v is vj and the first nonzero entry of a is ai.

The transvection corresponding to a,v is

Ta,v(x) = x+ v(a>x) so that Ta,v(ei) = ei + aiv,

and the ith column of Ta,v is aiv except with an extra 1 added to the ith entry. So

Ta,v =


1 + a1v1 a2v1 a3v1 · · · anv1

a1v2 1 + a2v2 a3v2 · · · anv2
...

...
a1vn a2vn · · · 1 + anvn

 = 1 +
(
aivj

)
1≤i,j≤n.

As an example of the row reduction, take n = 5 with v5 = 1, a1 6= 0. Then,

Ta,v =


1 + a1v1 a2v1 a3v1 a4v1 a5v1

a1v2 1 + a2v2 a3v2 a4v2 a5v2

a1v3 a2v3 1 + a3v3 a4v3 a5v3

a1v4 a2v4 a3v4 1 + a4v4 a5v4

a1v5 a2v5 a3v5 a4v5 1 + a5v5


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= y4(v4v
−1
5 )


1 + a1v1 a2v1 a3v1 a4v1 a5v1

a1v2 1 + a2v2 a3v2 a4v2 a5v2

a1v3 a2v3 1 + a3v3 a4v3 a5v3

a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 0 0 1 −v4v
−1
5



= y4(v4v
−1
5 )y3(v3v

−1
5 )


1 + a1v1 a2v1 a3v1 a4v1 a5v1

a1v2 1 + a2v2 a3v2 a4v2 a5v2

a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 0 1 0 −v3v
−1
5

0 0 0 1 −v4v
−1
5



= y4(v4v
−1
5 )y3(v3v

−1
5 )y2(v2v

−1
5 )


1 + a1v1 a2v1 a3v1 a4v1 a5v1

a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 1 0 0 −v2v
−1
5

0 0 1 0 −v3v
−1
5

0 0 0 1 −v4v
−1
5



= y4(v4v
−1
5 )y3(v3v

−1
5 )y2(v2v

−1
5 )y1(a−1

1 v−1
5 + v1v

−1
5 )


a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 −a−1
1 a2 −a−1

1 a3 −a−1
1 a4 z

0 1 0 0 −v2v
−1
5

0 0 1 0 −v3v
−1
5

0 0 0 1 −v4v
−1
5


with (a−1

1 v−1
5 + v1v

−1
5 )(1 + a5v5) + z = a5v1 so that

z = a5v1 − (a−1
1 v−1

5 + a−1
1 a5 + v1v

−1
5 + a5v1)

= −a−1
1 a5 − a−1

1 v−1
5 − v1v

−1
5 .
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Thus

Ta,v = y4(v4v
−1
5 )y3(v3v

−1
5 )y2(v2v

−1
5 )y1(a−1

1 v−1
5 + v1v

−1
5 )

· y2(−a2a
−1
1 )


a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 1 0 0 −v2v
−1
5

0 0 −a3a
−1
1 −a4a

−1
1 z − a2v2a

−1
1 v−1

5

0 0 1 0 −v3v
−1
5

0 0 0 1 −v4v
−1
5


= y4(v4v

−1
5 )y3(v3v

−1
5 )y2(v2v

−1
5 )y1(a−1

1 v−1
5 + v1v

−1
5 )

· y2(−a2a
−1
1 )y3(−a3a

−1
1 )


a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 1 0 0 −v2v
−1
5

0 0 1 0 −v3v
−1
5

0 0 0 −a4a
−1
1 z − (a2v2 + a3v3)a−1

1 v−1
5

0 0 0 1 −v4v
−1
5


= y4(v4v

−1
5 )y3(v3v

−1
5 )y2(v2v

−1
5 )y1(a−1

1 v−1
5 + v1v

−1
5 )

· y2(−a2a
−1
1 )y3(−a3a

−1
1 )y4(−a4a

−1
1 )


a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 1 0 0 −v2v
−1
5

0 0 1 0 −v3v
−1
5

0 0 0 1 −v4v
−1
5

0 0 0 0 z − (a2v2 + a3v3 + a4v4)a−1
1 v−1

5


= y4(v4v

−1
5 )y3(v3v

−1
5 )y2(v2v

−1
5 )y1(a−1

1 v−1
5 + v1v

−1
5 )

· y2(−a2a
−1
1 )y3(−a3a

−1
1 )y4(−a4a

−1
1 )


a1v5 a2v5 a3v5 a4v5 1 + a5v5

0 1 0 0 −v2v
−1
5

0 0 1 0 −v3v
−1
5

0 0 0 1 −v4v
−1
5

0 0 0 0 −a−1
1 v−1

5


since

z − (a2v2 + a3v3 + a4v4)a−1
1 v−1

5 = (−a5v5 − 1− a1v1)a−1
1 v−1

5 − (a2v2 + a3v3 + a4v4)a−1
1 v−1

5

= −a−1
1 v−1

5

Thus, if j > i then
Ta,v ∈ Bsj−1 · · · si+1sisi+1 · · · sj−1B

exactly when the last nonzero entry of v is vj and the first nonzero entry of a is ai.
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