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Abstract

This paper develops the theory of Macdonald-Koornwinder polynomials in parallel analogy with the
work done for the GL,, case in [CR22]. In the context of the type CC,, affine root system the Mac-
donald polynomials of other root systems of classical type are specializations of the Koornwinder
polynomials. We derive c-function formulas for symmetrizers and use them to give E-expansions,
principal specializations and norm formulas for bosonic, mesonic and fermionic Koornwinder poly-
nomials. Finally, we explain the proof of the norm conjectures and constant term conjectures for
the Koornwinder case.
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0 Introduction

The Koornwinder polynomials are multivariate generalizations of the classical orthogonal polynomials
that appear in the Askey scheme [K92]. At the top of this hierarchy we find the Askey-Wilson
polynomials and the other families of orthogonal polynomials in the Askey scheme are obtained from
the Askey-Wilson polynomials by specializing parameters.

Macdonald’s 1987 paper [Mac87| provides a very general framework for associating orthogonal
polynomials Py to any affine root system. It turns out that the Koornwinder polynomials are the
Macdonald polynomials for the affine root system of type CC,, (in Macdonald’s notation (C},C,,))
and the Askey-Wilson polynomials are the Macdonald polynomials for the affine root system of type
CCy. One of the key features of Macdonald’s picture is that the norms (Py, P\); are generalizations
of Macdonald’s “constant terms” (P, Py)+. In this way, Macdonald stated conjectures for the values
of (Py, P\)+ which vastly expanded his earlier constant-term conjectures.

Cherednik introduced the double affine Hecke algebra as a tool for extending Opdam’s ideas to
prove the norm conjectures [C03]. This perspective pointed to a larger family of orthogonal polynomi-
als E,, from which the Py are obtained by a process of symmetrization. All of these tools, including
the proof of the norm conjectures, were wonderfully exposited in the full generality of a possibly
non-reduced affine root system in Macdonald’s book [Mac03]. For a wonderful history of the exciting
trajectory of these amazing developments see [HKO24].

Particularly in the type GL,, case, the Macdonald polynomials have been of interest to the combi-
natorial community because of the wealth of wonderful ¢, t-generalizations of classical combinatorial
formulas in symmetric function theory. It is also stimulating that there are many fascinating connec-
tions to adjacent fields (representations of p-adic groups and affine Lie algebras, geometry of Hilbert
schemes and affine Springer fibers, torus knot invariants, vertex models in statistical mechanics, par-
ticle process in probability, etc). For this reason it is desirable to provide expositions of the tools that
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bridge the language gaps between the generality of affine root systems and the standard conventions in
classical symmetric function theory. In [CR22] we explained how, in the type GL,, case, many of the
combinatorial formulas can be understood from the theory of c-functions, which are the analogs of the
Harish-Chandra c-functions surveyed by Helgason [Hel94] and that appear everywhere in Macdonald’s
monograph [Mac03].

In the type GL, case, the Macdonald polynomials depend on two paramelters1 q 1a]ad t. 1In the

Koornwinder case (type C'C),), the polynomials depend on 6 parameters, q,t,tg,ug ,t2 and u?2. Be-
cause of this plethora of parameters, sometimes it is not so easy to see how the combinatorial formulas
familiar in the type GL,, case generalize to the Koornwinder case. This paper follows the same pattern
as our earlier paper [CR22|, generalizing from the type G L,, case to the Koornwinder (type C'C),) case.

There is a constantly increasing literature on Koornwinder polynomials. There are interesting
technical advances and also fascinating connections to other fields (see, for example, [CGAGW16
CMW23| Ral7, RW15| Yam20, [YY21]). The foundational work in [Nou95l [Ra01l, [Sah99. [Sto00, vD95.
vD96], among others, continues to be extremely useful for clarifying the role and position of the
double affine Hecke algebra as a tool for the Koornwinder case. There are also important and very
useful surveys of the theory of Koornwinder polynomials (see, for example, [Sto04] [Sto21]). There is a
significant intersection between the content of this paper and the content presented in these surveys.
We hope that our combinatorial and c-function point of view can be useful in continuing research on
Koornwinder polynomials.

The plan of this paper is as follows:

At the end of this introduction we include some remarks on the different sets of parameters used in
the literature and establish the ones we will use for the paper. Since there are 6 different parameters
to keep track of and lots of literature to navigate, perhaps this dictionary will be useful to readers (as
it was for us). Following these remarks we present a diagram of the affine root systems of classical
types together with the specializations of the parameters for obtaining the Macdonald polynomials of
the corresponding type from Koornwinder polynomials, which are the Macdonald polynomials for the
affine root system of type (C,/,C},). A thorough study can be found in [YY21].

Section [T is dedicated to the affine Weyl group and root system for type C'C,, and we include the
affine coroots and affine roots. Our new contribution in Section 1 is the diagram giving the relative
positions of the affine root systems of classical type and the specializations that give the Macdonald
polynomials of the other classical type from Koornwinder polynomials. Although these relationships
are, in principle, well-known (from Macdonald [Mac72] and Bruhat-Tits [BT72]), we have not seen
this way of presenting this information, which we find very useful, and not broadly known.

In Section [2l we introduce the main tools for working with Koornwinder polynomials, including the
c-functions and the double affine Hecke algebra. Our contribution here is to provide a framework for
the DAHA in terms of c-functions, which makes the, sometimes daunting, formulas for the operators
on the polynomial representation seem obvious and natural.

In the second half of Section [2] we introduce four families of symmetrizers together with the
relations between them, their c-function formulas and the case when the stabilizers are nontrivial.
Our contribution here is to treat the four types of symmetrizers in tandem so that their role in the
theory (and the symmetry between them) becomes clearer.

Sections Bl and M examine the main objects of study:

(a) electronic Macdonald-Koornwinder polynomials (Section [3));
(b) bosonic Macdonald-Koornwinder polynomials;

(¢) fermionic Macdonald-Koornwinder polynomials;



(d) mesonic Macdonald-Koornwinder polynomials.

We introduce the electronic Macdonald-Koornwinder polynomials F,, as eigenfunctions of Cherednik-
Dunkl operators and then give a recursive formula and a creation formula for the E,,. For the other
variants, our study includes:

(a) definition of the Weyl denominators;

(b

(c

(d

(e
Our contribution here is to put the focus on the fermionic and mesonic Koornwinder polynomials so
that the four-fold structure is clearly visible. This four-fold structure eventually leads to powerful
recursions for computing norms.

Finally, Section [Hlis dedicated to the study of the Macdonald-Koornwinder polynomials as a family
of orthogonal polynomials. In particular, we

study of the bosonic, fermionic and mesonic spaces;
formulas for the Poincaré polynomial;

expansions in terms of £, and

principal specializations.

(a) define the Macdonald-Koornwinder inner product via multiplication by a kernel and taking the
constant term and characterize the electronic and bosonic Macdonald-Koornwinder polynomials
in terms of the inner product;

(b) compute adjoints of the operators from the double affine Hecke algebra;

prove the going up a level and Weyl character formulas to provide recursions for norms; and
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use the recursions for norms to compute the norms (Py, Py)+ and the Macdonald constant term
for type C'C,.

This section follows the same trajectory as that taken in [Mac03, Ch. 5]. Our contribution here is to
use the fermionic and mesonic framework to organize the recursions for norms and make the proof of
norm conjectures easy and natural.
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0.0.1 The poset of affine root systems of classical type

(cY,C,) = C-BCl
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205~ 20,
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See Section [[3] for the explanation of this diagram.



0.1 Remarks on parameters

Depending on the reference, the notation for the parameters varies. In this article, we follow [Nou95]
and [Sah99] and mostly use the parameters
1 1 1 1

11 1l 1 1
Q7t27t(§7u027t72uu721'

Remark 0.1. In an attempt to relate the parameter notations in [Mac03), §4.7], [Sah99, §3] and [C03,
Def. 2.1] let

1 1 1 1 1
n=ud, T,=ui, To=1, T=t%, and T =7/ =12 forie{l,...,n—1}.

The summary of (1.5.1), (4.4.1), (4.4.2), (4.4.3), and (5.1.4) in [Mac03] is that, for an affine root a,

1 1 1 1 1,/ 1 _
Ta = (tatoq)? = q2"e = g2 (@) FkQ2a)) and 7 =12 = q2fe = gz(k(a)=k(2a))
In our situation
3 ! 3,3 L L2 L+ 1
th =T = q2"" = tgnt%en =q2 (en)+ak(2en) — q2 1t+3 2,
1 1, 1 1 1 1 1
up =7l = q3"n = 12, = ¢akEn)T3ken) — gakimgke
1 1 1 1 1 1 1 1 1
2 _ _ 5KO _ 472 2 _ sk(—e1+350)+5k(—2e1+49) _ sks+5ka
tO =79 =q2 _t—51+%6t—2€1+5_q2 2 2 =qz 2™
1 1 1 1 1 1 1
ug = 7-(/] = q%“f) — ¢2 L= qu(—€1+§5)—§k(—251+5) — q§k3—§k47 and
_51+§5
1 1 1 1 .
t2 :Ti:qﬁ:t;_awlzqﬁﬂ forie{l,...,n—1},
and the formulas in [Mac03] (1.5.1)] correspond to interchanging g and «/,. O

Remark 0.2. Askey-Wilson parameters. In type (Cy,C}), the bosonic Macdonald polynomi-
als Py\(q,t1,u1,t0,up) are also known as the Askey-Wilson polynomials. Following [Nou95, §3|, the
correspondence to the original Askey-Wilson parameters is given by

1 _1
2

11 1 _1 11 1
q=q, a:q%tozuoz, b:—q%tozuoz, c=taus, d=—tiun (0.1)
These conversions are equivalent to
-1 _ _ -1 _ -1
to = —q “ab, t, = —cd, ug = —ab™ ", Uy = —cd
and it is useful to note that
1101 _1 11 _1
a+b=q2ti(ug —uy?) and c+d=1t3(ui —up?).

Up to permutations of a,b,c,d, these parameters are used in [Sah00, (1)], in [CGAGW16, (17)],
in [CMW23|, Def. 2.2] and, with different notation, in [Mac03, (5.1.14)]. O



1 The affine Weyl group and root system for type CC,

The affine root system of type C'C,, (in Macdonald’s notation (C)Y, Cy,)) is the structure that holds the
combinatorics of Koornwinder polynomials in place as they are the Macdonald polynomials for this
affine root system. The affine Weyl group W plays the role of the group of symmetries of the affine
root system. In this section we introduce the definitions and notations for working with the affine
Weyl group W and the affine root system of type CC,,.

The coroots S¥ and the roots S for the affine root system of type CC,, play just slightly different
roles in the theory, especially in the computations involving Koornwinder polynomials. One of the
challenges in this work is to keep these two mirror worlds in proper focus. For this purpose, in
Section [I.2], we carefully lay out two versions of the affine Weyl group W, one denoted Wx which acts
on the coroots (with 5 orbits), and one denoted Wy which acts on the roots (with 5 orbits). While
the groups Wx, Wy and W are all isomorphic, being pedantic about the notation at this early stage
prevents future headaches.

To conclude this section we present a brief explanation of the reasoning for how the Macdonald
polynomials of other classical types (such as B, C,, BCy, Agl)_l, Dﬁﬁl etc.) are derived from the
Koornwinder polynomials by specialization. This specialization process is summarized in the diagram
included in Section [0.0.1}

1.1 The affine Weyl group W and the finite Weyl group Wy,

Use a graphical notation for relations so that

gi gj
O

o means g;g9; = g;9i,

%i_%j means gigjgi = gjgigj, and
991 means gig;gig; = 9;9i9;9-
The affine Weyl group is the group W presented by generators sg, s1, ..., S, and relations

S S S Sn—2 Sp— S
812:1 and O():()l—(%ffffffffno2—n01:(§l

The finite Weyl group is the subgroup Wy, generated by sq,..., Sy.
Let w € W. The length of w, ¢(w), is the minimal ¢ € Z>¢ such that

w=s; ...8, withiy,...,i;€{0,1,...,n—1,n}.

The expression w = s;,...5;, is a reduced word for w and any other expression of the form w =
Sjy - .. Sj,, With ji,...,jk € {0,1,...,n —1,n}, has k > {(w).

1.1.1 Translation presentation of W
Define h.,,...,h., € W by

he, = 805152+ Sp—15nSn—1- - - 5251, and he, = sjhe;_,s;, for j € {2,...,n}.
For 1 = (p1,..., pn) € Z" define the translation h, by

hy = (hey )™ - -+ (he, ) (1.1)



and define u, € W and v, € W5, by the equation
hy = v, where v, € W4, and w,, is minimal length in the coset h,Wgy. (1.2)

Define an action of W, on Z™ by
Si(lu’17 s 7lu’n) = (Mb sy Hi—1, i1y Mgy Hit-2, - - 7lu’n)7 for i € {17 ceey 1}7
sn(ﬂl,---aﬂn) = (le"nun—l)_iun)' (13)

Then
W =27Z" x Way,.

In other words, if u,v € Z™ and v € Wg, then
vhy, = hyuv, huhy = hygy and W ={hyv | peZ" ve Wsy}

Remark 1.1. In [CR22], we use t, to denote the translations in the type A case. We use the notation
h,, for type CC), to avoid conflict with the set of parameters for Koornwinder polynomials (specified

in Section 27).
1.2 Affine coroots, affine roots and the groups Wx and Wy

In this subsection we set up the notation for the affine Weyl groups Wx and Wy. Both groups Wy
and Wy are isomorphic to W, but they serve slightly different roles and it is necessary to set up the
notation to distinguish them.

1.2.1 The dual lattices az and a;

Let £1,...,&, and €Y,...,¢, be symbols and define dual lattices (i.e. dual free Z-modules)
ay = {ye1 + -+ Ve | 11, € Z} and az = {pe] + -+ pne) | 1,5 pin €Z}
with Z-bilinear pairing
(,)raz xag —Z given by <5i,€JV»> = 0y;.

Both az and a7 are isomorphic to Z".

1.2.2 The affine coroots for type CC),

Let
Q" = Z-span{ey, ... e’, %K}

be the Z-vector space spanned by symbols ¢Y, ..., &) and %K . The affine Weyl group Wy is the group
of Z-linear transformations of Q¥ generated by the transformations sy, sy,...,s, given as follows: If
AV =gy + -+ Mgy + 2K then

sgAY = —Niey + Aol + -+ Mgy + (5 4+ \1) K,

SyAY = AigY + o+ Apig_ — Mgy + 5K, and (1.4)

sYA = Mgy + o+ Aicagly + N F Nl + Nigaeio + o+ Aneyl + 5K,



forie{l,...,n—1}. Let

\

vV
€1 n

% _ VeV VLV % _ VoV
-5, he, = 5082, =S98 -8y 51 and he, = 5 he;si,

for i € {1,...,n —1}. Then he AV = sysY AV = AjeY + -+ Mgy + (5 — \) K and

€1
he A = Mgy + o+ Mgy + (5= N) K, forie{l,...,n}.
Ify=mer+ e and AV = \ig) + -+ + gyl + %K then
R A = B2 A =AY (B — Ny A ) E =AY+ (B - (1, A)K,
and special cases of this last formula are
hel =g/ —viK and h K = K. (1.5)
The set of coroots SV for type CC,, is the union of the five Wx-orbits given by
O =Wx -, =Wx -, ={+e/ +rK |i€{l,...,n},r € Z},
20) = Wx -2, = Wy - 2¢,) = {#2¢) +2rK |i € {1,...,n},r € Z},
Of =Wx -af =Wx - (—ef + 1K) ={£(e/ +2r+ 1)K | i € {1,...,n},r € Z},
205 = Wx - 2af = Wy - (=2¢{ + K) = {£2¢) + 2r+ 1)K | i € {1,...,n},r € Z},
+(ef +ef)+rK
v oY = (Y VY — 7 j ) .o . .
O =Wx-af =Wx -(ef —¢g) { (e —E}/)—i-TK i,j€{l,....,n}i<jrezy;,

where

vV _ .V 1 V _ oV _ LV VA

c=X—0—-0-------- 1.6
20) = —2eV + K 20Y — 26V (1.6)

Remark 1.2. Throughout this paper we present several diagrams imitating the Dynkin diagram
with the labeling related to the coroots (like the one above), roots, or parameters. These are merely
intended for conceptual association rather than to specify relations between the objects.

1.2.3 The affine roots for type CC),

Let
Q = Z-span{e1, ..., en, 30}

be the Z-vector space spanned by symbols €1, ...,&, and %5. The affine Weyl group Wy is the group
of Z-linear transformations of () generated by the transformations sg, s1,...,s, given as follows: If
u:ulsl—k---—i—unsn—k%éthen

SO = —[1€1 + Hog2 + - + nen + (5 + A1) 6,
Splb = (1€1 + -+ p—1En—1 — UnEn + gé, and (1.7)
Sift = e + v+ U181 Tt Hit1€ T Hi€it1 T Hit2€i42 T fnEn + %5,

forie{l,...,n—1}. Let

351 = 81 o STL o 81, hEY g 80881 = 8081 o e STL “e 81 and h€,>/+1 g Sitz-:;/‘sh



forie {l,...,n—1}. Then halv,u = S0Se [t = M1E1 + -+ + fnEn + (% — ,ul) 6 and
haiv,u:,ulel—l—---—l—,unen—l—(%—,ui)é, forie {1,...,n}.
IfvY =wel + ey and,u:,ulal—i--'-—k,unan—kgé then
hovp=hZy == (5 + (mvr + -+ prn))d = o+ (5 — (p.v"))d,
and special cases of this last formula are
h,,\/EZ' =&; — l/i5 and h,,vé = 4.
The set of roots S for type C'CY, is the union of the five Wy -orbits given by
Or=Wy -ap,=Wy e, ={£e;+rd|i€{l,...,n},r € Z},
201 = Oy = Wy - 2y, = Wy - 2, = {:l:2€,'+27‘5 ’ 1€ {1,...,71},7’ EZ},
O3 =Wy oy =Wy - (—e1 4+ 30) = {£(e; + 3(2r + 1)§ | i € {1,...,n},r € Z},
203 =04 =Wy - 20, = Wy - (=2e1 +6) = {£2e; + 2r +1)0 | i € {1,...,n},r € Z},

:|:(€i + €j) +7rd

OSZWY’a1:WY’(El_E2):{ :]:(E'-E')‘i‘“s
7 J

i,je{l,...,n},1 <j,reZ},
where
ag = —€1 + %(5 QG = € — €541 Ay = Ep
200 = =21 + K 2a, = 2e,

1.3 Other classical types

With the notations as in Section [[L2.3] each affine root system of classical type is a subset of Q.
The irreducible affine root systems of classical type (and the appropriate specializations for obtaining
the Macdonald polynomials of each type from the Macdonald polynomials of type (CY,C,)) are
given by the diagram in Section [0.0.I] The middle notation for each root system is the notation in
Macdonald [Mac03, §1.3], the right notation is that of Bruhat-Tits [BT72] and the left notation is
that of Kac [Kac, Ch. 6].

To determine the specializations, we look at the kernel for the inner product (see Section B.T]).
Following [Mac03l, (5.1.3)] the orthogonal polynomials are determined by the inner product which, in
turn, is determined by factors of the form in (9] corresponding to orbits of roots.

For instance, when both O; and 20; are present then the factor corresponding to the root g, is

1 1 1 1

1 (= tdude,) (14 thun 2an)
AgnAQé-n N 1-— l‘%

. (1.9)

(The notation #- 1Azg for this factor is as in [Mac03, (5.1.3)]; the notation that we use for this factor
in Section G.Ilis % .) If only the orbit Oy is present then the factor is

1 1-t¢ 1 1
= ntn which is obtained by specializing t3 = us in (L9]).
A, 11—z,
If only the orbit 20, is present then the factor is
= which is obtained by specializing u2 = 1 in (L9)).
A2an 1-— 1’%

In this way, the parameter specializations in the diagram in Section [0.0.1] are determined by which
orbits of roots are present in the root system.



2 c-functions and DAHA relations

This section collects the tools for working with Koornwinder polynomials as polynomials in azfl, e xfl
that depend on 6 parameters. The root system of type C'C),, provides the structure for organizing the
many symmetries between the variables and the various parameters and this section specifies care-
fully the links to the root system. The c-functions, introduced in Section 23] are a core structure to
providing explicit formulas for Koornwinder expansions, specializations and norm formulas. With the
notation for the c-functions in hand, Section 24 describes briefly the relations of the double affine
Hecke algebra. These relations provide a convenient summary of the calculus of the operators on
polynomials which are used in the rest of the paper.

2.1 Parameters

Let

41 1 1 1 )
q,t2,t5,u3,ta,us  be independent parameters,

and let

1 1 1 1

1111 1111
K= (C(q,t%,toz,ug,t%,u,%) be the field of fractions of C[q,t%,tg,ug,t%,uﬁ].

The field K will be the base field for most algebras in this paper.
Recalling the simple coroots and simple roots from (L&) and (L8], set

tag = Up, ta;/ = Ugy = t tay =ty
c—D0—O0-------- O—C——0
Uqy = UO Uy = to (2.1)
and
Joo mI0 o Ga Tl Tl o len T (2.2)
ag — U0 Uq,, = Un

Let SV be the set of affine coroots and let S be the set of affine roots. Define t,v, uqv and tq, Uq
for arbitrary coroots ¥ and arbitrary roots o by requiring

two = ta and tway = tov, forweW,a¥ eSS anda e S. (2.3)
The difference between the parameters for the coroots in (2.1]) and the parameters for the roots in (2.2])
corresponds exactly to introduction of the “dual labels” in [Mac03), (1.5.1)].
2.2 The polynomial rings K[X] and K[Y]

Let K[X] = K[X{!,..., X;*!] be the Laurent polynomial ring in the variables X1,...,X,. Identify
K[X] with the group algebra of @ = Z-span{eq, ..., &y, %5} via the notations

1 1 ) k k
2 =X2" and X;=X%, and qzX|".. Xkr = X0tmErtotnen = X0

forie{l,...,n}and p = pie1 + -+ pnen + %5 € Q. The image of the simple roots in K[X] is given
by
X — q%Xl—l X% — XiXijrll Xon — Xn (24)
O—0—O0O-------- O—O0—F—0

10



Let K[Y] = K[Ylil, ..., Y] be the Laurent polynomial ring in the variables Y7, ...,Y,. Identify
K[Y] with the group algebra of Q¥ = Z-span{eY,...,e), 2K} via the notations
1

L v _k k V. v Vv
¢? =Y 7% and Y;=Y", and ¢ zYﬁl---Y,jn:YzK“ﬁﬁ Thnen = YA

for i € {1,...,n} and \Y = Mg} + -+ + A\ye) + 5K € QY. The image of the simple coroots in K[Y]
is given by

yes =g vy Yol =YY Yon =Y, (2.5)
o——0—0-------- O——O0=—>—0

2.3 c-functions

Let K(Y) be the field of fractions of the Laurent polynomial ring K[Y]. For a coroot o let (see [Mac03|
(4.2.2) and (4.3.9)]),

1—752 u2 Y« —|—t2u 2Y‘J‘ 1
v = 2 ; { a’ a _)}(/Mv) - ) and e t;vc)a/v (2.6)
1 I 1 -ty Yo
1 1 - — ity
If t;\/ = Uév then CZ\/ = % and Ii};v = flj[w

(More accurately, the function ¢, should be considered as a local factor of a c-function, see [Stoll].)
The expression /{YV is a slightly renormalized version of the c-function CYV which, although not tech-

nically necessary, is 1mmensely helpful for making the formulas more palatable.
1
In general, for arbitrary tzv and u2y,

1 1

1
(1— 2, Vo) (14 t2u 2 Yo" ). (1— 2, Yo" ) (1 + 2,0 2Y )

C};\/ +C)_/OC\/ =
t2 (1 —YW) t2 (1—Yy—2a)
1l 1 _ 11
B (1—t;vu;vyav)(1+t2vu Zya” )+tav(1— avu “Zyo N+t 7u, Y
IR -y

1

1
1 - tz\/ua\/Ya + tz\/u ZYQ - ta\/Y2av + ta\/ -
= 1
t;\/(l _Y2a\/)

\/U 2ya +t2vuavYa _Y2a)

Oé

14t )(1 — Y2 1 _1
_ i av)( ) _ £2, 4+t 2, (2.7)
t2,(1 — Y2

Let w € W and let w = s;, ---s;, be a reduced word for w. The coroot sequence of the reduced
word w = s;, -+ 8;, is

the sequence (8 | k € {1,...,£} and iy # 7}) given by By = Si_ll e Si_kilo%. (2.8)
Then define
o= I sbv,  where  Tnv(w)={8),....5} (2.9)
BY €lnv(w)

is the set of elements in a coroot sequence for a reduced word for w. If w = uv with £(u) 4+ £(v) = £(w)
then the coroot sequence of w is v™—! times the coroot sequence of u followed by the coroot sequence
of v so that

Inv(uv) = v~ ' Inv(u) U Inv(v).
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The inversions of elements of Wy, come in two types: ‘droite’ and ‘standard’. Using the indicators
d for ‘droite’ and s for ‘standard’, let

RRY
(Sya)" ={ef,...,e0}  and (5&8)+:{i’v+3’ ‘z’,je{l,...,n}withi<j},
i J

and for v € Wg,, define
Invy(v) = Inv(v) N (Sg4)" and Invy(v) = Inv(v) N (Sy )"

For v € Wy, define

K = H K H ki |, KE = H K H Kiv .

BY €lnv(v) BY€lnvy(v) BY €Inv,(v) BY€lnvy(v)
Ky = H Hé/gl H Hggl RERTRES H Hé/gl H ki | . (2.10)
BY €lnv,(v) BY €lnvy(v) BY €lnvs(w) BY €lnv 4(w)

Finally, define also

11 1 1
n n 5,9 5, 95
Y Y (1 —tatgYs)(1 + ity *Y5)
Kar = H "ie;/ = H 2
=1 =1 (1 a Y; )
and .
- L (1=tYYT) (1 - tY)
Y Y Y v ()
Rgt = H K :/_8\//{6;/_1_6\/ = H 1 vy (211)
1<i<j<n ! ! 1<i<j<n (1 - Y;YJ ) (1 }/ZY})
so that
/{50 = kY kY. (2.12)
This subsection has presented the c-functions and related functions lﬁg\/ in terms of the {Y1,--- , Y, }
variables. We will also consider these notions in other sets of variables, like {Yl_l, YT X X )
and {X| ... , X1}, and use notations like m%{ 1, /ié( , lﬁé{ 71, respectively. For example
"2 X 2,72 -1 (1—tX71X)(1 — X7 1Xh
[{X71 - H (1 tnunXZ )(1 + tnun X’L ) H i 7 i j (2 13)
wo —2 —1 —Ty—1 :
0 paiey (1-X7) I<i<i<n 1-XX;)(1-X; X; )
2.4 The algebras Hﬁoc and ]A:Iint
The Koornwinder polynomials are elements of the polynomial ring K[:Eitl, ..., o1 which are charac-
terized, up to normalization, by the fact that they are eigenvectors for the Cherednik-Dunkl operators
Yi,...,Y, (see (B.5])). However the c-functions, which form the core calculus for working with Koorn-

winder polynomials, are elements of K(X), the field of fractions of the polynomial ring. Thus extending
from K[X] to K(X) is necessary for handling the tools.

The Cherednik-Dunkl operators are elements of the double affine Hecke algebra ﬁint, which is
formed by pasting the two polynomial rings K[X] and K[Y] together with a finite Hecke algebra Hgy,.
However, the right home for the c-functions and the operators for creating Koornwinder polynomials
is a larger algebra Hjo. which extends the algebra Hiy by extending K[X] and K[Y] to the fraction
fields K(X) and K(Y'). In this subsection we introduce the algebras ﬁ[loc and ]?Iint by generators and
relations.

12



Let K(X) and K(Y') be the fraction fields of K[X] and K[Y] respectively. Recall that K[X] is the
group algebra of @ and K[Y] is the group algebra of @V, that

X%‘S =q and Y_%K :q%
and that Wy acts on QY and Wy acts on @Q by the formulas given in (7)) and (4]) so that
wXH = X and 2N =y (2.14)
forw e Wy, z€ Wx, AV € QY and p € Q.

Let ﬁloc be the K-algebra generated by Nsys -5 Msy Esor oo &sns T1y oo Ty Togs Ty s - -+ 5 T, and
Ty, Toy, - - - Tay and Ty, and K(X) and K(Y') with relations

Tsy  Msy  Msy 0 Tsi, sy My 2 =1, e YA = YA

€0 &1 Lo Lsae Ssua &, & -1, £ XH = xe, (2.15)
fori e {0,1,...,n}, \Y € Q¥ and p € Q, and

Ty +t;§ = (1+nsy)c}§iv and Ty, +taf = (1+&,)ey 1, for i € {0,1,...,n}, (2.16)
Tj=Toy=Toy forje{l,...,n} and Ty =T TpaTTpr- T, (2.17)
Y =T, T, X = (Toy) ' T, (2.18)
Yor =T VST, and XS0 =T, X9T,,  forje{l,...,n—1}, (2.19)
y e Xe = q%(u§ —uy %)Ts;l + T XY a T (2.20)

This presentation of ﬁloc is not minimal as there are many redundant generators and many re-
dundant relations. It is designed to specify notations and list the relations that we will need, and to
motivate the operators on polynomials which are the main tools for working with Macdonald polyno-
mials in general. To be precise, since

[

1 —1

_ _ 1 _1 1 1 _
(14 &)X = Toy +ta? = (Tay — 12,) + ta? + 13, = (Tn, — t2,) + X + &,

then )
Tai - t§ = —az + 581 al = - —az ( 531) - _CX(l - 687))7 (221)

and this is the formula used to define the action of the double affine Hecke algebra on K[X] in (3.3]).
The double affine Hecke algebra (DAHA) is the subalgebra Hiy inside Hio.

generated by Xlil,...,Xﬂfl, Ylil,...,Ynil, and T1,...,T,.

The algebra Hiyt is an integral form of ﬁloc (alternatively, the algebra H, loc 18 a completion, or localized
form, of Hiyt). A common definition of the DAHA uses the relations listed in the following proposition,
which follow without difficulty from the defining relations of Hj..
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Proposition 2.1. Leti € {0,1,...,n}, \Y € Q" and p € Q. Let Tj = ¢ 3T/ T,/ 1T\ Then
0

TO‘X To\z/l Taé/ TO‘X—Q TO‘X—I TO&X Tao Toy Ty Tan 5 Tay, Ta, (2 22)
oc—/—O—O0--------- O——0C—=0 acT——— O -------- O——C—=0 .
1 1 # 3N (T 3
Ty T Tog Ty = T Ty Ty Ty (T —w@ (T +ug) =0, (2.23)

1 _1 _1
(Tay —t2)(Toy +1,2) =0 and T,y Y =VVT,y + (chy — t )Y YA (2.24)

7

1

1 _1 _ _1
(Tag = 12,)(Ta; +ta) =0 and To, X H = X T, + (¢X ' —ta2)(X# = X~51).  (2.25)

Remark 2.2. In personal communication, J. Stokman insightfully points out that the algebra ﬁloc
defined in (2I5)-(220) is fishy. One can Ore-localize DAHA in either the X-elements (so that the
normalized intertwiners s, are in the localized algebra), or in the Y-elements (so that the n; ; are in
the ones in the localized algebra) but not simultaneously. This difficulty is alluded to in a different
form in [CR22, Remark 3.5]. However, trying to set up the accurate formal framework for handling
an X-Y-localized algebra would be distracting from the combinatorial perspective of this paper. We
feel that, even if the right localization formalism is not in place, the concept of an algebra H,. that
contains all the useful relations for computations with these operators is a healthy point of view and
so we have chosen to include it. The algebra Hj,. is not absolutely necessary for the results in this
paper as the operators on the polynomial representation that we use are well-defined and the proofs
that we give are valid.

2.5 Symmetrizers

There are four ways of symmetrizing/antisymmetrizing in the Koornwinder polynomial context, cor-
responding to the four 1-dimensional representations of W5,. These 1-dimensional representations are
the analogues of the usual sign of a permutation. The four symmetrizers, and useful formulas for them,
are presented in Sections2.5] and 2.7 The symmetrizers will be used in Section [l to construct and
manage the bosonic (symmetric), fermionic (antisymmetric) and the two mesonic (half symmetric-half
antisymmetric) versions of the Koornwinder polynomials. These four symmetrized /antisymmetrized
versions of Koornwinder polynomials, and the relations between them, turn out to be fundamental in
the proof of the norm formulas and constant term formulas that are established in Section
The finite Hecke algebra Hg, is the K-subalgebra of ]?Iint generated by T1,...,T,—1 and T,. The
finite Hecke algebra
Hg, has K-basis {T, | v € Wsy}, (2.26)

where T, = T;, ... T;, if v = s;, ---s;, is a reduced word for v in Wg,. The four one dimensional

representations of Hg, are

k

' Hen — K, x5 Hen — K, xT: Hen — K, " Hin — K,

given by

t2, ifie{l 1} 3 if i € {1 1}
, 1 s, —1p, 2, meel,...,n—1yg,
X+(Ti):{ 1 Xi(Tz‘)Z{

t
,ifi=n, (—tn)"2, ifi=n,

(—t)72, ifie{l,...,n—1}, _ (—t)7%, ifie{l,...,n—1}
1 o X (T;) = 1

t2, if i = n, (—tn)" 2, ifi=n.

14



For v € Wy, define /4(v) and £4(v) by
H(T) = (£3)00) (2 1a)
The Hecke symmetrizers are
the elements &4, e4, e and e of Hgy
which are defined such that, in terms of the basis in (Z.26]), the coefficient of T, is 1 and for w € Wy,
Tweyr = X (Tw)ey, Twes = X (Tw)ex, Twex = X (Tw)ex, Twe— =X (Tw)e—.

In other words, if Z € {+,+,F, —} then T,e= = x= (T} )e=.
A reduced word for the longest element of Wg, is

iy 1
Wo = (31 T Spcc Sl)(32 o Spc 32) e (Sn—lsnsn—l)sn and tézs(wo)t% alwo) = t%n(n—l)t%".

In terms of the basis in (2.20) the symmetrizers are given explicitly by

1 =
2= 3 X°(TT,  for € {+ £, -} (2.27)
XH(TwO) veEWsgn

The Poincaré polynomial for Wy, is

Wolt,tn) = Y o0l = 3" H(T,)% (2.28)

weWgn weWgy,

Three alternate formulas for Wy(¢,t,) are given in Proposition 31 Then

1 1
2 2 -1
el = ——Wpy(t,tn)er, el = ——Wp(t,t, et
+ X+(Tw0) 0( n) + =+ Xi(Two) 0( n ) +
1 1
2 -1 4-1 2 -1
e = Wo(t™ ", t, " )e_, €L = Wo(t™ ", tn)e=x. 2.29
X_(Two) ( w) * XJF(Two) ( ) * ( )

Example 2.1. For = = &+,

2.6 c-function formulas for symmetrizers

The definition of the Hecke symmetrizers and the formulas for them given in Section 23] are purely
in terms of the Ty, in the double affine Hecke algebra ]?Iint. However the Koornwinder polynomials
are more naturally constructed and managed with the 7, and &, that are in ﬁloc and so it becomes
desirable to have expressions for the symmetrizers that are in terms of the 1, and &, (and c-functions).
Perhaps surprisingly, these conversion formulas, presented in Proposition [2.3] are compact and elegant
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(and useful!). We will use them in Section [ to provide formulas for the symmetric (bosonic), anti-
symmetric (fermionic) and half symmetric-half antisymmetric (mesonic) Koornwinder polynomials.
For w € Wy, let

§w = &siy =&y a0 M =05y gy

4

if w=s;, ---s;, is a reduced word for w. There are four X-symmetrizers

F= 2 & = ) (Tl

weWgn weWgn
ei( e Z (_1)Zd(w)£w7 e‘q)g — Z (_1)£s(w)£w’
weWgn weEWign

and four Y-symmetrizers

ei e Z 7’]“}7 e{ — Z (_1)Zs(w)+£d(w)7]w’

weWgn weWgn
weWgn weWsn

The following proposition writes the Hecke symmetrizers in terms of the X-symmetrizers and the
Y -symmetrizers.

Proposition 2.3. Let r3, k5 be as defined in (ZII)).

+ _ X, X"l X"l Y Y Y + _ X, X X Yol oyl y
XT (T )e+ = €4 RG Ky = €LRg Ry, and X (Twy)e— = K k€2 = Ky, Ky, €,
+ X X Xyl Yy + _ X X, X7yl y Y
X (Two)gi = K, €4 Kst = Kgr €xRst and X (Two)g:F - HsteZF"idr = Kt e:FHdr'

Proof. Let us prove the formula x* (T}, )etr = k5 eXrs ', The proof for the other cases is similar.

Let

X X, x1
Ri = Rqr€4 Rt

For i € {1,...,n — 1}, and using (2:2]]),

1 1y x x x-! X X X, x1
(TIZ - tz)R:l: = (T’Z - 75-2)"<’d1"e:|: Rgt = _Cai(l - gsi)/{dre:t Kt
— — 1
= —/{gﬁcé‘;(l —&)eX Ry f= —/{gﬁcé‘; 0K ' =0, so that TRy =t2Ry.

Using (2.16),

-1 -1 -1 -1 -1 -1 -1
(Tn+tn ) Ree = (T + tn 2)eiek il = (14 &), raeirl = (1+&)Rdca, eXra

Qn

X1 X1
— X1 Ca,, x' x x1'_ x| x1', %, x X x-1
- K‘dr( + X gsn)can €1 Rt = Rgr Can + X Cangsn €4 Rgt

Qn Qn

_ X X1 X1 X x1_ X X1 X1 X, X1 _
= KRqr (can + Can, gsn) €3 Rgt = KRqr (can — Canp ) €1 Rgt - 07

_1
so that T,Ry = —t, ? R+.
_ — 1
Since T; = §Sic§i e (cgi - t72) and the coefficient of Ty, is 1 then there are rational functions
aX ™" such that

w
—1 -1 -1
X+(Two)5ﬂ: = X" (Tuwp) Z gwag = X+(Two)€w00§o +X+(Two) Z gwag

wEWay w<wo

-1 -1
:’ié{r&Uo’%g +X+(T’w0) Z é‘wag .

w<wo
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The element ¢4 € Hg, is determined by the conditions that the coefficient of T, is 1, and T,,e4+ =
_1
—tn2ex and Tjey = tési forie{l,...,n—1}. So xT(Ty,)e+ = R+. O

2.7 Symmetrizers and stabilizers

The finite Weyl group Wy, acts on Z™ by the formulas in (I3]). Since the action of Wg, on Z™ is
not free, there are elements of Z™ that have nontrivial stabilizer, and one is forced to confront these
stabilizers. This subsection computes formulas for the symmetrizers which take into account, and
allow us to manage, the cases when the stabilizer is nontrivial.
Let
(Z2)T ={A=(1,.. s M) €Z" [ A1 >+ > X > 0}

The set (ZZ,)" is a set of representatives of the Wyy,-orbits on Z". For A € (Z%)7, let

W {w € Win | wA=A} and W { minimal length representatives }
A= fin = =

of cosets in Wry, /Wy

Let w) be the longest element of Wy and let vy be the maximal element of W*. As in (L2)), then vy
is the minimal length element of Wy, such that vy A is increasing with all entries < 0. Let

1
‘Sj\_ = ﬁ Z X+(Tw)Tw (2'30)
Xt ( “’A)weWA

so that Tw&?j\r = X*’(Tw)ajf, for w € Wy, and the coefficient of T, in Ej\_ is 1.
Define p,w, ™ € (Z%)* by

p=Mmmn—1,...,2,1), w=(1,1,...,1), T=m-1,...,2,1,0). (2.31)

The statement of the following proposition is designed to stress the analogies between the four sym-
metrizers €1, €4, e+ and e—. As in Remark (4.I)), in practice, there are simplifications since the
stabilizers W, and W), have order 1 or 2. Specifically,

W)\-i-p =1, W)\-i-p = Whn, X+(T

— + 1.
way,) =1 and eX, =1

ISINTES

_1
and N =T, +1t,?;

if A, = 0 then Wiy = {1, 82}, xT(T, Expn

Wr+47

)=t
and
if \;, # 0 then Wiir =1, WA = Wiy, X (T,

wayr) =1 and fo=1
Proposition 2.4. Let A € (Z%)*. Then

E)\-Hr

T(wy) Z Hf&zﬂzﬁf Ej\_u

2€EWA

X+(Two)‘€+ =X

¢ y
o) | Y (DRE st | el
ZEWAtw

X (Twy)ex = X

ls Y
X (To)es =X (waen) | Y (CDORLnewl | el

X (Tug)e— = xT(wrgy) | D (D) ny nerl | el



Proof. We will prove the 4+ case. The proof for the other cases is similar.
Let

Tew ={a € (83, | 0¥ & Inv(wyrw)}

so that Jyi, is the complement of Inv(wyi) in Sar’s. If v € Wyyy then vJyip, = Jyiw, since v
permutes the elements of Jy 1.

A y-l oy + Y
If 2 € WA then kg, m.hj, = Koy, 272hs -

Then

+ _ Y1y vy _ _ v! Lg(w Y
X (Two)gi = Rar €+Rst = Kar Z (_1) ( )77w Rt
weEWgn

= ’%(}i/ril Z Z (_1)£d(z)nz7]v H;i

ZEI/I/A+W UEWA+W

-1
:'L{é/r Z (_1)£d(Z)772 Z o /{§A+wﬁg)\+w

ZEWA+wW VEW 4
_ vy Z Ly(z Y Z Y
= Rqr (_1) ( )772 /{JA+W U K’w>\+w
zEWAtwW VEW N1
_ § : Ly(z) £ Y § : Y
- (_1) ( )H’U)\erznzﬁz T Rw>\+w
2EWAtw VEW 1w

l + Y
= Z (_1) d(Z)"ierwznZ’%z X+(Tw>\+w)€;\i_+w’
ZEW AW

O

Remark 2.5. With w = (1,1,...,1) and 7 = (n — 1,...,2,1,0) and v, and v, as defined in (L2)
then

vy(i) = —(n—i+1) sothat Inve(v,) ={ei+¢;|i<j} and Invg(vy,)={e1,...,en}

since, for example, v,(e1 —&,) = —€, + €1 = €1 — €,. Then
) )

i i
v (i) = { " le #n so that Invs(vy) ={g; £¢;} and Invy(vr) ={e1,...,en-1}
n, ifi=mn,

If A € (Z%,)" then Wy, C W, and Wy, C W giving
Invg(vatw) 2 Invg(vy,) and Invs(vasr) 2 Invg(vyg).

Thus
Invg(vasw) = {€1,---16n} and Invg(vayr) ={ei £¢; | i < j}.
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3 Electronic Macdonald-Koornwinder polynomials

The electronic Koornwinder polynomials £, form a basis of the polynomial ring K[a:l ,oo, . They
are simultaneous eigenvectors for the Cherednlk Dunkl operators Yi,...,Y,. This is in analogy to the
way that, in quantum mechanics, Hermite polynomials are eigenfunctions of a Hamiltonian operator.
In this section we set up the operators Y7,...,Y,, on the polynomial ring, characterize the electronic
Macdonald polynomials E,, as eigenvectors, and provide recursive formulas for computing them.
3.1 Operators on polynomials
Let K[z] = K[zF!, ..., 2;t!]. Let Z" denote the set of length n sequences 1 = (1, ..., un) of integers.
The ring
K[z] has basis  {z* | p = (u1,...,un) € Z"}, where — zt =i - ah".
Define operators &5, &5, - - -, &s,, On K[wl ,oo, o by
(Ssof)(xla cee an) = f(qw1_17x27 L 7xn)7
(Ssif)(xla L 7‘Tn) = f(f]:l, LR 7‘T’i—17xi+17x’i7x’i+27 LR 7xn)7
(£Snf)(x17 v 7:L'n) = f(!L'l, s 7$n—17$;1)7
for f € K[z, ...,z and i € {1,...,n — 1}. Define operators X1, ..., X, on K[zF!, ... 2] by
Xif=ux;f, for j e {1,...,n}. (3.1)
Consider the induced representation
Indgy(ly) = ﬁintly = K-span{X{" - - X1y | p = (p1,. .., pun) € Z"}
determined by
1
Tooly =t 1y, and T;1y :t%].y, forie{l,...,n}.
Then the map
Kzt .. e — Hip 1 . ~ . .
[ }fl ' xﬁ”n ] s X mthn 1y is an Hjy-module isomorphism. (3.2)
We shall often identify K[z] = K[z{',... 2] and Hiply and K[X] = K[X:E . X via this
isomorphism.

3.2 The operators 7,,,,...,1,, and Yp,...,Y,
Define operators T, Ty, ..., Ta, by

1
To, = tgz

7

e (1-¢&,),  forie{0,1,...,n} (3.3)

Define
Y; = Ta_jl,l "‘Ta_llTaoTal T -

n

T, for j e {1,...,n}.
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Using (2.2) and (2.4]),

lt% _% _ lt% %
(z1+q2tgug *)(z1 — q2tgug)

1
t2T,, =ty — 1-¢&,),
0+ x%_q ( 80)
- .
1 14t 1t
T, =t | R | 1), (3.49)
n
3T, =t — LT ey forie{l,...,n— 1)

Tit1 — X4

(see [Nou95, §3] and [Sah99, (13)] and [CGAGW16 (73)]).

3.3 Electronic Macdonald polynomials F,

For p € Z" let v, € Wy, be the minimal length signed permutation such that v, u is weakly increasing
with all entries < 0. The electronic Macdonald polynomaials

1 1 1 1

E(z1,...,2p;q, 0,88 ,ud 123, u?) € K[xfl, o x are indexed by p = (p1,...,1un) € Z"
and are defined by the eigenvalue conditions
N :
Y,E, = q—wt—vu(J)(tOE tgtn)sgn(vu(J))Ew (3.5)

for = (p1,...,pun) € Z" and j € {1,...,n}. The normalization of E, is such that the coefficient of
ztin B, is 1.

Let K(Y) be the field of fractions of K(Y). For p = (p1,...,pn) € Z™ define homomorphisms
ev,: K[Y] = K[Y] by

. 11 .
L(Yy) = g it e 22 ¢mysenal) - for g e {1,...,n}. (3.6)

evu

Extend evz to those elements of the field K(Y') for which the evaluated denominator is nonzero.

By @B.5)

fE, = evZ(f)EH, for f € K[Y] and p € Z™. (3.7)

3.4 The recursion for the £,

Although the eigenvalue conditions together with the normalization completely characterize the Koorn-
winder polynomials F,,, computing them by solving directly for eigenvectors is not efficient. Fortu-
nately, the operators 7,/ = Nsy c};v from the algebra ﬁ[loc provide a very nice recursive way of computing
the E,. This is analogous to the way that, in Schubert calculus, the Schubert polynomials are con-
structed recursively using divided-difference operators.

Define operators Ty, Ty, - - ., Tay on K[X] by

(Toy) ' = XiToy - Ta, - Tay,  and  Tov =T,  forie{l,...,n} (3.8)
and define
_1 1
7 =Ty + (t,2 —chv) = (Toy) ™ + (820 —clv),  forie{0,1,...,n}. (3.9)



By @2I0), 7,/ = n ¢, so that
YN =ysN Y forie{0,1,...,n}. (3.10)

The group Wx (generated by sj,...,s,) acts on Z" by

ren

SE)/(/’LM o 7,un) = (_Nl + 17“27 o 7,un)7
32/(,“17 o 7,un) = (/,Ll, sy Mi—15 i1y My Li4-25 - - 7,un)7 for i € {17 s — 1}7 and
SX(MI, s ,,un) = (:ub <oy Hn—1, _/LTL)'

The relation ([3.10) is the reason that the electronic Macdonald polynomials E,, are equivalently defined
by the following recursive relations:

(E0) E,.0) =1

(E1) if p1 < 0 then Egy, = t"_lt,%TS/EH;

(E2) ifie{1,...,n—1} and p; > pi41 then Eyv, = t%TiVEu; and
(E3) if pp > 0 then Egy,, = ,%LTXEM.

3.5 The creation formula for F,

The recursion of the previous subsection can be packaged nicely as a single formula for creating the
Koornwinder polynomial E,. This is the creation formula in (3.1T]).

Let p € Z™ and let h, € Wx denote the corresponding translation. Let u, € Wx and v, € Wy,
be as defined in (L2, so that

u, € Wx and v, € Wa, and  h, =uyv,, with £(h,) = €(uy) + £(vy).

Using the identification of K[$iﬂ, ..., o] with Hiply as in B2)), the creation formula for £, is
_ v Vo V.Y
E, = m@ﬂly, where 7, =7 -7 (3.11)

if u, = s, --- s, is a reduced word for u,,.

Proof. Using
-1 -1 —1(i-1)3 44 (n—1) 3, 4 (n—i) Cig3.3m
}/i]-Y:Tai,l"'Tal TooTo, Ta, - To,ly =t72 tot2 tht2 1y =t (totnt )]_y,
and hlel = h_yef = e — (u,—¢]) K = + ;K gives
Y}'TlﬂlY = YaJYT;/u]_y = YalyT;/u]_y = T&/#Yu“ ef 1y = TQ\L/#YU“h“ &/ 1y
\
= Y IOL, = gt ooy

L1 .
— q_uszYMYvu(j)ly — q_th_UM(])(tg t%tn)sgn(vu(J))T;/H 1y.

Lol .
Thus Tuvuly is an eigenvector of Y; with eigenvalue gt~ () (22 )% (vu (7)),

21



Using the formulas ([8.9]) the product T&/u can be expanded in terms of the elements
{XA/TU | v e Zn’,u € Wﬁn}'

Since u,, = t“vgl then the top term in this expansion is X ”Tv;1 and

Lo (1Y, 2lg (vt
X“Tv;1 ly = X“X+(TU;1)1y, where X+(TU;1) = 20V )42 k)
Thus multiplying TTYH]_Y by xT (T U;l)_l makes the coefficient of X* equal to 1. O

4 Bosonic, Fermionic and Mesonic

The Weyl character formula is the formula that expresses the Schur function (a symmetric polynomial)
as a quotient of two determinants (antisymmetric polynomials). There are Weyl character formulas
in the Koornwinder context as well (see Section [5.6]). However, in the Koornwinder context, one finds
that there are four Weyl character formulas, corresponding to the four symmetrizers e, ,e4,65,6—
introduced in Section

This section sets up the components for Weyl character formulas in the Koornwinder context.
There are four types of symmetrized Koornwinder polynomials: the bosonic (symmetric) Koornwinder
polynomials, the fermionic (antisymmetric) Koornwinder polynomials and two types of mesonic (half
symmetric-half antisymmetric) Koornwinder polynomials.

The denominator in the classical Weyl character formula is the Vandermonde determinant, an an-
tisymmetric polynomial with a magical factorization. In the Koornwinder case the Weyl denominators
also have magical factorizations. These Weyl denominators are presented in Section

Every antisymmetric function can be obtained by multiplying a symmetric function by the Weyl
denominators. In [CR22, §4.3] we viewed this correspondence between symmetric functions and anti-
symmetric functions as an analog of the Boson-Fermion correspondence relating the symmetric algebra
realization of Fock space and exterior algebra realization of Fock space (a representation of a Heisen-
berg algebra, see [Kac, §14.10]). In the Koornwinder context there are four spaces: the bosonic
space (symmetric functions), fermionic space (antisymmetrized functions) and two mesonic spaces
(half symmetric-half antisymmetric functions). These four spaces are all isomorphic as vector spaces,
the isomorphisms being given by multiplying by the different Weyl denominators. This structure is
explained Section 3]

In Sections[4.4] and [£.6] we use the symmetrizers to give formulas for the Poincaré polynomial of
Wiin, for the E-expansions of bosonic, fermionic and mesonic Koornwinder polynomials and formulas
for the principal specializations. These results are Koornwinder analogues of the formulas in [CR22|
Propositions 4,6 and 4.7 and Theorem 5.1]. All of these formulas are given, in an even more general
setting, in [Mac03} (5,5,16), (5,7,8), (5.2.14),(5.3.9)].

4.1 Bosonic, Fermionic and Mesonic Macdonald-Koornwinder polynomials

Let
( gO)+:{A:(A177An)GZn|AIZZAnZO}

For A € (Z%,)", let

Wa={veWs |vA=2X} and  Wiltt,) = Y _ t°0al) = 3" H(T,)2
veEW veWy
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Let p,w,m € (Z%;)" be as defined in 231I). Then, for A € (ZL,)", define the bosonic and fermionic
Macdonald-Koornwinder polynomials are

+ +
X (Twy) X (Thwo)
Py=+"——"%c.F) and Ayi,=-—"—c FEri,, 4.1
Wi(t,ty) * e Wiip(ttn) I )
and the mesonic Koornwinder polynomials are
+ +
X" (Twy) X" (Twy)
Af, =—>— o F d Af, =" c By 4.2
Aw WA-HU(t,tn)Ei Aw an A7 WA+7r(t7tn)€:F A ( )

Remark 4.1. The notation in ([@I]) and ([£2]) displays the parallelism among the expressions. For
computation it is useful to note that the denominators can be given very explicitly:

(1 —t™) tn+1, if Ay =0,
W t7tn = 17 W w tatn = -1 4 W s t7tn =
Mp(ttn) Mw(ts tn) 1:[ 7 At tn) L it A, 0,
where m; is the number of parts of size i in A = (Aq,...,\,). In particular, Wy, (¢, ¢,) depends

only on ¢, and Wy, (t,t,) depends only on t. The factor X+(Two) guarantees that the coefficient
of Xw0A = X~ is equal to 1 in Py. Similarly, the coefficient of X ~(*+#) is equal to 1 in Axyp, the
coefficient of X (M%) ig equal to 1 in Af .., and the coefficient of X ~(A+7) ig equal to 1 in AT .. O

4.2 Weyl denominators
Define a2, af,a,, AS, AT, A, € K[X] by

n n 11 11
at =z H(l —z?), Ar = gv < (1 —tﬁuﬁxi)(l—i-t%unzxi)) ,
i=1 =1

(2

af =x7 " H (1-— mimj_l)(l — z,x5), AT =a77 H (1 — taz;) (1 — ta:ia;j_l) :

1<i<j<n 1<i<j<n
a, = afa?, A, = AT AE (4.3)
Then
at = %ef:pw, af = %ei(a:”, a, =e_a’,
1 ln 1 n
tgn(n—l)tz t§n("—1)t2 1 1,
+ n X F _ n X 4 -1
Ado="pr = AT =01 = Ap =120Vt
where
1 1 (1 — ¢
tgn(n—l)t%" = X+(Tw0)’ [’I’L]' = H (1 — t) = Ww(tatn)7 1+ t, = Wﬂ(tatn)'
i=1
By (211, . .
A X AT(' X AP
a—l} = Kdr> E = Kst» a—p:ﬁwo
Since N N
Ap — X (TwO) E_xﬁ — X (Two) E_Ep,
WM—p(t, tn) W)\-i-p(t’ tn)
+ + + +
X (T X (Twy) X (Twy) X (Twy)
AT = 2 w0l o W= o 0 B, d AT = "0 o o™ = 2 N o B
©C T WLt T T Wttt T Walttn) T T Waltit,) T

there is no conflict of notation with the mesonic Macdonald polynomials introduced in (£.2).
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4.3 Bosonic, fermionic and mesonic spaces

The polynomial ring K[X] is a module for the action of K[X]"i» and the structure of K[X] as a
K[X]Wan-module is of classical importance in the theory of reflection groups. In fact, there are two
commuting actions on K[X], the action of Wy, and the action of K[X]"&». The part of this picture
that is captured by the X-symmetrizers can be stated as follows.

Define
K[X]Win = {f € K[X] | if w € Wy, then wf = f},
K[X]* = {f € K[X] | if w € Wy, then wf = (~1)%(®) f},
KIX]T = {f € K[X] | if w € Wgy, then wf = (—1)%) f},
K[X]% = {f € K[X] | if w € Wy, then wf = (—1)f@)+la@) £},
Then
er K[X] = K[X]"on, XK[X] = K[X]* = a2 K[X]Ven,
ZK[X] = K[X]%" = a,K[X]"™, X K[X] = K[X]F = aFK[X]". (4.4)

Now we proceed to a t-analogue of the equalities in (£4]). In this case Hecke algebra Hg, replaces
the finite Weyl group, and the actions of Hg, and K[X]"f» are commuting actions on K[X]. The part
of this picture captured by the Hecke symmetrizers is the following.

The bosonic, fermionic, and mesonic spaces are

K[X]B = {f € K[X] | Tof = t2f and Tof = (3 f for i € {1,...,n}},

KX = {f € K[X] | Tof = —tn2f and T,f = —t3 f for i € {1,...,n}},
KIXMe* — (f € K[X] | Tof = —t52f and Tpf = 3 for i € {1,...,n}},
KIXPMT = (f € K[X] | Tof = t2f and T,f = —¢3f for i € {L,...,n}},

With these definitions, the following proposition establishes t-analogues of the equalities in (44]). The
Weyl denominators of Section are a key part of the structure.

Proposition 4.2. Let e4,c4,ex,6_ be the symmetrizers defined in (2.27)).

K[X]5% = e, K[X] = K[X]Wen, KX = e _K[X]
K[XMest = o, K[X] = ATK[X]Wan, K[XMSF = e K[X]

APK[X]Wﬁn7
ATK[X]Won,

. + .
Moreover, with Py, Ay, AT, and Axy, as in @I) and @2),

{Pr | N (Z%)"} s abasis of ey K[X],  {Axyp | A€ (Z2)T} is a basis of e _K[X],
{Ai_w | A€ (Z20)T} is a basis of exK[X],  {AJ,, | A€ (Z%)"} is a basis of exK[X],

Proof. We will give the proof for the 4+ case. The proofs for the other cases are similar.
Assume f € e K[X]. Then there exists g € K[X] such that f =e1g and

_1 _1
Tof =Thetrg = —tn’erg=—t,° f and Tif =Tierg = t%E:I:g = t%f,

forie {1,...,n—1}. So f € K[X]M** and e1 K[X] C K[X|Mes*,
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If f € K[X]Me* then

:tTw iTw iTw A:t - A:t
po X o X Tw) x xoxote . X (Tw) AD xoxore o Al

Wolt,tah) 2 T Wt )" Wo(t,tnh) a ¢
AL AT
Since —2K[X]* = —£afK[X]Win = AZK[X]V6n then K[X|Mes* C ATK[X]Wn.

(%)

Assume f € Aij[ JWan. Then there exists g € K[X]Vn such that f = AZg. Then

+
f Awg = (%Eixw> g = &4+ (Ww“@) € EiK[X].

So AZK[X]Wi» C e K[X]. This completes the proof that K[X|Me* = ¢, K[X] = ATK[X]Wan.
Define

M;t =ce1 By, for p € 7.

1
Let i € {1,...,n}. If u, =0 then s,pu = p and T, E, = t3 E, so that

MMi =exTovEy = (_tn)%EiTa;{E,u = —M,,, which forces Mf =0 when u, =0.

Ifie{l,...,n} and s;u > p then
Msf“ =e+Fy,y = Eit%TZ-\/EM = Eit%(Taiv + (t_% —cr)E,

1 1 1 1
1.1 -1 Y Ly tY
=eqpt2(t2 +1 2 _CaiV)EM —Eit2c_aiv M —eVu(’f—aiV)Muv

so that M ff and M sf“ are linearly dependent. It follows that
e+ K[X] = ]K—span{MjE | A€ Z"} = K-span{M /\+w | A e (Z2 )+} K—span{A)\er | A e( gO)JF}

Since Af_w has top coefficient z=(**“) (in the DBlex order, see Section [5.3) and the monomials are
linear independent in K[X] then the set {AF o | A€ (Z%))7} is linearly independent. O

4.4 Formulas for the Poincaré polynomial

Recall from (2.28]) and ([B.6) that the Poincaré polynomial for Wy, is

o101
Wolt,tn) = > xT(Tw)®  and  evj(V;) = t" 123
wEWgy,

defines the evaluation homomorphism ev): K[Y] — K. The following Proposition gives four ways
of looking at the Poincaré polynomial: as a sum, as a product, as an evaluation of “wov and as a

-1
symmetrization of Hwo

Proposition 4.3. The group Win acts on K[X] as in (214]). Let wy denote the longest element of
Win and let k% and kg, be the noramlized c-functions given in (Z12) and @2I3). Then

n
(1 —t)(1 + it 1
o(t, tn) = H I ) = evg(mgo) = Z w(/{fgo ).

(1—1)
=1 weWsgn
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Proof. Since x*(T,,)? = s ()¢fa(®) then

X" (Twg)e+ 1y = Z X (Tw)Twly = Z (Xt (Tw))* 1y = Wol(t, tn)ly
wEWﬁn wEWﬁn
Using the first formula in Proposition 23],

X7 x-1
X+(Tw0)€+1y - 6—1— wo 1Y - Z Sw U)O = Z w(’%wo )
wEWan weWpgy

Using the second formula in Proposition 23}, 41y = e¥ K Eoly and

X+(Two)5+1Y = Z T HEO 1y = eVB (’%Eo) L+ Z e | 1y
wEWep weWap,w#1

—eVO( )(1+O) 1y:ev0( wo) 1y.

Finally,

1 1 1 1

1—tY; Y7 H(1 = tYY; o1 —t242Y;)(1 + 2t 2Y;
et () = et ( T1 oy g vt [ 8 T L tR00 2
i<j (1_}/ZY )(1_YVZYYJ) i=1 (1_}/2)

11

1
(1 -t~ ’t tnt (=9t 2t02)(1—tt" ’t tnt" Jtotn)

1
i<j (1—t”—2tnt t—<"—ﬂ)tn2t02)(1—t"—ltnt t”—ﬂtotn)
n 1 1 1 1 1
(1 — tot, t2(n— 2>)

=1
. H (1 — tj-i-i—l)(l t2n—j—i+1t tO) <ﬁ 1 —t t()tn 2)(1 + tntn—2)>
- _ i _ 42n—j—1i _ n—i
i (1 — t3=1)(1 — t2n=3~it,t0) Pl (1 — tot, t2(n—0)
B ﬁ (1 —t9)(1 — 2" Tt,tg) H (1 — tptot™ ) (1 + t,t" %)
9:2 1 _ t — t2(n—j)+1¢ tO) paley 1 _ totnt2(n—i))
B ﬁ (1 — (1 + tut?) ﬁ (1 — 2" It,to) ﬁ (1 — tptot™™)
= 1 (1—1) s (1 — t2n=i)+1¢, t5) a- tot,t2(n=0))
_ ﬁ (1— )1+t 1)\ [ (1= tiLt,t0) ﬁ £ (1 + t,ti=1)
palet (1—1) el t=1t,to) pabet (1—1) '

4.5 E-expansions

The following Proposition uses the formulas for symmetrizers in terms of c-functions from Proposi-
tion 241 to give explicit expansion of the bosonic, fermionic and mesonic Koornwinder polynomials
in terms of the E,,. The coefficients in these expansions are evaluations of c-functions. This is an
example of how the c-functions (which live in the ﬁeld of fractions) appear in the structure even when

doing expansions of polynomials that live in K[zF', ...zt
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Aw?
defined in @) and @2). Let ev), be the evaluation homomorphisms defined in (B.8) and let /{E‘L be

the normalized c-functions defined in (2I0) and ([L2). Then

Proposition 4.4. (E-expansion formulas) Let A € (Z%y)* and let Py, A AT, . and Axy, be as

Py = Z evZ(mjﬂ)Eu, Airw = Z (—1)gd(”“)ev2(ﬂi)Eﬂ,
neEW X HEW (A w)

Arpo= Y. (=) evl (k) By, AL .= Y. (—)5Wev! (] )E,.
HEW (A p) HEW (M)

Proof. Let us do the case Af 4o The other cases are similar.
; vV _ Y Y il vp _
Since 1;" = Ms: Cay and t27," E) = E,v, then
1 1 -1
gt v _ .l v Y _ Y. Y _ Yy
By, =t E, = t2778icaivEu =N, Ko B = Koy N, B

If z € WA then

— Y Y _ Y _ Yy !
EZ()\-i-w) = 7731'1 K’Olil e 7781'[ /{Oéil E)\—i-w = UZ/{Z E)\'HU = /{271 nZE)\—i-w-

If w € Wy, then
TwEriw = XT(Tw)Exiw (in the same way that T, 1y = x (T}, )1y for w € Wgy).

This gives that

1 1
X Brtw = T ) Z X (Tw)? Extw = WW/\+w(t7tn)EA+w'
X Wr+w WEW 40 X Wr+w
Using Proposition (24]) gives
+
X" (Twy) 1
Ay == e By = Z (—1)%('2)/13“&77%3 X (T )et 0 Bato

W)\—I—w (t7 tn) W)\—I—w (t7 tn)

vEWA+w

1 + Y Y 1 +
= Z (_1) d(Z)/QUA+wz77z Kz E)\-l-w = Z (_1) d(Z)’{v)\erzEz()\—i-w)
veEWAtw veEWAtw

= Z (_ 1)Zd(2)evi(>\+w) (Hijsz)Ez()\—i-w)’
2€EW5n

4.6 Principal specializations

One of the most pleasing combinatorial miracles in Lie theory is that principal specializations of Schur

functions and Weyl characters factor as products (see [Kac, §10.9] and [Mac, Ch. I §3 Ex. 1]). This

feature extends to Macdonald-Koornwinder polynomials, and the result in this subsection shows that

the principal specializations of Macdonald-Koornwinder polynomials are evaluations of c-functions

which come naturally out of the recursive construction of the electronic Macdonald polynomial E,,.
Define ring homomorphisms ev): K[Y] — K and evg1 : K[Y] — K by

11 R R
evh (V) = "2 t2 and evh(Y; ) = t_("_l)to *tn 2, forie{l,...,n}.
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Theorem 4.5. Let u, A € Z" with \y > --- > X\, > 0. Let u, and hy be as defined in (L2) and the
normalized c-functions k¥ and /f%; as in (29). Let

Up
(n— _1 (- _1 _1
a1 =t~ D(tot)72, ag =t " D(tot,)"2Z, ..., an = (totn) 2.
Then
L1 1 1 1 -1
Y
Eu(ai,...;an;q,t,t5,u8, tn,un) = X+(Tv71)evg(cuu ) and
R
P)\(a17-”7an;q7t7t07u07tn7un):eVO (chA )

Proof. For this proof use the realization of the polynomial representation K[X] as an induced module
H1y via the H-module isomorphism of (3:2)). Let 1x be a formal symbol which satisfies 1xT; = t21 X

1
and 1xTy = t21x. Using Xy = (Ty) ' 7y7 - T - T and Xy = T, XT; gives
_1 1
1xX; =t~ V¢, 2t 2t fori € {1,...,n}.

Thus, if u € Z™ then
101 1 1 101 1 1
1XEM(‘T17-”7xn;q7t7t(%7u027t7217u%):1XEu(ala"'7an;Q7t7t§7u57t%7u721)-
For i € {0,1,...,n}
v y-t _ .1 1 y-1 .1 Y
1XTi =1x (Tav—l-(ca\_/ —t2)>:1X <t2—|—(Cay —tQ)):lXCav .

By (.7),

If w e W and ¢(s;w) > ¢(w) then
1xTZ~VTL\U/1y = 1Xc§v717'1\0/1y = 1)(7'1\;05::06\_/1)/ = evé(cg::a\_/)lxﬂ\;ly.
This is the induction step giving that if w € W and w = s;, - - - 55, is a reduced word for w then

—1 —1
lel\jly = 1X7'¥ . "Ti\zly = 1XeV6(cg )1y = evg(cg Jx1y.

Thus ] )
1xEBly = —— 1y’ 1y = EeY 1xly.
Y =y T T Sy ol
Using 1xe; = ﬁWO(t,tn)lx from (2:29) gives
wo
3,3 43 .3 X (Twy)
Py(a1,... an;q,t,t5,u8  tn,ua ) 1xly = 1xP\ly = 1x——<e E\1y
W)\(tytn)
Wol(t,t 1 Wol(t,t -
= 70( ’ n) 1xE)\1y = 0( ’ n) evg(c; 1)1x1y.

W)\(t,tn) X+(Tv;1) W)\(t,tn)

Let
wy € Wan be the longest element of Wy = {v € Wy, | vA = A}.
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Then by Proposition [A.3]

1 _ —1 —1
vy = (wowy) Tt = wyw and Wi(t, tn) = evf)(/igk) = ev} (/ig/\ ).
Since h) = wu)vy then u) = hxv)fl = v;lthA = v;lthA = v;lhwo,\. Using this and ev)(Y;) =

evh TV =evlh (VL) = evgfl(on(i)) gives

(2

y—1 -1 y1
evlf)(cuA ) = ev (v} Cuy ).

Therefore

1 -
t Y*l _ X+(T’LUA) t71 HZO t Y71 . t71 Cwo t71 1 Y71
T ) WA(t,tn)eVO(CW ) = X+(Tw0)evo ~ evp(cy, )= evy v | evo (vy e, )

wy
-1 -1 -1, _ -1 -1 -1 -1
=evy (c Jevg (v3'len, ) =evh () =evp (ch, )

which completes the proof of the second statement. O

Remark 4.6. The principal specializations of the fermionic and mesonic Macdonald polynomials are

11 1 1
A)\-I-p(alu L 7an;Q7t7t§7u027t72L7u721) = 07
n 11 1 1 101 1 1
AN, (ar, . ans g, ttg,ug  ta, un ) = 0, and Aiﬂr(al,...,an;q,t,tg,ug,t%,u,%):O.
To establish this for Airw, use 1xe+ = 0 to get
1 101 1 +
11 1 1 X T
A;\:_w(alv <oy nj q7t7t§7u(?7t72hu%)1)(1y = ]-XA;\:_M]-Y = m(i(ltm)t))ngiE)\-i-wlY =0.
+w\by tn
The proof for the other cases is similar. O

5 Orthogonality

In this section we study the Koornwinder polynomials as a family of orthogonal polynomials for a
specific inner product. The inner product (, )4 is defined via multiplication by a kernel and taking
the constant term (for those with an analytic bent, taking the constant term is an integral and the
kernel is what defines the measure for the integral). The Macdonald-Koornwinder inner product is
defined in Sections [5.1] and The kernel is a huge product of c-functions, one for each positive root
in the affine root system of type C'C,,.

The Koornwinder polynomials are characterized by orthogonality with respect to this inner product
and a triangular expansion in terms of monomials. In order to use the Hecke algebra as a tool in the
inner product setting it is crucial to establish that the adjoints of operators that come from the Hecke
algebra are tractable. This is done in Section 5.4l In particular, we find that the symmetrizers are
self adjoint operators.

The proof of the Weyl character formulas and the norm formulas for Koornwinder polynomials rely
on a shift of parameters coming from multiplying by the Weyl denominators. These going up a level
formulas, derived in Section [5.5] are the key to establishing recursive relations for computing norms.
The recursive relations are derived in Section [5.7 and the norm formula for (Py, Py)+ is established in
Section [5.91

In the same way that there are four symmetrizers, there are four going up a level formulas, four
Weyl character formulas, four types of recursion relations. In each case, one of the four formulas is
usually a triviality, but we have included these trivial formulas in our exposition each time in order
to highlight the underlying symmetry of the structures. In the end, the various formulas combine and
complement each other to provide the inductive structure for computing norms in terms of c-functions.
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5.1 The kernel A},

For an affine root (3, define

1 1 1 1
42,2 %8 3, 2 vp
/-;X:t%cX: (I —t5us XP)(1+t5uy*X"7) (5.1)
B BB (1 — X20) : :
More specifically, if 4,5 € {1,...,n} with ¢ < j and r € Z>( then
i1 _1 il LL -1
X 1t XX x =Mt X)L+ ¢ R un ? Xp)
Rei—ejt(r+1)s = 1— qT'HXiX-_l ’ Reit(r+1)s = 1— q27’+2)(i2 7
J
11 1 _1
X 1t XX X _ (=R X (1 + ¢ G g T X,)
Keitej+(r+1)8 = 1_ qr+1Xin ’ "{si—l—(r—l—%)é - 1— q2r+1X2 :
(2
Let ST be the set of positive roots for the affine root system so that
+ _ ot + + + + + + +
ST=8,,US5, _US; USS_US; US; US; USq,,
where
S+ — (€Z_€J)+(T+1)57 ‘ i)je{lv"'vn}v
st (ei+ej)+(r+1)0 i<jandr €Zsy |’
o+ _J —Ei—g)+(r+ 1) ‘ i,je{l,...,n},
= —(eit+ej)+(r+1)6 i<jandre€Zsy |’
i 1 ie{l,...,n} n ‘ ied{l,...,n}
— ) 1 — ) 1
So+ {52—1—(7"—1—2)5‘ re Zog , Sis gi+ (r+1)6 re Zog ,
+ _J 1 ie{l,...,n} + _J ‘ ie{l,...,n}
sg,__{ g+ (r+ )3 | R T R R L A L IR §
Sos={eitejlije{l,...,n}withi<j}, Sj;={elie{l,...,n}}.
Then define
+ _ X
Abe =TI 5 (5.2)
Bes+t
and
X X X X X X X X
Ag: H /{B, As: H /{B, Ad: H KJB, AO,s: H/{B,
pess pest, pes; | pesy,
—1 -1 -1
ay = 1L w0 a8 = I w5, a8 = ]I =, 2oa=IT =5
pest_ pest_ pesy _ BEST,
so that

XAXTTAXAXTIAXAXTIAX AX
AZ‘C = Ag Ag As As Ad Ad AO,SAO,d’
Remark 5.1. In terms of the Askey-Wilson parameters a, b, ¢, d (see (0.I])), the expression AZ‘C used

to define the inner product is
ALy = ADAR)
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where

NG| (twix "5 Qoo (tri5; Qoo (tq; ' 255 @)oo (ta; 27 @)oo
1<i<j<n (22555 @)oo (255 @)oo (47255 oo (g2 271 ¢) oo

and

A(l):ﬁ(cxi;q) 0o (92713 @)oo (A3 @)oo (97 '3 @)oo (013 @)oo (0275 )00 (245 @) 0 (D273 @)
i=1 (2% ¢)oo (927 %5 @)oo '

This is verified by noting that A(?) = AfAéfSAfil, and that A(D) = AXAX 1AXAX AOd since

11 1 1
(1 —tAud q"x;) (1 4 tiun 2 ¢ x;)

d n
H H C:L'z, 337,7 )oo _ H : - AXAO 5
i=17€Z>0 9%)oo i=17€Z>0 (1 —¢*a7)
H H (gex; ,q (qdz; ;5 q)oo ﬁ (1—t2qu”'1 )(1+t2un2qr+1 -1 AX
= 5 = d ,
i=171€Z>0 7q ) i=1r€Zsg (1 - q27’+2x. )
11 1
X aﬂjza o0 (0% @) o < (I —tfugq” tia )1+ t2 zqr+2$z) X
H 73, 42) :H (1— 2r+1w,) =4y,
P (4245 4%)oo g q 2
n -1 n 303 r+i —1 3 —% r41 -1
= — = )
i=17€Z>0 (q ; ,q) i=17r€Zs0 (1 —g* ;") I
U
5.2 Definition of the inner product
Let K[z] = K[z7, ..., 2;'!]. Define an involution : K[z] — K[z] by
- 10101 1 1 ~1 1 1 1
F@1, .z g, 18 ud 2 un) = flayt ooy gt % g 2t 2 un ). (5.3)
Let Af be as defined in (5.2). Define a scalar product ( , )4: K[z] x K[z] = K by
(f1, f2)+ =ct <£1f2> where ct(f) = (constant term in f), for f € K[z]. (5.4)
cc

5.3 The inner product characterization of £, and P,

Define
(Z") ={(ns-- W) EL" | = -+ =7, > 0}.

The elements of (Z")™ are partially ordered by the dominance order: For A, uu € (Z%),
A< if M-+ N <pr 4+ p, forie{l,... ,n}.
The elements of Z™ are partially ordered by the DBlex order: For A, u € Z",
AT < uT in dominance order

A<p if or
AT =puT and z) < z, in Bruhat order on Wy,
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where AT € Wya A N (ZL,)" and z) is the minimal length element of Wiy, so that A = 2\ A™.
For u = (p1,...,ptn) € Z™ write ¥ = 2" - 2" and for v € (Z™)", define the monomial
symmetric function m. by

My = Z Tz, where the sum is over all elements of the orbit Wgy,-orbit of ~.
/J'GWﬁn'Y

With these definitions we have the following characterizations of the I, and the Py. The proofs of
Propositions 5.2 and [5.3] are exactly as in [Mac03l (5.2.1) and (5.3.1)] and [CR22|, Prop. 6.2 and 6.3].

Proposition 5.2. Let i € Z". The electronic Macdonald polynomial E, is the unique element of
Kzt ..., 2] such that

(a) E, =z + (lower terms);
(b) If v € Z"" and v < p then (E,,x")4 = 0.

Proposition 5.3. Let A € (Z™)". The bosonic Macdonald polynomial Py is the unique element of
Kz, ... a1 Wan such that

(a) Py = my + (lower terms);

(b) If v € (Z™)* and v < A then (Py,m~)1+ = 0.

5.4 Adjoints and orthogonality

For a linear operator M : K[X]| — K[X], the adjoint of M is the linear operator M*: K[X] — K[X]
determined by

(Mf17f2)+:(f17M*f2)+7 for f17f26K[X]7
where the inner product on K[X] is as defined in (5.4)).

The following Proposition computes the adjoints of operators on K[X]| which come from ﬁloc.

Proposition 5.4. Leti € {1,...,n} and k € {0,1,...,n}. Then, as operators on (C[a:lil, =l

rrn

X

K
* _—1 * _ m—1 * -1 * o
Ly =Ty TOck - Tock ’ }/7, - }/Z 9 gsk - HX Ssk'

o
Proof. Let J = ——.
Abo
o Adjoint of multiplication by x;:

(‘Tifa g)+ = Ct(.ﬁl’zf E . J) = Ct(f . .’L’Z_lg . J) = (f7 xi_lg)+

o Adjoint of &, : With xg as in (E.1),

1 1 1 1
s Mis Do, ~3,3 X0
(/{X)*:/{_X: (1 —t5%ug? X ) (1 +t5°uj X ")
B B (1 — X—26)
R P O S 11 L1,
2 2 — 2,,2 — 2,,2 2 2
:tﬁ ug ? X Pt 2uf X P(1 —tqug XP) (1 +t5ug® X ):t_l/-;
X-26(1 — X26) R
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Since 5,51 = (ST — {ai}) U {—ax}, we have

K—_«
gskAgC = &, H kg | = H Kg | K-y = AJ(EC o (5.5)

Bes+ BeST{an} e

Using ct(&s,9) = ct(g) and the formula from (G3]),
(gskfa g)+ =ct ((gskf)gtj) =ct (gsk (f(gsk (EJ)))) =ct (f(gsk (EJ)))
=t (eI ) =t (12 (6007 ) = (122 600)

—Qp —Qp —Qp

+

o Adjoint of T, : Using the formula for T,, in (2.I06]) and recalling that (, ) is sesquilinear with
respect to the involution : K — K,

* -1 2\ -1 1 * 1 r .
(Tor) =(—ta;+<1+ssk>c£fk ) =(—ta5+<1+ssk>ta;ﬁ_ak) i (e

1 1 1

1 1 Ko 1 it
= th ity (14 226 ) =t 10 (o + )

—ay

1

=13, +(1+ Esk)c‘i(ak = Ta_kl.
o Adjoint of Yj:
Y= (ToTy--T,---Th)* = Tl—l Tl ..Tl—lTo—l = (TyTy---Tp---Ty) "t = yl—l7
and if j € {2,...,n} then

Y = (YT = T YT = (YT )™ =Y

]
Since T;'e% = Tje} = (exTy)* for j € {1,...,n} then T, 'e} = (~t,)3¢} and T; ‘el =t~ 3¢t
fori e {1,...,n —1}. Since
£y = T;OI + (lower terms) = T,,, + (lower terms) then €] =e4.
A similar argument applies to the other symmetrizers to show that
ex =e¢x, for Ze{+,+,F -} (5.6)

The relations Y;* = YZ._1 in combination with the knowledge of the eigenvalues for the action of

the Y; on the E, give the following orthogonality relations for Macdonald polynomials. The proof is
exactly as in [Mac03] (5.7.11)] and |[CR22| Prop, 7.2].

Proposition 5.5. Let (Z%,)" = {A=(A1,..., ) | A1 > --- > Ay > 0} and, for X € (Z%,)7, let Py,
Ay . AT, and Axy, be as defined in (@) and (@2).

(a) Let \,pp € Z™. If p # X then (Ey, E,)4+ = 0.

(b) Let \,pp € (Z%0)". If p # X then

(P)\, PM)+ =0, (A;\t—l—w’ Al:i:‘HU)—" =0,

(A)\-‘rm Au+p)+ =0, (A;\F.Hrv A/T+7T)+ = 0.
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5.5 Going up a level

We describe four slightly different collections of 5 parameters by the brief notations

101 1 1 101 1 1

th = (t,18,ud t3,ud), 5 = (4,18, ud  qtd ud),
101 1 1 101 1 1
t_:(qtvt(%)uqut%vu%)v tq::(qt7t§7u§7t%7u72l)v
and define
(f7 g)-i- = (fa g)q,t+ (fa g):l: = (f7 g)q,ti
(f,9) - = (f,9)qt- (f,9)F = (f,9)g=

The following Proposition shows that the norms of polynomials in the fermionic, bosonic and
mesonic spaces can be computed as norms of symmetric polynomials, but with shifted parameters.
Alternatively, in the world of norms for symmetric polynomials, the shifted parameters are a residue
arising from the effect of multiplying by the Weyl denominators A, AL AT,

Proposition 5.6. (Going up a level) Let f,g € K[X|Wir so that f and g are symmetric functions. If
Py=1 and A%, AT and A, are the Weyl denominators defined in ([&3)) then

(s = gyt (of Poo) (1:9)+ = T (45 A
(10)- = ol e (4,5, Ayg). (195 = a2 (AT 1, AT

1

Proof. Let t* be the 5-tuple of parameters t* = (t, to UG qtn,un) and let

=
Sl
NI

1 1 _ 1 _ 1 1 1 1 1
AZo = A (13, ud)A) T (13, ud) AT WA (AT (gt ud) AT (at, ud)AG (A (qtE 1

9
Since
11 x 1 11 11
AX(thup) = A¥(ta,ud) - | T (- at2uda)(L + qtiun )
1<i<n
11 11
= AG (qtd, ui) - 2% AZ (2t uf)
1 1
L1 1 —thusx 1+tu 2
Atthoud) = Ay [ T Lt b )
1<i<n (1 — qt2ulz;)(1 + qtiu, xz)
11 gwAE a;,t§,u§
:Aéfd(qtﬁﬂﬁ) o . nl)
a0 A (x, gt u)
11 11 11 11
AX @) =8 (g2 ad) | ] (- atRuda)A + gtdun eyt
1<i<n
P DR S
:Ad (qt%vu%)$ wAw ($ 7thQL7uT2L)
then
Abe .5 s\ at(—1 .5 3
N: = A (x,th,ui)AL (x5, qti, up).
cc
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Using Proposition [£.3] and that Card(W4y,) = 2™n! gives that for h € K[ajl v,z Wen
X71 o 1 X71 X 1 o W(](t,tn)
ct(hry, )= an!Ct ( Z w(hky, )) (h Z ) = Tn!ct(h).
wGWﬁn weWﬁn

Let AX = A;(A‘SXAf and AY = A078(t)Aéfd so that

1

1
+ 2,,2 F
T AXAXTIAX x AL (m,tiug) AT (x,t)
Abe = ALAL A and Ay = E @) @)

(Aff, Afg)Jr =ct <£Ai(a: tn,un)Ai(a: tn,u;)>

1

1
— A:I: t§ 2 1 1
7 A “’”">Af<x1,tnz,unz>)

AXAXT AT

fg_ ag(@)af (z)as(z aF (@) Xlat_éu_%>
AXAXT T AT (2, 0)AF (z L, ¢) e

Y f7 S (@)aF (x)af (@ HaF ()
gl Ct<AggAgg ! AF (x,t) AT (x4, ¢) >

and

-
s
H_
Il
(@)
=+
Y
~
Q|
N———
|
=+
7 N
~
Q|
o
H_
—~
vﬁ%
3w|>_-
§t\>|>-
IL
H_
“@
~
Sl
e
Swol=
S~—
N—

f7__ab@af(e) yu 1 ;>

fg b= )a?(x)aff(fc DaF(z™!) x= 33

AX AX71 A;f(x7 t)A;f(x_% t) K (t7 qtn,Un)>

W) (ST _ st eletls k(e )
C\AXAXT T AT (1, )AT (21, 0) '

which proves the 4+ case. The other cases are similar.
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5.6 Weyl character formulas
As in ([23T]), let 0,w, 7, p € Z" by 0 = (0,0,...,0),
w=(1,1,...,1), r=m-1n-2,...,2,1,0), p=mmn—1,...,3,21).

Theorem 5.7. (Weyl character formulas) Let X € Z™ with Ay > Ao > -+ > A\, > 0. Then

Pyio(q,t") + Ai:-i- (¢,t7)
Py(g,tT) = 22" 7 Py(g,tt) = 2@ 7
)\(qa ) PO(q,t+) ) )\(qa ) A;‘T)(q,t—l—) )
_ A)\—l—p(q: t+) AT_F ((L t+)
Py(g,t7 )= 222/ P(gtT)= 27~ ~°
)\(qv ) Ap(Q, t+) ) )\(qv ) Ai(q, t+) 5

Proof. The following is the proof for the case Py (g, t*). The proof for the other cases is similar. Since
Af\:_w = téz(“’o)eiE)\w then Ai_w € C[X|Mes*, Thus, by Proposition E2]

there exists f e K[X]Wan such that As o = AZf
Since A +w is dominant then wy(A+w) = —(A+w) is antidominant (weakly increasing with all entries

< 0). If p € Z™ is such that the coefficient of z* in Aiﬂrw is nonzero then p < —(A 4 w) in the DBlex
order. Thus, using the notations of Section [5.3]

f =my + (lower terms).

The E-expansion for A)jf 4 in Proposition A4l gives that
A;\t—i-w = Z dﬁﬂ,Eu = Eyy(rw) T (lower terms)
HEWSin (A+)

and, from the definitions of AX and m,,
Atm,, = "0+ 4 (lower terms).
Since (Eyg(r+w)s Z7)+ = 0 for v < wo(A + w) then

(A5 S Afmy)+ = (A3

Mo ASmy) 4 =0, for v € (Z™)* with v < A.

Using Proposition 5.6, since f € K[X]"m and m, € K[X]"i» then

t,qt, .
(f,my)s = M(Aff, Afm,), =0, for v € (Z™)" with v < \.
Wo(t,tn")
Thus, by Proposition 5.3, f = Py(q, t%). d

5.7 Reductions for norms

The following proposition shows that the c-functions provide an effective framework for describing the
differences between the norms of the various flavors of Koornwinder polynomials.

Proposition 5.8.
(a) Let = (p1,...,pun) € Z". Then



(b) Let X € (Z2)*.

_ WO(tvtn) t

) +
(Bas B Walt,t) A0 )
:l: —
(A D) _ Woltta) ni, i (kX )
(Extws Extw)+ W)\—l—w(t,tn) n®Vatw Koy, )5
(A;F+W7A§\F+7r)+ WO( B 7 )tn(n 1)eV (/ﬁl:F )
(E)\+7|—,E)\+7T)+ W)\—l—ﬂ(t t ) A\ Moy g /o
(Arepr Arip)r = Wot™, 8! )t"(n 1)t evi i, (kp . ).
(E)\+p7E)\+p)+ W)\+p(t,t ) Atp U>\+p

(¢) Let A € (Z%,)".

~ Wo(t™,t

V4w

— +
_ Wo(t,tn )tne ‘ liv/\er
Wolt,ta) ™ \ e ’

17 ) 1 K:ITA
tn(n )ev)\+7r F = s

UN+7

(d) Let \ € (Z2,)*.

( ((L = P)\(%ti)):l:

-1 - _
_ WO(t o )tn(n 1)tneV>\+p (%) ‘

+
Rawg

WO (t7 tn)

WO(t qtn)

(Prta(q: 1), Payw(q, 1))+

£a(wo) Ky
— ? tdwo th Aw
Wolt,t,) " Ao | ok

V4w

_ WO(qt tn)

q,tt

P)\(Q7

Pyir(q,t7))+
))-

:F
— ) tes (wo)evt I{v>\+7r
Wol(t, ty) M kil

UN+m

(P)\-i-p q,t t+ P)\+p(qat+))+

),
);
(Pa(g, %), Pa(q,17))%
);
),
);

_ Wo(qt,qtn)tes(wo)tzd(wo)evt <’€_1Zo> .
Wo(t, tn) w e

Proof. (a) Using the creation formula for E,,,

(Eﬂv Eﬂ)—l—

= (ch,ch,

— (t—%g(vgl),r\/ 1Y7

AL ) Av)e = (7 \/717— Ly, 1y )

1y, 1y)s = evhlcl b ) - (1, 1)y

(b) Using Proposition [£.4] ( E-expansion formulas),

+
X (T .
Atwlly bn 1EWan (M)
and (2.29)
62 71 W(](t t_1)€:|:
* XE (Twg) o ’
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gives

" (Twy) X (Twy)
A:t Ai = Xiwo E " X Yw) E y b
( Aw? )\+w)+ (W)\+w(t,tn)€i A+ ’W)\—"—w(t,tn)e:t A+ >+ ( y (M))
1 2
- €L Eyiw, Eriw b
W>\+w(tatn)W)\+w(t_17t;1) ( + A+ At )+ ( Yy (Im))
1 WO(t7t7_Ll)

- e+ Ertu, Extw b
Xi(Two)WA—%—w(t,tn)W)\_,_w(t_l,t;l)( £ Bt Extu) (by @2.29))
+ 2 1
XT(Twyu)? Wolt,t,Y) |,
= w n A 7E " b
X (Two )X T (Towy) W>\+w(7f,tn)( Arw? DA+ )+ (by [&2))
_ la(wo) Wo(t, t;h) o
(_1)£d(wo) W)\-l-w(t_l,t;l) Aw
th  Wolt,t.")

— 1Va(Vatw) At +
= 0 Wty T e ) B Brco)+

Wol(t, t;h) N
- mtﬁev&_ﬂd(ﬁvkva)(E)""w’ E)\-i-w)—l—,
w\Y "N

(E)\-Hw E)\—l—w)—l—

because (—1)%(vr+w) = (—1)%(wo)  This proves the & case. The proof for the other cases is similar.
(c) By part (b),

(A;\t+w7A;\t+w)+ . W()(t,tfll) (PA+w7P>\+w)+ _ Wo(t,tn) .

= thevh ., (K and = ev Ky
(EA+w7 EA+w)+ W)\+w(t, tn) " )\—HJ( v,\+w) (E)\+w, E)\+w)+ W)\+w(t, tn) )""“’( ”A+w)
gives the relation between (A)j\E s Af o)+ and (Pxyy, Pryy)+. This proves the & case. The proof for

the other cases is similar.
(d) Using Proposition (going up a level) and Proposition [5.7 (Weyl character formula) gives
+ + Wo + £\ 4% +
(P)\((Lt )7 P)\(q7t )):l: = F(Awp)\(qvt )7AwP)\(Q7t ))+

(AL, (q.th), AL, (q,t7))

V4w

s
N mtzevg‘ﬂ’ ( +Hw (Priw(g,t), Priw(g,t 7))+

This proves the & case. The proof for the other cases is similar. O

5.8 The symmetric inner product

In this subsection we define, for symmetric functions, a slightly different inner product ( , )4 that has
more symmetry than the original inner product (, )4. Fortunately, the difference between these inner
products is only a factor of Wy(t,t,), which makes the reduction relations of the previous subsection
even simpler. The symmetric inner product ( , )4 has another very useful advantage: in terms of the
Askey-Wilson parameters a, b, ¢, d, the inner product (, ) is completely symmetric in a,b, c and d.
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Define involutions : K[X] — K[X] and 7: K[X] — K[X] and !: K[X] — K[X] by

1 1

|~

1 L _1 _1 _1

£ . 2,2 12 .2 1 -1, -1 ;-1 ,72 2 2 2
f(xlu"'7xn7Q7t7t07u07tn7uTL)_f(wl 7"'7‘Tn 7q 7t 7t() 7u0 7tn 7u7l )7
1 1 1 1 1 1 1 1
o . 2 2 12 2 1 -1, 2 2 12 2
f (:Ela---7xnaq7t7t07u07tn7u”)_f(:El 7“‘7$n 7q7t7t07u07tn7un)7
1 1 1 1 1 1 1 1
t . 2 2 12 2) — =1 =1 473 2 42 , 2
f(:Ela---7xnaq7t7t07u07tn7u”)_f($17"'7xn7q 7t 7t0 7u0 7tn 7uTL )

Let /{if(;l be as given in (2.I3)) and define
Veo = Abor (5.7)
Then define a new scalar product ( , )4 : K[X] x K[X] — K by

(f1, f2)+ = LCt <flﬁi> , where 2"n! = Card(Wsy). (5.8)
2nn! Voo

The following result provides a comparison of (, )4 and (, ); as inner products on symmetric
polynomials.

Proposition 5.9. Let f,g € K[a:f, oW Then

1
Proof. Let f,g € K[mf, o,z W Since f, gt and Vcc are all invariant under the action of Wg,
then
1 1 1 .1
= —ct( fg° = t( fgt =——Wol(t, ty
. 1 _t 1 x-1
B 2"7%!'1/1/0(15,7511)0‘E 19 Vee 2wl ))
weEWgn
1 1 -1
- _ct =t - X
2nn! . Wo(t,tn)c gm; v <fg Veeo o >)
w fin
1 ;1
e T —— t q —
Sl Wolt, tn) wg;ﬁ v <fg Agc>
1 1 ¢
- W()(t,t ) <fg Agc> - Wo(t,tn)(fjg)—h
where the third equality uses Proposition [4.3] O

The following corollary of Proposition 5.8 records the norm comparisons in terms of the symmetric
inner product (, ).

Corollary 5.10. Let A € (Z%,)". Then

(Palg,t7), Pa(g: tM))e _ la(wo)gyt UHW
(P)\-i-w( +) P)\-i-w (Q7 t+)> A U/\+w
< (q7 $) P)\(q7 t:F)>$ — tfs(wo)ev)\ U/\+ﬂ-
<P)\+7T(q7 +) P)\+7T (q7 t+)>+ o U/\+ﬂ-
(Pr(g:t7), Palg,t7))- Ca(wo) 1a(wo) (’% >
t s 0 t d 0 e i
(Paip(0,t%), Pagp(,t7)) 1 Ve i
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Remark 5.11. Using Remark 5.1 then
Ll e -1, . —-1,.—1.
Voo =VOVE, where VP = ] (tziw; 5 @)oot Qoo (t25 253 Do (tri 2575 @)oo

rciien (@07 Qoo (@53 @)oo (27 255 ) oo (27 25 1 @)oo

and

o) _ ﬂ (045 @)oo (025 3 @)oo (015 D)oo (027 3 @)oo (a5 D)oo (27 13 @)oo (b33 oo (b7 '3 D)o

—2
Faley (225 @)oo (2% @)oo

This formula shows that Ve, and thus (, )1 and Py(q,t1), are completely symmetric in the Askey-
Wilson parameters a, b, ¢ and d. O

Remark 5.12. Using Remark 2.5]

+ + no Y-l + F T y-! y-! T
KUMM . K o Ke, o K HU}\‘HT _ Ko _ I{Ei_ejliei"'ej _ K
¥ T y =+ and T3 P S
I{v)wrw Ry, i=1 I{&; K:w() I{v)\ﬁ»Tr Rog 1<i<j<n I{Ei—ej I{Ei+€j I{U)O

and
y-1 y-!

H Ré‘i—&j K:&i-i-&j
Y Y

1<i<j<n Mei—ejeite;

Vw Vw wo

=N
+|EH
=N
+|&H

Il
‘R
+|g |
—
=N

x| ™
oo
N~

Ko, Ko, Ko

5.9 The norm formula

In this section we use the recursive relations of Corollary [B.10] to derive a c-function formula for
<P)\(Q7 t+)7 P)\(q7 t+)>+‘
Introduce Y-versions of the c-function products from Remark [5.1] as follows:

(1YY, ) (1YiY}3 @)oo
AZ(t—F)A%)/,s(t—F) = H vij—l, Y:Y;:

11 1 1
(trzztSYi§ Q)oo(_trzzt() *Yi; Q)oo

n

Ay (M)A =]]

P (Y7 4%)ox
n 1 1 1 1 _1 1
AV =TT (urug 2 Yi; @)oo(—unty > q2 Y55 @)oo
! P (@Y1 ¢%)oo

-1, v—1ly.. -1 v —1y -1,
A= [ e )
1<i<j<n (@Y Yy @)oo(aY; Y 1 0)o

n

1 1 1 1
- t_ﬁt_ﬁ Y_l' _t_§t§ Y_l.
Ay (e = [ et e i)

P (@Y, % 4o
nooo=3, =3 ly1 ~3, 3 Iy—1
Ayfl((m_l):l—[(un Uy 2q2Y; 5 @)oo (—un 2ud q2Y @)oo
! Pl (Y160

Define homomorphisms ev s, : K[Y] — K and ev, -, : K[Y] — K by

11 .
eV (Ys) = QTR L and eV -a—n(Yi) = q_’\it_(”_l)to

=

1 _
Ztn = quAtp (}/;_1)
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1 1 1 1

The correspondence between the parameters q,t,to§ ,ug ,t2,u2 and the Askey-Wilson parameters is
given by

111 _1 11 11
g=gq, a=q2tju;, b= —q2t0u0 2 e=tiul, d=—tiu,?.
To control the spacing of the formulas introduce a notation
(21522, -5 263 @)oo = (215 @)oo (225 Qoo+ (2k3 D)oo (5.9)
Then evqxtp(Azl/(tJr)Aé/’d(ﬁ)A;/(t*)) is equal to
n 11 11 1 11 1 1 11 1
H(t%t(ﬁq/\itn_’tﬁt(ﬁ, 2t Qth" ’tnto,unquZq ign= Ztnto,—unuo g it ’tntmq)
Pk (@2 =Dtnto, qq* 12Dt nto; ¢%) oo

11 1 11 1 _ 1 .
B ﬁ (tntog Aign—i , —tnq Aign—i tntounuo(pq Aign— i —titg un Uy 2q%q’\it"_l;q)Oo
paley ( 2\ t2(" Z)tntO;Q)oo

n

B H (q_labcdq)‘it"_i, cdq/\it"_i,achit"_i, bcq)‘it"_i; q)oo (5.10)
S (g~ tabedg?it?(=0); ) o '

.

and evqfxtfp(Azl/il((t+)_1)A;71((t+)_1) is equal to

—34TF Nign—ip35 T35 Nign—ig3s3 "5, 3,1 Nn—iz3.3 "3, 3 L1 Nin—i3,3.
(tn 2t 2qq it Aty —tn 2t5 qq VTR S un Py 2 q2 @ VT R S, —un P ug g2 ¢ T R S q)
N (q2q2)\it2(n—i)t to, qq2>‘it2("_i)t tO'q2)

:ﬁl(qq

n ign— i b ign— 7 bd i i d i i
11 (gt1t"", abq q , adg 1 q) oo (5.11)
(abcdq2>\ it2(n—1). Q)oo

=

<.
I

1 1 1 1 1 1

—toqq it Tl t At un Py q2q =t 2t uy, 2uld qzq L) I
(gq® tz(" Z)tnt0§Q)oo

)\itn z

=1

.

Theorem 5.13. Define Ny(q,t1) to be the product

1
MA@ t7) = evpes (AY(t+)AY(t+)AY(t+)AoYs(t+)AY <t+>>

1
“eVg-Ag—p <A2}/1((t+)_1)Ag/1((t+)—1)A§1((t+)_1)> .

Then
(Pr(a:t7), Px(g,t))+ = Na(g, t").
Proof. The proof is accomplished by verifying the following properties
(a) Nx(¢,1,1,1,1,1) =1,
(b) Ny(gq,t") is symmetric in the parameters a, b, c, d,

(c) Na(g,t") satisfies the recursions

Niy(q, t* Ko Niy(q, tF K
in(q(q tJ)r) — trevi, < fw) and A (g )) T (it
w 9

V4w N)\J,-7r(Q7 t+ U\t
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Property (a) follows from the fact that A} (1,1,1,1,1), AY ;(1,1,1,1,1), A¥(1,1,1,1,1), AY TN (1,1,1,1,1)
and A};il(l, 1,1,1,1) are all equal to 1.
Property (b) follows from the fact that the product of the expressions in (5.10) and (5.11]) is symmetric

in the parameters a, b, ¢, d.

1 1 1 1 101
Property (c) Changing from the parameters t* = (¢,t3,ud, t2, un) to the parameters t+ = (¢, to Ul qtE ud)
1 1

replaces t2 by gt2 so that c gets replaced by gc and d gets replaced by gd and a and b and ¢ stay fixed.
Write

g 1 1
Ng (q,t"‘) = eV (Ay(t"‘)A ( )Aé/d(t"')) “eVa-ri—p <A;1((t+)_1)A§1((t+)_1)> )
1 1
N(@:17) = evgrs (AY(t+)AY (t+)) e (W)

so that Ny(¢,t") = Nfd(q,tJr)Nf(q,tJr). Using the notation of (5.9),

2X $2(n—1) 2 t2(n—i).

N9 4) = ﬁ (¢*abedq 4% 'abedg @)oo
AE 1 ( 19 Aign— Z 2q_1abcdq>‘i t"‘i, abq’\it”_i, qacq’\it”_i, )
qadq Ltn i’ qbcq)\itn_i, qbquLtn—Z’ q2cdq>\itn—i 34 .

and
Ngd ( t+) B n (abcdq2()\i+1)t2(n—i)7q—labcdq2()\i+1)t2(n—i);q)oo
Aw\d - 1l g T g Labedg i T abg T geghi T '
aquth”_Z, bC(]Ai'th_Z, bdq)\i—l—ltn—z’ qu)\ri-ltn—l 34 .
and
Ngd q,tjE ﬁ (1 — abedgit™ ) (1 — cdgi+1m—7) ﬁ (1 — abedgit" ) (1 — cdgi+1m—7)
Ngiw( Pl 1 _ qq)\ n— z)(l _ abq)‘zt" 7 Pl 1 _ q)\ itlgn— z)(l _ aquitn—z)
Since Ai—Njpj—i+1 Ait+Ai2n—i—j+1
Y AN AY ey (T Qoo (@ TV T gt ) o
quAtP(As (t )AO,s(t )) = H N Nori—g NN 2n—i—
1<i<j<n (@Mt q) oo (@M TN 0105 @)oo
and » w
e @ e = ] (YT ) oo (@MY TP gt ) 0o
V o —\i— = P— P—
g AP s \<isien (in—)\j—l—ltj—z;q)oo(q)\i+)\j+lt2n—z—jt0tn;q)oo
then
q)\i—)\j tj_i, q)\i+>\jt2n_i_jt0q2tn,
N q)\i—)\j—l—ltj—i’q)\i+)\j+1t2n—i—jt0q2tn 34
S
NX(g, %) = H PN A i g o2y
1<i<j<n o L0 ) .
( q)\i—)\j-i-ltj—z—l,q)\i+>\j+1t2n—l—]—1t0q2tn 7Q>OO
and

q)‘i_Aj tj_i', in+Aj+2t2n_i_jt0_tn7 .
i A 2n—i=y g

s +\ —
NyolgtT) = H PN N2 Ty ’
< q >°°

1<i<j<n oy . Ly .
)\Z—)\J-i—lt]—z—l’ q)\l+)‘3+3t2n_l_j_lt0tn
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since w; = 1. So

M@t
N§+w(q7t )
Since
+ n y-1
Ry w K ;
o €Vt ( +A+ ) = evi, (H ay )
Ui tw i=1 €i

n 3,3y -1 3,3y —1 2

~[[ev, tn(l—tntoyi )L+ taty Y ) (1—Y)
- e (1- Y-_2) _ 3
=1 i (1 tnt Y)(l +tnt0 Y;)

11 1_1

Tt (1 —t3t3Y, (1 + 34, %Y,

_HeVHw T 1, R
i=1 (1 -ty %t Y, )1+t 2t Y, )
n 11 11 1_1 11

- H (1 t2t2q)\'+1tn—zt2tr2l)(1+tr2lt 2q)\'+1tn—2t 721)

- 1
i=1 \ (1 —tn 2t 2q>‘ +lgn— ’t t2 )(1+t 2t2q)‘ Hlgn—ige t2)

B ﬁ 1 —t toq)\ i+lgn— 2)(1 4t q)\ itlgn— 2)

- P 1 _ qA it lgn— 2)(1 4 thA it lgn— 2)

B ﬁ (1 — ¢ tabedg® 1) (1 — cdg 1)

- P 1 _ qA i+lgn— z)(l _ q—labq)\ri-ltn—i)

B ﬁ (1 — abedg*it" ) (1 — cdg+1m™7)

- P (1— it z)(l _ abq)\itn—i)

then

V4w

d d +
N)\(q7ti) _ N;g\ (q7t:t) . Ni(Q7ti) _ Ni\] (qati) 1= 4" -ev’;\ HUA+w
Navol@:t7) — N9 (q,t%) Niyo(@tt) — NI (g,t%) S W2

The proof of the second equality in (c) is similar as follows.

N9 (g, %) = ﬁ (q2qbcdq”i (a8)*" ), ¢ 'abedg™ (qt)* "5 q)oe
P ( qq™ (at)" L *q  abedg i (qt)" ", abg (gt)" T qacg™ (qt)" T, q>
qadq™ (qt)" ", gbeq™ (qt)" ", qbdg™ (qt)" ", ¢*edg (gt)" ™" )

and
Ngd n abcdqQ()\i-i-n—i)tQ(n—i), q_labcdq2(>"i+"—i)t2("_i); q)oo
)\+7r ;[Jl: >\ +n— ztn ) q_labcquﬁ_n_itn_i,abq)‘i+n_itn_i,acq)‘ﬁ_n_itn_i, '
- adq)‘ i+n— ztn 27 bchH—n_itn_i, bqui—l—n_itn_i, cdq)\i—l—n—itn—i 14 .

so that

N{%(q,t7) )
NI g, t+)

Then o N
< q>\i—>\j+,]—lt]—27q>\i+)\j+27’l—l—]t2’ﬂ—l—‘]totn7 . >
. o q>"L AjHj—itlyg z’qu+)\J+l+2n i—j§2n—i Ttoty .
NX(g,t7) = H PN = NN i iy
Isi<jsn < M Aji—ipimie]  AeAN+2n—i—iy2n—i—j—1 " )
g g t totn o
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and

q)\i_)\j+j_itj_i7 q>\i+>\j+2’ﬂ—i—jt2n—i—jt0tn7 )
. . q,\i—Aj+j—z'+1tj—z"q/\i+>\j+1+2n—z’—jt2n—z’—jt0tn ) N
N>\+ﬂ(q’t ): H Ni—Xj+j—ipi—itl oAt +2n—i—j2n—i—j+1y 4 ’
1<i<j<n q/\‘ Ny ."{ Ao . q
gl AT TRl el g At A En e ginemy =1y g -
since m; = n — 1. So
Ni(q7t:F) B H (1 _ q)\i—Aj-Fj—itj—i-i—l)(l _ q>\i+>\j+2’n—i—jt2n—i—j+lt0tn)
N§+W(t+) \<iSien (1— q)\i—)\j—l-j—itj—i—l)(l _ q)\i-l-)\j+2n—i—jt2n—i—j—1t0tn)
and .
:F
N)\(q7t:F) _ Nf (Q7t$) . Ni(Q7t$) 1. N;(q7t$) o tn(n—l)evg\ HUAJﬂr
= = = n ,
since
-1 -1
K kY kY
-1 t VUndnr t 9 "Ve;—ej Ve +e;
n(n )ev/\ﬂ <+_+> =evi, . H t W
Urtm 1<i<j<n EiTEj EitE;

-V YY) (1YY (1 - YY)
(1=Y ') =Yy (=Y H(1 - 3Y5)

_ t
= V) 4r H

1<i<j<n
(1 -ty - oy

t
= CViqr H v —1 _1v—1v—1

(1 _ tq)\i+(n—i)—)\j—(n—j)t—(n—j)—l—(n—i))(1 _ tq)\i—l-(n—i)—l—)\j+(n—j)t(n—i)+(n—j)t0tn)

- 1<g<n (1 — ¢ Lt =) —X = (=)= (=) (=D ) (] — g~ Lght (=D +HA,+ (=) =D+ (=) g .

(1- tq)\i—)\j+j—itj—i)(1 _ tq)\z‘-i-)\j+2n—i—j)t2n—i—jt0tn)

- 1<g<n (1 _ t—lq)\i—)\j—l—j—itj—i)(l _ t—lq)\i—l—)\j+2n—i—jt2n—i—jt0tn) ’

5.10 The constant term

1
To get the constant term of AT specialize A = 0. Then

cc
NI = ﬁ (abedt* =D g~ Labedt* ™D ) oo
0 N paley (gt"—t, g~ Labedt™ =, abt™ i, act™ ™, adt™ =, bet™ 1 bdt" cdt™ ™ q) oo
and o o . .
Nyt = T (2" gt gt ", gt T totn; @)oo
0 == — —i—7 1 “1on—i—7 :
I<i<i<n (ttI=2 tt2n =t oty qt =1 gt =121 Tt @) oo
so that

Wit t)et (A#gc) Wt ta)(1, 1) = (1, 1) = No(t") = NEU(EING ().
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6 Appendix: Examples for n = 2
6.1 The finite Weyl group and the roots in S;
The finite Weyl group is Wg, = {1, $1, S2, $152, S251, 15281, S28152, $1525152} where
2 _ 2 _ _
s]1=s85=1, 51525152 = $2515251.

Then
S(-]i:d:{gljﬁé} and S&S:{El _62761+€2}

with Sg1 = 815281, Segg = 825 Sg1—eq = S1; Segitep — 525152

6.2 Hecke symmetrizers

The Hecke symmetrizers are

_1
Ey = T1T2T1T2 + t_%TQTlTQ +1in 2T1T2T1
_1 _1 _1
ot TV A+t 2t 2T+t e 2 Ty 2 Ty
1
er = NTYIVTo +t 2 LTV Ty — 2 VT TY
1 1 1
CTSEITITy — t 2T — t 2Ty 4+t 2, Tyt M,
_1
Ex = T, — t%TQTlTQ 4+t 2T T5TY
1.—3 1.-3 -3 1,1 -1
— 28, 2Ty — t2¢, 21517 + tt, 215 — t2t, 11 + tt, -,
1 1 1 1
E_ = T1T2T1T2 — t%TQTlTQ — t%TlTQTl + t%t%Tng + t%t%Tng — tt%TQ — t%tnTl + ttn.
Since
_1 1 14 _1 _1 14 1
4 = (T1 +1 2)(T2T1T2 — 2T —t 22Ty + ¢t Qtn) = (T1 +1 2)(T2T1 -1 Zt%)(TQ — t%)
and (1) — t%)(Tl + t_%) =0 then Tiex = t%&?i. Similarly, since
1 1 11 1 1 14 1
E4+ = (T2 — t%)(TlTQTI +t7 2Ty —t2t2 T — t_lt%) = (T2 — t%)(TlTQ — t_ﬁt%)(Tl + t_i)
_1 1 _1
and (T +t, %) (1o — t3) = 0 then They = —tp, ?c4. Then

el =ttt L bt T e
=t (Pt 2ty + Pty bttt ey
=t My Wo(t, ty Vet

since
Wolt, tn) = 14 to +t + tty + tto + tt3 + t3ty + 1215 = (1 + t2) (1 + t)(1 + tt2).
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6.3 c-functions

The c-functions in X for roots in Sar s and Sar 4 are

v tr—taX X! v T —t1X) Xy
Cermea ™ 71 _ XX, Cater T T XX,
11 11 11 11
X = t;% (1- tfuzz)il)(}‘g t5 uy ZXl)j X = t;% (1- tzzuf)%)(i; tyuy * Xa)
1 2
Then
_ Gy 2(l—t2 %X—l)(1+t% _%X_l)(l—t% %X‘l)(1+t% _%X_l)
Célzcg 105‘;1:22( 2 Ug Ay _22u2 1 2 U Ao _22u2 2
(1-X77) (1-X57)
and

w1 xen xa (FrotrXTNX) ( —t2 XX
C =cC.,__..C =
st €1—€2€1+€2 (1 _ X1_1X2) (1 _ X1_1X2_1)

6.4 Weyl denominators
Since w = (1,1), 7 = (1,0) and p = (2,1) then

¥ = 1129, " =11, zf = $%3§2.
Since

€4+ = 515951592 — $§15951 + S951S9 — §1S9 — §951 + S1 — So + 1,
€+ = 51825182 + 515251 — $281S2 — 5182 — S281 — 1 + S2 + 1,

€ = 81825182 — $18281 — 828182 + S182 + S281 — 81 — S2 + 1,

then the Weyl denominators for n = 2 are

1

ab = teia¥ = esmiwy = w119 — 2125t + a7ty — a7 ayt = a7 ey (1 — 2d) (1 — 23),

1, .6 -1, -1_ -1 —1
af =gesx’ =ezzy =1 —w2— x5+ =27 (1—xi22)(1 — 2125 ),

2 2 2 2, .—1 —2 —2 -1.2 —1,.—2 -2 -1
a, = e4xf = e xiTy = TITy — T1TZ — TITy  + T1Ty -+ ] Lo — T X5 — X Ty + X

= 27%25 (1 — 2y@0)(1 — 2y (1 — 23) (1 — 23) = alaf,

)

and
Py=1,
n N L 11 11 11 11
A =AZ ., =z ay (L= t3uiz) (14 t5uy 21)(1 — tuf o) (1 + tiuy *a0)
Af = AT = :131_1(1 - t$1x2_1)(1 —tx129) = xl_l - tm;l — txg + t2aq,

11 11 11 11
A, =222 (1 — tryzy (1 — togwe) (1 — t3ud o) (1 + t3uy 2o1) (1 — t3ud z0) (1 + 3 uy 229).
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6.5 Examples of Proposition [2.3] 2.4] and 4.4
Since X1 (Ts,sps,55) = tta then

ttn5+ = (7781828182 + Ns1sas1 + Nsas1s2 + Ns1s2 + Nsas1 + Ts1 + Ts2 + 1)/{Y /{Y /{31—52/{2/14‘52
= (77323132 + Nsgs1s0 + Nsysa T Nsy 1 1)’{Y ’{Y %§1+52(1 + 7731) Kep—eg
77828182’%}/ 'L{Y /4’2/14-621 + ’{g;nslszﬁy "‘{3:/14-52 ) +(T )E+
+'L€81'L€81+827752 3/27 + ’{Y ’{Y '%3/14-62 X e
ttne:t = ’{3/1 ’63;71(7781828182 — Nsis2s1 + Nsas1s2 = Ns1s2 = Msasy + Nsy — Mso + 1) 51—52’63/1—1—52
= 3/1 ' 3/2 ' 77828182 — Nsysp — Ny T+ 1) 51—1—52(1 +7731) Rei—e9
_ ( 828182’{Y ’{Y ’{gfl—i-ag - 'L{Y7 nslsz’{y ’{gfl—i-ag + +
= y-1 v X (Ts,)es s
51—527782’652 + '%81 'L{ag ’{al—I—ag
tthex = Z/}/ ' "i V+5 (7781525182 + Ns1s9s1 — Msgsisa — Ms1sa — Msasy — Msy T Nso + 1)52} Hz/g
= Y 1 V’{Y\/:g (77513231 — Msasy — Msy T 1)”?}/(1 + 7732)/422
sz_i_{_:v/‘i v"’]slffyv v+/‘€Y lv/‘fzz/v_ie\//‘iy\/ X s
1 €1
ttng— = "i 1 52 52—15253/1-:52 (7751528152 Tls1s951 — Msas1s0 + Ts1s0 + Nsosy — Nsy — Tsy + 1)
= Ns1s2s182 ¢ ’{Y ’%—5252%2 - ’6327177818281 'L{Y /43;/1—52"@?1%2 - "’{3:/1—15277828182’{2 “é“ém
+ /{Zl 1/‘?3/1:152775132 ”YQ ffﬁm + “3/2 1”?1—1-152778281“)/ “2/1—52
- ’{32 1/{«2/:1—162”2/14-1627751 32/1—62 - ’{31 1’631—162’{31;1627752’{62 + K€1 %3271 317—152’{?1;—152'
Since
kY = K/:;v_é_%/, kY . = /ﬁleinJrev, KY e = /{Zflv €2vlfyv/~£YvJr€2
W=, A A s
then
Auj;: = E—€1—62 - evt—sl—i-s ( z )E—61+62 - evél—{iz (K‘Z/gl”é—ag)E&—w
+ eVal_i_az(HY;/ /ﬁ:z; 1/4:}/;/_’_6 VB 4es, and

F _ t t y-1 Y t y-1 y-1 Y
Aw - E—€1 _ev—sz( aV—aV)E—Ez eVEQ(K&‘?{—f-&%/K:&%/)EEQ +ev€1 (Kalv 8¥/€8v+8v/€81v)E51.
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