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Abstract. Representations of affine and graded Hecke algebras associated to Weyl groups play
an important role in the Langlands correspondence for the admissible representations of a reduc-
tive p-adic group. We work in the general setting of a graded Hecke algebra associated to any
real reflection group with arbitrary parameters. In this setting we provide a classification of all
irreducible representations of graded Hecke algebras associated to dihedral groups. Dimensions of
generalized weight spaces, Langlands parameters, and a Springer-type correspondence are included
in the classification. We also give an explicit construction of all irreducible calibrated represen-
tations (those possessing a simultaneous eigenbasis for the commutative subalgebra) of a general
graded Hecke algebra. While most of the techniques used have appeared previously in various
contexts, we include a complete and streamlined exposition of all necessary results, including the
Langlands classification of irreducible representations and the irreducibility criterion for principal
series representations.

1. Introduction

The affine Hecke algebra is tightly connected to the geometry and representation theory of a
semisimple Lie group. In fact, the representation theory of affine Hecke algebras provides a large
piece of the Langlands correspondence for the admissible representation theory of a reductive p-
adic group [Bo, KL]. The affine Hecke algebra is also present in the geometry of a semisimple
group via the equivariant K-theory of the Steinberg variety. This connection plays an important
role in the Springer correspondence and the Langlands classification. Recent conjectures of Lusztig
tie the representation theory of the affine Hecke algebra to the modular representation theory of
semisimple Lie algebras in positive characteristic. So there are many good reasons to study the
representations of affine Hecke algebras.

With appropriate definitions, the graded Hecke algebra is the associated graded algebra of the
affine Hecke algebra. Lusztig [Lu3] has shown that the representation theory of graded Hecke alge-
bras of Weyl groups is essentially equivalent to the representation theory of affine Hecke algebras.
In the same way that the affine Hecke algebra is connected to equivariant K-theory [KL, CG] the
graded Hecke algebra is connected to equivariant cohomology [Lu3].

This paper is a study of the combinatorial representation theory of graded Hecke algebras as-
sociated to finite real reflection groups (including the noncrystallographic cases). The geometric
representation theory of these algebras has been studied in [Lu1, Lu2, Lu3] and fundamental re-
sults have appeared in [HO, Op]. However, a wealth of information can be obtained with purely
combinatorial techniques. Here we develop the combinatorial theory from elementary principles.
Most of the techniques we use are known in the affine Hecke algebra setting but they are spread
over various parts of the literature, and in several cases the generalization to the graded Hecke
algebras for the crystallographic case is nontrivial. We have collected these results, streamlined
them, proved them in the general setting that includes noncrystallographic graded Hecke algebras
and made an effort to produce an up-to-date presentation. This paper includes

(a) the Langlands classification of irreducible representations,
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(b) the theory of principal series representations (including the irreducibility criterion),
(c) the theory of intertwining operators,
(d) the classification of all irreducible representations for rank two algebras (including all dihe-

dral cases I2(n)),
(e) the classification of irreducible calibrated representations, and
(f) proofs of two conjectures from [Ra3].

The Langlands classification for graded Hecke algebras is due to Evens [Ev]. We have shortened
his proof but the shorter proof does not differ in any essential ideas. Our proof of the irreducibility
criterion for principal series modules is a graded Hecke algebra analogue of the proof given by
Kato [Ka] for affine Hecke algebras. Proofs of this criterion for graded Hecke algebras have appeared
in [Ch1, Kr2] but our proof is more constructive and gives detailed information about the spherical
vectors in the principal series modules.

To our knowledge, the theory of intertwining operators originates from the study of affine Hecke
algebra representations in Matsumoto [Ma]. In recent years this theory has played an important
role in the theory of orthogonal polynomials, in particular, the study of Macdonald polynomi-
als [Ch2, Op, KS]. In this paper we do not view these operators as intertwiners between principal
series representations but rather as local operators on the weight spaces of any representation
(τ -operators). This generalized approach is increasingly common in the theory of Macdonald
polynomials [Mac]. Though we do not know of a reference for this theory in its application to
representations of graded Hecke algebras, certainly all of these techniques are now standard in the
orthogonal polynomial literature.

The full classification of all irreducible representations for rank two graded Hecke algebras is given
in Section 3. We include detailed analysis of the structure (dimensions of generalized weight spaces)
for these representations and their Langlands parameters. This analysis extends and completes
the work on representations of rank two graded Hecke algebras included as part of [Kr1, HO].
In [Kr1] only one-parameter algebras were included and the classification was only complete for
n odd; we now include the two-parameter case that arises when n is even and treat nonregular
central characters. In [HO], general graded Hecke algebras were considered but the representations
classified were spherical and tempered. An important consequence of our rank two construction is
that it establishes a “Springer correspondence” for all dihedral groups. This correspondence is given
in the final part of Section 3. As in [Ra2], we express the hope that the irreducible representations
in the rank two case will provide the foundation for a combinatorial construction of all irreducible
representations.

In Section 4 we classify the irreducible calibrated representations (those with a simultaneous
eigenbasis for a large commutative subalgebra) of graded Hecke algebras. These results are graded
Hecke algebra analogues of the results in [Ra1]. In addition to the classification, we give an
elementary combinatorial construction of all irreducible calibrated representations of graded Hecke
algebras. This construction is a generalization of the (seminormal) construction of the irreducible
representations of the symmetric group given by Alfred Young [Yg]. In our construction the local
regions and their chambers take the role that partitions and standard tableaux play in the symmetric
group construction. Otherwise the formulas used in the construction of the irreducible calibrated
modules are exactly the same as those used by Young.

In Section 5, we give proofs of two conjectures from [Ra3] which describe the combinatorial
structure of the weights of graded Hecke algebra modules. One of these conjectures was proved by
Losonczy [Lo] and we present a slightly simplified version of his proof here. We then prove the other
conjecture with a short reduction to the statement proved by Losonczy and exploit the reduction
procedure to obtain new information about the combinatorial weight structure. The conjectures
in [Ra3] were only stated for the case when the reflection group W is crystallographic and our
proofs only hold for this case. We give examples that show analagous statements do not hold in
the noncrystallographic case.
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2. Preliminaries

2.1. The graded Hecke algebra. Let W be a finite reflection group, defined by its action on its
reflection representation h∗R. For each reflection sα ∈ W fix a root α in the −1 eigenspace of sα.
The roots α are chosen so that the set R of roots is W -invariant. Then sα fixes a hyperplane

Hα = (+1 eigenspace of sα) = {x ∈ h∗R | α∨(x) = 0},

where we fix the linear function α∨ ∈ hR = HomR(h∗R,R) so that α∨(α) = 2. By fixing a nondegen-
erate symmetric W -invariant bilinear form on h∗R we may identify hR and h∗R, which will be used at
times to view the Hα as lying in hR. Then

(2.1) sαx = x− 〈x, α∨〉α, for all x ∈ h∗R, where 〈x, α∨〉 = α∨(x).

Fix simple roots α1, . . . , αn in the root system for W and let si = sαi be the corresponding
reflections.

By extension of scalars W acts on the complexification h∗C = C⊗R h∗R and, in terms of its action
on h∗C, W is a complex reflection group. Then W acts on the symmetric algebra S(h∗C) which is
naturally identified with the algebra of polynomial functions on the vector space hC = HomC(h∗C,C).

Fix parameters cα ∈ C, cα 6= 0, labeled by the roots, such that

cα = cwα, for w ∈W.

If W acts irreducibly on h∗R this amounts to the choice of one or two values, depending on whether
there are one or two orbits of roots under the action of W . The group algebra of W is

CW = C-span{tw | w ∈W} with multiplication twtw′ = tww′ .

The graded Hecke algebra is
H = CW ⊗ S(h∗C)

with multiplication determined by the multiplication in S(h∗C) and the multiplication in CW and
the relations

(2.2) xtsi = tsisi(x) + cαi〈x, α∨i 〉 , for x ∈ h∗C,

where α∨1 , . . . , α
∨
n ∈ hR are the simple co-roots. More generally, it follows that for any p ∈ S(h∗C),

ptsi = tsisi(p) + cαi∆i(p) and tsip = si(p)tsi + cαi∆i(p),

where ∆i : S(h∗C)→ S(h∗C) is the BGG-operator given by

∆i(p) =
p− si(p)

αi
for p ∈ S(h∗C).

Proposition 2.1. [Lu1, Theorem 6.5] The center of the graded Hecke algebra H is Z(H) = S(h∗C)W ,
the ring of W -invariant polynomials on hC.

Proof. If p ∈ S(h∗C)W , then

ptsi = tsisi(p) + cαi
p− si(p)

αi
= tsip+ 0 = tsip,

and so p commutes with tsi . Therefore S(h∗C)W ⊆ Z(H).
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Let p ∈ Z(H) and write p =
∑
w∈W

pwtw. Fix v of maximal length such that pv has maximal

degree. Let µ ∈ h∗C be regular, meaning that the stabilizer Wµ is trivial. Then

µp =
∑
w∈W

µpwtw equals pµ =
∑
w∈W

pwtwµ =
∑
w∈W

pw

(
(wµ)tw +

∑
u<w

cµu,wtu

)
,

where cµu,w ∈ C. Comparing coefficients of tv yields

µpv = pv · (vµ).

So µ = (vµ) and thus v = 1 since µ is regular. So p ∈ S(h∗C). Comparing coefficients of tsi in

ptsi = si(p)tsi + cαi
p− si(p)

αi

shows that p = si(p) for all 1 ≤ i ≤ n. So p ∈ S(h∗C)W . Thus Z(H) = S(h∗C)W . �

2.2. Harmonic polynomials. Let us briefly review the relationship between S(h∗C), S(h∗C)W , and
harmonic polynomials [CG, § 6.3]. Let x1, x2, . . . , xn be an orthonormal basis of hC and define a
symmetric bilinear form 〈 , 〉 on S(h∗C) by

〈P,Q〉 = (P (∂)Q)
∣∣
xi=0

, for P,Q ∈ S(h∗C),

where P (∂) = P
(

∂
∂x1

, . . . , ∂
∂xn

)
and

∣∣
xi=0

denotes specializing the variables to 0 (or, equivalently,
taking the constant term). The monomials are an orthogonal basis of S(h∗C),

〈xλ1
1 · · ·x

λn
n , xµ1

1 · · ·x
µn
n 〉 =

((
∂
∂x1

)λ1

· · ·
(

∂
∂xn

)λn
xµ1

1 · · ·x
µn
n

) ∣∣∣
xi=0

= δλ1µ1 · · · δλnµnλ1!λ2! · · ·λn!,

and so the bilinear form 〈 , 〉 is nondegenerate. The vector space H of harmonic polynomials is
the set of polynomials orthogonal to the ideal of S(h∗C) generated by W -invariants in S(h∗C) with
constant term 0,

H = (〈f ∈ S(h∗C)W | f(0) = 0〉)⊥, and S(h∗C) = S(h∗C)W ⊗H,
as vector spaces. More precisely, if {hw} is a C-basis of H then any f ∈ S(h∗C) can be written
uniquely in the form

f =
∑
w

pwhw, pw ∈ S(h∗C)W .

If the basis {hw} consists of homogeneous polynomials then the number and the degrees of these
polynomials are determined by the Poincaré polynomial of W ,

(2.3) PW (t) =
∑
k≥0

dim(Hk)tk =
n∏
i=1

1− tdi
1− t

=
∑
w∈W

t`(w),

where d1, . . . , dn are the degrees of a set f1, . . . , fn of homogeneous generators of S(h∗C)W =
C[f1, . . . , fn] andHk is the kth homogeneous component ofH. In particular, dim(H) = Card({hw}) =
PW (1) = |W | and S(h∗C) is a free module over S(h∗C)W of rank |W |.

The following useful lemma is well known (see, for example, [Ka, Lemma 2.11]). Other related
results can be found in [St2] and [Hu].

Lemma 2.2. Let {bw}w∈W be a basis for the vector space H of harmonic polynomials and let X
be the |W | × |W | matrix given by

X = (z−1bw)z,w∈W . Then detX = ξ ·
(∏
α>0

α
)|W |/2

,

where ξ is a nonzero constant in C.
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Proof. Note that if b′w is another basis of H and we write

b′w =
∑
v∈W

cvwbv, cvw ∈ C, then

X ′ = (z−1b′w)z,w∈W =
(
z−1bv

)(
cvw
)

and so detX ′ = ξ detX,

for some nonzero constant ξ = det((cvw)). Thus, by changing basis if necessary, we may assume
that the bw are homogeneous.

Subtract row z−1bw from row sαz
−1bw. Then this row is divisible by α. By doing this subtraction

for each of the |W |/2 pairs {z−1, sαz
−1} we conclude that det(X) is divisible by α|W |/2. Thus, since

the roots are co-prime as elements of the polynomial ring S(h∗C),

det(X) is divisible by
(∏
α>0

α
)|W |/2

.

The degree of
∏
α>0 α

|W |/2 is (|W |/2)Card(R+) and, using (2.3), the degree of det(X) is

deg

( ∏
w∈W

bw

)
=
∑
k

k dim(Hk) =
(
d

dt
PW (t)

) ∣∣∣
t=1

=
∑
w∈W

`(w)

=
∑
w∈W

Card(R(w)) =
∑
α∈R+

(|W |/2) = (|W |/2)Card(R+).

Since these two polynomials are homogeneous of the same degree it follows that the quotient
det(X)/(

∏
α>0 α)|W |/2 is a constant. If det(X) = 0 then the columns of X are linearly dependent.

In particular, there exist constants cw ∈ C, not all zero, such that
∑
w
cwbw = 0. But this is a

contradiction to the assumption that {bw} is a basis of H. So det(X) 6= 0. �

For each 1 ≤ i ≤ n let ∆∗i : S(h∗C)→ S(h∗C) be the operator which is adjoint to the BGG-operator
∆i with respect to 〈, 〉. A homogeneous basis {bw | w ∈ W} of the space of harmonic polynomials
H can be constructed by setting

bw = ∆∗w(1), where ∆∗w = ∆∗i1 · · ·∆
∗
i`

for a reduced word w = si1 · · · si` .

2.3. Weights and calibrated representations. The group W acts on

hC = Hom(h∗C,C) by (wγ)(x) = γ(w−1x),

for w ∈W , γ ∈ hC and x ∈ h∗C.
The inversion set of an element w ∈W is

(2.4) R(w) = {α > 0 | wα < 0}

The choice of the simple roots α1, . . . , αn ∈ h∗R determines a fundamental chamber

(2.5) C = {λ ∈ hR | 〈αi, λ〉 > 0, 1 ≤ i ≤ n}

for the action of W on hR. For a root α ∈ R, the positive side of the hyperplane Hα is the side
towards C, i.e. {λ ∈ hR | 〈λ, α〉 > 0}, and the negative side of Hα is the side away from C. There
is a bijection

(2.6) W ←→ {fundamental chambers for W acting on hR}
w 7−→ w−1C

and the chamber w−1C is the unique chamber which is on the positive side of Hα for α /∈ R(w)
and on the negative side of Hα for α ∈ R(w).
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If sα is a reflection in W which fixes γ ∈ hC then 〈γ, α∨〉 = 0. By [St, Theorem 1.5], [Bou, Ch. V
§5 Ex. 8] the stabilizer Wγ of γ under the W -action is generated by the reflections which stabilize
γ and so

Wγ = 〈sα | α ∈ Z(γ)〉 where Z(γ) = {α | γ(α) = 0}.
The orbit Wγ can be viewed in several different ways via the bijections

Wγ ←→ W/Wγ ←→ {w ∈W | R(w) ∩ Z(γ) = ∅}(2.7)

←→
{

chambers on the positive
side of Hα for α ∈ Z(γ)

}
,

where the last bijection is the restriction of the map in equation (2.6). If γ is real and dominant (i.e.
γ(α) ∈ R≥0 for all α ∈ R) then Wγ is a parabolic subgroup of W and {w ∈W | R(w) ∩ Z(γ) = ∅}
is the set of minimal length coset representatives of the cosets in W/Wγ .

Let M be a simple H-module. Dixmier’s version of Schur’s lemma (see [Wa]) implies that Z(H)
acts on M by scalars. Let γ ∈ hC be such that

pm = γ(p)m, for all m ∈M, p ∈ S(h∗C)W .

The element γ is only determined up to the action of W since γ(p) = wγ(p) for all w ∈W . Because
of this, any element of the orbit Wγ is referred to as the central character of M .

Since H = CW ⊗ S(h∗C) = CW ⊗ S(h∗C)W ⊗ H, the graded Hecke algebra H is a free module
over Z(H) = S(h∗C)W of rank dim(CW ) dim(H) = |W |2. Since Z(H) acts on a simple H-module
by scalars, every simple H-module is finite dimensional of dimension ≤ |W |2. Proposition 2.8(a)
below will show that, in fact, the dimension of a simple H-module is ≤ |W |.

Let M be a finite dimensional H-module and let γ ∈ hC. The γ-weight space and the generalized
γ-weight space of M are

Mγ = {m ∈M | xm = γ(x)m for all x ∈ h∗C},(2.8)

Mgen
γ = {m ∈M | for all x ∈ h∗C, (x− γ(x))km = 0 for some k ∈ Z>0}.(2.9)

Then
M =

⊕
γ∈hC

Mgen
γ ,

and we say that γ is a weight of M if Mgen
γ 6= 0. Note that Mgen

γ 6= 0 if and only if Mγ 6= 0. A
finite dimensional H-module

(2.10) M is calibrated if Mgen
γ = Mγ , for all γ ∈ hC.

2.4. Tempered representations and the Langlands classification. Any λ ∈ HomC(h∗C,C) is
determined by its values 〈λ, αi〉 on the simple roots. Define Re(λ) and Im(λ) in hR = HomR(h∗R,R)
by 〈Re(λ), αi〉 = Re(〈λ, αi〉) and 〈Im(λ), αi〉 = Im(〈λ, αi〉), and write

λ = Re(λ) + i Im(λ).

For any simple reflection sj , we have sjλ = Re(λ) − Re(〈λ, αj〉)α∨j + i Im(λ) − i Im(〈λ, αj〉)α∨j =
sjRe(λ) + i sjIm(λ), and so

Re(wλ) = wRe(λ), for all w ∈W.

Let ω∨i be the dual basis to α∨i in hR and let C be the closure of the fundamental chamber
C ⊆ hR defined in (2.5). For λ ∈ hC let λ0 be the point of C which is closest to Re(λ). This point
is uniquely defined because of the convexity of the region C. Since λ0 ∈ C and the ω∨i are on the
boundary of C there is a uniquely determined set I such that

λ0 =
∑
j 6∈I

cjω
∨
j , with cj > 0,
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and we say that the weight λ is I-tempered. For each I the set {ω∨j , α∨i | j 6∈ I, i ∈ I} is a basis of
hR and λ0 and I can, alternatively, be determined by the unique expansion

(2.11) Re(λ) =
∑
j 6∈I

cjω
∨
j +

∑
i∈I

diα
∨
i , with cj > 0 and di ≤ 0.

Proposition 2.3. (Lemma of Langlands) [La, Corollary 4.6] [Kn, Lemma 8.59] Let λ ≥ µ denote
the dominance ordering on hR. If λ, µ ∈ hR such that λ ≥ µ then λ0 ≥ µ0.

For any subset I ⊆ {1, . . . , n}, let HI be the subalgebra of H generated by tsi , i ∈ I, and all
x ∈ h∗C. An HI -module M is tempered if all weights of M are I-tempered.

Theorem 2.4. Let L be a simple H-module.
(a) There is a subset I ⊆ {1, 2, . . . , n} and a simple tempered HI-module U such that L is the

unique simple quotient of H⊗HI U .
(b) If I and I ′ are subsets of {1, 2, . . . , n} and U and U ′ are simple tempered HI and HI′-

modules, respectively, such that L is a quotient of both H⊗HI U and H⊗HI′ U
′ then I = I ′

and U ∼= U ′ as HI-modules.

Proof. Let L be a simple H-module. Let λ be a weight of L such that

(2.12) λ0 is a maximal element of {µ0 | µ is a weight of L}

with respect to the dominance ordering on hR. Let I ⊆ {1, 2, . . . , n} be determined by

λ0 =
∑
j 6∈I

cjω
∨
j

and let V be the HI -submodule of L generated by a nonzero vector mλ in Lλ. Let WI be the
subgroup of W generated by si, i ∈ I. The weights of V are of the form wλ with w ∈ WI . If
w ∈WI then there are some constants ai ∈ R so that

Re(wλ) =
∑
j 6∈I

cjω
∨
j +

∑
ai≤0,i∈I

aiα
∨
i +

∑
ai>0,i∈I

aiα
∨
i ≥

∑
j 6∈I

cjω
∨
j +

∑
ai≤0,i∈I

aiα
∨
i ,

since Re(λ) is as in (2.11). So, by Proposition 2.3,

(wλ)0 ≥

∑
j 6∈I

cjω
∨
j +

∑
ai≤0

aiα
∨
i


0

=
∑
j 6∈I

cjω
∨
j = λ0.

Thus, by the maximality of λ0, µ0 = λ0 for all weights µ of V . So V is tempered.
Let U be a simple HI -submodule of V . All weights of H⊗HI U are of the form wµ with w ∈W

and µ a weight of U . Let W I denote the set of minimal length coset representatives of cosets in
W/WI . If wµ is a weight and w = w1w2 with w1 ∈ W I and w2 ∈ WI then by the argument just
given w2µ is I-tempered and so

Re(w2µ) =
∑
j 6∈I

cjω
∨
j +

∑
i∈I

aiα
∨
i with cj > 0, ai ≤ 0.

Recall that W I = {w1 ∈W | R(w1)∩{αi}i∈I = ∅}. Thus, for each i ∈ I, w1α
∨
i is a positive co-root

and
Re(w1w2µ) = w1(w2µ)0 +

∑
i∈I

aiw1α
∨
i ≤ w1(w2µ)0,

If w1 6= 1 then w1ω
∨
j ≤ ω∨j for all j 6∈ I and w1ω

∨
j < ω∨j for some j 6∈ I. So

Re(w1w2µ) ≤ w1(w2µ)0 < (w2µ)0
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and thus, by Proposition 2.3,

(2.13) (w1w2µ)0 < (w2µ)0, when w1 6= 1.

Let ν be a weight of U such that, among weights of U , ν0 is maximal. If N is an H-submodule
of H⊗HI U such that Nν 6= 0 then, by (2.13), Nν ⊆ Uν and so N ∩ U 6= 0. Since U is simple as an
HI -module, any vector of U generates all of H⊗HI U and so N = H⊗HI U . This shows that if

Mmax =
(

sum of all H-submodules N of H⊗HI U
such that Nν = 0

)
then Mmax is equal to the sum of all proper submodules of H⊗HI U and is the (unique) maximal
proper submodule of H⊗HI U . So H⊗HI U has a unique simple quotient.

Since U is an HI -submodule of L and induction is the adjoint functor to restriction, there is an
H-module homomorphism

(2.14) φU : H⊗HI U −→ L
u 7−→ u for u ∈ U .

Thus, since L is simple, L ∼= (H ⊗HI U)/Mmax. This proves (a) and shows that for any tempered
HI -module U the module H⊗HI U has a unique simple quotient.

To prove (b) let us analyze the freedom of the choices that are made in the above construction
of H⊗HI U . Equation (2.13) and Proposition 2.3 show that ν0 ≤ λ0 for all weights ν of H⊗HI U .
In particular, all weights ν of L satisfy ν0 ≤ λ0 and so λ0 is the same for all weights λ of L which
satisfy (2.12). This shows that there is a unique choice of I in the construction of H⊗HI U . If U ′

is another simple HI -submodule of V then either U ∩U ′ = 0 or U = U ′. Suppose that U ∩U ′ = 0.
Then U ⊕ U ′ is a tempered HI -submodule of L. Let ν be a weight of U . Suppose µ is a weight
of L with µ0 = ν0. By equations (2.13) and (2.14), the only elements of the µ-weight space of the
image of the homomorphism φU : H⊗HI U → L are elements of U . Thus im(φU )∩U ′ = 0. But this
is impossible because L is simple and φU is surjective. Thus U = U ′. �

Theorem 2.4 gives us a way to classify simple H-modules. The Langlands parameters (U, I) of
the simple module L are the pair determined by Theorem 2.4.

2.5. τ operators. The following proposition defines maps τi : Mgen
γ →Mgen

siγ on generalized weight
spaces of finite-dimensional H-modules M . These are “local operators” and are only defined on
weight spaces Mgen

γ such that γ(αi) 6= 0. In general, τi does not extend to an operator on all of M .

Proposition 2.5. Let M be a finite dimensional H-module. Fix i, let γ ∈ hC be such that γ(αi) 6= 0
and define

τi : Mgen
γ −→ Mgen

siγ

m 7→
(
tsi −

cαi
αi

)
m.

(a) The map τi : Mgen
γ →Mgen

siγ is well defined.
(b) As operators on Mgen

γ , xτi = τisi(x) for all x ∈ S(h∗C).

(c) As operators on Mgen
γ , τiτi =

(cαi + αi)(cαi − αi)
(αi)(−αi)

.

(d) Both maps τi : Mgen
γ → Mgen

siγ and τi : Mgen
siγ → Mgen

γ are invertible if and only if γ(αi) 6=
±cαi.

(e) If 1 ≤ i, j ≤ n, i 6= j, let mij be the order of sisj in W . Then

τiτjτi · · ·︸ ︷︷ ︸
mij factors

= τjτiτj · · ·︸ ︷︷ ︸
mij factors

,

whenever both sides are well defined operators on Mgen
γ .
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Proof. Since αi acts on Mgen
γ by γ(αi) times a unipotent transformation, the operator αi on Mgen

γ

has nonzero determinant and is invertible. Since cαi/αi is not an element of S(h∗C) or H it will be
viewed only as an operator on Mgen

γ in the following calculations.
If x ∈ h∗C and m ∈Mgen

γ then

xτim = x

(
tsi −

cαi
αi

)
m =

(
tsisi(x) + cαi〈x, α∨i 〉 − cαi

x

αi

)
m

=
(
tsisi(x)− cαi

x− 〈x, α∨i 〉αi
αi

)
m =

(
tsisi(x)− cαi

si(x)
αi

)
m

=
(
tsi −

cαi
αi

)
si(x)m = τisi(x)m.

This proves (a) and (b).

τiτim =

(
t2si −

cαi
αi
tsi − tsi

cαi
αi

+
c2αi
α2
i

)
m

=

1− cαi
αi
tsi −

cαi
−αi

tsi − cαi

(
cαi
αi
− cαi
−αi

)
αi

+
c2αi
α2
i

m

=

(
1 +

c2αi
(αi)(−αi)

)
m =

(
(cαi + αi)(cαi − αi)

(αi)(−αi)

)
m,

proving (c).
(d) Since αi acts on Mgen

γ by γ(αi) times a unipotent transformation, det((cαi+αi)(cαi−αi)) = 0
if and only if γ(αi) = ±cαi . Thus τiτi, and each factor in this composition, is invertible if and only
if γ(αi) 6= ±cαi .

(e) Let w = si1 · · · si` be a reduced word for w ∈W and set τw = τi1 · · · τi` . Using the definition
τi = tsi −

cαi
αi

and the defining relation (2.2) for H yields an expansion

τw = tw +
∑
z<w

Rztz,

where the Rz are rational functions of the α ∈ R. We shall show that this expansion of τw does
not depend on the choice of reduced word of w.

Let 1 be the trivial CW -module and let e =
∑

w∈W tw. View the H-module He ∼= IndH
CW (1) =

H⊗CW 1 = S(h∗C)⊗CW ⊗CW 1 = S(h∗C)⊗1 simply as S(h∗C). Let us first show that this H-module
S(h∗C) = IndH

CW (1) is faithful. Assume h =
∑

z∈W Pztz in H = S(h∗C)⊗ CW is such that h(p) = 0
for all p ∈ S(h∗C). We must show that h = 0.

Since 0 = h(1) =
∑

z Pz, and this is true degree by degree, we may assume that the polynomials
Pz are homogeneous of the same degree. Use the notations of Lemma 2.2 so that {bw | w ∈W} is
a basis of the space of harmonic polynomials H consisting of homogeneous polynomials. Then, for
each w ∈W ,

0 = h(bw) =
∑
z∈W

Pztzbw(1) =

(∑
z∈W

Pz(z−1bw)tz + lower degree terms

)
(1)

=
∑
z∈W

Pz(z−1bw) + lower degree terms.

where, by definition, each tz is degree 0. Focusing on top degree terms in this equality, 0 =∑
z∈W Pz(z−1bw), for each w ∈ W . By Lemma 2.2, the matrix (z−1bw)z,w∈W is invertible, and
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there is a nonzero ξ ∈ C with ξ · (
∏
α>0 α)|W |/2Pz = 0, for every z ∈W . Since S(h∗C) is an integral

domain, Pz = 0 for each z ∈W , and hence h = 0. So the H-module IndH
CW (1) ∼= S(h∗C) is faithful.

Let τ̃i = tsiαi − cαi ∈ H. As operators on IndH
CW (1) ∼= S(h∗C),

τiαi = τ̃i, τ̃i(1) = (−αitsi + cαi)(1) = (−αi + cαi), and τ̃ip = (sip)τ̃i,

for any polynomial p ∈ S(h∗C). Using the fact [Bou, Chapt. VI §1.11 Prop. 33] that, for a reduced
word w = si1 · · · si` , R(w) = {αi` , si`αi`−1

, . . . , si` · · · si2αi1},

(τi1 · · · τi`)

( ∏
α∈R(w)

α

)
(p) = (τ̃i1 · · · τ̃i`) p(1) = (wp) (τ̃i1 · · · τ̃i`) (1) = (wp)

 ∏
α∈R(w)

(−α+ cα)

 .

Thus, since S(h∗C) is an integral domain and IndH
CW (1) is faithful, τi1 · · · τi` does not depend on the

choice of the reduced word w = si1 · · · si` . �

Let γ ∈ hC and define

(2.15) Z(γ) = {α > 0 | γ(α) = 0} and P (γ) = {α > 0 | γ(α) = ±cα}.

If J ⊆ P (γ), define

(2.16) F (γ,J) = {w ∈W | R(w) ∩ Z(γ) = ∅ and R(w) ∩ P (γ) = J}.

A local region is a pair (γ, J) such that γ ∈ hC, J ⊆ P (γ), and F (γ,J) 6= ∅. Under the bijection
(2.6) the set F (γ,J) maps to the set of points x ∈ hR which are

(a) on the positive side of the hyperplanes Hα for α ∈ Z(γ),
(b) on the positive side of the hyperplanes Hα for α ∈ P (γ)\J , and
(c) on the negative side of the hyperplanes Hα for α ∈ J .

In this way the local region (γ, J) really does correspond to a region in hR. This is a connected
convex region in hR since it is cut out by half spaces in hR ∼= Rn. The elements w ∈ F (γ,J)

index the chambers w−1C in the local region and the sets F (γ,J) form a partition of the set {w ∈
W | R(w) ∩ Z(γ) = ∅} (which, by (2.7), indexes the cosets in W/Wγ).

Corollary 2.6. Let M be a finite dimensional H-module. Let γ ∈ hC and let J ⊆ P (γ). Then

dim(Mgen
wγ ) = dim(Mgen

w′γ) for w,w′ ∈ F (γ,J),

where F (γ,J) is given by (2.16).

Proof. Suppose w, siw ∈ F (γ,J). We may assume that siw > w. Then α = w−1αi > 0, α 6∈ R(w)
and α ∈ R(siw). Now, R(w) ∩ Z(γ) = R(siw) ∩ Z(γ) implies γ(α) 6= 0, and R(w) ∩ P (γ) =
R(siw) ∩ P (γ) implies γ(α) 6= ±cα. Since cα = cwα = cαi , wγ(αi) = γ(w−1αi) = γ(α) 6= 0 and
wγ(αi) 6= ±cαi and thus, by Proposition 2.5(d), the map τi : Mgen

wγ → Mgen
siwγ is well defined and

invertible. It remains to note that if w,w′ ∈ F (γ,J), then w′ = si1 · · · si`w where sik · · · si`w ∈ F (γ,J)

for all 1 ≤ k ≤ `. This follows from the fact that (γ, J) corresponds to a connected convex region
in hR. �

The following lemma will be used in the classification in Section 3 to analyze weight spaces for
representations with nonregular central character.

Lemma 2.7. Let γ ∈ hC such that γ(αi) = 0. Let M be an H-module such that Mgen
γ 6= 0 and let

w ∈ F (γ,∅). Then
(a) dimMgen

wγ ≥ 2 and
(b) if Mgen

sjwγ = 0, then (wγ)(αj) = ±cαj and 〈w−1αj , α
∨
i 〉 = 0.
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Proof. Let HA1 be the subalgebra of H generated by tsi and all x ∈ S(h∗C). Let Cvγ be the one
dimensional representation of S(h∗C) defined by xvγ = γ(x)vγ and let M(γ) = IndHA1

S(h∗C)(Cvγ) =
HA1⊗S(h∗C) Cvγ . This module is irreducible and has basis {vγ , tsivγ} and, with respect to this basis,
the action of x ∈ h∗C on M(γ) is given by the matrix

(2.17) ργ(x) =
(
γ(x) cαi〈x, α∨i 〉

0 γ(x)

)
.

Let nγ be a nonzero vector in Mγ . As an S(h∗C)-module Cnγ ∼= Cvγ and, since induction is the
adjoint functor to restriction, there is a unique HA1-module homomorphism given by

M(γ) −→ M
vγ 7−→ nγ

Since M(γ) is irreducible, this homomorphism is injective, and the vectors nγ , tsinγ span a two-
dimensional subspace of Mgen

γ on which the action of x ∈ h∗C is given by the matrix in (2.17).
Let w = si1 · · · sip be a reduced word for w. Proposition 2.5(d) and the assumption that w ∈

F (γ,∅) guarantee that the map

τw = τi1 · · · τil : Mgen
γ →Mgen

wγ

is well-defined and bijective. Thus τwnγ and τwtsinγ span a two-dimensional subspace of Mgen
wγ and,

by Proposition 2.5(b), the HA1 action of x ∈ X on this subspace is given by

ρwγ(x) =
(
γ(w−1x) cαi〈w−1x, α∨i 〉

0 γ(w−1x)

)
.

This proves (a).
Assume Mgen

sjwγ = 0. Then part (a) implies that sjwγ 6= wγ, and so (wγ)(αj) = γ(w−1αj) 6= 0.
So the matrix ρwγ(αj) is invertible and

ρwγ

(
1
αj

)
=

1
γ(w−1αj)2

(
1 −cαi〈w−1αj , α

∨
i 〉

0 1

)
.

Since Mgen
sjwγ = 0, the map τj : Mgen

wγ →Mgen
sjwγ is the zero map and

ρwγ(tsj ) = ρwγ

(
cαj
αj

)
=

cαj
γ(w−1αj)2

(
1 −cαj 〈w−1αj , α

∨
i 〉

0 1

)
.

Since t2sj − 1 = (tsj − 1)(tsj + 1) = 0, ρwγ(tsj ) must have Jordan blocks of size 1 and eigenvalues
±1. Since cαi 6= 0, it follows that γ(w−1αj) = ±cαj and 〈w−1αj , α

∨
i 〉 = 0. �

2.6. Principal series modules. For γ ∈ hC let Cvγ be the one dimensional S(h∗C)-module given
by

xvγ = γ(x)vγ , for x ∈ h∗C.

The principal series representation M(γ) is the H-module defined by

(2.18) M(γ) = H⊗S(h∗C) Cvγ = IndH
S(h∗C)(Cvγ).

The module M(γ) has basis {tw ⊗ vγ | w ∈ W} with CW acting by left multiplication. By the
defining relations for H, for x ∈ h∗C, w ∈W ,

xtwvγ = (wγ)(x)tw ⊗ vγ +
∑
z<w

czw(x)tz ⊗ vγ , with czw(x) ∈ C.

Thus, if γ ∈ hC is regular all the wγ are distinct and

M(γ) =
⊕
w∈W

M(γ)wγ with dim(M(γ)wγ) = 1.
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Thus, if γ ∈ hC is regular, there is a unique basis {vwγ | w ∈W} of M(γ) determined by

xvwγ = (wγ)(x)vwγ , for all w ∈W and x ∈ h∗C,(2.19)

vwγ = tw ⊗ vγ +
∑
u<w

awu(γ)(tu ⊗ vγ), where awu(γ) ∈ C.(2.20)

Alternatively,

(2.21) vwγ = τwvγ

where τw = τi1τi2 · · · τip for a reduced word w = si1 · · · sip of w. The uniqueness of the element vwγ
given by the conditions (2.19) and (2.20) shows that vwγ = τwvγ does not depend on the reduced
decomposition which is chosen for w.

Part (a) of the following proposition implies that the dimension of every irreducible H-module
is less than or equal to |W |. In combination, part (a) and part (b) show that every irreducible
H-module with regular central character is calibrated. Part (c) is a graded Hecke analogue of a
result of Rogawski [Ro, Proposition 2.3].

Proposition 2.8.

(a) If M is an irreducible finite dimensional H-module with Mgen
γ 6= 0, then M is a quotient of

M(γ).
(b) If γ ∈ hC is regular then M(γ) is calibrated.
(c) For fixed γ ∈ hC and any w ∈W , M(γ) and M(wγ) have the same composition factors.

Proof. (a) Since S(h∗C) is commutative, an irreducible S(h∗C) submodule must be one-dimensional.
Thus there exists a nonzero vector mγ in Mγ and, as an S(h∗C)-module, Cmγ

∼= Cvγ . Since induction
is the adjoint functor to restriction there is a unique H-module homomorphism given by

M(γ) −→ M
vγ 7−→ mγ

and, since M is irreducible, this homomorphism is surjective. Thus M is a quotient of M(γ).

(b) Since γ is regular, Wγ = {1}, and by equation (2.19),

M(γ) =
⊕
w∈W

M(γ)wγ and dim(M(γ)wγ) = 1

for all w ∈ W . Since M(γ)wγ is nonzero whenever M(γ)gen
wγ is nonzero and dim(M(γ)gen

wγ ) = 1,
M(γ)wγ = M(γ)gen

wγ for all w ∈W .

(c) Let si be a simple reflection such that siγ 6= γ. Then γ(αi) 6= 0 and the operator τi is well
defined on M(siγ)gen

siγ . The vector vsiγ is a weight vector in M(siγ)siγ and, by Proposition 2.5(b),
τivsiγ is a weight vector of weight γ (it is nonzero since tsivsiγ and (siγ)(cαi/αi)vsiγ are linearly
independent in M(siγ)). Thus, there is an H-module homomorphism

A(si, γ) : M(γ) −→ M(siγ)
hvγ 7−→ hτivsiγ , h ∈ H.

The modules M(γ) and M(siγ) have bases

{tw(tsi + 1)vγ , tw(tsi − 1)vγ}siw>w and(2.22)

{tw(tsi + 1)vsiγ , tw(tsi − 1)vsiγ}siw>w,
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respectively. Since (tsi + 1)tsi = tsi + 1 and (tsi − 1)tsi = −(tsi − 1),

A(si, γ)(tw(tsi + 1)vγ) = tw(tsi + 1)
(
tsi −

cαi
αi

)
vsiγ = tw(tsi + 1)

(
1− cαi

αi

)
vsiγ

=
(
siγ

(
αi − cαi
αi

))
tw(tsi + 1)vsiγ

A(si, γ)(tw(tsi − 1)vγ) = tw(tsi − 1)
(
tsi −

cαi
αi

)
vsiγ = tw(tsi − 1)

(
−1− cαi

αi

)
vsiγ

=
(
siγ

(
αi + cαi
−αi

))
tw(tsi − 1)vsiγ

and so the matrix of A(si, γ) with respect to the bases in (2.22) is diagonal with |W |/2 diagonal
entries equal to (siγ)((αi− cαi)/αi) and |W |/2 diagonal entries equal to (siγ)((αi + cαi)/(−αi)). If
γ(αi) 6= ±cαi then A(si, γ) is an isomorphism and so M(γ) and M(siγ) have the same composition
factors. If γ(αi) = ±cαi then dim(kerA(si, γ)) = |W |/2. In this case A(si, siγ)A(si, γ) = 0 and so
the sequence

M(γ)
A(si,γ)−→ M(siγ)

A(si,siγ)−→ M(γ)

is exact. Then
M(siγ) ⊇ ker(A(si, siγ)) ⊇ 0

is a filtration of M(siγ) where the first factor, M(siγ)/ ker(A(si, siγ)) ∼= im(A(si, siγ)) ⊆M(γ), is
isomorphic to a submodule of M(γ), and the second factor, ker(A(si, siγ)) ∼= M(γ)/ ker(A(si, γ))
is isomorphic to a quotient of M(γ). Since dim(ker(A(si, siγ))) + dim(im(A(si, siγ))) = |W |/2 +
|W |/2 = dim(M(siγ)) = dim(M(γ)), it follows that M(γ) and M(siγ) must have the same com-
position factors. �

Our next goal is to prove Theorem 2.10 which determines exactly when the principal series
module M(γ) is irreducible. Let γ ∈ hC and let M(γ) = H ⊗S(h∗C) Cvγ be the corresponding
principal series module for H. The spherical vector in M(γ) is

(2.23) 1γ =
∑
w∈W

twvγ .

Up to multiplication by constants this is the unique vector in M(γ) such that tw1γ = 1γ for
all w ∈ W . The following proposition provides a graded Hecke analogue of the results in [Ka,
Proposition 1.20] and [Ka, Lemma 2.3]. Mention of this analogue was made in [Op].

Proposition 2.9.

(a) If γ is a generic element of hC and vwγ, w ∈W , is the basis of M(γ) defined in (2.21) then

1γ =
∑
z∈W

γ(cz)vzγ , where cz =
∏

α∈R(w0z)

α+ cα
α

.

(b) The spherical vector 1γ generates M(γ) if and only if
∏
α>0(γ(α) + cα) 6= 0.

(c) For γ ∈ hC, the principal series module M(γ) is irreducible if and only if 1wγ generates
M(wγ) for all w ∈W .

Proof. (a) Suppose that ξz ∈ C are constants such that

1γ =

(∑
w∈W

tw

)
vγ =

∑
z∈W

ξzvzγ .



14 CATHY KRILOFF AND ARUN RAM

We shall prove that the ξz are given by the formula in the statement of the proposition. Since
tsi
(∑

w∈W tw
)

=
∑

w∈W tw,

1γ = tsi1γ =
(
τi +

cαi
αi

)∑
z∈W

ξzvzγ =
(
τi +

cαi
αi

) ∑
siz>z

(ξzvzγ + ξsizvsizγ)

=
∑
siz>z

(
ξzvsizγ + ξz

cαi
γ(z−1αi)

vzγ + ξsizτ
2
i vzγ + ξsiz

cαi
γ(−z−1αi)

vsizγ

)
.

Comparing coefficients of vsizγ on each side of this expression gives

ξsiz = ξz + ξsiz
cαi

γ(−z−1αi)
, and so

ξz
ξsiz

= γ

(
z−1αi + cαi
z−1αi

)
, if siz > z.

Using this formula inductively gives

ξw = ξsi1 ···sip = γ

(
sip · · · si2αi1

sip · · · si2αi1 + cαi

)
· · · γ

(
αip

αip + cαip

)
ξ1

= γ

 ∏
α∈R(w)

α

α+ cα

 ξ1.

Since the transition matrix between the basis {twvγ} and the basis {vwγ} is upper unitriangular
with respect to Bruhat order, ξw0 = 1. Thus, the last equation implies that

ξ1 = γ

(∏
α>0

α+ cα
α

)
and ξw = γ

 ∏
α∈R(w)

α

α+ cα

 · ξ1 = γ

 ∏
α∈R(w0w)

α+ cα
α

 .

(b) By expanding vzγ = τzvγ = τi1 · · · τipvγ for a reduced word si1 · · · sip = z it follows that there
exist rational functions muz such that

vzγ =
∑
u∈W

γ(muz)tuvγ ,

for all generic γ ∈ hC. Furthermore the matrix M = (muz)u,z∈W with these rational functions as
entries is upper unitriangular.

Let bw, w ∈W , be a basis of harmonic polynomials and define polynomials quy ∈ S(h∗C), u, y ∈W ,
by

by

(∑
w∈W

tw

)
=
∑
u∈W

tuquy, y ∈W,

where these equations are equalities in H. Then,

by1γ = by

(∑
w∈W

tw

)
=
∑
u∈W

γ(quy) (tu ⊗ vγ),

and part (a) implies that if γ is generic then

by1γ = by
∑
z∈W

γ(cz)vzγ =
∑
z∈W

γ(cz(z−1by)) vzγ =
∑
z,u∈W

γ(cz(z−1by)muz) (tu ⊗ vγ).

Since these two expressions are equal for all generic γ ∈ hC it follows that

(2.24) quy =
∑
z∈W

muz · cz · (z−1by), u, y ∈W,

as rational functions (in fact both sides are polynomials).
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Since tw, w ∈ W , and p ∈ Z(H) = S(h∗C)W act on 1γ by constants, the H-module M(γ) is
generated by 1γ if and only if there exist constants pyw ∈ C such that

tw ⊗ vγ =
∑
y∈W

pywby1γ , for each w ∈W .

If these constants exist then, for each w ∈W ,

tw ⊗ vγ =
∑
y∈W

pywby1γ =
∑

y,z,u∈W
γ(muzcz(z−1by)pyw)tu ⊗ vγ ,

where, by (2.24), there is no restriction that γ be generic. If

M = (muz)u,z∈W , C = diag(cz)z∈W , X =
(
z−1by

)
z,y∈W P = (pyw)y,w∈W ,

then P = (γ(MCX))−1 and so P exists if and only if det(γ(MCX)) 6= 0. Now det(M) = 1, and,
by Lemma 2.2 and part (a),

det(X) = ξ ·
∏
α>0

α|W |/2 and det(C) =
∏
z∈W

∏
α∈R(w0z)

α+ cα
α

=

(∏
α>0

α+ cα
α

)|W |/2
,

where ξ ∈ C is nonzero. Thus P exists if and only if
∏
α>0(γ(α) + cα) 6= 0.

(c) =⇒: If M(γ) is irreducible then, by Proposition 2.8(c), M(wγ) is irreducible for all w ∈ W .
Hence M(wγ) is generated by 1wγ .
⇐=: Suppose that 1wγ generates M(wγ) for all w ∈W . Let E be a nonzero irreducible submodule
of M(γ) and let w ∈W be such that the weight space Ewγ is nonzero. Then, by Proposition 2.8(a),
there is a nonzero surjective H-module homomorphism ϕ : M(wγ) → E. Since 1wγ generates
M(wγ), ϕ(1wγ) is a nonzero vector in E such that tvϕ(1wγ) = ϕ(1wγ) for all v ∈ W . Since there
is a unique, up to constant multiples, spherical vector in M(γ), φ(1wγ) is a multiple of 1γ and 1γ
is nonzero. This implies that E = M(γ) since 1γ generates M(γ). �

Together the three parts of Proposition 2.9 prove the following graded Hecke algebra analogue
of [Ka, Theorem 2.1].

Theorem 2.10. Let γ ∈ hC and let P (γ) = {α > 0 | γ(α) = ±cα}. The principal series H-module

M(γ) is irreducible if and only if P (γ) = ∅.

3. Classification of Irreducible Representations for Rank 2

In this section we analyze the structure of all simple H-modules for rank 2 graded Hecke algebras
H. The results, the classification of simple modules and various other data (central character γ,
P (γ), Z(γ), dimension, calibrated or non calibrated, Langlands parameters), are listed in Table 1.
An irreducible representation that is calibrated (see (2.10)) has all its weights of the form wγ with
w ∈ F (γ,J) for a unique J , and this is the set which is displayed in the fourth column of Table 1.
The notation ‘nc’ indicates that the representation is not calibrated. The Langlands parameters of
a simple H-module of central character γ consists of a pair (U, I) where I is a subset of {1, 2} and
U is a tempered representation of HI (see Theorem 2.4). If I is empty there is a unique tempered
representation of HI of central character γ and we place the pair (γ, ∅) in the corresponding entry
of column 5 of Table 1. If I consists of one element then HI

∼= HA1 and each HI -tempered
representation is naturally indexed by its maximal weight µ and we place (µ, I) in column 5 of
Table 1. If I = {1, 2} then the corresponding simple H-module is tempered.

The classification of the simple H-modules is accomplished in three steps:
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(a) The central character of a simple module is a W -orbit in hC, and we label the orbit by a
representative element γ. The structure of the simple modules with central character γ is,
in a large part, controlled by the sets Z(γ) and P (γ) and the first step is to classify the
central characters γ according to their sets Z(γ) and P (γ). The resulting partition of the
central characters is given in Table 1 and the derivation of this list presented in Section 3.2.
The derivation is accomplished by considering, case by case, the possibilities (0, 1, or ≥ 2)
for Card(Z(γ)).

(b) For each central character γ we use the knowledge of Z(γ) and P (γ) and Lemma 2.7 and
Corollary 2.6 to determine the simple modules of central character γ and their weight space
structure. This case by case analysis is in Section 3.3.

(c) Finally, we determine the Langlands parameters for each simple H-module. Since the Lang-
lands parameters depend on the the weight space structure (in particular, the maximal
weights, see Section 2.4) these are determined in conjunction with the derivation of the
weight space structure of each simple module in Section 3.3.

3.1. The root system. The reflection group I2(n) is the dihedral group of order 2n. Let ε1, ε2 be
an orthonormal basis of h∗R = R2 and define

βk = cos(kθ)ε1 + sin(kθ)ε2, where θ = π/n.

Fix the roots, positive roots and simple roots for the reflection group I2(n) by

R = {βk | 0 ≤ k ≤ 2n− 1},
R+ = {βk | 0 ≤ k ≤ n− 1}, and α1 = β0,

α2 = βn−1.

For 0 ≤ k ≤ n − 1, −βk = βn+k, s1βk = βn−k and s2βk = βn−2−k, and when n is even there are
two orbits of roots, {±β2k | 0 ≤ k < n/2} and {±β2k+1 | 0 ≤ k < n/2}. Let ck = cβk be a choice
of parameters for the graded Hecke algebra H. When n is odd all of the ck are equal and, when n
is even, there are two, possibly unequal, parameters c0 = c2k and c1 = c2k+1. Figure 1 displays the
roots βk and hyperplanes Hβk = {x ∈ R2 | 〈βk, x〉 = 0} for I2(7) and I2(8). When n is even each
root βk lies on the hyperplane Hβk+n/2 and this is why, in the picture of hyperplanes and roots for
I2(8) there are multiple labels on each line.

Figure 2 displays, using thin and thick lines, the hyperplanes

Hβk = {x ∈ R2 | 〈βk, x〉 = 0} and Hβk±δ = {x ∈ R2 | 〈βk, x〉 = ±ck}
for I2(7) and I2(8) (and a particular choice of the parameters ck).

3.2. The central characters. Using the orthonormal basis ε1, ε2 we can identify hR with R2 and
hC with C2. If γ ∈ hC then

Z(γ) = {βk ∈ R+ | 〈γ, βk〉 = 0} and P (γ) = {βk ∈ R+ | 〈γ, βk〉 = ±ck}.
In terms of the pictures in Figure 2, if γ is a point in R2 then the elements of Z(γ) label the Hβk
(thin lines) that γ is on and the elements of P (γ) label the set of Hβk±δ (thick lines) that γ is on.

Let us analyze the possibilities for Z(γ) and P (γ) as γ runs over representatives of W -orbits in
hC.

If γ(α) = cα then (1/cα)γ(α) = 1 and so we may, without loss of generality, assume that ck = 1
for all k when n is odd, and c2k = 1 and c2k+1 = c when n is even.
(a) If Z(γ) contains 2 roots or more then γ = 0, since any two distinct positive roots are linearly
independent. This is the central character γ0 in Table 1.
(b) If Z(γ) contains one root then, by choosing our representative γ of the W -orbit Wγ appropri-
ately we may arrange that Z(γ) = {β0} when n is odd, and Z(γ) = {β0} or Z(γ) = {βn−1}, when
n is even. When n is even there is an automorphism τ of the root system (and of the graded Hecke
algebra) which switches α1 = β0 and α2 = βn−1. The automorphism τ extends linearly to hC and
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Figure 1. Hyperplanes and roots for I2(7) and I2(8)

Figure 2. Hyperplanes for I2(7) and I2(8).

if Z(γ) = {βn−1} then Z(τ(γ)) = {β0} and τ(P (γ)) = P (τγ). Thus, even when n is even, it will
be sufficient to analyze the case Z(γ) = {β0}.
(b′) If Z(γ) = {β0} and βk ∈ P (γ) then the equations 0 = γ(β0) = γ(ε1) and

(3.1) ck = γ(βk) = γ(cos(kθ)ε1 + sin(kθ)ε2) = sin(kθ)γ(ε2)

uniquely determine γ. Since sin(kθ) = sin((n− k)θ), βn−k must also be in P (γ). This happens for
the central characters γb,k, γb,n/2 and γq in Table 1.
(b′′) If Z(γ) = {β0}, βk, β` ∈ P (γ) and ` 6= n − k then equation (3.1) for k and ` forces ck 6= c`
which forces n even and k and ` to be of different parity. Furthermore the parameters must satisfy
ck/c` = sin(kθ)/ sin(`θ) and, when this happens, it happens for a unique choice of the 4-tuple
(k, `, n − k, n − `). Thus, the only possible option is P (γ) = {βk, βn−k, β`, βn−`} (if ` = n/2 then
P (γ) = {βn/2, βk, βn−k}). This is the central character γq in Table 1.
(c) If Z(γ) = ∅ and βk, β` ∈ P (γ) such that ck = c` = c then γ is uniquely determined by the
equations c = cos(kθ)γ(ε1) + sin(kθ)γ(ε2) = cos(`θ)γ(ε1) + sin(`θ)γ(ε2). These equations force
β(n+k+`)/2 ∈ Z(γ) if (n + k + `) is even (the easiest way to see this is to look at the pictures in
Figure 2). Since we assumed Z(γ) = ∅ it follows that n+ k+ ` is odd. If P (γ) contains 3 elements
then at least two of them would satisfy n + k + ` even, and so it follows that P (γ) contains a
maximum of two elements. By appropriately choosing our representative γ of the orbit Wγ we
can assume that P (γ) = {βk−1, βn−k} for some 1 ≤ k ≤ n/2. This case corresponds to the central
character γc,k in Table 1.
This analysis shows that Table 1 covers all (P (γ), Z(γ)) possibilities.

3.3. The irreducible representations. The following analysis determines the structure of each
of the irreducible H-modules: the dimensions of each generalized weight space and the Langlands
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parameters. The derivation of the irreducible representations proceeds by considering, separately,
each central character γ. In each case we have included a picture showing the local regions (γ, J).
In these pictures the solid lines correspond to hyperplanes Hα for α ∈ Z(γ) and the dotted lines
correspond to hyperplanes Hα for α ∈ P (γ). Each local region is labeled by the corresponding set
J of roots which determines its location in the picture (see the discussion before Corollary 2.6).

The Langlands parameters of an irreducible H-module M are determined by the real parts of
weights of M . This means that, according to the labeling of the simple modules as in Table 1,
the Langlands parameters can depend on the choice of the parameters ck. In our calculations of
Langlands parameters, and in the Langlands data displayed in Table 1, we assume that all ck ∈ R>0

(this assumption is used only in the analysis of Langlands parameters).
In the case when n is even not all roots are in the orbit of α1 = β0 and one should really consider

central characters γ which have Z(γ) = {βn−1} = {α2} (see the remark in Section 3.2(b)). These
central characters τ(γa), τ(γb,k), τ(γc,k) are the images of the central characters γa, γb,k and γc,k
under the automorphism τ of the root system which switches α1 and α2. This automorphism
extends to an automorphism of H and thus it follows that the modules with central characters
τ(γa), τ(γb,k), τ(γc,k) have exactly the same structures as the modules with central characters γa,
γb and γc,k, respectively.

Central character γa: Z(γa) = ∅, P (γa) = ∅.
By Theorem 2.10 the principal series module M(γa) is irreducible and, by Proposition 2.8(a), this

is the unique irreducible module with central character γa. Since γa is regular M(γa) is calibrated.

Central character γb,k: Z(γb,k) = {β0}, P (γb,k) = {βk, βn−k}, 1 ≤ k ≤ (n− 1)/2.
The weight γb,k is uniquely determined by the fact that γb,k(β0) = γ(ε1) = 0 and ck = γ(βk) =

sin(kθ)γ(ε2), where θ = π/n.

J = ∅
k chambers

k chambers

J = {βk, βn−k}
k chambers

k chambers

J = {βn−k}
n− 2k chambers

n− 2k chambers

Hβ0

Hβn−kHβk

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose M is an irreducible module with central character γb,k and Mgen
γb,k 6= 0. Then by

Lemma 2.7(a), for all w ∈ F (γb,k,∅)

2 ≤ dimMgen
wγb,k

≤ dimM(γb,k)gen
wγb,k

= 2, and so dimMgen
wγb,k

= 2.

Now apply τ operators of the form · · · τ1τ2 to Mgen
γb,k . If w ∈ F (γb,k,∅) but sjw ∈ F (γb,k,{βn−k}), then

〈w−1αj , α
∨
1 〉 6= 0 and ker τj 6= 0. Therefore, by Lemma 2.7(b),

1 ≤ dimMgen
sjwγb,k

≤ 1

and thus, by Corollary 2.6,

dimMgen
wγb,k

= 1, for all w ∈ F (γb,k,{βn−k}).



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 19

By applying further τ operators, if w ∈ F (γb,k,{βn−k}) but sjw ∈ F (γb,k,{βk,βn−k}), then dimMgen
sjwγb,k =

0. Thus by Corollary 2.6,

dimMgen
wγb,k

= 0 for all w ∈ F (γb,k,{βk,βn−k}).

The module M is n dimensional.
Similar reasoning applied to an irreducible module N with central character γb,k and Ngen

wγb,k 6= 0
for some w ∈ F (γb,k,{βk,βn−k}) yields the dimensions of the generalized weight spaces of N , which
sum to n. Thus the decomposition of the principal series module M(γb,k) consists of two irreducible
modules M and N with central character γb,k and

dim(Mgen
wγb,k

) = 2 for w ∈ F (γb,k,∅), dim(Mgen
wγb,k

) = 1 for w ∈ F (γb,k,{βn−k}),

dim(Ngen
wγb,k

) = 1, for w ∈ F (γb,k,{βn−k}) dim(Ngen
wγb,k

) = 2, for w ∈ F (γb,k,{βk,βn−k}),

and all other weight spaces of M and N are 0. Neither of the two irreducible modules M and N
with central character γb,k are calibrated.

The maximal weight of M is γb,k which is dominant and on the hyperplane Hα1 . The Langlands
set for this weight is I = {1}. The maximal weight of N is on the hyperplane Hβk if k is even, and
on the hyperplane Hβn−(k+1)

if k is odd. This observation determines the set I in the Langlands
decomposition of the (real part) of the maximal weight of N (equation (2.11)).

Central character γb,n/2: n even, Z(γb,n/2) = {β0}, P (γb,n/2) = {βn/2}.

J = ∅
n/2 chambers

n/2 chambers

J = {βn/2}
n/2 chambers

n/2 chambers

Hβ0

Hβn/2
.............................

Use Lemma 2.7 and an argument similar to that described for central character γb,k to decompose
the principal series module M(γb,n/2) and conclude that there are two irreducible modules M and
N with central character γb,n/2 with

dim(Mgen
wγb,n/2

) = 2, for w ∈ F (γb,n/2,∅), and

dim(Ngen
wγb,n/2

) = 2, for w ∈ F (γb,k,{βn/2}).

All other weight spaces of M and N are 0. Neither of the two irreducible modules M and N with
central character γb,n/2 are calibrated.

The maximal weight of M is γb,n/2 which is dominant and on the hyperplane Hα1 . The Langlands
set for this weight is I = {1}. The module N is tempered with maximal weight · · · s1s2︸ ︷︷ ︸

n/2 factors

γb,n/2.

Central character γq: Z(γq) = {β0}, P (γq) = {βk, βn−k, β`, βn−`}.
It may be that ` = n/2 = n− ` so that the hyperplanes Hβ` and Hβn−` are the same and P (γ)

contains only 3 roots. We do not have to consider this situation separately.
In some sense, the special central character γq occurs when the parameters are exactly right

so that the central characters γb,k and γb,` “coalesce”. This occurs only if n is even, k and `
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are of different parity, and the parameters satisfy ck/c` = sin(kθ)/ sin(`θ). For a fixed choice of
parameters, there is at most one choice of the quadruple (k, `, n− k, n− `).

k
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k
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Use Lemma 2.7 and Corollary 2.6 in an argument similar to that described for central character
γb,k to see that there are five nonisomorphic irreducible H-modules L, M , N , P and Q with central
character γq, unless ` = n/2, in which case there are only four (N has dimension 0).

dim(Lgen
wγq) = 2, for w ∈ F (γq ,∅),

dim(Lgen
wγq) = 1, for w ∈ F (γq ,{βn−k}),

dim(Mgen
wγq) = 1, for w ∈ F (γq ,{βn−k}),

dim(Ngen
wγq) = 1, for w ∈ F (γq ,{βn−k,βn−`}),

dim(P gen
wγq) = 1, for w ∈ F (γq ,{β`,βn−k,βn−`}),

dim(Qgen
wγq) = 1, for w ∈ F (γq ,{β`,βn−k,βn−`}),

dim(Qgen
wγq) = 2, for w ∈ F (γq ,{βk,β`,βn−k,βn−`}),

and all other weight spaces of these modules are 0.
Both modules P and Q are tempered and have the same maximal weight · · · s1s2︸ ︷︷ ︸

n−` factors

γq.

Central character γc,k: Z(γc,k) = ∅, P (γc,k) = {βk−1, βn−k}, 1 ≤ k ≤ (n− 1)/2.
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The weight γc,k is uniquely determined by γ(βk−1) = ck−1 and γ(βn−k) = cn−k.
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The dashed line in this picture is for reference only, it does not correspond to a root in Z(γ) or
P (γ).

Since γc,k is regular the irreducible H-modules with central character γc,k are calibrated and can
be indexed by the sets J . The irreducible calibrated module H(γc,k,J) indexed by the set J has

dim(H(γc,k,J))wγc,k = 1 for w ∈ F (γc,k,J)

and all other weight spaces 0. A construction of H(γc,k,J) is given in Theorem 4.5.
To compute the Langlands parameters of these modules we first assume that n is odd and

m = n−1
2 . If J = {βk−1} the maximal weight of the module H(γc,k,J) is in the same chamber as

βm−k if k is even, and in the same chamber as βm+k if k is odd. If J = {βn−k} the maximal
weight of H(γc,k,J) is in the same chamber as βm−k if k is odd, and in the same chamber as βm+k

if k is even. In each case this information determines the set I in the Langlands parameters. If
J = {βk−1, βn−k} the module H(γc,k,J) is tempered with maximal weights

· · · s2s1︸ ︷︷ ︸
n−k+1 factors

γc,k, and · · · s1s2︸ ︷︷ ︸
k factors

γc,k.

If n is even and all parameters ck are equal then the Langlands parameters are as in the previous
paragraph. In the case that n is even and c2k 6= c2k+1 then it may happen that γc,k is not in the
dominant chamber. The structure of the modules with central character γc,k does not change but the
Langlands parameters of the representations may change significantly. One of the four irreducibles
with central character γc,k will always be tempered, but which one (and thus the dimension of the
tempered module with this central character) depends on the values of the parameters c2k and
c2k+1.
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Central character γd: Z(γd) = ∅, P (γd) = {β0}

J = ∅
n chambers

J = {β0}
n chambers

Hβ0.............................

Since γd is regular the irreducible modules with central character γd are calibrated and can be
indexed by the sets J . The module H(γd,J) has

dim(H(γc,k,J))wγc,k = 1 for w ∈ F (γc,k,J)

and all other weight spaces 0. A construction of H(γd,k,J) is given in Theorem 4.5.
The Langlands parameters given in Table 1 for irreducible representations with central character

γd assume that γd 6∈ Wγd′ where n is odd and γd′ = ξ · β(n−1)/2, ξ ∈ R>0. In the particular case n
odd and γd ∈Wγd′ the irreducible module indexed by the set J = {β0} is tempered.

3.4. Tempered representations and the Springer correspondence. The Springer correspon-
dence for Weyl groups (see [BM1, p.34]) associates to each tempered representationM of H with real
central character, the unique “maximal” irreducible W -module which is contained in M . For Weyl
groups (crystallographic reflection groups) this is a one-to-one correspondence between tempered
representations of H and irreducible representations of W . Using our classification of H-modules
in Table 1, we can establish a similar correspondence for the noncrystallographic groups I2(n).

If n is odd then the group I2(n) has 2 one-dimensional irreducible representations and (n −
1)/2 two-dimensional irreducible representations. The trivial (resp. sign) representation of I2(n)
corresponds to the tempered irreducible H-module with central character γ0 (resp. γc,1). The two-
dimensional representations of I2(n) correspond to the tempered H-modules with central characters
γd ∈ Wγ′d and γc,k, 1 ≤ k ≤ (n − 1)/2. Note that γ0, γd and γc,k, 1 ≤ k ≤ (n − 1)/2, can all be
taken to be multiples of the root β(n−1)/2 and in the dominant chamber. In this normalization the
1-dimensional representations correspond to the two extreme elements of this chain of weights.

If n is even and the parameters ck are all equal the trivial (resp. sign) representation of I2(n) cor-
responds to the tempered irreducible H-module with central character γ0 (resp. γc,1) and the other
two 1-dimensional representations of I2(n) correspond to the tempered H-modules with central
characters γb,n/2 and τ(γb,n/2), where tau is the involution that switches α1 = β0 and α2 = βn−1.
The 2-dimensional I2(n)-modules correspond to the tempered H-modules with central characters
γc,k, 2 ≤ k ≤ n/2. As in the case n odd, the central characters γ0 and γc,k, 1 ≤ k ≤ (n − 1)/2,
can be taken to be in the dominant chamber and on the line through the origin and the point
βn/2 + βn/2−1. In this normalization the trivial and the sign representations correspond to the two
extreme elements of this chain of weights. In the case when the parameters are unequal two of the
points on this chain may coalesce in the weight γq and “become” the two tempered representations
of H with central character γq. The case where P (γq) contains only 3 roots comes from one of the
central characters γb,n/2 or τ(γb,n/2) coalescing with one of the γc,k.

This analysis establishes the “Springer correspondence” for all dihedral groups and all choices of
the parameters ck of H with ck ∈ R>0.
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Table 1. Irreducible representations of HI2(n) up to outer automorphism

Character Z(γ), P (γ) Dimension J Langlands Parameters

γ0 = 0 R+, ∅ 2n nc tempered

γa {β0}, ∅ 2n nc (γa, {1})

γb,k {β0}, {βk, βn−k} n nc (γb,k, {1})
1≤k<n/2 n nc (· · · s1s2︸ ︷︷ ︸

k factors

γb,k, {1}) k even

(· · · s1s2︸ ︷︷ ︸
k factors

γb,k, {2}), k odd

γb,n/2 {β0}, {βn/2} n nc (γb,n/2, {1})
(n even) n nc tempered

γq {β0}, `+ k nc (γq, {1})
(n even) {βk, βn−k, β`, βn−`} `− k {βn−k} (· · · s1s2︸ ︷︷ ︸

k factors

γq, {1}), k even

0<k<`≤n/2 (· · · s1s2︸ ︷︷ ︸
k factors

γq, {2}), k odd

n− 2` {βn−k, βn−`} (· · · s1s2︸ ︷︷ ︸
` factors

γq, {1}), ` even

(· · · s1s2︸ ︷︷ ︸
` factors

γq, {2}), ` odd

`− k {βn−k, βn−`, β`} tempered
`+ k nc tempered

γc,k ∅, {βk−1, βn−k} 2k − 1 ∅ (γc,k, ∅)
1≤k≤n/2 n− 2k + 1 {βk−1} (· · · s2s1︸ ︷︷ ︸

k factors

γc,k, {1}), k odd

(· · · s2s1︸ ︷︷ ︸
k factors

γc,k, {2}), k even

n− 2k + 1 {βn−k} (· · · s1s2︸ ︷︷ ︸
k factors

γc,k, {1}), k even

(· · · s1s2︸ ︷︷ ︸
k factors

γc,k, {2}), k odd

2k − 1 {βk−1, βn−k} tempered

γd ∅, {β0} n ∅ (γd, ∅)
n {β0} (s1γd, {1})†

γgen ∅, ∅ 2n ∅ (γgen, ∅)

† This module is tempered if n is odd and γd ∈Wγ′d, with γ′d = ξ · β(n−1)/2, ξ ∈ R>0.
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4. Classification of Calibrated Representations

4.1. Structural results. We first examine some properties which hold for irreducible modules
that are calibrated, i.e., can be decomposed into a direct sum of weight spaces (see (2.10)). This
section follows closely the similar results for affine Hecke algebras in [Ra1].

Lemma 4.1. Let M be an irreducible calibrated module. Then, for all γ ∈ hC such that Mγ 6= 0,
(a) γ(αi) 6= 0 for all 1 ≤ i ≤ n, and
(b) dim(Mγ) = 1.

Proof. (a) The proof is by contradiction. Assume γ(αi) = 0. Let HA1 be the subalgebra of H
generated by tsi and all x ∈ h∗C. Then the two-dimensional HA1 principal series module M(γ) is
irreducible and there is an HA1-module homomorphism given by

M(γ) −→ M
vγ 7−→ mγ

where mγ is a nonzero element of Mγ . Since M(γ) is simple this is an injection and thus, M is not
calibrated since M(γ) is not calibrated. Thus γ(αi) 6= 0.
(b) The proof is by contradiction. Assume γ ∈ hC is such that dim(Mγ) > 1. Let mγ be a nonzero
element of Mγ . Since M is calibrated τi acts on mγ as a linear combination of the action of tsi
and a multiple of the identity. Since M is irreducible it follows from Proposition 2.5(b) that the
action of the τ -operators must generate all of M . Thus, since dim(Mγ) > 1, there is a sequence of
τ -operators such that

nγ = τi1τi2 · · · τipmγ

is a nonzero vector in Mγ which is not a multiple of mγ .
Assume that the sequence τi1τi2 · · · τip is chosen so that p is minimal. Since the τ -operators in this

sequence are all well defined the elements sik · · · sipγ, 1 ≤ k ≤ p, in the orbit Wγ correspond (under
the bijection in (2.7)) to a sequence of chambers in h∗R on the positive side of all Hα, α ∈ Z(γ).
Each chamber in this sequence shares a face with the next chamber in the sequence. Since both nγ
and mγ are in Mγ this is a sequence which begins and ends at the chamber C. Since the chambers
are in bijection with the elements of W it follows that si1 · · · sip = 1 in W .

This means that there is some 1 < k ≤ p such that si1 · · · sik is not reduced and we can use the
braid relations to rewrite this word as si′1 · · · si′k−2

siksik . By Proposition 2.5(e) the τ -operators also
satisfy the braid relations and so

nγ = τi′1τi′2 · · · τi′k−2
τikτik · · · τipmγ .

By Proposition 2.5(c), the operator τikτik in this expression will act (on τik+1
· · · τipmγ) by a constant

ξ ∈ C and so
nγ = ξ · τi′1τi′2 · · · τi′k−2

τik+1
· · · τipmγ ,

where the constant ξ is nonzero since nγ is nonzero. But the expression

ξ−1nγ = τi′1τi′2 · · · τi′k−2
τik+1

· · · τipmγ ,

is shorter than the original expression of nγ and this contradicts the minimality of p. It follows
that dim(Mγ) ≤ 1. �

Lemma 4.2. Let M be an irreducible calibrated module. Suppose that Mγ and Msiγ are both
nonzero. Then the map τi : Mγ →Msiγ is a bijection.

Proof. By Lemma 4.1(b), dim(Mγ) = dim(Msiγ) = 1, and thus it is sufficient to show that τi is not
the zero map. Let vγ be a nonzero vector in Mγ . Since M is irreducible there must be a sequence
of τ -operators such that

vsiγ = τi1 · · · τipvγ
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is a nonzero element of Msiγ . Let p be minimal such that this is the case. Since τiτi1 · · · τipvγ ∈Mγ ,
it follows, as in the second paragraph of the proof of Lemma 4.1(b), that sisi1 · · · sip = 1 in W .
For notational convenience let i0 = i. Let 0 ≤ k < p be maximal such that siksik+1

· · · sip is not
reduced. If k 6= 0 then we can use the braid relations to get

vsiγ = τi1 · · · τikτikτi′k+2
· · · τi′pvγ .

Since τikτik acts on τi′k+2
· · · τi′pvγ by a constant ξ ∈ C,

vsiγ = ξ · τi1 · · · τik−1
τi′k+2

· · · τi′pvγ ,

and ξ 6= 0 since vsiγ is not 0. But this contradicts the minimality of p. Thus we must have that
k = 0, p = 1 and

vsiγ = τivγ .

Thus, since vsiγ 6= 0, τi 6= 0. �

For simple roots αi and αj in R, let Rij be the rank two root subsystem of R generated by αi
and αj . A weight µ ∈ hC is skew if

(a) for all simple roots αi, 1 ≤ i ≤ n, µ(αi) 6= 0, and
(b) for all pairs of simple roots αi, αj such that {α ∈ Rij | µ(α) = 0} 6= ∅, the set {α ∈

Rij | µ(α) = ±cα} contains more than two elements.
Condition (a) says that µ is regular for all rank 1 subsystems of R generated by simple roots.
Condition (b) is an “almost regular” condition on µ with respect to rank 2 subsystems generated
by simple roots. By the analysis in Section 3, the weights which appear in calibrated modules for
graded Hecke algebras corresponding to rank two root systems are skew.

Recall from Section 2.3 that a pair (γ, J) is a local region if the set

F (γ,J) = {w ∈W | R(w) ∩ Z(γ) = ∅ and R(w) ∩ P (γ) = J}

is nonempty. A local region (γ, J) is skew if, for all w ∈ F (γ,J), the weight wγ is skew for all pairs
αi, αj of simple roots in R.

The following Theorem specifies the weight space structure of an irreducible calibrated H-module.

Theorem 4.3. If M is an irreducible calibrated H-module with central character γ ∈ hC then there
is a unique skew local region (γ, J) such that

dim(Mwγ) =
{

1, for all w ∈ F (γ,J),
0, otherwise.

Proof. By Lemma 4.1 all nonzero generalized weight spaces ofM have dimension 1 and by Lemma 4.2
all τ -operators between these weight spaces are bijections. This already guarantees that there is
a unique local region (γ, J) which satisfies the condition. It only remains to show that this local
region is skew.

Let Hij be the subalgebra of H generated by tsi , tsj and S(h∗C). Since M is calibrated as an
H-module it is calibrated as an Hij-module and so all factors of a composition series of M as an
Hij-module are calibrated. Thus, by the classification in Section 3, the weights of M are skew. So
(γ, J) is a skew local region. �

4.2. Construction. The following Proposition shows that the weight structure of calibrated rep-
resentations as determined in Theorem 4.3 essentially forces the H-action on a weight basis.

Proposition 4.4. Let M be a calibrated H-module and for all γ ∈ hC such that Mγ 6= 0, assume
that

(A1) γ(αi) 6= 0 for all 1 ≤ i ≤ n, and (A2) dim(Mγ) = 1.
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For each b ∈ hC such that Mb 6= 0 let vb be a nonzero vector in Mb. The vectors {vb} form a basis
of M . Let (tsi)cb ∈ C and b(x) ∈ C be given by

tsivb =
∑
c

(tsi)cbvc and xvb = b(x)vb, for x ∈ h∗C.

Then
(a) (tsi)bb =

cαi
b(αi)

for all vb in the basis,

(b) if (tsi)cb 6= 0 then c = sib,
(c) (tsi)b,sib(tsi)sib,b = 1− (tsi)

2
bb = (1 + (tsi)bb)(1 + (tsi)sib,sib).

Proof. The relation

xtsi − tsisi(x) = cαi
x− si(x)

αi
forces ∑

c

(c(x)(tsi)cb − (tsi)cbb(six))vc = cαi
b(x)− b(six)

b(αi)
vb.

Comparing coefficients yields

c(x)(tsi)cb − (tsi)cbb(six) = 0, if b 6= c, and

b(x)(tsi)bb − (tsi)bbb(six) = cαi
b(x)− b(six)

b(αi)
.

These equations imply that

if (tsi)cb 6= 0 then b(six) = c(x) for all x ∈ h∗C, and

(tsi)bb =
cαi
b(αi)

if b(αi) 6= 0 and b(x) 6= b(six) for some x ∈ h∗C.

Thus
tsivb = (tsi)bbvb + (tsi)sib,bvsib with (tsi)bb =

cαi
b(αi)

.

This completes the proof of (a) and (b). The relation t2si = 1 in H implies that

vb = t2sivb =
[
(tsi)

2
bb + (tsi)b,sib(tsi)sib,b

]
vb + [(tsi)bb + (tsi)sib,sib] (tsi)sib,bvsib

=
[
(tsi)

2
bb + (tsi)b,sib(tsi)sib,b

]
vb ,

since (tsi)bb + (tsi)sib,sib = 0. Thus

(tsi)b,sib(tsi)sib,b = 1− (tsi)
2
bb = (1 + (tsi)bb)(1 + (tsi)sib,sib).

�

Theorem 4.5. Let (γ, J) be skew and let F (γ,J) index the chambers in the local region (γ, J).
Define

H(γ,J) = C-span{vw | w ∈ F (γ,J)},
so that the symbols vw are a labeled basis of the vector space H(γ,J). Then the following formulas
make H(γ,J) into an irreducible H-module. For each w ∈ F (γ,J),

xvw = (wγ)(x)vw, for x ∈ h∗C, and

tsivw =
cαi

wγ(αi)
vw +

(
1 +

cαi
wγ(αi)

)
vsiw, for 1 ≤ i ≤ n,

where we set vsiw = 0 if siw /∈ F (γ,J).
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Proof. Since (γ, J) is skew, (wγ)(αi) 6= 0 for all w ∈ F (γ,J) and all simple roots αi. This implies
that the coefficients in tsivw are well defined for all i and w ∈ F (γ,J).

By construction, the nonzero weight spaces of H(γ,J) are (H(γ,J))gen
wγ = (H(γ,J))wγ where w ∈

F (γ,J). Since dim((H(γ,J))uγ) = 1 for u ∈ F (γ,J), any proper submodule N of H(γ,J) must have
Nwγ 6= 0 and Nw′γ = 0 for some w 6= w′, with w,w′ ∈ F (γ,J). This is a contradiction to Corol-
lary 2.6. So H(γ,J) is irreducible if it is an H-module.

It remains to show that the defining relations for H are satisfied. Let w ∈ F (γ,J). Then(
si(x)tsi + cαi

x− six
αi

)
vw = six

[
cαi

wγ(αi)
vw +

(
1 +

cαi
wγ(αi)

)
vsiw

]
+ cαi

wγ(x)− wγ(six)
wγ(αi)

vw

=
cαi

wγ(αi)
wγ(x)vw +

(
1 +

cαi
wγ(αi)

)
siwγ(six)vsiw

= tsixvw.

Let w ∈ F (γ,J). Then

t2sivw = tsi

[
cαi

wγ(αi)
vw +

(
1 +

cαi
wγ(αi)

)
vsiw

]
=

cαi
wγ(αi)

[
cαi

wγ(αi)
vw +

(
1 +

cαi
wγ(αi)

)
vsiw

]
+
(

1 +
cαi

wγ(αi)

)[
cαi

siwγ(αi)
vsiw +

(
1 +

cαi
siwγ(αi)

)
vw

]
=
(

cαi
wγ(αi)

)2

vw +
(

1 +
cαi

wγ(αi)

)(
1− cαi

wγ(αi)

)
vw + 0

= vw.

Now let us check the braid relations. Write tsi = τi + di where

τivw =
(

1 +
cαi

(wγ)(αi)

)
vsiw and divw =

cαi
(wγ)(αi)

vw,

for w ∈ F (γ,J). Then di is a diagonal matrix and τi is a pseudo-permutation matrix, in the sense
that each row and each column contains at most one nonzero entry. For a sequence j1, . . . , jp define
a diagonal matrix dj1,...,jpi by the relation

(4.1) diτj1 · · · τjp = τj1 · · · τjpd
j1,...,jp
i .

If γ is generic then, for all w ∈W ,

d
j1,...,jp
i vw =

(
cαi

(sjp · · · sj1wγ)(αi)

)
vw,

and all diagonal entries are nonzero, but, in general, some diagonal entries of dj1,...,jpi may be 0.
Use this method to expand the expression

tsitsj tsi · · ·︸ ︷︷ ︸
mij factors

= (τi + di)(τj + dj)(τi + di) · · ·︸ ︷︷ ︸
mij factors

=
∑
z∈W

τzpz,

and move all the diagonal operators di to the right of the τi and obtain diagonal operators pz. The
operators τw are pseudo-permutation operators that may have some rows and columns without a
nonzero entry. By replacing some diagonal entries of the pz operators by 0, we may “fix the τz”
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and replace the τz with operators τ ′z which have exactly one nonzero entry in each row and each
column. This yields an expression

(4.2) tsitsj tsi · · ·︸ ︷︷ ︸
mij factors

=
∑
z∈W

τ ′zp
′
z.

If γ is generic then the diagonal entries (p′z)ww of p′z are nonzero and (p′z)ww = wγ(P ′z), w ∈ W ,
where P ′z is a rational function in the αi. A similar expansion gives

(4.3) tsj tsitsj · · ·︸ ︷︷ ︸
mij factors

=
∑
z∈W

τ ′zq
′
z,

where the q′z are diagonal operators which, for generic γ, have diagonal entries (q′z)ww = wγ(Q′z),
where Q′z is a rational function of the αi. As in the proof of Proposition 2.5(e), γ(P ′z) = γ(Q′z) for
all generic γ, and so it follows that P ′z = Q′z as rational functions.

When γ is not generic the operators p′z and q′z may have some diagonal entries equal to zero.
From the classification of representations of rank two graded Hecke algebras we know that there
exists a calibrated representation of Hij when (γ, J) is skew. This representation has a unique, up to
constant multiples, basis of simultaneous eigenvectors for the action of λ ∈ h∗C, and Proposition 4.4
shows that the action on this basis is forced except for the values of the off diagonal elements
of the tsi . These values depend on the normalization of the basis. Because we know that this
representation exists we know that there are choices of the nonzero entries in the τ ′z such that (4.2)
and (4.3) are equal. If a diagonal entry (p′z)ww of p′z is nonzero then it is equal to (wγ)(P ′z) and
(p′z)ww = (wγ)(P ′z) = (wγ)(Q′z) = (q′z)ww, since (as shown above) P ′z = Q′z. Thus it follows that
nonzero contributions from the terms τ ′zp

′
z and τ ′zq

′
z are equal and that tsitsj tsi · · · vw is equal to

tsj tsitsj · · · vw. �

Remark 4.6. The action of H on a weight basis of H(γ,J) is forced up to the freedom in Proposi-
tion 4.4(c). Our choice (tsi)sib,b = 1 + (tsi)bb in Theorem 4.5 and the alternative choice (tsi)sib,b =

1 + (tsi)sib,sib yield isomorphic modules. The change of basis v′b =
1

(1 + (tsi)bb)
vb provides the

isomorphism.

We summarize the results of this section with the following corollary of Theorem 4.3 and the
construction in Theorem 4.5.

Theorem 4.7. Let M be an irreducible calibrated H-module. Let γ ∈ hC be (a fixed choice of) the
central character of M and let J = R(w) ∩ P (γ) for any w ∈ W such that Mwγ 6= 0. Then (γ, J)
is skew and M ' H(γ,J), where H(γ,J) is the module defined in Theorem 4.5.

5. Combinatorics of Local Regions

When W is a crystallographic reflection group two conjectures were stated in [Ra3, (1.3) and
(1.11)], the first giving necessary and sufficient conditions for F (γ,J) (as defined in (2.16)) to be
nonempty when γ is dominant and the second determining the form of F (γ,J) as an interval in the
weak Bruhat order when γ is dominant and integral. Loszoncy [Lo] proved the second conjecture
(Theorem 5.2 below). His theorem implies the nonemptiness conjecture of [Ra3] under the addi-
tional assumption that γ is integral. Here we review Loszoncy’s proof and prove the nonemptiness
conjecture in full generality. We give an example (Example 5.4) to show that integrality is necessary
in Theorem 5.2. Finally, we provide Example 5.7, which shows that one cannot expect analogous
statements to hold when W is noncrystallographic.
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Let R be the root system of a finite real reflection group W and fix a set R+ = {α > 0} of
positive roots in R. A set of positive roots S is closed if it satisfies the condition

If α, β ∈ S and a, b > 0 are such that aα+ bβ ∈ R+ then aα+ bβ ∈ S.

The following theorem characterizes the sets which appear as inversion sets of elements of W . Recall
that R(w) denotes the inversion set of w, see equation (2.4). This result is in [Bj, Proposition 2],
but is stated there without proof and we are not aware of a published proof. The following proof
was shown to us by J. Stembridge and appears in the thesis of D. Waugh [Wg].

Theorem 5.1. Let W be a real reflection group. A set of positive roots S is equal to R(w) for
some element w ∈W if and only if S is closed and Sc = R+\S is closed.

Proof. =⇒: Let w ∈ W and suppose that α, β ∈ R(w) and aα + bβ is a positive root. Then
w(aα+ bβ) = a(wα) + b(wβ) is a negative root since wα and wβ are both negative roots. So R(w)
is closed. Similarly one shows that R(w)c is closed.
⇐=: Assume that S is closed and that Sc is closed. We will construct w such that R(w) = S by
finding a reduced word w = si1 · · · sik for w. This is done by induction on the size of S, with the
induction step being the combination of the two steps below.
Step 1: S contains a simple root.

Let α be a root of minimal height in S and assume that α =
∑

i cαiαi, cαi ∈ R≥0, is not simple.
Then

〈α, αi〉 > 0 for some i, since 0 < 〈α, α〉 =
n∑
i=1

cαi〈α, αi〉.

Since α is not simple, α 6= αi, and so both sαiα and αi are positive roots. Since sαiα = α−〈α, α∨i 〉αi
and αi both have lower height than α they must both be in Sc. But then the equation

α = sαiα+ 〈α, α∨i 〉αi
contradicts the assumption that Sc is closed. So α is simple.
Step 2: Let αi1 be a simple root in S and let S1 = si1(S \ {αi1}).
Claim: S1 is closed and Sc1 is closed.

Let α, β ∈ S1 and assume that aα+ bβ is a positive root. Then

si1(aα+ bβ) = asi1α+ bsi1β ∈ S and aα+ bβ ∈ S1, or
asi1α+ bsi1β = αi1 and aα+ bβ = −αi1 .

The second is impossible since si1αi1 is not a positive root. So aα+ bβ ∈ S1 and S1 is closed.
Let α, β ∈ Sc1 and suppose that aα + bβ is a positive root. Since si1α and si1β are not in S,

si1(aα+ bβ) /∈ S. So aα+ bβ 6∈ S1. Thus Sc1 is closed. �

An element γ ∈ hC is dominant (resp. integral) if γ(αi) ∈ R≥0 (resp. γ(αi) ∈ Z) for all simple
roots αi. The closure S of a set of positive roots S is the smallest closed set of positive roots
containing S.

Theorem 5.2. Let W be a crystallographic reflection group and let R be the crystallographic root
system of W . Let γ ∈ hC be dominant and integral and set

Z(γ) = {α > 0 | 〈γ, α〉 = 0} and P (γ) = {α > 0 | 〈γ, α〉 = 1}.
Let J ⊆ P (γ) be such that

if β ∈ J , α ∈ Z(γ) and β − α ∈ R+ then β − α ∈ J,
and set

F (γ,J) = {w ∈W | R(w) ∩ Z(γ) = ∅, R(w) ∩ P (γ) = J}.
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Then there exist elements wmin, wmax ∈W such that

R(wmin) = J, R(wmax) = (P (γ)\J) ∪ Z(γ)
c
, and F (γ,J) = [wmin, wmax],

where Kc denotes the complement of K in R+ and [wmin, wmax] denotes the interval between wmin

and wmax in the weak Bruhat order.

Proof. By Theorem 5.1, the element wmin ∈ W will exist if J̄c is closed. Assume that β = β1 + β2

where β ∈ J̄ , β1, β2 ∈ R+. We must show that β1 ∈ J̄ or β2 ∈ J̄ . Since β ∈ J̄ ,

β = δ1 + · · ·+ δm, with δi ∈ J.
We will decompose β = δ1+· · ·+δm into two pieces β1 = δ1+· · ·+δk+η1 and β2 = η2+δk+2+· · ·+δm,
via the following inductive procedure. Since

0 < 〈β1 + β2, β1 + β2〉 =
∑
i

〈β1 + β2, δi〉, then 〈β1 + β2, δj〉 > 0 for some j.

By reindexing the δi we can assume that j = 1. Thus 〈β1, δ1〉 > 0 or 〈β2, δ1〉 > 0 and we may
assume that 〈β1, δ1〉 > 0. Since sδ1β1 = β1 − 〈β1, δ

∨
1 〉δ1 is a root and R is crystallographic, β1 − δ1

is also a root. If β1 − δ1 is a negative root then

β1 = β1 and β = (δ1 − β1) + δ2 + · · ·+ δm,

gives the desired decomposition. If β1 − δ1 ∈ R+ then

β1 + β2 = δ1 + ((β1 − δ1) + β2) and (β1 − δ1) + β2 = δ2 + · · ·+ δm,

and so we may inductively apply this decomposition procedure on β′ = (β1−δ1)+β2 = δ2+. . .+δm.
In this way we conclude that, after possible reindexing of the δi, either

β1 = δ1 + · · ·+ δk and β2 = δk+1 + · · ·+ δm,

or
β1 = δ1 + · · ·+ δk + η1 and β2 = η2 + δk+2 + · · ·+ δm,

where η1 and η2 are positive roots such that η1 + η2 = δk+1. In the first case it is immediate that
β1, β2 ∈ J̄ . In the second case 〈γ, δk+1〉 = 〈γ, η1 +η2〉 = 1, and so 〈γ, η1〉 ≤ 1 and 〈γ, η2〉 ≤ 1. Thus,
since γ is dominant and integral, one of η1, η2 is in Z(γ) and the other is in P (γ). If η1 ∈ Z(γ),
η2 = δk+1 − η1 and the condition on J implies that η2 ∈ J . Similarly, if η2 ∈ Z(γ) then η1 ∈ J .
Thus β1 ∈ J̄ or β2 ∈ J̄ . So J̄c is closed. Since J̄ is closed and J̄c is closed, Theorem 5.1 shows that
there is an element wmin ∈W such that R(wmin) = J̄ .

The same method can be used to establish the existence of wmax: one must show that (P (γ)\J) ∪ Z(γ)
c

is closed and this is accomplished by similar arguments.
By the definition of F (γ,J) an element w ∈W is in F (γ,J) if

J ⊆ R(w) ⊆ (P (γ)\J) ∪ Z(γ)
c
.

Since the weak Bruhat order is the order determined by inclusions of R(w) [Bj, Proposition 3] the
result is a consequence of the existence of the elements wmin and wmax. �

Remark 5.3. An alternative way to establish the existence of wmax in the proof of Theorem 5.2 is
to use the conjugation involution

(5.1) F (γ,J) 1−1←→ F (γ,J)′

w ←→ wu−1 where (γ, J)′ = (−uγ,−u(P (γ)\J)),

where u is the minimal length coset representative of w0Wγ and w0 is the longest element of W .
The fact that this is a well defined involution is proved in [Ra3, (1.7)]. This involution takes wmax

for F (γ,J) to wmin for F (γ,J)′ . In terms of the weak Bruhat order, the structure of the interval
F (γ,J)′ is the same as the structure of the interval F (γ,J) but with all relations reversed.
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Figure 3. Hyperplanes and a nonintegral weight for C2

Example 5.4. The integrality of γ is necessary in Theorem 5.2. Let W = I2(4) = WC2 be the
dihedral group of order 8 (the Weyl group of type C2). The root system for type C2 is determined
by simple roots

α1 = 2ε1 and α2 = ε2 − ε1
where {ε1, ε2} is an orthonormal basis of h∗R = R2. Let c1 = c2 = 1 be the parameters for H. If
γ = (1/2)ε2 (see Figure 3) then Z(γ) = {α1}, P (γ) = {α1 + 2α2}, and γ is dominant but γ(α2) is
not integral. The set J = P (γ) satisfies the condition in Theorem 5.2, but J̄ = J is not an inversion
set for any w ∈W since J̄c is not closed.

The following method of reducing to the integral root subsystem of a weight is standard in the
theory of highest weight modules for finite dimensional complex semisimple Lie algebras, see [Ja].
This method turns out to be an efficient tool for reducing the nonemptiness conjecture of [Ra3] to
the statement in Theorem 5.2.

Let R[γ] = {α ∈ R | 〈γ, α∨〉 ∈ Z}. For any α, β ∈ R[γ],

〈γ, (sαβ)∨〉 = 〈sαγ, β∨〉 = 〈γ, β∨〉 − 〈γ, α∨〉〈α, β∨〉 ∈ Z,

and so R[γ] is a root system with Weyl group W[γ] = 〈sα | α ∈ R[γ]〉 ⊆ W . If τ ∈ W[γ] then the
R[γ]-inversion set of τ is

R[γ](τ) = {α > 0 | τα < 0, α ∈ R[γ]} = R(τ) ∩R[γ].

Theorem 5.5. Let W be a crystallographic reflection group and let R be the crystallographic root
system of W . Let γ ∈ hC such that Re(γ) is dominant and set

Z(γ) = {α > 0 | 〈γ, α〉 = 0} and P (γ) = {α > 0 | 〈γ, α〉 = 1}.

Let J ⊆ P (γ) be such that

if β ∈ J , α ∈ Z(γ) and β − α ∈ R+ then β − α ∈ J.

Then F (γ,J) = {w ∈W | R(w) ∩ Z(γ), R(w) ∩ P (γ) = J} is nonempty.



32 CATHY KRILOFF AND ARUN RAM

Proof. Since γ is dominant and integral for the root system R[γ], it follows from Theorem 5.2 that
there is an element w in W[γ] such that

R[γ](w) ∩ Z(γ) = ∅ and R[γ](w) ∩ P (γ) = J,

where R[γ](w) = {α ∈ R[γ] | α > 0, wα < 0}. Usually R(w) is strictly larger than R[γ](w) but it is
still true that

R(w) ∩ Z(γ) = ∅ and R(w) ∩ P (γ) = J,

since all roots of P (γ) and Z(γ) are in R[γ]. So w ∈ F (γ,J). �

When W is crystallographic we can use the method of the proof of Theorem 5.5 in combination
with the result of Theorem 5.2 to give a precise description of the set F (γ,J) for all central characters
γ ∈ hC. By choosing γ appropriately in its W -orbit we may assume that Re(γ) is dominant.

Define

W [γ] = {σ ∈W | R(σ) ∩R[γ] = ∅}.

Each w ∈W has a unique expression

w = στ with σ ∈W [γ], τ ∈W[γ], and R(w) ∩R[γ] = R(τ) ∩R[γ] = R[γ](τ).

In this way the elements of W [γ] are coset representatives of the cosets in W/W[γ].
Since P (γ) ⊆ R[γ] and Z(γ) ⊆ R[γ] it follows that

F (γ,J) = {στ ∈W | σ ∈W [γ], τ ∈ F (γ,J)
[γ] }, where(5.2)

F (γ,J)
[γ] = {τ ∈W[γ] | Rγ(τ) ∩ P (γ) = J, R(w) ∩ Z(γ) = ∅}.(5.3)

Since F (γ,J) = F (Re(γ),J) and γ is dominant and integral for the root system R[γ], Theorem 5.2 has
the following corollary.

Corollary 5.6. With notations and assumptions as in Theorem 5.5

F (γ,J) = F (γ,J)
[γ] = W [γ] · [τmax, τmin],

where, F (γ,J)
[γ] is as in (5.3) and τmax and τmin in W[γ] are determined by R[γ](τmax) = J and

R[γ](τmin) = (P (γ)\J) ∪ Z(γ)
c
, where the complement is taken in the set of positive roots of R[γ].

This refined version of Theorem 5.2 is reminiscent of the reduction to real central character given
in [BM2].

The following example shows that Theorem 5.5 does not naturally extend to noncrystallographic
reflection groups. Note that such a generalization necessarily involves modifying the closure condi-
tion on J to be

if β ∈ J , α ∈ Z(γ), a ∈ R>0, and β − aα ∈ R+ then β − aα ∈ J.

Example 5.7. Let W = I2(n) be the dihedral group of order 2n, n even, with root system chosen
as in Section 3 (so all roots are the same length). Let γ be such that Z(γ) = {β0} and P (γ) =
{βn/4, βn/2, β3n/4} (this γ is an example of γq in Table 1). Then the subset J = {βn/4, β3n/4} ⊆ P (γ)
satisfies the generalized closure condition above since βn/2 cannot be written as βn/4 − aβ0 for any
a ∈ R>0. However, F (γ,J) = ∅ since there are no chambers which are on the positive side of both
Hβ0 and Hβn/2 and on the negative side of both Hβn/4 and Hβ3n/4

.
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