REPRESENTATIONS OF GRADED HECKE ALGEBRAS

CATHY KRILOFF AND ARUN RAM

ABSTRACT. Representations of affine and graded Hecke algebras associated to Weyl groups play
an important role in the Langlands correspondence for the admissible representations of a reduc-
tive p-adic group. We work in the general setting of a graded Hecke algebra associated to any
real reflection group with arbitrary parameters. In this setting we provide a classification of all
irreducible representations of graded Hecke algebras associated to dihedral groups. Dimensions of
generalized weight spaces, Langlands parameters, and a Springer-type correspondence are included
in the classification. We also give an explicit construction of all irreducible calibrated represen-
tations (those possessing a simultaneous eigenbasis for the commutative subalgebra) of a general
graded Hecke algebra. While most of the techniques used have appeared previously in various
contexts, we include a complete and streamlined exposition of all necessary results, including the
Langlands classification of irreducible representations and the irreducibility criterion for principal
series representations.

1. INTRODUCTION

The affine Hecke algebra is tightly connected to the geometry and representation theory of a
semisimple Lie group. In fact, the representation theory of affine Hecke algebras provides a large
piece of the Langlands correspondence for the admissible representation theory of a reductive p-
adic group [Bo, KL]. The affine Hecke algebra is also present in the geometry of a semisimple
group via the equivariant K-theory of the Steinberg variety. This connection plays an important
role in the Springer correspondence and the Langlands classification. Recent conjectures of Lusztig
tie the representation theory of the affine Hecke algebra to the modular representation theory of
semisimple Lie algebras in positive characteristic. So there are many good reasons to study the
representations of affine Hecke algebras.

With appropriate definitions, the graded Hecke algebra is the associated graded algebra of the
affine Hecke algebra. Lusztig [Lu3] has shown that the representation theory of graded Hecke alge-
bras of Weyl groups is essentially equivalent to the representation theory of affine Hecke algebras.
In the same way that the affine Hecke algebra is connected to equivariant K-theory [KL, CG] the
graded Hecke algebra is connected to equivariant cohomology [Lu3].

This paper is a study of the combinatorial representation theory of graded Hecke algebras as-
sociated to finite real reflection groups (including the noncrystallographic cases). The geometric
representation theory of these algebras has been studied in [Lul, Lu2, Lu3] and fundamental re-
sults have appeared in [HO, Op]. However, a wealth of information can be obtained with purely
combinatorial techniques. Here we develop the combinatorial theory from elementary principles.
Most of the techniques we use are known in the affine Hecke algebra setting but they are spread
over various parts of the literature, and in several cases the generalization to the graded Hecke
algebras for the crystallographic case is nontrivial. We have collected these results, streamlined
them, proved them in the general setting that includes noncrystallographic graded Hecke algebras
and made an effort to produce an up-to-date presentation. This paper includes

(a) the Langlands classification of irreducible representations,
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(b) the theory of principal series representations (including the irreducibility criterion),

(c) the theory of intertwining operators,

(d) the classification of all irreducible representations for rank two algebras (including all dihe-
dral cases I2(n)),

(e) the classification of irreducible calibrated representations, and

(f) proofs of two conjectures from [Ra3].

The Langlands classification for graded Hecke algebras is due to Evens [Ev]. We have shortened
his proof but the shorter proof does not differ in any essential ideas. Our proof of the irreducibility
criterion for principal series modules is a graded Hecke algebra analogue of the proof given by
Kato [Ka] for affine Hecke algebras. Proofs of this criterion for graded Hecke algebras have appeared
in [Ch1, Kr2] but our proof is more constructive and gives detailed information about the spherical
vectors in the principal series modules.

To our knowledge, the theory of intertwining operators originates from the study of affine Hecke
algebra representations in Matsumoto [Ma]. In recent years this theory has played an important
role in the theory of orthogonal polynomials, in particular, the study of Macdonald polynomi-
als [Ch2, Op, KS]. In this paper we do not view these operators as intertwiners between principal
series representations but rather as local operators on the weight spaces of any representation
(T-operators). This generalized approach is increasingly common in the theory of Macdonald
polynomials [Mac]. Though we do not know of a reference for this theory in its application to
representations of graded Hecke algebras, certainly all of these techniques are now standard in the
orthogonal polynomial literature.

The full classification of all irreducible representations for rank two graded Hecke algebras is given
in Section 3. We include detailed analysis of the structure (dimensions of generalized weight spaces)
for these representations and their Langlands parameters. This analysis extends and completes
the work on representations of rank two graded Hecke algebras included as part of [Krl, HO].
In [Krl] only one-parameter algebras were included and the classification was only complete for
n odd; we now include the two-parameter case that arises when n is even and treat nonregular
central characters. In [HO], general graded Hecke algebras were considered but the representations
classified were spherical and tempered. An important consequence of our rank two construction is
that it establishes a “Springer correspondence” for all dihedral groups. This correspondence is given
in the final part of Section 3. As in [Ra2], we express the hope that the irreducible representations
in the rank two case will provide the foundation for a combinatorial construction of all irreducible
representations.

In Section 4 we classify the irreducible calibrated representations (those with a simultaneous
eigenbasis for a large commutative subalgebra) of graded Hecke algebras. These results are graded
Hecke algebra analogues of the results in [Ral]. In addition to the classification, we give an
elementary combinatorial construction of all irreducible calibrated representations of graded Hecke
algebras. This construction is a generalization of the (seminormal) construction of the irreducible
representations of the symmetric group given by Alfred Young [Yg]. In our construction the local
regions and their chambers take the role that partitions and standard tableaux play in the symmetric
group construction. Otherwise the formulas used in the construction of the irreducible calibrated
modules are exactly the same as those used by Young.

In Section 5, we give proofs of two conjectures from [Ra3] which describe the combinatorial
structure of the weights of graded Hecke algebra modules. One of these conjectures was proved by
Losonczy [Lo| and we present a slightly simplified version of his proof here. We then prove the other
conjecture with a short reduction to the statement proved by Losonczy and exploit the reduction
procedure to obtain new information about the combinatorial weight structure. The conjectures
in [Ra3] were only stated for the case when the reflection group W is crystallographic and our
proofs only hold for this case. We give examples that show analagous statements do not hold in
the noncrystallographic case.
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2. PRELIMINARIES

2.1. The graded Hecke algebra. Let W be a finite reflection group, defined by its action on its
reflection representation hgp. For each reflection s, € W fix a root a in the —1 eigenspace of s,.
The roots « are chosen so that the set R of roots is W-invariant. Then s, fixes a hyperplane

H, = (+1 eigenspace of s,) = {x € bj | a¥(x) = 0},

where we fix the linear function o € hgr = Hompg(hg, R) so that oV () = 2. By fixing a nondegen-
erate symmetric W-invariant bilinear form on hy we may identify hr and hp. Then

(2.1) Sar = — (1,0 ), for all z € bg.
Fix simple roots aji,..., o, in the root system for W and let s; = s,, be the corresponding
reflections.

By extension of scalars W acts on the complexification hi. = C ®g by and, in terms of its action
on b, W is a complex reflection group. Then W acts on the symmetric algebra S(hg) which is
naturally identified with the algebra of polynomial functions on the vector space hc = Home (b, C).

Fix parameters c, € C, ¢, # 0, labeled by the roots, such that

Ca = Cwa, for w e W.

This amounts to the choice of one or two values, depending on whether there are one or two orbits
of roots under the action of W. The group algebra of W is

CW = C-span{t,, | w e W} with multiplication twtw = tww -
The graded Hecke algebra is
H=CW ® S(ht)

with multiplication determined by the multiplication in S(b¢) and the multiplication in CW and
the relations

(2.2) xts, = ts,8(T) + co (m, ), for x € hg,

where o, ..., € hgr are the simple co-roots. More generally, it follows that for any p € S(hy),
pts, = ts,5i(p) +ca, Ai(p)  and  ts,p = si(p)ts; + ca; Di(p),

where A; : S(hg) — S(bg) is the BGG-operator given by

8 =22 o p e s
Proposition 2.1. [Lul, Theorem 6.5] The center of the graded Hecke algebra H is Z(H) = S(hx)",
the ring of W -invariant polynomials on hc.
Proof. If p € S(hz)", then
p—si(p)

)

Dts; = tsisi(p) + Cay =ts,p+0=tsp,

and so p commutes with ¢,,. Therefore S(h3)" C Z(H).
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Let p € Z(H) and write p = > putw. Fix v of maximal length such that p, has maximal
weWw
degree. Let p € b be regular, meaning that the stabilizer W), is trivial. Then

pp= > pputw equals pu= Y putwp= >  pu ((wu)tw +) CZ,M) :
weW weW weW u<w
where c‘u‘,w € C. Comparing coefficients of ¢, yields
ppo = po - (0p).
So p = (vp) and thus v = 1 since p is regular. So p € S(hi). Comparing coefficients of ¢, in

p — si(p)

%

shows that p = s;(p) for all 1 <i <n. So p € S(hx)". Thus Z(H) = S(hx)". O

Dls; = Si(p)tsz' + Cqy

2.2. Harmonic polynomials. Let us briefly review the relationship between S(h%), S(h5)", and
harmonic polynomials [CG, § 6.3]. Let z1,x2,...,z, be an orthonormal basis of hc and define a
symmetric bilinear form (, ) on S(hg) by

<P7 Q> = (P(a)Q)‘m:O? for P,Q € S(h?&),

where P(0) = P ( o .., 2 ) and ’m:O denotes specializing the variables to 0 (or, equivalently,

0r1’ """ Oxn

taking the constant term). The monomials are an orthogonal basis of S(h),

A A o\ o \M
1 M1 _ H1
n

= Oapn O (A1 ARD - ARY),

and so the bilinear form (, ) is nondegenerate. The vector space H of harmonic polynomials is
the set of polynomials orthogonal to the ideal of S(h{) generated by W-invariants in S(hg) with
constant term 0,

H=((feSbe) | f0)=0)", and  S(ht)=SbH)" @H,

as vector spaces. More precisely, if {h} is a C-basis of H then any f € S(b) can be written
uniquely in the form

[= prhwa Pw € S(h?{j)w

If the basis {hy} consists of homogeneous polynomials then the number and the degrees of these
polynomials are determined by the Poincaré polynomial of W,

(2.3) Py (t) = dim(H*)t" = ﬁ L= tf = 3 ),

1 _
k>0 i=1 weWw

where di,...,d, are the degrees of a set fi,...,f, of homogeneous generators of S(h(’{:)W =
Clf1,..., fa] and H* is the k™ homogeneous component of . In particular, dim(H) = Card({h,})
Py (1) = |W| and S(h%) is a free module over S(hz)" of rank |W|.
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2.3. Weights and calibrated representations. The group W acts on

bc = Hom(hi:,C) by  (wy)(z) =~v(w 'a),

forw e W, v € hc and = € hg.
The inversion set of an element w € W is

(2.4) R(w) ={a >0 | wa <0}
The choice of the simple roots a, ..., a, € by determines a fundamental chamber
(2.5) C={zeby| (ajx)>0,1<i<n}

for the action of W on bhi. For a root o € R, the positive side of the hyperplane H, is the side
towards C, i.e. {x € by | (z,) > 0}, and the negative side of H, is the side away from C. There
is a bijection

W  «— {fundamental chambers for W acting on b}

(2.6) W w-lC

and the chamber w~'C is the unique chamber which is on the positive side of H, for a ¢ R(w)
and on the negative side of H, for a € R(w).

If s, is a reflection in W which fixes v € h¢ then (v,a") = 0. By [St, Theorem 1.5], [Bou, Ch. V
65 Ex. 8] the stabilizer W, of v under the W-action is generated by the reflections which stabilize
~ and so

W, =(sa| @€ 2(y)) where  Z(3)={a|~(a) =0}
The orbit W+ can be viewed in several different ways via the bijections
(2.7) Wy — W/W, «— {weW |Rw)NZ(y) =0}

chambers on the positive
side of H,, for a € Z () [’

where the last bijection is the restriction of the map in (2.6). If v is real and dominant (i.e.
v(a) € Rx for all & € R) then W, is a parabolic subgroup of W and {w € W | R(w) N Z(y) = 0}
is the set of minimal length coset representatives of the cosets in W/W.,,.

Let M be a simple H-module. Dixmier’s version of Schur’s lemma (see [Wal) implies that Z(H)
acts on M by scalars. Let v € hc be such that

pm =~(p)m, forallme M, pe SHE)W.

The element - is only determined up to the action of W since v(p) = w~y(p) for all w € W. Because
of this, any element of the orbit W is referred to as the central character of M.

Let M be a finite dimensional H-module and let v € hc. The v-weight space and the generalized
~v-weight space of M are

(2.8) M, ={me M | xm = ~(z)m for all x € h¢},
(2.9) ME™ ={m € M |[for all z € b, (v — v(z))¥m = 0 for some k € Zq}.
Then
V- @,
v€be

and we say that v is a weight of M if M$*™ # 0. Note that M$™" # 0 if and only if M, # 0. A
finite dimensional H-module

(2.10) M is calibrated if M5 = M., for all v € bc.
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2.4. Tempered representations and the Langlands classification. Any A € Homc(hg,C) is
determined by its values (A, o;) on the simple roots. Define Re(\) and Im(\) in hg = Homg (hj,R)
by (Re(\), ;) = Re((\, o)) and (Im(A), o;) = Im((\, a;)), and write
A =Re(\) + ¢ Im(A).
For any simple reflection s;, we have s;A = Re(\) — Re((\, o)))aj + i Im(X) — i Im((), o)) =
sjRe(X) +is;Im(\), and so
Re(w) = wRe(N), for all w e W.

Let w;’ be the dual basis to oy in hr defined by (W, af) = d;; and let C be the closure of the

fundamental chamber C' C by defined in (2.5). For A € h¢ let Ao be the point of C' which is closest
to Re(\). This point is uniquely defined because of the convexity of the region C. Since \g € C
and the w)" are on the boundary of C' there is a uniquely determined set I such that

Ao = chw;/, with cj >0,
jél
and we say that the weight \ is I-tempered. For each I the set {w;/, of | j€1,i€l}is abasis of
br and A\g and I can, alternatively, be determined by the unique expansion

(2.11) Re(\) = chw;/ + Z diay with ¢; > 0 and d; <0.

jel icl
Proposition 2.2. [Kn, Lemma 8.59] Let A > p denote the dominance ordering on hr. If A\, € br
such that A > p then Ao > pg-

For any subset I C {1,...,n}, let H; be the subalgebra of H generated by ts,, i € I, and all
x € hi. An Hj-module M is tempered if all weights of M are I-tempered.

Theorem 2.3. Let L be a simple H-module.

(a) There is a subset I C {1,2,...,n} and a tempered Hy-module U such that L is the unique
simple quotient of H ®m, U.

(b) If I and I' are subsets of {1,2,...,n} and U and U’ are tempered H; and Hp-modules,
respectively, such that L is a quotient of both H @y, U and H ®y,, U' then I = I' and
U =U' as Hr-modules.

Proof. Let L be a simple H-module. Let A be a weight of L such that
(2.12) Ao is a maximal element of {ug | p is a weight of L}
with respect to the dominance ordering on hr. Let I C {1,2,...,n} be determined by
Ao = Z cjw}/
Il
and let V be the Hj;-submodule of L generated by a nonzero vector m) in Ly. Let Wj be the

subgroup of W generated by s;, i € I. The weights of V' are of the form wA with w € Wy, If
w € Wy then

Re(wA) = Z cjw) + Z a;o + Z ajo > Z cjw) + Z a;o)
igl a;<0,iel a;>0,€l J&I a;<0,iel
since Re(\) is as in (2.11). So, by Proposition 2.2,

(wA)g > Z Cjwjv + Z aief | = chwjv = \o-

JjéI a;<0 o J¢

Thus, by the maximality of A\g, pg = Ao for all weights p of V. So V' is tempered.
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Let U be a simple Hy-submodule of V. All weights of H ®p, U are of the form wp with w € W
and p a weight of U. Let W' denote the set of minimal length coset representatives of cosets in
W/Wr. If wu is a weight and w = wiwy with w; € W and wy € W7 then by the argument just
given wop is I-tempered and so

Re(wap) = chwiv + Z a;o) with cj > 0,a; <0.
jel icl
If wy # 1 then
wlw}/ < wj\/, for j € 1,
(2.13) Re(wjwap) < Re(wap) since wiey >, foriel,
wlw;/ < w;/, for some j & I.

Let v be a weight of U such that Re(r) is maximal among weights of U. If N is an H-submodule
of H®p, U such that N, # 0 then, by (2.13), N, C U, and so N NU # 0. Since U is simple as an
H;-module, any vector of U generates all of H ®p, U and so N = H ®y, U. This shows that if

Mo (sum of all H-submodules N of H ®y, U
max such that N, =0

then Mpax is equal to the sum of all proper submodules of H ®p, U and is the (unique) maximal
proper submodule of H ®p, U. So H ®y, U has a unique simple quotient.
Since U is an Hjy-submodule of L and induction is the adjoint functor to restriction, there is an
H-module homomorphism
H®w, U — L
U — U foru e U.

Thus, since L is simple, L = (H ®p, U)/Mmax. This proves (a) and shows that for any tempered
H;-module U the module H ®y, U has a unique simple quotient.

To prove (b) let us analyze the freedom of the choices that are made in the above construction
of H®m, U. Equation (2.13) and Proposition 2.2 show that vy < ¢ for all weights v of H ®g, U.
In particular, all weights v of L satisfy vy < Ag and so Ag is the same for all weights A of L which
satisfy (2.12). This shows that there is a unique choice of I in the construction of H @y, U. If U’
is another simple Hj-submodule of V' then either U N U’ = 0 or U = U’. The case UNU’' = 0 is
impossible since it would imply that U @ U’ is a tempered submodule of L, and there would be a
surjective homomorphism from H @y, (U @ U') = (H®y, U) ® (H®m, U’) to L which is nonzero
on both components. This is impossible since L is simple. O

2.5. 7 operators. The following proposition defines maps 7; : M5 — M, Sglevn on generalized weight
spaces of finite-dimensional H-modules M. These are “local operators” and are only defined on
weight spaces M5™ such that v(c;) # 0. In general, 7; does not extend to an operator on all of M.

Proposition 2.4. Let M be a finite dimensional H-module. Fiz i, let vy € hc be such that y(a;) # 0
and define
T ME — MEY

m (tsi - Cai) m.

Qg

The map 7; : M§™ — MEZ is well defined.

As operators on ME®", a1y = 7;8;(x) for all z € S(h).

(Cai + ai)(cai — ai)

i o = e

(d) Both maps 7; : M5 — Mg,y and 7 : Mg~ — MY are invertible if and only if (o) #
=

(a
(b

)
)

(c) As operators on MS™, 7,7, =
)
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(e) If 1 <i,j5 <m,i#j, let my; be the order of s;s; in W. Then
—— ——
m;; factors m;; factors

whenever both sides are well defined operators on M5™.

Proof. Since «; acts on M5 by v(a;) times a unipotent transformation, the operator a; on M5™"
has nonzero determinant and is invertible. Since c,,/c; is not an element of S(hg) or H it will be
viewed only as an operator on M5 in the following calculations.

If z € b and m € M5™ then

TTiM = <t81. - cO”) m = <tsi3i($) + coi (T, 0)) — Caix) m
a

67} %
_ VY oy .
_ (tsism) ~ Caiw%waz) o <t8i8i(x) e sz<m>> .
Q5 )
Coy
= <tsi - Z> si(z)m = 7;s;(x)m.
Q5

This proves (a) and (b).

2
Ca; Ca;,  Co
M = (tgl - a’tsi —tsifal + O; m

i i (&%

Cay _ Coy
i [e7 —ay C ’
ts, — ty, — Cou———— + 2

(67 —Qy (67 oy

_ Cgéi m = (Caz‘ + ai)(cai - ai) m
- (1 - (an(—ai)) = (e m
proving (c).

(d) Since a; acts on M5 by y(«;) times a unipotent transformation, det((ca, +0a;)(ca; —;)) = 0
if and only if v(a;) = %c¢q,. Thus 7;7;, and each factor in this composition, is invertible if and only
if y(ay) # £cq,-

(e) We may assume that H is the graded Hecke algebra corresponding to a rank two root system
R;; generated by simple roots «; and «;. Let wg be the longest element of the corresponding rank
2 reflection group W. Every element w € W, w # wg has a unique minimal length expression as
a product of generators of s; and s;. Let ¢, be the corresponding product of the ¢s,’s and is,’s.
Expanding both sides of the relation in (e) in terms of the ¢5, and using the defining relation (2.2)
for H yields

Ca; Ca; Caj \ _
(2.14) (tsi _ m) (ts]- _ a;) <t51. . 0@) = tytyts + Y twPu,

w<wo

2
Ca Cay; «

(1=

m;; factors
J
m;; factors

and

Co; Cq; Co:
w9 (o) (8 (a5 e B e

w<wo

m;; factors
J
m;; factors

where both sums are in fact over all w € W, w # wg and P,, and @Q,, are rational functions of the
a € R;;. We will show that P, = Q.
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Choose generic v € he (the exact condition is that P(y) = 0 and Z(y) = (), where P(y) and
Z () are as defined in (2.19) below) and let

M(y) = Indg(%)((va) = H ®g(pz) Coy

where Cv, is the one dimensional S(hg)-module defined by zvy, = y(x)v, for x € h. The module
M (v) has basis {t, ® vy | w € W} and, by the defining relations for H, for x € b, w € W,

Ttyvy = (W) (2)ty ® vy + Z Cow(2)t, ® vy, with ¢, (z) € C.
z<w
Since « is generic, all the w~y are distinct and
=P My, with  dim(M,,) = 1.
weW
Thus, there is a unique basis {vy, | w € W} of M(v) determined by

(2.16) Ty = (WY)(Z) Vi, for all w € W and z € b,

(2.17) Vuy = b ® Uy + Z Auwu () (tu ® vy), where a,, () € C.
u<w

Alternatively,

(2.18) Uy = Twly

where 7, = 7;,Ti, - - 7, for a reduced word w = s;, - -+ s;, of w. The uniqueness of the element v,
given by the conditions (2.16) and (2.17) shows that vy, = 7,v, does not depend on the reduced
decomposition which is chosen for w. Thus we have

Vwoy = * " TiTjTj Uy = - -t ls;ts, Uy + § : by Pty = tyw, @ vy + § : w ® Uy,
Y D w<w, w<w
m;; factors m;; factors 0 °

Vwgy = =+ TjTiTj Uy = -+ tsts ls, Uy + Z twQuwVy = twy @ vy + Z (Qu)tw ® vy.

w<wo w<wo
m;; factors m;; factors

where P, and @, are as in (2.14) and (2.15). It follows from (2.17) that v(Py) = twew(7) = 7(Quw)
for all w € W, w # wyp.

We have shown that, for each w € W, v(P,) = 7(Qu) for all generic v € hc. Since P, and Qy,
are rational functions that agree on all generic points, it follows that

P, =Qu for all w € W.

Thus,
Ca; Ca; Ca;
. TiTjTi — ... <t81 —_ ") (tsj _ ) <t81 _ i
N—— (67 Qg (673
m;; factors ~~
m;; factors
Ca: Co,; Ca;
:<t5]_1> (tsz_ Z> <tsj _ 7 = T]TZij
a; (673 Q4 ——
m;; factors
m;; factors
whenever both sides are well defined operators on M, . O

Let v € he and define
(2.19) Z(y)={a>0[y(a)=0} and  P(y) ={a>0]|v(a)=*ca}.
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If J C P(v), define
(2.20) FON) = fwe W | Rw) N Z(v) = 0 and R(w) N P(y) = J}.
A local region is a pair (v,J) such that v € hc, J € P(y), and FO/) £ (. Under the bijection

(2.6) the set FO/) maps to the set of points € h% which are

(a) on the positive side of the hyperplanes H, for o € Z(7),

(b) on the positive side of the hyperplanes H, for a € P(vy)\J, and

(c) on the negative side of the hyperplanes H, for o € J.
In this way the local region (v,.J) really does correspond to a region in hj. This is a connected
convex region in bhp since it is cut out by half spaces in hp = R". The elements w € F ()

index the chambers w='C in the local region. and the sets FO/) form a partition of the set
{weW | R(w)Nn Z(y) =0} (which, by (2.7), indexes the cosets in W/W,).

Corollary 2.5. Let M be a finite dimensional H-module. Let vy € b and let J C P(v). Then
dim(ME) = dim(ME?)  for w,w' € FOI),
where FO7) s given by (2.20).

Proof. If w,s;w € F)) then (wy)(a;) # +ca, and (s;wy)(ag) # Fco,. Thus, by Proposi-
tion 2.4(d), the map 7; : M5 — ME%, is invertible. It remains to note that if w,w’ € F(/), then
w' = s, -+ s, w where s;, -+ s;,w € FOD) for all 1 < k < £. This follows from the fact that (v,J)
corresponds to a connected convex region in hp. O

The following lemma will be used in the classification in Section 3 to analyze weight spaces for
representations with nonregular central character.

Lemma 2.6. Let v € hc such that (o) = 0. Let M be an H-module such that ME™ # 0 and let
we FOD . Then

(a) dim ME5' > 2 and

(b) if M&wy =0, then (wy)(aj) = £cq, and (wta;, o)) = 0.
Proof. Let HA; be the subalgebra of H generated by t,, and all z € S(hg). Let Cv, be the one
dimensional representation of S(b¢) defined by zv, = y(x)v, and let M(y) = Indgé}:)((@vv) =
HA; ® s(yz) Cvy. This module is irreducible and has basis {vy,ts,vy} and, with respect to this basis,
the action of x € b on M (7) is given by the matrix

1 co,(z, )

(2.21) i) =) (g 500,

Let ny be a nonzero vector in M,. As an S(h¢)-module Cn, = Cv, and, since induction is the
adjoint functor to restriction, there is a unique HA;-module homomorphism given by

M(y) — M
’U,y [ TL7

Since M () is irreducible, this homomorphism is injective, and the vectors n,tsn, span a two-
dimensional subspace of M on which the action of = € b is given by the matrix in (2.21).
Let w = s --- 54, be a reduced word for w. Proposition 2.4(d) and the assumption that w €

F9) guarantee that the map

. en en
Tw = Tiy - Tip ¢ ME — MEY
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is well-defined and bijective. Thus 7,n, and 7,ts;n span a two-dimensional subspace of M%7 and,
by Proposition 2.4(b), the HA; action of z € X on this subspace is given by

() =tz (),

This proves (a).
Using «; for x and inverting the above matrix yields

1N 1 (1 e (wayqf)
Pury a; _'y(w_laj) 0 1 )

If ME(y =0 then 75 : M3Y" — Mg, is the zero map and

Ca; Ca; 1 —co,(wtay,a))
Puw~y(ls;) =p (J) =— < i A AN
uﬂ( sj) wy o 'Y(w lOéj) 0 1

Since tgj — 1= (ts; = 1)(ts; + 1) = 0, puw(ts;) must have Jordan blocks of size 1 and eigenvalues
+1. Since cq, # 0, it follows that y(w™ay) = £cqo, and (wlay, o)) = 0. O

2.6. Principal series modules. For v € hc let Cv, be the one dimensional S(h)-module given
by

vy = Y(T)v, for x € hg.
The principal series representation M (7) is the H-module defined by

(2.22) M(v) = H®g(y:) Cvy = Ind@ﬂ(hé)(Cvﬁ,).

The module M () has basis {t, ® v, | w € W} with CW acting by left multiplication.

These modules are very useful for studying the combinatorics of representations of H. In fact,
we have already used this module in the proofs of Proposition 2.4(e) and Lemma 2.6.

Part (a) of the following proposition implies that the dimension of every irreducible H-module
is less than |W/|. In combination, part (a) and part (b) show that every irreducible H-module
with regular central character is calibrated. Part (c) is a graded Hecke analogue of a result of
Rogawski [Ro, Proposition 2.3].

Proposition 2.7.
a 1s an wrreducible finite dimensional H-module wit , then 18 a quotient o
If M i irreducibl ite di jonal H-module with M5™ # 0, then M i '
M(7).
(b) If v € b is regular then M(7y) is calibrated.
(¢c) For fized v € hc and any w € W, M(vy) and M (w~y) have the same composition factors.

Proof. (a) Since S(b{) is commutative, an irreducible S(hg) submodule must be one-dimensional.
Thus there exists a nonzero vector m, in M, and, as an S(h¢)-module, Cm., = Cv,,. Since induction
is the adjoint functor to restriction there is a unique H-module homomorphism given by

M) — M
U’Y [ — ’I’)/L,y
and, since M is irreducible, this homomorphism is surjective. Thus M is a quotient of M (7).
(b) Since 7 is regular, W, = {1},

M(y) = EB Moy and dim (M (7)wy) =1
weW

for all w € W. Since M (7)yy is nonzero whenever M ()35 is nonzero and dim(M(7)%y) = 1,

M(y)wy = M(y)iy for all w € W.
(c) Let s; be a simple reflection such that s;y¥ # 7. Then 7(a;) # 0 and the operator 7; is well
defined on M (s;v)5%. The vector vy, is a weight vector in M (s;7)s,4 and, by Proposition 2.4(b),
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TiVs;v 15 a weight vector of weight ~ (it is nonzero since t,vs,, and (s;7)(cq,/®i)vs;y are linearly
independent in M (s;y)). Thus, there is an H-module homomorphism

A(siy): M(y) — M(siv)
hv, +— h7vg., h € H.
The modules M () and M(s;y) have bases
(2.23) {tw(ts, + vy, tu(ts, — 1)Uy tswsw and
{tw(ts, + Dy, tw(ts, — 1)Usi7}siw>wa

respectively. Since (ts, + 1)ts, = ts, + 1 and (ts, — 1)ts, = —(ts, — 1),

A(si,'y)(tw(tsi 4 1)117) = tw (t +1) < > Vg;y = b tSz + 1) ( 3?) Us;y

_ <sw< — )) tw(ts; + 1)vs;y

A(5:,7) (b (s, — 1)vy) = to(ts, — ( Vapy = 1) (—1 - C;) Varr

o (222 et

and so the matrix of A(s;,y) with respect to the bases in (2.23) is diagonal with |W|/2 diagonal
entries equal to (s;77)((a; — ca;) /i) and |[W]|/2 diagonal entries equal to (s;77)((a; + co;)/(—ay)). If
() # £cq, then A(s;, ) is an isomorphism and so M(v) and M (s;y) have the same composition
factors. If v(ay) = %cq, then dim(ker A(s;,y)) = |W|/2. In this case A(s;,s;y)A(si,y) =0 and so
the sequence

A(sg, A(s;,84
M) " wr(sey) A p(y)

is exact. Since dim(M ()) = |W| and dim(ker A(s;,v)) = |W|/2, M () and M (s;y) have the same
composition factors. O

Our next goal is to prove Theorem 2.10 which determines exactly when the principal series
module M (7) is irreducible. For this we shall need the following lemma.

Lemma 2.8. Let {by}wew be a basis for the vector space of H of harmonic polynomials and let
X be the |W| x |W| matriz given by

X = (2 w)swew Then det X = ¢- ( H a>|W|/27
a>0

where £ is a nonzero constant in C.

Proof. Note that if o), is another basis of H and we write

= Z Cowb, Cow € C, then
veW
X' = (z_lbiﬂ)%wew = (z_lbv) (cvw) and so det X' = £ det X,

for some nonzero constant & = det((cyy)). Thus, by changing basis if necessary, we may assume
that the b,, are homogeneous.

Subtract row 2z~ 'b,, from row s,z 'b,. Then this row is divisible by . By doing this subtraction
for each of the |W|/2 pairs {271, 54271} we conclude that det(X) is divisible by a/"1/2. Thus, since
the roots are co-prime as elements of the polynomial ring S(h),

Wl/2
det(X) i divisible by ( I1 a) .
a>0
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The degree of [],.,a!"W1/2 is (|W|/2)Card(R*) and, using (2.3), the degree of det(X) is

a>0

wgv deg(by) = ; k dim(HF) = (jtPW(t)> (tzl = wezwaw)
= Y Card(R(w)) = Y (|W]/2) = ([W|/2)Card(R").

weW acRt

Since these two polynomials are homogeneous of the same degree it follows that the quotient
det(X)/(Inso a@)W1/2 is a constant. If det(X) = 0 then the columns of X are linearly dependent.
In particular, there exist constants ¢,, € C, not all zero, such that »_ ¢,b, = 0. But this is a

contradiction to the assumption that {b,} is a basis of H. So det(X) # 0. O

Let v € hc and let M(y) = H ®s(hz) Cvy be the corresponding principal series module for H.
The spherical vector in M(~) is

(2.24) L= ) tuvsy.

weWw

Up to multiplication by constants this is the unique vector in M(y) such that t,1, = 1, for
all w € W. The following proposition provides a graded Hecke analogue of the results in [Ka,
Proposition 1.20] and [Ka, Lemma 2.3]. Mention of this analogue was made in [Op].

Proposition 2.9.
(a) If~y is a generic element of hc and vy, w € W, is the basis of M(vy) defined in (2.18) then

a+c
1, = Z Y(€2)Vzr, where C, = H ” .

zeW a€R(woz)

(b) The spherical vector 1, generates M(7y) if and only if [[,~o(v(a) + ca) # 0.
(c) For v € bc, the principal series module M(v) is irreducible if and only if 1, generates
M (wv) for allw € W.

Proof. (a) Suppose that £, € C are constants such that
L= (S ) Do
weW zeW

We shall prove that the £, are given by the formula in the statement of the proposition. Since
ts, ( D wew tw) =2 wew tw;

Co: Cq:
=t = (m ) 3 G = (o 52) 3 (Gt )
zeW S§;z>2
_ Z 5 +£ _ Coi + 5 2 +£ _ Cai
= 2Us;zy z,y(zflai)vzv 52T Vzy siz’y(_zflai)vsizy .

S;2>2

Comparing coefficients of v,,.~ on each side of this expression gives

-1
Cq; Z7 0+ Cqy
Esiz = &2+ &si2 04_1 ’ and so & =7 ( _11 <
Y(—z"1ay) Esiz 27ty

>, if 5,2 > 2.
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Using this formula inductively gives

Si

5 :g . p"'Sizail oy Oéz‘p 51
W s Si v SiyQy + € a;, +c
ip 12 X1y (o7} p Qi

(0%
=v| 11 o €1

a€R(w)

Since the transition matrix between the basis {t,,v,} and the basis {vy,} is upper unitriangular
with respect to Bruhat order, &,, = 1. Thus, the last equation implies that

51=7<Ha—;ca> and &y =7 H a—fca &1 =17 H a—;ca

a>0 aER(w) a€R(wow)

(b) By expanding Vpy = TopUy = Tiy +* " Ti, Uy for a reduced word s;, - - - Si, = 2 it follows that there
exist rational functions m,, such that

Vey = Z 'Y(muz)tuv'ya
ueW

for all generic v € he. Furthermore the matrix M = (my; )y, .ew with these rational functions as
entries is upper unitriangular.
Let by, w € W, be a basis of harmonic polynomials and define polynomials g,y € S(b¢), u,y € W,

by
by(th> = Ztu(Iuya yeWw,

weW ueW
where these equations are equalities in H. Then,

byly = by (Z tw) = Z V(quy) (tu ® v4),

weW ueW
and part (a) implies that if -y is generic then
byly =0y > ey = D ea(z7'by)) vy = Y (el by)muz) (tu ® v7).
zeW zeW z,ueW
Since these two expressions are equal for all generic v € h¢ it follows that
(2'25) Quy = Z Myz - Cy - (Z_lby)a u,y € W,
zeEW

as rational functions (in fact both sides are polynomials).
Since t,, w € W, and p € Z(H) = S(h3)" act on 1, by constants, the H-module M(v) is
generated by 1, if and only if there exist constants py,, € C such that

tw ®Vy = Z Pywbylsy, for each w € W.
yeW
If these constants exist then, for each w € W,
tw @ vy = Z Pywbyly = Z Y (Muzcs (27 by ) Pyw ) tu @ vy,
yew Y,z u€W

where, by (2.25), there is no restriction that v be generic. If

M = (muz)u,z€W7 C = diag(cz)z€W7 X = (Zilby)zyew P = (pyw)y,w€W7
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then P = (y(MCX))™! and so P exists if and only if det(y(MCX)) # 0. Now det(M) = 1, and,
by Lemma 2.8 and part (a),

W/2
det(X)=¢-J[a™?  and  det(c)= [ T[] O‘J;CC“:(HO‘ZC“) ,

a>0 2€W a€R(woz) a>0

where £ € C is nonzero. Thus P exists if and only if [] - o(v(a) 4 ca) # 0.
(¢) =: If M(~) is irreducible then, by Proposition 2.7(c), M (w7) is irreducible for all w € W.
Hence M (wr) is generated by 1,

<=: Suppose that 1,,, generates M (w~) for all w € W. Let E be a nonzero irreducible submodule
of M(v) and let w € W be such that the weight space E,; is nonzero. Then, by Proposition 2.7(a),
there is a nonzero surjective H-module homomorphism ¢: M(wy) — E. Since 1,, generates
M (w7), ¢(1wy) is a nonzero vector in E such that ¢,¢(1yy) = ¢(1wy) for all v € W. Since there
is a unique, up to constant multiples, spherical vector in M () ¢(1,y) is a multiple of 1, and 1,
is nonzero. This implies that £ = M (v) since 1, generates M (7). O

Together the three parts of Proposition 2.9 prove the following graded Hecke algebra analogue
of [Ka, Theorem 2.1].

Theorem 2.10. Let v € hc and let P(y) = {a >0 | y(o) = £co}. The principal series H-module
M (v) is irreducible if and only if P(~y) = 0.

3. CLASSIFICATION OF IRREDUCIBLE REPRESENTATIONS FOR RANK 2

3.1. The root system. The reflection group I>(n) is the dihedral group of order 2n. Let £, 2 be
an orthonormal basis of b}, = R? and define

B = cos(kB)e1 + sin(k0)eq, where 6 = 7/n.
Fix the roots, positive roots and simple roots for the reflection group Iz(n) by

:{ﬁk‘oskgzn_l}7 d a1 :ﬁ(%
RY ={B|0<k<n-1}, ™ ay =B,
For 0 <k <n-—1, =0k = Bn+k, 518k = Bn—r and s20; = Bn—2—k, and when n is even there are
two orbits of roots, {0 | 0 < k < n/2} and {£F,11 | 0 < k < n/2}. Let ¢, = cg, be a choice
of parameters for the graded Hecke algebra H. When n is odd all of the ¢; are equal and, when n
is even, there are two, possibly unequal, parameters cy = cox and c¢; = cor41. Figure 1 displays the
roots B and hyperplanes Hg, = {x € R? | (B, z) = 0} for I5(7) and I>(8). When n is even each
root fj lies on the hyperplane Hg, . /2 and this is why, in the picture of hyperplanes and roots for
I5(8) there are multiple labels on each line.
Figure 2 displays, using thin and thick lines, the hyperplanes

Hp, ={z €R” | (B,2) =0}  and  Hps={z €R?| (B, 2) = £}
for I5(7) and I2(8) (and a particular choice of the parameters cy).

3.2. The central characters. Using the orthonormal basis €1, g2 we can identify hr with R? and
he with C2. If v € h¢ then

Z(y) ={Br € R* | (v,Bk) =0} and  P(y)={Br € R" | (v, 6k) = £er}.

In terms of the pictures in Figure 2, if 7 is a point in R? then the elements of Z(vy) label the Hg,
(thin lines) that « is on and the elements of P() label the set of Hg, 15 (thick lines) that + is on.

Let us analyze the possibilities for Z() and P(v). For the purpose of analyzing representations
of Hi, v labels a central character. Since a central character is really a W-orbit we may replace v by
any more convenient element in the orbit W+y. If v(«) = ¢, then (1/¢o)v(a) = 1 and so we may,
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FIGURE 1. Hyperplanes and roots for I5(7) and I2(8)

FIGURE 2. Hyperplanes for I5(7) and I5(8).

without loss of generality, assume that ¢ = 1 for all k when n is odd, and co;, = 1 and cop11 = ¢
when n is even.

(a) If Z(y) contains 2 roots or more then v = 0, since any two distinct positive roots are linearly
independent. This is the central character g in Table 1.

(b) If Z(y) contains one root then, by replacing v with another element of W+, we may assume
that Z(y) = {fo}. When n is even, we may also have to use the automorphism of the root system
which switches oy = By and ag = -1 to get Z(v) = {fo}. Applying this automorphism changes
the central character but the representations of H with the new central character will have exactly
the same structure as the representations of central character ~.

(b) If Z(v) = {00} and Bx € P() then the equations 0 = y(5y) = v(e1) and
(3.1) ek = Y(Br) = v(cos(kf)e1 + sin(kb)eg) = sin(kh)vy(e2)

uniquely determine 7. Since sin(kf) = sin((n — k)#), 5,—x must also be in P(y). This happens for
the central characters vp i, V4,02 and 74 in Table 1.

(b") If Z(v) = {Bo}, Br, B¢ € P(vy) and ¢ # n — k then equation (3.1) for k and ¢ forces ¢ # ¢
which forces n even and k£ and £ to be of different parity. Furthermore the parameters must satisfy
ck/ce = sin(k@)/sin(£0) and, when this happens, it happens for a unique choice of the 4-tuple
(k,¢,n — k,n — £). Thus, the only possible option is P(v) = {Bk, Bn—k, Be, Bn—¢} (if £ = n/2 then
P(v) = {Bn/2) Bk> Bn—k}). This is the central character v, in Table 1.

(¢) If Z(v) = 0 and By, B¢ € P(7) such that ¢z = ¢ = ¢ then v is uniquely determined by the
equations ¢ = cos(k0)vy(e1) + sin(kf)y(e2) = cos(€0)y(e1) + sin(€d)y(e2). These equations force
Bintk+e)2 € Z(7) if (n+ k + £) is even (the easiest way to see this is to look at the pictures in
Figure 2). Since we assumed Z(vy) = () it follows that n + k + ¢ is odd. If P(y) contains 3 elements
then at least two of them would satisfy n + k 4 £ even, and so it follows that P(v) contains a
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maximum of two elements. By replacing v by an appropriate element of the orbit W+~ we can
assume that P(y) = {Bk_1, Bn_k} for some 1 < k < n/2. This case corresponds to the central
character 7, in Table 1.

This analysis shows that Table 1 covers all (P(v), Z(~)) possibilities.

3.3. The irreducible representations. The following analysis determines the structure of each
of the irreducible H-modules: the dimensions of each generalized weight space and the Langlands
parameters. The results are summarized in Table 1. An irreducible representation that is calibrated
(see (2.10)) has all its weights of the form w~y with w € F/) for a unique J, and this is the set which
is displayed in the fourth column of Table 1. The notation ‘nc’ indicates that the representation is
not calibrated.

The derivation of the irreducible representations below proceeds by considering, separately, each
central character . In each case we have included a picture showing the local regions (v, J). In
these pictures the solid lines correspond to hyperplanes H, for v € Z(7) and the dotted lines
correspond to hyperplanes H, for a € P(v). Each local region is labeled by the corresponding set
J of roots which determines its location in the picture (see the discussion before Corollary 2.5).

The Langlands parameters of an irreducible H-module M are determined by the real parts of
weights of M. This means that, according to the labeling of the simple modules as in Table 1,
the Langlands parameters can depend on the choice of the parameters ¢;. In our calculations of
Langlands parameters, and in the Langlands data displayed in Table 1, we assume that all ¢ € Ryg
(this assumption is used only in the analysis of Langlands parameters). When I C {1, 2} contains
only one element, a tempered Hj;-module is determined by its maximal weight. Thus, in Table 1,
we specify Langlands parameters in the form (A,7) where A indicates the maximal weight of a
tempered H7-module.

In the case when n is even not all roots are in the orbit of a; = 3y and one should really consider
central characters v which have Z(v) = {#,-1} = {az2}. These central characters v;, vz, 7., are
the images of the central characters 74, V51 and v.x under the automorphism of the root system
which switches a7 and as. This automorphism extends to an automorphism of H and thus it
follows that the modules with central characters v/, '71/7,k> 'yé’ . have exactly the same structures as
the modules with central characters 74, 7 and 7., respectively.

Central character v,: Z(7v,) = 0, P(v,) = 0.
By Theorem 2.10 the principal series module M (~,) is irreducible and, by Proposition 2.7(a), this
is the unique irreducible module with central character v,. Since 7, is regular M (,) is calibrated.

Central character v : Z(vwi) = {060}, Plwr) = {8k Bk}, 1<k<(n—1)/2.
The weight 1, is uniquely determined by the fact that ;1 (50) = v(e1) = 0 and ¢ = v(6k) =
sin(k@)v(e2), where 6 = 7 /n.

Hﬂo
k chambers K ci{ a?nlq))ers
H/Bk‘. ,-'Hﬁnfk
J={6,_
o b n— 2{5 chZinbers
e
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Use Lemma 2.6 to decompose the principal series module M (7, ) and conclude that there are two
irreducible modules M and N with central character v, and

dim(MER ) =2 for w e FOrr0) dim(MED ) =1 for w € FOwr0n-kh)
dim(NfﬁY‘;k) =1, for w € FOwrABn—k}) dim(NE}fYr;k) =2, for w € FOwkABrOnr})

and all other weight spaces of M and N are 0. Neither of the two irreducible modules M and N
with central character v, are calibrated.

The maximal weight of M is v, which is dominant and on the hyperplane H,,. The Langlands
set for this weight is I = {1}. The maximal weight of N is on the hyperplane Hg, if k is even, and
on the hyperplane Hg (e41) if k is odd. This observation determines the set I in the Langlands

decomposition of the (real part) of the maximal weight of N (equation (2.11)).

Central character vy 52 noeven, Z(pp2) = {60}, P(Yns2) = {Bn/2}-

Hﬁo

J=0

n/2 chambers n/2 chambers

J = {Bns2}

2 ch
n/2 chambers n/2 chambers

Use Lemma 2.6 to decompose the principal series module M (7,,/2) and conclude that there are
two irreducible modules M and N with central character 7, /o with

dim(ME" ) =2, forw € ,7-“(%,71/27@)7 and

WYb,n/2

dim(NE® ) =2, forw e FOmko{Bny2})

WYb,n/2

All other weight spaces of M and N are 0. Neither of the two irreducible modules M and N with
central character /o are calibrated.

The maximal weight of M is 7, which is dominant and on the hyperplane H,,. The Langlands
set for this weight is I = {1}. The module N is tempered with maximal weight ---s153 Y, /2-

n/2 factors

Central character v3: Z(7g) = {80}, P(va) = {Bts Butcs B Bt}

It may be that £ = n/2 = n — £ so that the hyperplanes Hg, and Hg, , are the same and P(v)
contains only 3 roots. We do not have to consider this situation separately.

In some sense, the special central character 7, occurs when the parameters are exactly right
so that the central characters 7, and ~,¢ “coalesce”. This occurs only if n is even, k and ¢
are of different parity, and the parameters satisfy cp/cy = sin(k6)/sin(£6). For a fixed choice of
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parameters, there is at most one choice of the quadruple (k,¢,n — k,n — ).

Hﬁo
k
chambers H Bk
J=10 0k
chambers
J={Bn-r}
) Hﬁnfe
n — 2¢ chambers
J = {/Bn—k, ﬁn—@}
{—k
. chambers
L = BB i)
chambers
J = P(vq)

There are five nonisomorphic irreducible H-modules L, M, N, P and @ with central character 7,
unless ¢ = n/2, in which case there are only four (N has dimension 0).

dim(LER ) = 2,
dim(LED) =1

)

dim(ME5,) = 1,
dim(Ng5,) =1,
dim(Pg5,) = 1,

dim Q)
dim(QE0)

)

1
2,

for w € Fral)
for w € FOaobnr})

for w € FOaBn-r})
for w c f(%p{ﬁn—kw@n—é})’
for w E f(’yq7{ﬁlvﬁn7kw8n7f})’

fOI‘ w E f(qu{/6[7ﬂn—k7ﬁn—z})’
for w E f(’y(p{ﬁk’ﬁbﬁnfk:ﬁnfé})?

and all other weight spaces of these modules are 0.
Both modules P and @ are tempered and have the same maximal weight --- s1527,.
N——

n—~ factors

Central character Yer: Z(Yer) =0,  P(ver) = {Br-1,6n-k}, 1<k<(n-—-1)/2.
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The weight 7., is uniquely determined by v(8x—1) = cx—1 and y(Bn—k) = cn—-

Hﬁo
|
|
‘Hﬁk—l' E_1 [ J=0
chambers ! k chambers
|
|
|
| Hﬁn—k
! .
|
n — 2k + 1 chambers :
J = {Br-1} !
(-
N
o
! n — 2k 4+ 1 chambers
|
|
|
|
|
|
|
k chambers | k-1
J = P(Yer) | chambers
|
|

The dashed line in this picture is for reference only, it does not correspond to a root in Z(y) or
P(v).

Since 7. i, is regular the irreducible H-modules with central character ~.j are calibrated and can
be indexed by the sets J. The irreducible calibrated module He#) indexed by the set J has

dim(H(’yc’k’J))w%,k =1 for w e f'('Yc,IwJ)

and all other weight spaces 0. A construction of H(7e#+/) is given in Theorem 4.5.

To compute the Langlands parameters of these modules we first assume that n is odd and
m = 251 If J = {Br_1} the maximal weight of the module HOe#) is in the same chamber as
Bm—k if k is even, and in the same chamber as S, if k is odd. If J = {f,_;} the maximal
weight of H("e#+/) is in the same chamber as (,,_x if k is odd, and in the same chamber as Btk
if k£ is even. In each case this information determines the set I in the Langlands parameters. If

J = {Br_1,Bn_r} the module HOer) is tempered with maximal weights

5281 Ve ks and o 8182 Ve,k-
—_——
n—k+1 factors k factors

If n is even and all parameters c; are equal then the Langlands parameters are as in the previous
paragraph. In the case that n is even and cor, # cag4+1 then it may happen that +.j is not in the
dominant chamber. The structure of the modules with central character v, does not change but the
Langlands parameters of the representations may change significantly. One of the four irreducibles
with central character v, will always be tempered, but which one (and thus the dimension of the
tempered module with this central character) depends on the values of the parameters cg; and

Cok+1-
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Central character vq: Z(vq) =0, P(vq) ={bBo}
Hﬁo

J = (5o} § J—0

n chambers : n chambers

Since 74 is regular the irreducible modules with central character 4 are calibrated and can be
indexed by the sets J. The module H/) has

dim(H(%’k’J))w%,k —1forwe }“(%Jc,J)

and all other weight spaces 0. A construction of H(7.+/) is given in Theorem 4.5.

The Langlands parameters given in Table 1 for irreducible representations with central character
Ya assume that vq € Wy where n is odd and vg = & - B(,—1)/2, £ € R>0. In the particular case n
odd and 4 € W~y the irreducible module indexed by the set J = {f} is tempered.

3.4. Tempered representations and the Springer correspondence. The Springer correspon-
dence for Weyl groups (see [BM1, p.34]) associates to each tempered representation M of H with real
central character, the unique “maximal” irreducible W-module which is contained in M. For Weyl
groups (crystallographic reflection groups) this is a one-to-one correspondence between tempered
representations of H and irreducible representations of W. Using our classification of H-modules
in Table 1, we can establish a similar correspondence for the noncrystallographic groups Iz(n).

If n is odd then the group I2(n) has 2 one-dimensional irreducible representations and (n —
1)/2 two-dimensional irreducible representations. The trivial (resp. sign) representation of Iy(n)
corresponds to the tempered irreducible H-module with central character vy (resp. 7c,1). The two-
dimensional representations of Iz(n) correspond to the tempered H-modules with central characters
Ya € WAl and e, 1 < k < (n—1)/2. Note that 79, 74 and Yo, 1 < k < (n —1)/2, can all be
taken to be multiples of the root 5(,_1)/2 and in the dominant chamber. In this normalization the
1-dimensional representations correspond to the two extreme elements of this chain of weights.

If n is even and the parameters ¢j are all equal the trivial (resp. sign) representation of Is(n)
corresponds to the tempered irreducible H-module with central character 4o (resp. v.1) and the
other two 1-dimensional representations of Is(n) correspond to the tempered H-modules with cen-
tral characters 7y,,/2 and 7y /2. The 2-dimensional I3(n)-modules correspond to the tempered
H-modules with central characters 7., 2 < k <n/2. As in the case n odd, the central characters
Yo and Y, 1 <k < (n—1)/2, can be taken to be in the dominant chamber and on the line through
the origin and the point 3, /5 + 3, /2—1. In this normalization the trivial and the sign representations
correspond to the two extreme elements of this chain of weights. In the case when the parameters
are unequal two of the points on this chain may coalesce in the weight v, and “become” the two
tempered representations of H with central character v,. The case where P(v,) contains only 3
roots comes from one of the central characters /2 or Yy /2 coalescing with one of the ..

This analysis establishes the “Springer correspondence” for all dihedral groups and all choices of
the parameters ¢, of H with ¢ € Rsy.
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Character
Y% =0
Ya

bk
1<k<n/2

Yo,n/2

(n even)

Yq

(n even)

0<k<t<n/2

Ve,k
1<k<n/2

Yd

Ygen

Z(v), P(v)
R0

{Bo},0

{/80}7 {/Bka ﬂn—k}

{Bo}s {Bny2}

{Bo},

{Br, Bk Be, Brn—i}

@, {6k717 6nfk}

(Da {ﬂo}

0,0
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Dimension
2n

2n

n— 20

{—k
C+k

2k —1
n—2k+1

n—2k+1

2k —1

n
n

2n

J
nc
nc

nc
nc

nc
nc

nc

{ank}

{/ank ) /anf}

{Bn—ks Bn—rt, Be}

nc

0
{Br-1}

{/Bn—k:}

{ﬁk—la ﬁn—k‘}

0
{Bo}

0

TABLE 1. Irreducible representations of HIs(n)

Langlands Parameters

tempered

(a5 {1})

(Yo, {1})
(- s182 Wk, {1}) k even

k factors

(- s182 M.k, 12}), k odd

k factors

(7b,n/2v {1})

tempered

(7g:{1})

-+ 8159%4,11}), k even
(- s1827: {1})

k factors

-+ 8182%,12}), k odd
(:--s18379:{2})

k factors

-+ 8182%,1{1}), £ even
(- s1827: {1})

£ factors 2 0dd
-+ 8182 %,12}), £ o

(- s1827: {2})

£ factors

tempered

tempered

(fYc,ky(Z))
(--- 5251 Ye,ks 11}), k odd

k factors

(- 5251 Ve ks {2}), k even

k factors

(++-5152Yeks{1}), k even

k factors

(05182 Yek, {2}), Kk odd

k factors
tempered

(74, 9)
(s17a, {1})1

(Vgen, 0)

T This module is tempered if n is odd and v4 € W+, with ;= ¢ - Bn—1y/2: § € Rxo.
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4. CLASSIFICATION OF CALIBRATED REPRESENTATIONS

4.1. Structural results. We first examine some properties which hold for irreducible modules
that are calibrated, i.e., can be decomposed into a direct sum of weight spaces (see (2.10)). This
section follows closely the similar results for affine Hecke algebras in [Ral].

Lemma 4.1. Let M be an irreducible calibrated module. Then, for all v € hc such that M., # 0,
(a) y(a;) #0 for all 1 <i<n, and
(b) dim(M,) = 1.

Proof. (a) The proof is by contradiction. Assume ~y(a;) = 0. Let HA; be the subalgebra of H
generated by t,, and all z € hg. Then the two-dimensional HA; principal series module M (7y) is
irreducible and there is an HA;-module homomorphism given by

M(y) — M

U~y = My

where m. is a nonzero element of M,. Since M (v) is simple this is an injection and thus, M is not
calibrated since M () is not calibrated. Thus y(a;) # 0.

(b) The proof is by contradiction. Assume v € ¢ is such that dim(M,) > 1. Let m, be a nonzero
element of M,. Since M is calibrated 7; acts on m, as a linear combination of the action of ¢,
and a multiple of the identity. Since M is irreducible it follows from Proposition 2.4(b) that the
action of the T-operators must generate all of M. Thus, since dim(AM,) > 1, there is a sequence of
T-operators such that

nw = T Tip 'Tl'pm7
is a nonzero vector in M, which is not a multiple of m.,.

Assume that the sequence 7;, 7, - - - 7;, is chosen so that p is minimal. Since the T-operators in this
sequence are all well defined the elements s;, - --s;,7, 1 < k < p, in the orbit W+ correspond (under
the bijection in (2.7)) to a sequence of chambers in b on the positive side of all H,, a € Z(7).
Each chamber in this sequence shares a face with the next chamber in the sequence. Since both n,
and m. are in M, this is a sequence which begins and ends at the chamber C. Since the chambers
are in bijection with the elements of W' it follows that s;, ---s;, = 1 in W.

This means that there is some 1 < k£ < p such that s;, - - - s;, is not reduced and we can use the
braid relations to rewrite this word as Sif Syt SiySiy- By Proposition 2.4(e) the T-operators also
satisfy the braid relations and so

Moy = Tt T, == Tt Tig, T~ Ty My

By Proposition 2.4(c), the operator 7;, 7, in this expression will act (on 7;,, , - - - 7;,m) by a constant
£ € C and so

12_27—7;]@4,1 e Tz’pm'w

where the constant § is nonzero since n., is nonzero. But the expression

-1
&y =TTy T,
is shorter than the original expression of n, and this contradicts the minimality of p. It follows

that dim(M,) < 1. O

Tiggr """ TipTMlys

Lemma 4.2. Let M be an irreducible calibrated module. Suppose that M, and M, are both
nonzero. Then the map 7; : M, — My, is a bijection.

Proof. By Proposition 4.1(b), dim(M,,) = dim(Ms,,) = 1, and thus it is sufficient to show that 7;
is not the zero map. Let v, be a nonzero vector in M,. Since M is irreducible there must be a
sequence of T-operators such that

Vsjy = Tig " " 7'Z'p’l)7
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is a nonzero element of M. Let p be minimal such that this is the case. Since 77, - 73,0y € M,
it follows, as in the second paragraph of the proof of Lemma 4.1(b), that s;s; ---s;, = 1 in W.
For notational convenience let i = 4. Let 0 < k < p be maximal such that s;, s; _, ---s;, is not
reduced. If k # 0 then we can use the braid relations to get

Vsjy = Tig " TikTikTiﬂﬂ_z ce Ti;,vv‘
Since 7;, 7, acts on Tif oy Ti Uy by a constant ¢ € C,
Vsyy = §Tiy Tik,lTi;€+2 C T Uy,

and § # 0 since vy, is not 0. But this contradicts the minimality of p. Thus we must have that
k=0,p=1 and

Vsiy = Tily-
Thus, since vy, # 0, 7 # 0. g

For simple roots «; and «; in R, let R;; be the rank two root subsystem of R generated by «;
and a;. A weight p € he is skew if
(a) for all simple roots «a;, 1 <i <mn, u(a;) # 0, and
(b) for all pairs of simple roots «;, a; such that {a € R;; | p(a) = 0} # 0, the set {« €
R;; | p(a) = £co} contains more than two elements.

Condition (a) says that u is regular for all rank 1 subsystems of R generated by simple roots.
Condition (b) is an “almost regular” condition on p with respect to rank 2 subsystems generated
by simple roots. By the analysis in Section 3, the weights which appear in calibrated modules for
graded Hecke algebras corresponding to rank two root systems are skew.

Recall from Section 2.3 that a pair (v, J) is a local region if the set

FOI) = fwe W | R(w) N Z(7) = 0 and R(w) N P(y) = J}

is nonempty. A local region (v, J) is skew if, for all w € F (/) the weight wry is skew for all pairs
o, aj of simple roots in R.
The following Theorem specifies the weight space structure of an irreducible calibrated H-module.

Theorem 4.3. If M is an irreducible calibrated H-module with central character v € hc then there
is a unique skew local region (v, J) such that

1, for allwe FOI),
0, otherwise.

dim(M,,) = {

Proof. By Lemma 4.1 all nonzero generalized weight spaces of M have dimension 1 and by Lemma 4.2
all T-operators between these weight spaces are bijections. This already guarantees that there is
a unique local region (v, J) which satisfies the condition. It only remains to show that this local
region is skew.

Let H;; be the subalgebra of H generated by t,, ts; and S(hg). Since M is calibrated as an
H-module it is calibrated as an H;;-module and so all factors of a composition series of M as an
H;j-module are calibrated. Thus, by the classification in Section 3, the weights of M are skew. So
(v, J) is a skew local region. O

4.2. Construction. The following Proposition shows that the weight structure of calibrated rep-
resentations as determined in Theorem 4.3 essentially forces the H-action on a weight basis.

Proposition 4.4. Let M be a calibrated H-module and for all v € b such that M, # 0, assume
that

(A1) ~(oy) #0 forall1 <i<n, and (A2) dim(M,)=1.
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For each b € b such that My, # 0 let vy, be a nonzero vector in My. The vectors {vy} form a basis
of M. Let (ts;)e € C and b(x) € C be given by

ts,0p = Z(tsi)cbvc and  xvy = b(x)vy, for x € hE.

C

Then
(a) (ts;)ep = ble) for all vy in the basis,
(b) if (ts;)er # O then c = s;b,

(C> (tsi)b,sib(t5i>8ib,b =1- (tsi)gb = (1 + (t5i)bb)(1 + (tsi)sib,sib)'

Proof. The relation
xts, — ts,Si(x) = caiLsi(x)
Q;
forces
b(x) — b(s;x)

b(av;)

Vp.

Z(c(x) (tsi)eb — (ts;)enb(siT))ve = Ca,

c

Comparing coefficients yields
c(x)(ts;)eb — (ts;)eapb(six) = 0, if b # ¢, and

b($)(tsi)bb — (tsi)bbb(5i$) = CQiW'

These equations imply that
if (ts;)ee #0 then b(s;x) =c(x) for all x € b, and

(ts, )op = bfZ?) if b(a;) # 0 and b(z) # b(siz) for some z € b

Thus

Ca;
b(ai)’
This completes the proof of (a) and (b). The relation 2 = 1 in H implies that
vp =205 = [(ts;)i + (L Dossib(ts)sibp) Vo + [(Es,)ob + (ts;)sibsib) (s, )sibpUsib
= [(ts)2o + (ts)b,sin(ts))sivn] Vb s
since (ts;)ob + (ts;)sib,s;6 = 0. Thus

(s, )bsib (s )sibp = 1 — (ts)5s = (1 + (s, )en) (1 + (£s,)sibysib)-

to;Ub = (ts; )obUb + (ts;)sibpUsy With  (ts,)pp =

O
Theorem 4.5. Let (7,J) be skew and let FO7) index the chambers in the local region (v,.J).
Define
HO) = C-span{v,, | w € ‘7:(%‘])},

so that the symbols vy, are a labeled basis of the vector space HY) . Then the following formulas
make H) into an irreducible H-module. For each w € FO7),

Ty = (W) (T) v, for z € h&kja and
s,V = Cay VU + <1 + Co ) Us;w) for1<i<mn,
wy(oy) wy ()

where we set Vg, = 0 if s;w ¢ FOd),
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Proof. Since (7, J) is skew, (wy)(a;) # 0 for all w € F/) and all simple roots a;. This implies
that the coefficients in ¢4, v,, are well defined for all ¢ and w € Fd),

By construction, the nonzero weight spaces of H("/) are (H»/))&" = (HO)),,, where w €
FOd) Since dim((HO)),,) = 1 for u € FO/) any proper submodule N of H("/) must have
Nyy # 0 and Ny = 0 for some w # w', with w,w’ € FOD) . This is a contradiction to Corol-
lary 2.5. So H("?) is irreducible if it is an H-module.

It remains to show that the defining relations for H are satisfied. Let w € F(/). Then

<5i(x)t5i + caiw) Uy = S;T [%vw + (1 + %> vsiw}
@i wy () wy(a;)

wy(z) — wy(six)

T o wy(oy) b
= Ca wy(z) vy + <1 i ) $iwY(8i7) Vs
wy () wy () '
= 15, TVy.

Let w € FO/). Then
Lt = s [ws?&i)vw " <1 " wi@i)) Usiw]
_ w'j?az) [ws?;i)vw + <1 + U%) vsiw:|
(1 i) [t + (1 st ) )
2
= (ten) v () (1= e o0

= Uy

Now let us check the braid relations. Write ¢, = 7; + d; where

Cay Ca,
TiVw = (1 + a’) Vs;w and divy = —— Vs
(wy) (o) (wy)(a)
for w € F7). Then d; is a diagonal matrix and 7; is a pseudo-permutation matrix, in the sense
that each row and each column contains at most one nonzero entry. For a sequence ji,. .., j, define

a diagonal matrix dgl""’jp by the relation
j 7"'7j
(41) diTj1 ...ij :le...ijdil p'

If «v is generic then, for all w € W,

djlr"?jP,U — < Cai )U
' S\ s (i) )

and all diagonal entries are nonzero, but, in general, some diagonal entries of dgl"“’jp may be 0.
Use this method to expand the expression

ls;ts;ts, "+ = (1: + di)(Tj + dj)(Ti +d;)--- = Z T2Dz)
zeW

m;; factors m;; factors

and move all the diagonal operators d; to the right of the 7; and obtain diagonal operators p,. The
operators 7, are pseudo-permutation operators that may have some rows and columns without a
nonzero entry. By replacing some diagonal entries of the p, operators by 0, we may “fix the 7,”
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and replace the 7, with operators 7, which have exactly one nonzero entry in each row and each
column. This yields an expression

(42) tsitSjtsi = Z T;p;’

m;; factors

If ~ is generic then the diagonal entries (p )y of P, are nonzero and (p))yw = wy(PL), w € W,

where P! is a rational function in the «;. A similar expansion gives

(4.3) totsils, = Z 7',

" ew

my; factors
where the ¢/, are diagonal operators which, for generic v, have diagonal entries (¢, )ww = wy(QY),
where @/, is a rational function of the ;. As in the proof of Proposition 2.4(e), v(P.) = v(Q’,) for
all generic 7, and so it follows that P, = @', as rational functions.

When ~ is not generic the operators p/, and ¢, may have some diagonal entries equal to zero.
From the classification of representations of rank two graded Hecke algebras we know that there
exists a calibrated representation of Hj;; when (v, J) is skew. This representation has a unique, up to
constant multiples, basis of simultaneous eigenvectors for the action of A € b, and Proposition 4.4
shows that the action on this basis is forced except for the values of the off diagonal elements
of the t;,. These values depend on the normalization of the basis. Because we know that this
representation exists we know that there are choices of the nonzero entries in the 7. such that (4.2)
and (4.3) are equal. If a diagonal entry (p/,)ww of p/, is nonzero then it is equal to (wy)(P.) and
(P ww = (WY)(PL) = (wy)(Q,) = (¢.)ww, since (as shown above) P, = @’. Thus it follows that
nonzero contributions from the terms 7/p, and 7/¢ are equal and that t,ts ts, --- vy is equal to
totsits, V- O

Remark 4.6. The action of H on a weight basis of HO*/) is forced up to the freedom in Proposi-
tion 4.4(c). Our choice (t;)s;p = 1 + (ts;)pp in Theorem 4.5 and the alternative choice (ts,)s;65 =

1 + (ts;)s;b,56 yield isomorphic modules. The change of basis v{) = vp provides the

(1+ (ts; o)
isomorphism.

We summarize the results of this section with the following corollary of Theorem 4.3 and the
construction in Theorem 4.5.

Theorem 4.7. Let M be an irreducible calibrated H-module. Let vy € hc be (a fized choice of) the
central character of M and let J = R(w) N P(y) for any w € W such that M, # 0. Then (v, J)
is skew and M ~ HOY)  where HOY) is the module defined in Theorem 4.5.

5. COMBINATORICS OF LOCAL REGIONS

When W is a crystallographic reflection group two conjectures were stated in [Ra3, (1.3) and
(1.11)], the first giving necessary and sufficient conditions for F(/) (as defined in (2.20)) to be
nonempty when v is dominant and the second determining the form of F(/) as an interval in the
weak Bruhat order when 7 is dominant and integral. Loszoncy [Lo] proved the second conjecture
(Theorem 5.2 below). His theorem implies the nonemptiness conjecture of [Ra3] under the addi-
tional assumption that ~ is integral. Here we review Loszoncy’s proof and prove the nonemptiness
conjecture in full generality. We give an example (Example 5.4) to show that integrality is necessary
in Theorem 5.2. Finally, we provide Example 5.7, which shows that one cannot expect analogous
statements to hold when W is noncrystallographic.
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Let R be the root system of a finite real reflection group W and fix a set Rt = {a > 0} of
positive roots in R. A set of positive roots S is closed if it satisfies the condition

If o, 3€ S and a,b > 0 are such that ac + b3 € R then aa + b3 € S.

The following theorem characterizes the sets which appear as inversion sets of elements of W. Recall
that R(w) denotes the inversion set of w, see equation (2.4). This result is in [Bj, Proposition 2],
but is stated there without proof and we are not aware of a published proof. The following proof
was shown to us by J. Stembridge and appears in the thesis of D. Waugh [Wg].

Theorem 5.1. Let W be a real reflection group. A set of positive roots S is equal to R(w) for
some element w € W if and only if S is closed and S¢ = RT\S is closed.

Proof. =: Let w € W and suppose that a,3 € R(w) and ac + b is a positive root. Then
w(aa+bf) = a(wa) + b(wf) is a negative root since wa and wf are both negative roots. So R(w)
is closed. Similarly one shows that R(w)° is closed.

<=: Assume that S is closed and that S¢ is closed. We will construct w such that R(w) = S by
finding a reduced word w = s;, - - - s;, for w. This is done by induction on the size of S, with the
induction step being the combination of the two steps below.

Step 1: S contains a simple root.
Let o be a root of minimal height in S and assume that o = ), o, @, o, € R>0, is not simple.
Then

n
(o, ) > 0 for some i, since 0 < (a,a)= anl(oa, a;).
1=1

Since « is not simple, @ # «;, and so both s,,« and «; are positive roots. Since so,a = a— (¢, aﬂai
and «; both have lower height than « they must both be in S¢. But then the equation

a = sq,a + (o, ) Yoy
contradicts the assumption that S€¢ is closed. So « is simple.

Step 2: Let a;, be a simple root in S and let S1 = s;, (S \ {ei, })-
Claim: 57 is closed and SY is closed.

Let o, 8 € S7 and assume that ac + bg is a positive root. Then
si;(aa +b0) = asj;a+bs;, € S and aa+ b3 € Sy, or
asi, o+ bs;, B = «a;, and aa + b3 = —ay;, .

The second is impossible since s;, a;, is not a positive root. So aae + b3 € S1 and S is closed.
Let o, 8 € S{ and suppose that ao + b3 is a positive root. Since s;, o and s;, 3 are not in S,
si, (ac +bB3) ¢ S. So aac+ bB ¢ Si. Thus SY is closed. O

An element v € he is dominant (resp. integral) if y(a;) € R>g (resp. y(a;) € Z) for all simple
roots a;. The closure S of a set of positive roots S is the smallest closed set of positive roots
containing S.

Theorem 5.2. Let W be a crystallographic reflection group and let R be the crystallographic root
system of W. Let v € hc be dominant and integral and set

Z(y)={a>0]|(v,a)=0} and  P(y)={a>0](y,a)=1}.
Let J C P(y) be such that
iffed,a€Z(y) and B —a € R" then [—ac€lJ,

and set
FOD = {we W | Rw)n Z(y) =0, R(w)N P(y) = J}.
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Then there exist elements Win, Wmax € W such that
R(wmin) = jv R(wmax) - (P(’Y)\J) U Z('Y)La and F(%J) = [wminawmax]a

where K¢ denotes the complement of K in R™ and [Wmin, Wmax) denotes the interval between wyin
and Wpmax n the weak Bruhat order.

Proof. By Theorem 5.1, the element wyin € W will exist if Je¢ is closed. Assgme that 8 = 61 + (o
where 3 € J, 51,32 € RT. We must show that 3, € J or 32 € J. Since 3 € J,

B=61++06pn,  with &€

We will decompose 3 = 01+ - -+, into two pieces B = 61+ - -+dp+m and B2 = M2+0g2+- - -+,
via the following inductive procedure. Since

0 < (B1+ B2,B1+ B2) = Z(ﬁl + [(2,0;), then (B + [2,0;) >0 for some j.

(]
By reindexing the §; we can assume that j = 1. Thus (8;,d1) > 0 or (f2,61) > 0 and we may
assume that (31,01) > 0. Since s5, 61 = 1 — (B1,0) )01 is a root and R is crystallographic, 31 — d
is also a root. If 81 — d; is a negative root then

Bi=pF and  B=(01— )+ 0+ e+ O,
gives the desired decomposition. If 3; — §; € R* then

Bi+Ba=08+ (B —61)+B) and  (B1—01)+LB2a=06a+ + 0,

and so we may inductively apply this decomposition procedure on ' = (81 — 1)+ 82 = d2+. . .+ 0.
In this way we conclude that, after possible reindexing of the §;, either

fr =01+ + 0 and o =0pp1 4+ -+ Oms

or
Pr=01+-+d+m and  Ba=mn2+ 02+ +0m,

where 11 and 7y are positive roots such that 11 + 72 = dx41. In the first case it is immediate that
B1, 82 € J. In the second case (v, 6p41) = (v,m +m2) = 1, and so (y,n1) < 1 and (7,72) < 1. Thus,
since «y is dominant and integral, one of 7y, 72 is in Z(v) and the other is in P(y). If ; € Z(vy),
72 = 0k+1 — m1 and the condition on J implies that ne € J. Similarly, if 7, € Z(y) then 1y € J.
Thus 81 € J or 32 € J. So J€ is closed. Since J is closed and J€ is closed, Theorem 5.1 shows that
there is an element wpyy, € W such that R(wmi) = J.

The same method can be used to establish the existence of wpax: one must show that (P(y)\J) U Z ()
is closed and this is accomplished by similar arguments.

By the definition of F(/) an element w € W is in F/) if

J S R(w) € (P(y\)UZ(v) -

Since the weak Bruhat order is the order determined by inclusions of R(w) [Bj, Proposition 3] the
result is a consequence of the existence of the elements wyin, and wmax. [l

Remark 5.3. An alternative way to establish the existence of wyax in the proof of Theorem 5.2 is
to use the conjugation involution

FOoh) =L r(6hay ,
(5.1) T P Shere (3, 9) = (-, —u(PG)V)),

where u is the minimal length coset representative of woW, and wg is the longest element of W.
The fact that this is a well defined involution is proved in [Ra3, (1.7)]. This involution takes wmax
for FOD) t0 wyy, for FO7 ). In terms of the weak Bruhat order, the structure of the interval
F )" is the same as the structure of the interval F(/) but with all relations reversed.
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Example 5.4. The integrality of 7 is necessary in Theorem 5.2. Let W = I3(4) = W5 be the
dihedral group of order 8 (the Weyl group of type C2). The root system for type Cs is determined
by simple roots

a] = 2¢e1 and g = €9 — €1

where {€1,e2} is an orthonormal basis of by = R2. Let ¢; = ¢» = 1 be the parameters for H. If
v = (1/2)ea (see Figure 3) then Z(v) = {a1}, P(y) = {a1 + 22}, and ~ is dominant but y(az) is
not integral. The set J = P(v) satisfies the condition in Theorem 5.2, but J = J is not an inversion
set for any w € W since J¢ is not closed.

The following method of reducing to the integral root subsystem of a weight is standard in the
theory of highest weight modules for finite dimensional complex semisimple Lie algebras, see [Ja].
This method turns out to be an efficient tool for reducing the nonemptiness conjecture of [Ra3| to
the statement in Theorem 5.2.

Let Ry = {a € R | (y,a") € Z}. For any a, 3 € Ry,

(7, (saB)") = (sa7,8Y) = (v, 8") = (v, @'}, 8") € Z,

and so R, is a root system with Weyl group Wi,) = (sa | @ € Ryy) € W. If 7 € W}, then the
Ry, -inversion set of 7 is

R['Y](T) = {a >0 | T < Oa ac R[ﬂ} == R(T) DR['Y]

Theorem 5.5. Let W be a crystallographic reflection group and let R be the crystallographic root
system of W. Let vy € hc such that Re(7y) is dominant and set

Z() ={a>0] (ra)=0} and  P()={a>0] (r,a) =1}.
Let J C P(vy) be such that

ifBed, a€Z(v) and B —a € RT then B—ac€l
Then FO7) = {w e W | R(w) N Z(y), R(w) N P(y) = J} is nonempty.
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Proof. Since 7 is dominant and integral for the root system R[,), it follows from Theorem 5.2 that
there is an element w in W, such that

Rpyy(w)NZ(y) =10 and Ry (w) N P(y) =J,

where Ry, (w) = {a € Ry | @ >0, wa < 0}. Usually R(w) is strictly larger than Ry,j(w) but it is
still true that
Rw)NZ(y)=0 and  R(w)NP(y)=J,

since all roots of P(7) and Z(v) are in R},. So w € FOd), O
When W is crystallographic we can use the method of the proof of Theorem 5.5 in combination
with the result of Theorem 5.2 to give a precise description of the set F () for all central characters

v € be. By choosing v appropriately in its W-orbit we may assume that Re(y) is dominant.
Define

whl = {s € W | R(c) N R}, = 0}.
Fach w € W has a unique expression

w=o7 with o€ WM reWy, and R(w) N Ry, = R(1) N Ry, = R, (7).

In this way the elements of W are coset representatives of the cosets in w/ Wi,
Since P(y) C R},) and Z(7) C Ry}, it follows that

5.2 FOD —{oreWw |oceWhl re Fo) ) where
(]
(5.3) FOD ={r e Wy | Ry(r) N P(y) = J, R(w)N Z(y) = 0}.

Since Fr/) = FRe():)) and ~ is dominant and integral for the root system Ry}, Theorem 5.2 has
the following corollary.

Corollary 5.6. With notations and assumptions as in Theorem 5.5

‘7:-("/,1]) — f-[(’;Y],J) — W[’Y} . [Tmaxmiin]v

7y’
Ry (Tmin) = (P(7)\J) U Z(7), where the complement is taken in the set of positive roots of Ry

where, is as in (5.3) and Tmax and Tmin N Wi, are determined by R[,y](TmaX> = J and

This refined version of Theorem 5.2 is reminiscent of the reduction to real central character given
in [BM2].

The following example shows that Theorem 5.5 does not naturally extend to noncrystallographic
reflection groups. Note that such a generalization necessarily involves modifying the closure condi-
tion on J to be

if ed,aeZ(v),a€Rsg,and f—aa € RT then [ —aa e J.

Example 5.7. Let W = I3(n) be the dihedral group of order 2n, n even, with root system chosen
as in Section 3 (so all roots are the same length). Let v be such that Z(v) = {fp} and P(y) =
{Br/a Brj2, Bansa} (this v is an example of v, in Table 1). Then the subset J = {,,/4, B3n/4} € P(7)
satisfies the generalized closure condition above since 3, /5 cannot be written as (3,4 — af for any
a € Ryg. However, F("/) = ) since there are no chambers which are on the positive side of both
Hpg, and Hg,_, and on the negative side of both Hg , and Hg, .
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