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STANDARD LYNDON BASES OF LIE ALGEBRAS 

AND ENVELOPING ALGEBRAS 


PIERRE LALONDE AND ARUN RAM 

ABSTRACT.It is well known that the standard bracketings of Lyndon words in 
an alphabet A form a basis for the free Lie algebra Lie(A) generated by A . 
Suppose that g 2 Lie(A)/J is a Lie algebra given by a generating set A and 
a Lie ideal J of relations. Using a Grobner basis type approach we define a 
set of "standard" Lyndon words, a subset of the set Lyndon words, such that 
the standard bracketings of these words form a basis of the Lie algebra g . We 
show that a similar approach to the universal enveloping algebra g naturally 
leads to a Poincare-Birkhoff-Witt type basis of the enveloping algebra of g . We 
prove that the standard words satisfy the property that any factor of a standard 
word is again standard. Given root tables, this property is nearly sufficient 
to determine the standard Lyndon words for the complex finite-dimensional 
simple Lie algebras. We give an inductive procedure for computing the standard 
Lyndon words and give a complete list of the standard Lyndon words for the 
complex finite-dimensional simple Lie algebras. These results were announced 
in [LR]. 

1. LYNDONWORDS AND THE FREE LIEALGEBRA 

In this section we give a short summary of the facts about Lyndon words and 
the free Lie algebra which we shall use. All of the facts in this section are well 
known. A comprehensive treatment of free Lie algebras (and Lyndon words) 
appears in the book by C. Reutenauer [Re]. 

Let A be an ordered alphabet, and let A* be the set of all words in the 
alphabet A (the free monoid generated by A) . Let lul denote the length of the 
word u E A* ,and let u < u denote that the word u is lexicographically smaller 
than the word u . A word 1 E A* is a Lyndon word if it is lexicographically 
smaller than all its cyclic rearrangements. Let I be a Lyndon word, and let 
m ,n be words such that I = mn and n is the longest Lyndon word appearing 
as a proper right factor of 1. Then m is also a Lyndon word [Lo, Proposition 
5.1.31. The standard bracketing of a Lyndon word is given (inductively) by 

(1.1) b[a] = a , for a E A , b[l] = [b[m],b[n]] , 
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where 1 = mn and n is the longest Lyndon word appearing as a proper right 
factor of 1. We shall use the following facts: 

(1.2) ([Lo, Lemma 5.3.2 or Re, Theorem 5.11) For each Lyndon word 1,  

for some integers a, . 
(1.3) ([Lo, Theorem 5.3.1 or Re, Theorem 4.91) The elements b[l], where 1 

is a Lyndon word, are a basis of Lie(A) . 
(1.4) ([Lo, Theorem 5.1.5 or Re, Corollary 4.71) Every word 	w has a unique 

factorization w = ll .. lk , such that the li are Lyndon words and 
l1 2 2 lk .  

For each w E A* define 

where w = l1.. lk , the factors li are Lyndon words and 11 2 . . 2 lk . The 
following result is essentially the same as [Re, Theorem 5.11. The fact that the 
length of the words is preserved is clear from the proof given there. 

(1.5) ([Re, Theorem 5.11) For each w E A* 

for some integers a, . 
The free Lie algebra Lie(A) with generating set A can be viewed as the span 

of the letters in A and all brackets of letters in A .  Q[A*] is the associative 
algebra of Q-linear combinations of words in the alphabet A where the product 
is juxtaposition. The algebra Q[A*] is graded by the length of the words. We 
shall have need of the following: 

(1.6) ([Bou, I1 53, Theorem 1 or Re, Theorem 0.51) Q[A*] is the enveloping 
algebra of Lie(A) . 

(1.7) (Poincare-Birkhoff-Witt Theorem, [Bou, I 53, Corollary 3 to Theorem 
11) If g is a Lie algebra and B is an ordered basis of g , then the set 
of products 11 . . . 1, , li E B , l1 2 . . . 2 1, , is a basis of the enveloping 
algebra Ug of g . 

(1.8) ([Bou, I 53, Proposition 31) Let 	g be a Lie algebra, and let J be a Lie 
ideal of g . Let Ug be the enveloping algebra of g , and let I be the 
ideal in Ug generated by J . Then the enveloping algebra of g = g /J  
is U g =  U g l I .  

The following well-known result follows easily from (1.1)-(1.5). 

(1.9) 	 Theorem. Each of the following is a basis of Q[A*]. 
(B 1) The set of words A* . 
(B2) The set of products 11 lk, where the li are Lyndon words and ll 2 

. . . 2 1,. 
(B3) The set of products b[ll]. . . b[lk], where the li are Lyndon words and 
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Proof. (Bl) is a basis by definition of Q[A*] and (B2) = (Bl) by (1.4). (B3) 
is a basis by (1.3) and the Poincare-Birkhoff-Witt Theorem. 

2. STANDARDBASES 

Order the words in A* by setting 

luI = 1v1 and u 2 v . 
This is a total order on words with the additional property that there are a finite 
number of words less than any given word. 

Suppose that J is a Lie ideal of Lie(A) and that I is the ideal in ()[A*] 
generated by J . Let 

g=Lie(A)/J and Ug=Q[A*l/I. 

It follows from ( 1.6) and (1.8) that Ug is the enveloping algebra of g . Define a 
Lyndon word to be Lie-standard with respect to J if its bracketing b[l] cannot 
be written as a sum of bracketings of strictly smaller Lyndon words modulo the 
ideal J of Lie(A) with respect to the ordering 5 .  Define a word w to be 
standard with respect to I if w cannot be written as a sum of strictly smaller 
words modulo the ideal I ,  again with respect to the ordering 3 .  Make the 
following notation: 

L is the set of Lyndon words, 
SL is the set of Lie-standard Lyndon words, 
S is the set of standard words. 

The standard words that we have defined are essentially a Grobner basis. The 
following two theorems are the standard results from the Grobner basis context. 

(2.1) Theorem. The set of elements b[l] , where 1 E S L  , is a basis of g = 
Lie(A)/J . 
Proof. The set of all b[l] ,where 1 E L ,spans g . If 1 is not Lie-standard, then 
b[l] can be written as a linear combination of bracketings of Lyndon words 
modulo J which are smaller than I .  If any of these words is not standard, 
express it as a sum of smaller words. Continue this process until all the words 
in the expansion are standard. The process must stop as the number of words 
smaller than any given word is finite. Thus the elements b[l] ,where 1 E S L ,  
spang . 

We now show that the set of Lie-standard Lyndon words is linearly inde-
pendent. Suppose that there was a nontrivial relation among them. Then this 
relation expresses the maximal word as a linear combination of lower words 
modulo J ,a contradiction to the standardness of the maximal word. 

(2.2) Theorem. The set of words in S is a basis for Ug = Q[A*]/I . 
Proof. The proof is exactly analogous to the proof of Theorem (2.1). 

We shall show that SL  = Sn L , i.e., the set of Lie-standard Lyndon words 
is the same as the set of standard Lyndon words (this is not a priori obvious). 
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(2.3) Lemma. S nL G S L  . 
Proof. Let m E L .  Suppose m 4 S L .  Then 

for some x E J . Using (1.2) on each side, 

for some integers b, ,a,, cw . Subtracting C,,, bUv from both sides, 

for some integers du . Since x E J G I ,  we have that m 4 S . 
(2.4) Proposition. Any factor of a standard word is a standard word. 
Proof. Suppose that v is not standard, so that we have 

Then 

where x E I .  Since I is an ideal uxw E I and since umw uvw for all m , 
we have that uvw is not standard. 

(2.5) Corollary. If w E S ,  then w has a uniquefactorization 

(2.6) Theorem. Let 1 = ll ..lk , li E S L  ,and ll 2 . 2 lk . Then 

b[l]= ll . + x bmlm', ..m: (modI), 
ml<l 

where m' = m',.. .m: ,mi E S L  for each i ,m', 2 ... 2 mi, and bml E Z . 
Proof. By (1.5) and the definition of the ordering 4 , 

Expanding the sum in terms of standard words, 

The result now follows from Corollary (2.5) since each m' appearing in the 
sum has a unique factorization of the form m' = m',. . m: , mi E S L  , m', 2 
. . .  2 m:. 

(2.7) Theorem. Each of thefollowing sets is a basis of Q[A*]/I 
(Bl) The set S of standard words with respect to I .  
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(B2) The set of products b[ l l ]...b [ l k ] ,where li E S L  and ll > . 2 lk . 
(B3) The set of products l1... lk , where li E S L  and ll > .. 2 lk . 

Proof. Statement (Bl) is Theorem (2.2). (B2) is a basis by (2.1) and the 
Poincar6Birkhoff-Witt Theorem. Theorem (2.6) gives a triangular relation be-
tween the elements of the set (B3) and the elements of the set (B2),which proves 
that (B3) is a basis. 

(2.8) Corollary. 
(a) With notation as in Theorem (2.7), (Bl) = (B3) 
(b) s L = s n L .  

Proof. (a) Corollary (2.5) gives that (Bl) c (B3). Since these are both bases 
we must have (B3) = (Bl) (express the basis (B3) in terms of the basis (Bl)). 

(b) Since (B3) = (Bl), S L  G S . Combining this with Lemma (2.3) we have 
that S L  = S nL . 

The following proposition will help us to compute the standard Lyndon words 
by induction on the length of the words. 

(2.9) Proposition. Let 1 be a standard Lyndon word. Then 1 is of the form 
1 = 1112.. .  l k a ,  where 

(1) li are standard Lyndon words for all 1 5 i 5 k , 
(2) li is a left factor of li-1 for all i > 1, 
(3) a E A .  

Proof. Let m be the word 1 with the last letter removed. By (1.4) m has 
a factorization m = ll . lk into Lyndon words li such that li > li+1 for all 
1 5 i 5 k - 1. By Proposition (2.4), each of the factors li is standard since 
they are factors of the standard word 1 .  

It remains to prove that li is a left factor of li-1 for all 1 5 i 5 k . Consider 
the following chain of inequalities. For i > 1, 

where the last inequality follows since the right-hand side li .. .lka is a right 
factor of the Lyndon word ll ... lka . It follows easily from li 5 li-1 < li .. .lka 
that li is a left factor of li-l (consider these as words in a dictionary). 

In this section we shall compute the standard Lyndon words corresponding 
to the finite-dimensional simple Lie algebras over C .  Each such algebra is 
determined by a Cartan matrix C with integer entries ( a i ,a,) , 1 5 i ,j 5 n . 
A list of these Cartan matrices can be found in [Bou2, pp. 250-2751. We shall 
use the Bourbaki conventions for numbering. 

Fix a Cartan matrix C corresponding to a finite-dimensional simple Lie 
algebra. Let 

and let J be the ideal of Serre relations in Lie(A), i.e., the ideal generated by 
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the elements 

(S1) [hi,hjl ( 1 5 i 9 j 5 n ) ,  

(S2) [xi, ~ i l- hi, [xi, yi] if i # j , 

(S3) [hi xjl - (aj ai)xj, [hi ,yj] + ( a j ,  ai)yj, 


(S;) ( j )  ( i # j ) ,x 

(s;) (adYi)-(a~ (yj) (i  # j). 
Here ( a d ~ ) ~ ( b )  [a ,  [a,  [a ,  . . . , [a ,  b]] -11. Let X = {xl ,x2, . . . ,x,) be= 
ordered by xl < xz < .- .< x, ,and let J+ be the Lie ideal in Lie(X) generated 
by the relations (S;) . Let Y = {yl,y2,  . . . ,y,) , yl < .. .  < y, , and let J -
be the Lie ideal in Lie(Y) generated by the relations (S;) . Define 

g = Lie(A)/J , n+ = Lie(X)/J+ , and n- = Lie(Y)/J -

Let ai be independent vectors. The ai are called the simple roots. The root 
lattice is the lattice Q = Cy=,Zai. Let Q+ = {a = C:=lajai E Qlai 2 0).  
The height of a root a = Cy=,aiai E Q+ is ht(a) = Cy=lai . The weights of 
words w = xi, .. .xi, E X* and 5.7 =yi, .yi, E Y* are defined by 

wt(1) =ai, +. . .+ai, and wt(T) = -ai, aik,- . . a -

respectively. Note that the length of a word w such that wt(w) = a is equal 
to ht(a) . 

With notation for standard bracketings as in (1.1) we define 

and 
g-a = C-span{b[i]lT E Y*,wt(i) = -a) ,  

for each a E Q+ . The set 

is the set of positive roots. Let C be the linear span of the generators hi. The 
following facts about finite-dimensional simple Lie algebras g are standard [Hu, 
Theorems 18.3, 14.2, and 8.41 
(3.la) g 2 n - $ b $ n + .  
(3.lb) n+ Z @,fm+g, and n- 2 $,,,g-,. 
(3.lc) @+ is finite. 
(3.1d) dim(g,) = 1 for all a E @+ . 

The following result follows easily from the above facts. 

(3.2) Proposition. (a) For each a E @+ there is a unique standard Lyndon 
word 1, E X* with respect to the ideal J+ such that wt(1,) = a .  

(b) The words 1, ,7, and the letters hi are the standard Lyndon words in A* 
with respect to the ideal J .  These words form a basis of thejnite-dimensional 
simple Lie algebra g . 
Proof. (a) Since the standard Lyndon words in X* with respect to the ideal 
J+ form a basis of n+ , it follows that g, is the subset of n f  spanned by the 
bracketings of standard Lyndon words of weight a with letters in X . Similarly, 
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g-, is the subspace of n- spanned by all b[w] such that w is a standard 
Lyndon word with letters in Y and such that wt(t) = -a. The statement in 
(a) now follows from (3.la)and (3.lb). 

(b) It follows from (3.ld) that for each a E @+ there is a unique standard 
Lyndon word I, of weight a and that g, = Cb[l,]. Furthermore, it is clear 
from the form of the relations in J+ and J- that g-, = ~b[ l , ] ,  where if 
I, = xi, .. .xik,then 1, is the word in Y* given by 7, = yi, ..yik. 

Our goal is to determine the standard Lyndon words I, ,for all a E @+ . This 
is done by induction on the lengths of the words (heights of the roots). The 
main tools are Propositions (2.4) and (2.9) from 32 and the tables of the positive 
roots for the finite-dimensional simple Lie algebras, [BouZ, pp. 250-2751. 

Let a = C:=la la l  E @+. By Proposition (2.9) we know that I, is of the 
form 

where 
(1) IS, are standard Lyndon words for all 1 5 j 5 k , 
(2) IS, is a left factor of Ig,-, for all j > 1, 
(3) xe E X .  

In the following discussion we shall exclude the trivial case [I,/ = 1 so that 
k > 0 .  Because of (2), each of the factors Isl begins with the same letter, say 
xb E X ,  1 5 b 5 n ,  and xb # x, since I, is Lyndon; in fact, the letter xb is 
the smallest letter in the word I, . Thus, since wt(xb)= a b  , b is the smallest 
integer in (1 , ... ,n) such that ab # 0 .  Since xb appears exactly ab times 
in 1, and it appears as the first letter of each of the factors IpJ , 1 5 j 5 k , it 
follows that k 5 ab . A scan of the root tables for the finite-dimensional simple 
Lie algebras shows that ab 5 3 and that ab = 3 for only one positive root (this 
root is in type G2). 

For each 1 5 j 5 k ,  let 8, = wt(ls,). Then the factorization in (3.3) must 
satisfy the following: 

(1) pj = wt(ls,) E @+ for all 1 5 j 5 k ,since the factors ID, are standard 
Lyndon words. 

(2) ~ f = : = ,pi +a, = a where a, = wt(xe). 
(3) Since I, is Lyndon, x, > xb ,where x b  is the first letter of the words 

IS, and xe is the last letter of I, . 
(4) k 5 2 ,  except for a single root in type G2. 
(5) If k = 2 ,  then pl -P2 E Q+,since IS, is a left factor of Is, . 
(6) 1, is a Lyndon word. 
(7) All the Lyndon factors of I, are standard Lyndon words of smaller 

length and thus correspond to roots y E @+ such that ht(y) < ht(a) . 
Given these rules, it is easy to construct the standard Lyndon words by in-
duction. Let a E @+ , and assume that the standard Lyndon words 1s are 
known for all B E Q>+ such that ht(/?)< ht(a) . There are very few choices 
ofroots pi E @ + ,  1 _< j 5  k ,  k 5 2 ,  suchthat /Il -Pz E Q+ if k = 2  and 
a - Cjpj = a,,  where a, ,  1 5 e _< n . The words Is, are all known since 
ht(pj) < ht(a) . Restricting to the cases where xe is greater than the first letter 
of the words Is, leaves very few possibilities. In fact, one finds that for each 
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root a E @+ (except the root a = a1 + 2a2 + 4a3 + 2a4 in type F4)there 
is a unique word 1, which satisfies conditions (1)-(7) above. Since there is a 
unique standard Lyndon word corresponding to the root a ,  this word must be 
1, 

Consider the root a = a1 + 2a2 + 4as + 2a4 in F 4 .  Applying (1)-(7) 
above leaves two possibilities for the word I ,  : wl X ~ X ~ X ~ X ~ X ~ X ~ X ~ X ~ X ~= and 
w2 = Modulo the ideal J+ we can write wl x ~ x ~ x ~ x ~ x ~ x ~ x ~ x ~ x ~ .  as a lin- 
ear combination of standard Lyndon words which are smaller in the order 4 
(greater in lexicographic order). This computation is as follows (we have sup- 
pressed the x's in writing the words, and at each step we have underlined the 
letters which are being changed modulo the defining relations for the ideal J+): 

Thus wl = X ~ X ~ X ~ X ~ X ~ X ~ X ~ X ~ X ~  =is not a standard Lyndon word and I ,  
x1x2x3X4x3x4x2x3x3 . 

Figure 1 gives the standard Lyndon words corresponding to each of the finite- 
dimensional simple Lie algebras. Let us explain how to read these diagrams. 
Each tree is rooted. A path 

in the tree consisting of a chain of successive vertices and edges moving away 
from the root determines a word w = xi, .. . xi, E X*. The trees are con- 
structed (by applying the procedure described above) so that this word is always 
a standard word with respect to the ideal of Serre relations determined by the 
corresponding Cartan matrix. If the word is Lyndon, then we say that the path 
is Lyndon. In the discussion following Proposition (3.2) we have described how 
one proves (case by case) the following theorem. 

(3.4) Theorem. For each of the trees in Figure 1 the set of words determined 
by the Lyndon paths in the tree is the complete set ofstandard Lyndon words for 
the corresponding Jinite-dimensional simple Lie algebra. 

Remark. We have made some effort to compute the bracketing rule for the 
finite-dimensional simple Lie algebras in terms of the basis of standard Lyndon 
words. We have not yet succeeded in learning much from this exercise. We 
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FIGURE1. The trees giving the standard Lyndon paths. 
The root of each tree is the leftmost vertex. For An, Bn , 
Cn,Dn,we give a generic tree with root i ,where i = 
1,  2 ,  ..., n (i = 1,  2 ,  ..., n - 1 for Dn) .  The stan- 
dard paths for E7 (respectively E6) are the paths from 
the trees for E8 not containing 8 (respectively 7 and 8). 
The white vertices end Lyndon paths, while black ver- 
tices end non-Lyndon paths. The trees are designed so 
that for each root system all the ends of Lyndon paths 
corresponding to roots of the same height lie on a com- 
mon vertical line. 

make only the following remarks, with a bit of reservation, as the computations 
are complicated and difficult to check precisely. It seems that the standard 
Lyndon bases for Types A,, Bn,Cn,Dn are Chevalley bases. However, the 
standard Lyndon basis for type G2 is definitely not a Chevalley basis. In fact, 
in type F4 there are even some structure coefficients that are not integral. 

Remark. It is clear that all of the results in 52 are valid for any Lie algebra given 
by generators and relations. Preliminary computations seem to indicate that it 
will be very instructive to study root multiplicities for Kac-Moody Lie algebras 
by way of standard Lyndon words. 
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