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MURNAGHAN-NAKAYAMA RULES FOR CHARACTERS
OF IWAHORI-HECKE ALGEBRAS OF CLASSICAL TYPE

TOM HALVERSON AND ARUN RAM

Abstract. In this paper we give Murnaghan-Nakayama type formulas for
computing the irreducible characters of the Iwahori-Hecke algebras of types
An−1, Bn, and Dn. Our method is a generalization of a derivation of the
Murnaghan-Nakayama formula for the irreducible characters of the symmetric
group given by Curtis Greene. Greene’s approach is to sum up the diagonal
entries of the matrices of certain cycle permutations in Young’s seminormal
representations. The analogues of the Young seminormal representations for
the Iwahori-Hecke algebras of types An−1, Bn, and Dn were given by Hoefsmit.

1. Introduction

A Murnaghan-Nakayama formula for the irreducible characters of the Iwahori-
Hecke algebras of type An−1 was originally found in [R] and in the sequence of
papers [KW], [vdJ]. This formula is an analogue of the Murnaghan-Nakayama for-
mula for computing the irreducible characters of the symmetric group. There are
also analogues of the Murnaghan-Nakayama formula for computing the irreducible
characters of the hyperoctahedral groups (the Weyl groups of type Bn) and, more
generally, for any of the wreath products Zr o Sn. The formula for the hyperoc-
tahedral group is “well known” and may even be in the works of Young [Y], but
there is a very nice derivation given by J. Stembridge in [Ste]. The more general
formula, in the case of Zr o Sn, can be found in [AK]. In view of these results,
it is desirable to find analogous formulas for the characters of the Iwahori-Hecke
algebras corresponding to Weyl groups of types Bn and Dn.

In all of the original derivations [R], [KW], [vdJ] of the Murnaghan-Nakayama
rules for Iwahori-Hecke algebras of types An−1 the key was essentially to use the
theory symmetric functions and Schur polynomials, and the Schur-Weyl duality
between the Iwahori-Hecke algebras of type An−1 and the Drinfel′d-Jimbo quan-
tum groups Uq(gl(m)). This approach seems to be quite challenging for type Bn,
although some progress has been made (see [ATY]).

An alternate approach is to sum up the diagonal entries of the matrices in the
irreducible representations. Fortunately, Hoefsmit [H] has given explicit analogues
of the Young seminormal form of the irreducible representations of the symmetric
group in the cases of the Iwahori-Hecke algebras of types An−1, Bn and Dn. The
papers [CK1] and [CK2] were able to use these explicit representations and com-
pute the appropriate sum of diagonal elements to recover the Murnaghan-Nakayama
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rules for Iwahori-Hecke algebras of types An−1. (There are also several other im-
portant results in [CK1] and [CK2].)

It is, however, a nontrivial matter to do the appropriate sums in the cases of types
Bn and Dn. It is here that we come to the work of Curtis Greene [Gr]. Working in
the case of the symmetric group, Greene takes an approach similar to that in [CK1]
and [CK2] and sums up the diagonal entries of the matrices of the irreducible
representations in Young’s seminormal form. The crucial thing is that he has a
beautiful way of computing this sum by using the Möbius function of a poset that
is determined by the partition which indexes the irreducible representation. In fact,
he has generalized the summing procedure involved in obtaining the Murnaghan-
Nakayama formula for the symmetric group to the case of an arbitrary planar poset.

By modifying the poset result of Greene [Gr] to suit our needs, we are able to
give a consistent method of deriving Murnaghan-Nakayama rules for the characters
of the Iwahori-Hecke algebras of types An−1, Bn and Dn.

Summary. In each case, type An−1, Bn, and Dn, we give:
(1) A definition of the Iwahori-Hecke algebra;
(2) A description of two sets of objects which label the irreducible representations

and bases of the irreducible representations respectively;
(3) A complete description of the analogues of Young’s seminormal representa-

tions as given by Hoefsmit [H];
(4) A description of the “standard” elements on which we compute character

values.
(5) A derivation of the Murnaghan-Nakayama rules for the irreducible characters.

We begin with the case of type Bn in section 2, as it is the most general and the
other cases are most easily done by reducing to this case. The type An−1 case,
given in section 3, easily reduces to the type Bn case, and the type Dn case given
in section 4 is only slightly more complicated than the type Bn case. Our results
show that every type An−1 character is the same as a type Bn character, and that
the characters in the type Dn case can always be written as a difference of a type
Bn character and a type An character. Sections 2, 3, and 4 all follow the same
general format, and all rely in some way on our version of C. Green’s poset result
[Gr]. This result is given in section 5 and is independent of the other sections of
this paper. Our main results appear in Theorems 2.20, 2.22, 3.4, and 4.35.

Remarks on the results in this paper. (1) There is recent work of G. Pfeiffer [P]
which shows that indeed there is a third approach to the Murnaghan-Nakayama
formulas for the characters of the Iwahori-Hecke algebras of type An−1. In commu-
nications with M. Geck we have learned that G. Pfeiffer has also recently proved
Murnaghan-Nakayama formulas for Iwahori-Hecke algebras of types Bn and Dn,
but that written versions of his work are not yet available.

(2) Although we have not given a separate exposition for the case of the “Hecke
algebras” of the wreath product Zr o Sn, which were defined by S. Ariki and K.
Koike [AK], it is clear that our methods apply in exactly the same way to give
Murnaghan-Nakayama formulas for computing the characters of their algebras as
well.

(3) In the work of Cummins and King [CK1], [CK2], “partial traces” are used
to derive the Murnaghan-Nakayama rules for Iwahori-Hecke algebras of type An−1.
The poset method used in this paper can also be used to compute (very easily) the
partial traces that arise in [CK1] and [CK2].
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(4) One of the important steps in our work in this paper is to use certain elements
Dk in the Iwahori-Hecke algebra which satisfy the following property.

The matrix of Dk in every irreducible representation (as defined by
Hoefsmit) is diagonal with eigenvalues which are plus or minus a
power of q.

In type Bn these elements are given by

Dk = Tsk
Tsk−1 . . . Ts2Ts1Ts2 . . . Tsk−1Tsk

.

To our knowledge, these elements were originally discovered by Hoefsmit in the case
of Iwahori-Hecke algebras of type Bn. These elements also play an important role
in the work of Ariki and Koike [AK] (they probably rediscovered them, since they
use them without reference to Hoefsmit). We have chosen to call these elements
Hoefsmit elements. Surprisingly, it was shown in [LR] that in type An−1 these
elements arise in a natural way from quantum groups!

(5) Let W be a Weyl group and let Tw, w ∈ W , denote the standard basis of
the corresponding Iwahori-Hecke algebra. It is still an open problem, even in type
An−1, to give an analogue of the Murnaghan-Nakayama which can compute the
irreducible characters on an arbitrary basis element Tw, w ∈ W . It is a result
of M. Geck and G. Pfeiffer [GP] that it is sufficient to compute the characters of
elements Twi

in the Iwahori-Hecke algebra, for a set of representatives {wi} of the
conjugacy classes of the Weyl group W , where all of the wi are minimal length
in their conjugacy class. Their result shows that there is always an algorithm for
computing the character of an arbitrary basis element Tw, w ∈ W , of the Iwahori-
Hecke algebra in terms of the characters of the representative elements Twi . In
practice, however, this algorithm can be very complicated, and it is still hard to
compute the character of an arbitrary basis element Tw. Thus, it seems desirable
to have nice formulas for computing the characters of as many of the Tw, w ∈ W ,
as possible.

In this paper we give Murnaghan-Nakayama type rules for computing the char-
acters on all “standard elements” of the Iwahori-Hecke algebras of types An−1, Bn,
and Dn. In the case Bn these are elements Tπ in the Iwahori-Hecke algebra which
correspond to signed permutations which, in cycle notation, are of the form

π = (1, 2, . . . , |l1| − 1, l1)(|l1| + 1, |l1| + 2, . . . , |l2| − 1, l2) . . .

(|lk−1| + 1, . . . , n − 1, lk)

where li are positive or negative integers such that 0 < |l1| < |l2| < · · · < |lk| = n.
In each case our set of standard elements Tπ, certainly contains a set of represen-
tative elements Twi

, where wi are minimal length in their conjugacy class, and, in
general, it contains many more elements. Thus, not only do our results, in com-
bination with the result of Geck and Pfeiffer, completely determine the irreducible
characters on representative elements, but we show that the same Murnaghan-
Nakayama rules are able to compute the characters of many other basis elements
as well.

(6) Our results in this paper seem to indicate that an analogue Schur-Weyl
duality for the case of Iwahori-Hecke algebras type Bn (up to now unknown, see
[ATY]) must be quite subtle. To be more specific, if one were to hope that the
method of Schur-Weyl duality and symmetric functions for the type Bn case is
similar to that used in the type An−1 case, then one would require symmetric
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functions, fr, that satisfy (in the notation of Theorem 2.20)

frsλ =
∑

µ

∆(µ/λ)(q)sµ

where sλ denotes the Schur function determined by the partition λ. If this were
the case, one could solve for fr by writing

fr = frs∅ =
∑

µ a border strip

sµqc(µ)−1(−q−1)r(µ)−1

which is essentially the same as the symmetric function for type An−1. However
this symmetric function fr cannot possibly satisfy the first condition unless the
characters in the type Bn case are exactly the same as in the type An case.

2. Type Bn, n ≥ 2

Definition. Let q and u be indeterminates. The Iwahori-Hecke algebra HBn(u, q2)
of type Bn is the associative algebra with 1 over the field C(u, q) given by generators
g1, g2, . . . , gn and relations

gigj = gjgi, |i − j| > 1,

gigi+1gi = gi+1gigi+1, 2 ≤ i ≤ n − 1,

g1g2g1g2 = g2g1g2g1,

g2
1 = (u − 1)g1 + u,

g2
i = (q − q−1)gi + 1, 2 ≤ i ≤ n.

(2.1)

Remark 2.2. The usual presentation of HBn(u, q) uses the relation (g′
i)

2 =
(q − 1)g′

i + q in place of the relation g2
i = (q − q−1)gi + 1 for 2 ≤ i ≤ n. One

can easily convert from the primed presentation of HBn(u, q) to the above presen-
tation of HBn(u, q2) by first replacing q by q2 and then setting gi = g′

i/q.

Double Partitions and Standard Tableaux. As in [Mac], we shall identify each
partition α with its Ferrers diagram and say that a box b in α is in position (i, j)
in α if b is in row i and column j of α. The rows and columns of α are labeled in
the same way as for matrices.

A double partition of size n, λ = (α, β), is an ordered pair of partitions α and β
such that |α| + |β| = n. If µ = (γ, ρ) is another double partition, we write µ ⊆ λ
if γ ⊆ α and ρ ⊆ β. In this case, we say that λ/µ = (α/γ, β/ρ) is a skew shape.
We shall refer to double partitions and skew shapes collectively as shapes. If λ
is a shape, then λα and λβ shall denote the first and second elements of the λ,
respectively, so that λ = (λα, λβ).

A standard tableau L = (Lα, Lβ) of shape λ = (α, β) is a filling of the Ferrers
diagram of λ with the numbers 1, 2, . . . , n such that the numbers are increasing left
to right across the rows of Lα and Lβ and increasing down the columns of Lα and
Lβ . For any shape (or skew shape) λ, let L(λ) denote the set of standard tableaux
of shape λ and, for each standard tableau L, let L(k) denote the box containing
k in L. For example, the left picture in Figure 2.3 is a standard tableau of shape
((332), (411)).
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Figure 2.3

Representations. Let the content of a box b of a skew shape λ/µ = ((λ/µ)α,
(λ/µ)β) be given by

ct(b) =

{
uq2(j−i), if b is in position (i, j) in (λ/µ)α;
−q2(j−i), if b is in position (i, j) in (λ/µ)β .

(2.4)

For example, the contents of the boxes in the shape ((332), (411)) are displayed in
the right picture in Figure 2.3.

For each 2 ≤ k ≤ n and each standard tableau L of size n, define

(gk)LL =
q − q−1

1 − ct(L(k−1))
ct(L(k))

.(2.5)

Note that (gk)LL depends only on the positions of the boxes containing k and k −1
in L.

Let λ = (α, β) be a double partition of size n, and let

V (α,β) = C(u, q)-span {vL|L ∈ L(λ)}(2.6)

so that the vectors vL form a basis of V λ. Define an action of HBn(u, q2) on V λ

by defining

g1vL = ct(L(1))vL,

givL = (gi)LLvL + (q−1 + (gi)LL)vsiL, 2 ≤ i ≤ n,
(2.7)

where siL is the same standard tableau as L except that the positions of i and i−1
are switched in siL. If siL is not standard, then we define vsiL = 0.

Theorem 2.8 (Hoefsmit [H], Theorem 2.2.14). The modules V (α,β), where (α, β)
runs over all ordered pairs of partitions such that |α| + |β| = n, form a complete
set of nonisomorphic irreducible modules for HBn(u, q2).

Hoefsmit Elements. For each 1 ≤ k ≤ n define

D1 = g1, and Dk = gkgk−1 . . . g2g1g2 . . . gk−1gk,(2.9)

and for each standard tableau L and each entry k in L, define

(Dk)LL = ct(L(k)).(2.10)

Note that (Dk)LL depends only on the position of the box L(k) and not on k.



3972 TOM HALVERSON AND ARUN RAM

Proposition 2.11 (Hoefsmit [H], Proposition 3.3.3). The action of the element Dk

in the irreducible representations given by Theorem 2.8 is given by

DkvL = (Dk)LLvL = ct(L(k))vL, for all standard tableaux L.

Standard Elements. Define [n] = {0, 1, 1, 2, 2, . . . , n, n}, and let |i| = |i| = i

for each 1 ≤ i ≤ n. We say that an increasing sequence in [n] is a sequence
~l = (l1, . . . , lk) of elements of [n] such that |l1| < · · · < |lk−1| < |lk| = n.

For 1 ≤ k < l ≤ n, define

Rkl = gk+1gk+2 . . . gl, and Rkl = Dkgk+1gk+2 . . . gl,(2.12)

and, for each 1 ≤ k ≤ n, define Rkk = Rkk = 1. For an increasing sequence
~l = (l1, . . . , lk), define

T~l = R1,l1R|l1|+1,l2 · · · R|lk−1|+1,lk ∈ HBn(u, q2).(2.13)

Remark 2.14. Let WBn denote the Weyl group of type Bn with generators s1, s2,
. . . , sn which satisfy the Coxeter relations. For each 1 ≤ k ≤ n, let dk = sksk−1 . . .
s2s1s2 . . . sk−1sk and, for 1 ≤ k < l ≤ n, define rkl = sk+1sk+2 . . . sl and rkl =
dksk+1sk+2 . . . sl. For each 1 ≤ k ≤ n, define rkk = rkk = 1. Let ~l be an increasing
sequence in [n]. Then w~l = r1,l1r|l1|+1,l2 . . . r|lk−1|+1,lk gives a reduced expression
for the signed permutation that is given in cycle notation by

w~l = (1, 2, . . . , |l1| − 1, l1)(|l1| + 1, |l1| + 2, . . . , |l2| − 1, l2)

. . . (|lk−1| + 1, . . . , |lk| − 1, lk).

Remark 2.15. M. Geck and P. Pfeiffer [GP] show that the irreducible characters
of Iwahori-Hecke algebras are completely determined by computing their values on
the elements Twi

, where {wi} is a set of representatives of the conjugacy classse of
the Weyl group W such that each wi is minimal in its conjugacy class. This means
that computing the irreducible characters on the set of standard elements T~l, is
more than sufficient to determine them.

For 1 ≤ k < l ≤ n and any standard tableau L of size n, make the following
definitions:

∆kl(L) = (gk+1)LL(gk+2)LL . . . (gl)LL,

∆kl(L) = (Dk)LL(gk+1)LL(gk+2)LL . . . (gl)LL,
(2.16)

and define ∆kk(L) = ∆kk(L) = 1, for all 1 ≤ k ≤ n. Since (gj)LL depends only
on the positions if the boxes j and j − 1 in L, ∆kl and ∆kl depend only on the
positions of the boxes containing k, k + 1, . . . , l in L.

Proposition 2.17. Let ~l = (l1, . . . , lk) be an increasing sequence in [n], and let L
be a standard tableau of size n. Let T~l vL|vL

denote the coefficient of vL in T~l vL.
Then

T~l vL|vL
= ∆1,l1(L)∆|l1|+1,l2(L) . . . ∆|lk−1|+1,lk(L).

In particular, for a given sequence ~l, the value T~l vL|vL
depends only on the positions

and the linear order of the boxes in L.

Proof. This follows from the definition of the action of HBn(u, q2) on standard
tableaux and the fact (2.7) that when gi acts on a standard tableau L it affects
only the positions of L containing i and i − 1. The result follows, since Dj acts as
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a scalar (Proposition 2.11), and T~l otherwise is a product (from right to left) of a
decreasing sequence of generators gi.

Characters. If L is a standard tableau (of any shape, possibly of skew shape)
with n boxes, define

∆(L) = ∆1,n(L) and ∆(L) = ∆1,n(L).(2.18)

For any shape λ/µ, define

∆(λ/µ) =
∑

L∈L(λ/µ)

∆(L) and ∆(λ/µ) =
∑

L∈L(λ/µ)

∆(L).(2.19)

In making these definitions, the actual values in the boxes of L do not matter;
only their positions and their order relative to one another are relevant. Thus, the
definitions make sense when the standard tableaux have values that form a subset
of {1, 2, . . . } (with the usual linear order).

Let χ
(α,β)
HBn(u,q2) denote the character of the irreducible HBn(u, q2)-representation

V (α,β). Recall from Remark 2.15 that it more than suffices to compute the irre-
ducible characters on standard elements T~l. The following theorem is our analogue
of the Murnaghan-Nakayama rule.

Theorem 2.20. Let ~l be an increasing sequence in [n], and suppose that λ = (α, β)
is a pair of partitions such that |α| + |β| = n. Then

χ
(α,β)
HBn(u,q2)(T~l) =

∑
∅=µ(0)⊆µ(1)⊆···⊆µ(k)=λ

∆(µ(1))∆(µ(2)/µ(1)) . . . ∆(µ(k)/µ(k−1)),

where the sum is over all sequences ∅ = µ(0) ⊆ µ(1) ⊆ · · · ⊆ µ(k) = λ such that
|µ(i)/µ(i−1)| = |li|, and the factor ∆(µ(i)/µ(i−1)) is barred if li is barred in ~l.

Proof. By Proposition 2.17 the character χ
(α,β)
HBn(u,q2) is equal to

χ
(α,β)
HBn(u,q2)(T~l)=

∑
L∈L(λ)

T~l vL|vL
=

∑
L∈L(λ)

∆1,l1(L)∆|l1|+1,l2(L) . . . ∆|lk−1|+1,lk(L).

The result follows by collecting terms according to the positions occupied by the
numbers in the various segments {1, 2, . . . , |l1|}, {|l1| + 1, . . . , |l2|}, . . . , {|lk−1| +
1, . . . , |lk|}.

In view of Theorem 2.20 it is desirable to give an explicit formula for the value
of ∆(λ/µ). To do so requires some further notations: The skew shape λ/µ is a
border strip if it is connected and does not contain two boxes which are adjacent
in the same northwest-to-southeast diagonal. This is equivalent to saying that λ/µ
is connected and does not contain any 2 × 2 block of boxes. The skew shape λ/µ is
a broken border strip if it does not contain any 2 × 2 block of boxes. Therefore, a
broken border strip is a union of connected components, each of which is a border
strip. Note that a double partition (α, β) with both α and β nonempty has two
connected components.

Drawing Ferrers diagrams as in [Mac], we say that a sharp corner in a border
strip is a box with no box above it and no box to its left. A dull corner in a
border strip is a box that has a box to its left and a box above it but has no box
directly northwest of it. Figure 2.21 shows a broken border strip with two connected
components where each of the sharp corners has been marked with an s and each
of the dull corners has been marked with a d.
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Figure 2.21

Theorem 2.22. Let λ/µ be a skew shape. Let CC be the set of connected compo-
nents of λ/µ, and let cc = |CC| be the number of connected components of λ/µ.
Then

∆(λ/µ) =


(q − q−1)cc−1 ∏

bs∈CC

qc(bs)−1(−q−1)r(bs)−1,

if λ/µ is a broken border strip;
0, otherwise;

and

∆(λ/µ) =


qc(bs)−1(−q−1)r(bs)−1 ∏

d∈DC

ct(d)−1 ∏
s∈SC

ct(s),

if λ/µ is a (connected) border strip;
0, otherwise;

where SC and DC denote the sets of sharp corners and dull corners in λ/µ, re-
spectively, and if bs is a border strip, then r(bs) is the number of rows in bs, and
c(bs) is the number of columns in bs. The content ct(b) of a box b is as given in
(2.4).

Proof. Recall that

(gi)LL =
(q − q−1)

1 − ct(L(i − 1))ct(L(i))−1 .

It then follows from the definitions of ∆(L) and ∆(L) in (2.18), (2.16), (2.10) and
(2.5) that we may apply Theorem 5.8 with xb = ct(b) for all boxes b in λ.

Note that, for boxes a and b,

(q − q−1)
1 − ct(a)ct(b)−1 =

{
(q−q−1)
1−q−2 = q, if a|b, i.e., a and b are adjacent in a row,

(q−q−1)
1−q2 = −q−1, if a

b, i.e., a and b are adjacent in a column,

and

1 − ct(a)ct(b)−1

(q − q−1)
=

1 − 1
q − q−1 = 0, if a/b, i.e., a and b are adjacent in a diagonal.
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Thus, it follows from Theorem 5.8 that

∆(λ/µ) =
∏
a|b

(q − q−1)
1 − ct(a)ct(b)−1

∏
a/b

(q − q−1)
1 − ct(a)ct(b)−1

∏
a/b

1 − ct(a)ct(b)−1

q − q−1

=


(q − q−1)cc−1 ∏

bs∈CC

qc(bs)−1(−q−1)r(bs)−1,

if λ/µ is a broken border strip;
0, otherwise,

and

∆(λ/µ) =
∏

d∈DC

ct(d)−1
∏

s∈SC

ct(s)
∏
a|b

(q − q−1)
1 − ct(a)ct(b)−1

∏
a/b

(q − q−1)
1 − ct(a)ct(b)−1

×
∏
a/b

1 − ct(a)ct(b)−1

q − q−1

=


qc(bs)−1(−q−1)r(bs)−1 ∏

d∈DC

ct(d)−1 ∏
s∈SC

ct(s),

if λ/µ is a border strip;
0, otherwise.

3. Type An−1, n ≥ 2

Definition. Let q be an indeterminate. The Iwahori-Hecke algebra HAn−1(q2)
of type An−1is the associative algebra with 1 over the field C(q) given by generators
g2, . . . , gn (note that g1 is missing) and relations

gigj = gjgi, |i − j| > 1,

gigi+1gi = gi+1gigi+1, 2 ≤ i ≤ n − 1,

g2
i = (q − q−1)gi + 1, 2 ≤ i ≤ n.

(3.1)

It is clear from the definition that the algebra HAn−1(q2) is isomorphic to the
subalgebra of HBn(u, q2) generated by g2, . . . , gn.

Representations. In view of the imbedding HAn−1(q2) ⊆ HBn(u, q2), each of
the HBn(q2)-modules V (α,β) defined in section 2 is also an HAn−1(q2)-module, by
restriction. For each partition λ of n, let V λ be the HAn−1-module given by

V λ = V (λ,∅).(3.2)

Then we have the following theorem.
Theorem 3.3 (Hoefsmit [H], Theorem 2.3.1). The HAn−1(q2)-modules V λ, where
λ runs over all partitions of n, form a complete set of nonisomorphic irreducible
modules for HAn−1(q2).

Standard elements. Let ~l be an increasing sequence in [n]={0, 1, 1, 2, 2, . . . , n, n}
as defined in section 2, and assume that all li in ~l are unbarred. Then, since the
reduced word for the element T~l-defined in (2.13) does not contain g1, it follows that
T~l is an element of HAn−1(q2) ⊆ HBn(u, q2). As remarked in 2.15, it more than
suffices to compute the irreducible HAn−1(q2)-characters on the set of standard
elements T~l.
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Characters. Let χλ
HAn−1(q2) denote the character of the irreducible HAn−1(q2)-

module V λ. The next theorem follows from the observation in the previous para-
graph, and the fact that V λ ∼= V (λ,∅).

Theorem 3.4. Let ~l be an increasing sequence as defined in section 2 and assume
that all li in ~l are unbarred. Let T~l be as defined in (2.13). Then T~l is an element
of HAn−1(q2) and, for each partition λ of n,

χλ
HAn−1(q2)(T~l) = χ

(λ,∅)
HBn(u,q2)(T~l),

where χ
(λ,∅)
HBn(u,q2) is the HBn(u, q2)-character whose values are determined by The-

orem 2.20 and Theorem 2.22.

4. Type Dn, n ≥ 4

Definition. Let q be an indeterminate. The Iwahori-Hecke algebra HDn(q2) of
type Dn is the associative algebra with 1 over the field C(q) given by generators
g̃1, g̃2, . . . , g̃n and relations

g̃ig̃j = g̃j g̃i, |i − j| > 1, i, j > 1,

g̃1g̃j = g̃j g̃1, if j 6= 3,

g̃1g̃3g̃1 = g̃3g̃1, g̃3,

g̃ig̃i+1g̃i = g̃i+1g̃ig̃i+1, 2 ≤ i ≤ n − 1,

g̃2
i = (q − q−1)g̃i + 1, 1 ≤ i ≤ n.

(4.1)

Let HBn(1 − q2) be the algebra HBn(u, q2) defined by generators and relations in
(2.1) except with u = 1. Define

g̃1 = g1g2g1, and g̃i = gi, 2 ≤ i ≤ n.(4.2)

Then one easily checks that with these definitions the g̃i satisfy the relations in
(4.1). Thus the elements g̃i, 1 ≤ i ≤ n, generate a subalgebra of the algebra
HBn(1, q2) which is isomorphic to the algebra HDn(q2).

Double Partitions and Standard Tableaux. We shall use the same notation for
partitions, double partitions, shapes, and tableaux as in section 2. For each stan-
dard tableau L = (Lα, Lβ) of shape (α, β) define σL to be the standard tableau of
shape (β, α) given by σL = (Lβ , Lα),

σ : L(α, β) → L(β, α)

(Lα, Lβ) 7→ (Lβ , Lα).
(4.3)

The map σ is an involution on the set of standard tableaux whose shape is a double
partition.

Representations. Let the content of a box b of a skew shape λ/µ=((λ/µ)α, (λ/µ)β)
be given by

ct(b) =

{
q2(j−i), if b is in position (i, j) in (λ/µ)α,

−q2(j−i), if b is in position (i, j) in (λ/µ)β .
(4.4)

For each standard tableau L, define

(g̃k)LL = (gk)LL =
q − q−1

1 − ct(L(k−1))
ct(L(k))

for 2 ≤ k ≤ n, and (g̃1)LL = (g̃2)LL.(4.5)
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Note that (g̃k)LL depends only on the positions of the boxes containing k and k −1
in L.

Let λ = (α, β) be a pair of partitions such that |α| + |β| = n. Let

V (α,β) = C(q)-span {vL|L ∈ L(α, β)}

so that the vectors vL form a basis of the module V (α,β). Recall (2.7) that there
is an action of HBn(1, q2) on the vector space V (α,β). Restricting this action to
HDn(q2) on V λ gives

g̃1vL = g1g2g1vL = (g̃2)LLvL − (q−1 + (g̃2)LL)vs2L,

g̃ivL = givL = (g̃i)LLvL + (q−1 + (g̃i)LL)vsiL, 2 ≤ i ≤ n,
(4.6)

for each L ∈ L(α, β), where, as in the case of type Bn, we define vsiL = 0 if siL is
not standard.

Now suppose n is even, and let α be a partition such that 2|α| = n. Define

V (α,α)+ = C(q)-span {vL + vσL|L ∈ L(α, α)} ⊆ V (α,α),

V (α,α)−
= C(q)-span {vL − vσL|L ∈ L(α, α)} ⊆ V (α,α).

(4.7)

Proposition 4.8 (Hoefsmit [H], Lemmas 2.3.3 and 2.3.5). (a) For each pair of
partitions (α, β) such that |α|+|β| = n, V (α,β) and V (β,α) are isomorphic HDn(q2)-
modules.

(b) For each partition α such that 2|α| = n, the subspaces V (α,α)±
are HDn(q2)-

submodules of V (α,α), and

V (α,α) ∼= V (α,α)+ ⊕ V (α,α)−
,

as HDn(q2)-modules.

Theorem 4.9 (Hoefsmit [H], Theorem 2.3.9). The modules V (α,β), where (α, β)
runs over all unordered pairs of partitions such that α 6= β and |α| + |β| = n

and, when n is even, the modules V (α,α)+ and V (α,α)−
, where α runs over all parti-

tions such that 2|α| = n, form a complete set of nonisomorphic irreducible modules
for HDn(q2).

Remark 4.10. The involution σ on standard tableaux (4.3) is a realization of the
module isomorphism between the HDn(q2)-modules V (α,β) and V (β,α), which, in
turn, comes from the automorphism of the Dynkin diagram of type Dn.

Instead of defining V (α,α)±
as in (4.7), let us define them as the quotient spaces

V (α,α)+ =
V (α,α)

〈vL = vσL〉 and V (α,α)−
=

V (α,α)

〈vL = −vσL〉 ,(4.11)

where σ is the involution given in (4.6) and 〈vL = vσL〉 and 〈vL = −vσL〉 denote the
subspaces spanned by the vectors vL−vσL and by vL+vσL respectively. Clearly the
two definitions of the modules V (α,α)±

are equivalent, the first represents V (α,α)±

as subspaces of V (α,α), and the second as quotient spaces of V (α,α). The only
difference is that for some computations the quotient module approach is easier;
one may compute the action as in the formulas in (4.6) and then apply the relations
vL = ±vσL.
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For each standard tableau L ∈ L(α, α), let v±
L denote the image of the vector vL

in the quotient spaces V (α,α)±
respectively. Define

L2(α, α) = {L = (Lα
1 , Lα

2 ) ∈ L(α, α)|n ∈ Lα
2 }.(4.12)

The vectors v+
L , L ∈ L2(α, α), and the vectors v−

L , L ∈ L2(α, α), form bases of the
vector spaces V (α,α)+ and V (α,α)−

, respectively.
Hoefsmit Elements. Define

D̃1 = 1, D̃2 = g̃2g̃1, and

D̃k = g̃kg̃k−1 . . . g̃3g̃2g̃1g̃3g̃4 . . . g̃k−1g̃k, for 3 ≤ k ≤ n.
(4.13)

For each standard tableau L and each entry k in L, define

(D̃k)LL = ct(L(1))ct(L(k)).(4.14)

Proposition 4.15. The action of the element D̃k in the irreducible representations
given by Theorem 4.9 is given by

D̃kvL = (D̃k)LLvL = ct(L(1))ct(L(k))vL,

for all standard tableaux L, and

D̃kv±
L = (D̃k)LLv±

L = ct(L(1))ct(L(k))v±
L ,

for all standard tableaux L of shape (α, α).

Proof. Recall that Dk are the elements of HBn(1, q2) given by (2.9), and use the
imbedding of HDn(q2) into HBn(1, q2). The case k = 1 is trivial, since ct(L(1)) =
±1. For k = 2, observe that D̃2 = g̃2g̃1 = g2g1g2g1 = D2D1. For 3 ≤ k ≤ n, note
that g1 commutes with g3, g4, . . . in HBn(1, q2), and thus

D̃k = g̃kg̃k−1 . . . g̃3g̃2g̃1g̃3g̃4 . . . g̃k−1g̃k

= gkgk−1 . . . g3g2(g1g2g1)g3g4 . . . gk−1gk

= gkgk−1 . . . g3g2g1g2g3g4 . . . gk−1gkg1 = DkD1.

The result now follows from the definition of the action of HBn(1, q2) and of
HDn(q2) on irreducible modules and Proposition 2.11.

Standard Elements. Define [n] = {0, 1, 1, 2, 2, . . . , n, n}, and define |i| = |i| = i

for each 1 ≤ i ≤ n. An unmarked increasing sequence is a sequence ~l = (l1, . . . , lk)
of elements of [n] such that

(1) 0 < |l1| < · · · < |lk−1| < |lk| = n,
(2) there are an even number of li that are barred.
For 1 ≤ k < l ≤ n, make the following definitions

R̃kl = g̃k+1g̃k+2 . . . g̃l, and R̃kl = D̃kg̃k+1g̃k+2 . . . g̃l,

and, for each 1 ≤ k ≤ n, define Rkk = Rkk = 1. For each unmarked increasing
sequence ~l define

T̃~l = R̃1,l1R̃|l1|+1,l2 . . . R̃|lk−1|+1,lk ∈ HDn(q2).(4.16)

A marked increasing sequence is a sequence ~l = (ľ1, l2, . . . , lk) of elements of [n]
such that

(1) 0 < |l1| < · · · < |lk−1| < |lk| = n,
(2) there are an even number of li that are barred,
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(3) l1 is unbarred and is marked with a check.
Define

R̃11̌ = 1, R̃12̌ = g̃1, and R̃1ľ = g̃1g̃3g̃4 . . . g̃l, 3 ≤ l ≤ n.

For each marked increasing sequence ~l define

T̃~l = R̃1,ľ1
R̃|l1|+1,l2 . . . R̃|lk−1|+1,lk ∈ HDn(q2).(4.17)

We shall refer to unmarked and marked increasing sequences collectively as increas-
ing sequences.

Characters of Representations V (α,β), |α| + |β| = n. For 1 ≤ k < l ≤ n and for
each standard tableau L, make the following definitions

kl(L) = (g̃k+1)LL(g̃k+2)LL . . . (g̃l)LL,

kl(L) = (D̃k)LL(g̃k+1)LL(g̃k+2)LL . . . (g̃l)LL,

1ľ(L) = (g̃1)LL(g̃3)LL(g̃4)LL . . . (g̃l)LL,

(4.18)

and define kk(L) = kk(L) = 1ľ(L) = 1, for all 1 ≤ k ≤ n. Note that, the
relations in (2.16), (2.10), (4.5), and (4.14) imply that

kl(L) = ∆kl(L), 1ľ(L) = ∆1l(L), and kl(L) = ct(L(1))∆kl(L),(4.19)

where ∆kl(L) and ∆kl(L) are the elements defined in (2.16).

Lemma 4.20. Let ~l = (l1, . . . , lk) be an increasing sequence and let L be a standard
tableau. For each increasing sequence ~l, let T̃~l be the element of HDn(q2) determined
by (4.16)–(4.17) and let T~l be the element of HBn(1, q2) determined by (2.13).
When ~l is a marked increasing sequence, we ignore the mark when constructing T~l.
Let T̃~l vL|vL

denote the coefficient of vL in T̃~l vL. Then

T̃~l vL|vL
= T~l vL|vL

,

where the right-hand side of the equality is determined by Proposition 2.17.

Proof. Let ~l be an unmarked increasing sequence and let b be the number of li in
~l that are barred. Note that the content ct(L(1)) is always ±1 and that b is even.
Then, it follows from (4.19) that

T̃~l uL = 1,l1(L) |l1|+1,l2(L) . . . |lk−1|+1,lk(L)

= ct(L(1))b∆1,l1(L)∆|l1|+1,l2(L) . . . ∆|lk−1|+1,lk(L)

= ∆1,l1(L)∆|l1|+1,l2(L) . . . ∆|lk−1|+1,lk(L)

= T~l vL|vL
.

If ~l is a marked increasing sequence, then we have that

T̃~l vL|vL
= 1,ľ1

(L) |l1|+1,l2(L) . . . |lk−1|+1,lk(L)

= ∆1,l1(L) |l1|+1,l2(L) . . . |lk−1|+1,lk(L)

= T~l vL|vL
,

where the last equality follows exactly as in the unmarked case.
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Theorem 4.21. Let χ
(α,β)
HDn(q2) denote the characters of the HDn(q2)-modules

V (α,β), |α| + |β| = n. For each increasing sequence ~l, let T̃~l be the element of
HDn(q2) determined by (4.16)–(4.17), and let T~l be the element of HBn(1, q2) de-
termined by (2.13). When ~l is a marked increasing sequence, we ignore the mark
when constructing T~l. Then

χ
(α,β)
HDn(q2)(T̃~l) = χ

(α,β)
HBn(1,q2)(T~l),

where χ
(α,β)
HBn(1,q2) are the irreducible characters of HBn(1, q2) as determined by

Theorems 2.20 and 2.22.

Proof. The character value χ
(α,β)
HDn(q2)(T̃~l) is equal to

χ
(α,β)
HDn(q2)(T̃~l) =

∑
L∈L(α,β)

T̃~l vL|vL
=

∑
L∈L(α,β)

T~l vL|vL
= χ

(α,β)
HBn(1,q2)(T~l),

by Lemma 4.20.

Characters of Representations V (α,α)±
, 2|α| = n. We shall say that an increasing

sequence ~l = (l1, . . . , lk) or ~l = (ľ1, . . . , lk) is even if |li| is even for all 1 ≤ i ≤ k. If
~l is even, then (ignoring the factors of the form D̃j) each g̃2k, k > 1, appears as a
factor in the reduced expression for T̃~l, and either g̃1 or g̃2 appears as a factor in
T̃~l.

A standard tableau L = (Lα
1 , Lα

2 ) ∈ L(α, α) is alternating if, for each 1 ≤ k ≤
n/2, the boxes of L containing the values 2k − 1 and 2k are in the same position
in the two subtableaux Lα

1 and Lα
2 ; see Figure 4.22.

is an alternating standard tableau of shape ((421), (421)). Recall the definition
of L2(α, α) from (4.12), and let AL2(α, α) denote the set of alternating standard
tableaux L ∈ L2(α, α).

Recall from section 2 that if L is a standard tableau, then siL is the same
tableau as L except that the positions of i and i − 1 are switched in siL. For each
1 ≤ k ≤ n/2 define e2kL = s2ks2k+2 . . . sn−2snL. Note that if L is an alternating
standard tableau, then e2L = σL, where σ is the involution of L(α, α) given in
(4.3). In accordance with the definitions (4.5) (which are supposed to be somewhat

Figure 4.22
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reminiscent of matrix notation), we set

(g̃2k)e2kL,e2k+2L = (q−1 + (g̃2k)e2k+2L,e2k+2L), for 1 ≤ k ≤ n/2,

(g̃1)e2L,e4L = −(q−1 + (g̃2)e4L,e4L),
(4.23)

for each standard tableau L. For each standard tableau L, define

O1,2l(L) = O1,2l(L)

= (g̃2)e2L,e4L(g̃3)e4L,e4L(g̃4)e4L,e6L(g̃5)e6L,e6L . . .

(g̃2l−1)e2lL,e2lL(g̃2l)e2lL,e2l+2L,

O1,2̌l(L) = (g̃1)e2L,e4L(g̃3)e4L,e4L(g4)e4L,e6L(g̃5)e6L,e6L . . .

(g̃2l−1)e2lL,e2lL(g̃2l)e2lL,e2l+2L,

and define

O2k+1,2l(L) = (g̃2k+2)e2k+2L,e2k+4L(g̃2k+3)e2k+4L,e2k+4L(g̃2k+4)e2k+4L,e2k+6L

· (g̃2k+5)e2k+6L,e2k+6L . . . (g̃2l−1)e2lL,e2lL(g̃2l)e2lL,e2l+2L, and

O2k+1,2l = (D̃2k+1)e2k+2L,e2k+2LO2k+1,2l(L), for k > 0.

Notice that (g̃1)e2L,e4L = −(g̃2)e2L,e4L, so

O1,2l(L) = O1,2l(L) = −O1,2̌l(L).(4.24)

If ~l is an even increasing sequence, and L is an alternating standard tableau, define

O~l(L) = O1,l1(L)O|l1|+1,l2(L) . . . O|lk−1|+1,lk(L).(4.25)

Lemma 4.26. Let ~l = (l1, . . . , lk) be an increasing sequence, and let L be a stan-
dard tableau. Let T̃~l be the element of HDn(q2) determined by (4.16)–(4.17) and
let T~l be the element of HBn(1, q2) determined by (2.13). When ~l is a marked
increasing sequence, we ignore the mark when constructing T~l. Let T̃~l vL|vL

denote
the coefficient of vL in T̃~l vL. Then

T̃~l v
±
L |v±

L
=

{
T~l vL|vL

± O~l(L), if ~l is even, and L is alternating;
T~l vL|vL

, otherwise.

Proof. Suppose that L is an alternating standard tableau. Then e2L = σL, where
σ is the involution given in (4.3). Then, in V (α,α),

T̃~l vL = ~l(L)vL + O~l(L)vσL +

 other terms
not containing

vL or vσL

 .

It follows that, in the quotient spaces V (α,α)±
, we have

T̃~l v
±
L = ( ~l(L) ± O~l(L))v±

L +


other terms

not containing
v±

L

 ,

since v±
L = ±v±

σL in V (α,α)±
. The lemma now follows exactly as in the proof of

Lemma 4.20.
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Proposition 4.27. Let ~l be an increasing sequence, and let T̃~l be the element of
HDn(q2) determined by (4.16)–(4.17) and let T~l be the element of HBn(1, q2) de-
termined by (2.13). When ~l is a marked increasing sequence, we ignore the mark
when constructing T~l. Then

χ
(α,α)±

HDn(q2)(T̃~l) =


1
2χ

(α,α)
HBn(1,q2)(T~l) ±

∑
L∈AL2(α,α)

O~l(L), if ~l is even,

1
2χ

(α,α)
HBn(1,q2)(T~l), otherwise,

where χ
(α,α)±

HDn(q2) is the irreducible HDn(q2)-character corresponding to V (α,α)±
.

Proof. Let us make the following notation:

L1(α, α) = {L = (Lα
1 , Lα

2 ) ∈ L(α, α)|n ∈ Lα
1 },

L2(α, α) = {L = (Lα
1 , Lα

2 ) ∈ L(α, α)|n ∈ Lα
2 }.

(4.28)

Assume that ~l is even. Then it follows from Lemma 4.26 that

χ
(α,α)±

HDn(q2)(T̃~l) =
∑

L∈L2(α,α)

T~l vL|vL
±

∑
L∈AL2(α,α)

O~l(L).

Thus,

χ
(α,α)+

HDn(q2)(T̃~l) + χ
(α,α)−

HDn(q2)(T̃~l) = 2
∑

L∈L2(α,α)

T~l vL|vL
.

By using Theorem 4.21 and Proposition 4.8(b),

χ
(α,α)
HBn(1,q2)(T~l) = χ

(α,α)
HDn(q2)(T̃~l) = χ

(α,α)+

HDn(q2)(T̃~l) + χ
(α,α)−

HDn(q2)(T̃~l).

Thus, ∑
L∈L2(α,α)

T~l vL|vL
=

1
2
χ

(α,α)
HBn(1,q2)(T~l)

and the result follows. The proof for the case when ~l is not even is exactly the same
except that the term ±

∑
O~l(L) does not appear.

Let α be a partition of n/2. A signed standard tableau of shape α is a standard
tableau of shape α such that each box of α also has associated with it a sign + or
−. Let ST ε(α) denote the set of signed standard tableaux Lα

ε of shape α such that
the product of the signs is always (−1)n/2−1. Recall that AL2(α, α) is the set of
alternating standard tableaux L ∈ L2(α, α). Define a bijection

ϕ : AL2(α, α) → ST ε(α)

L 7→ Lα
ε

(4.29)

as follows. Let L = (Lα
1 , Lα

2 ) be an alternating standard tableau, and let Lα
ε = ϕ(L)

be the standard tableaux such that k has the same position in Lα
ε as 2k − 1 and

2k have in the tableaux Lα
1 and Lα

2 . Assign the box containing k of Lα
ε a + or −

depending on whether or not 2k − 1 and 2k − 2 are in the same tableau Lα
i . Give

the box containing 1 the same sign as the content ct(L(1)) of the box containing 1
in L. Figure 4.30 illustrates the bijection ϕ.

Let ε(Lα
ε (k)) denote the sign of the box containing k in Lα

ε , and let ct(Lα
ε (k))

denote the content of the box containing k in Lα
ε as given by (4.4).
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Figure 4.30

Proposition 4.31. Let α be a partition such that 2|α| = n. Let L = (Lα
1 , Lα

2 ) be
an alternating standard tableau of shape (α, α) and let Lα

ε = ϕ(L). Let O1,2l(L),
O1,2̌l(L), O2k+1,2l(L) and O2k+1,2l(L) be as defined above (4.24), and define

O1,l(Lα
ε ) = O1,2l(L), Ok+1,l(Lα

ε ) = O2k+1,2l(L),

O1,ľ(L
α
ε ) = O1,2̌l(L), Ok+1,l(L

α
ε ) = O2k+1,2l(L),

O1,l(L
α
ε ) = O1,2l(L).

Then

O1,l(Lα
ε ) = O1,l(L

α
ε ) = −O1,ľ(L

α
ε ) =

(
q + q−1

2

)l l∏
j=2

q − q−1

1 + ct(Lα
ε (j−1))

ε(Lα
ε (j))ct(Lα

ε (j))

,(a)

and, for k > 0,

Ok+1,l(Lα
ε ) =

(
q + q−1

2

)l−k l∏
j=k+2

q − q−1

1 + ct(Lα
ε (j−1))

ε (Lα
ε (j))ct(Lα

ε (j))
,(b)

Ok+1,l(L
α
ε ) = (−1)k+1

k+1∏
j=2

ε(Lα
ε (j))

 ct(Lα
ε (k + 1))Ok+1,l(Lα

ε ).(c)

Proof. The first two equalities in (a) follow immediately from (4.24). In view
of the definitions of O2k+1,2l(L) and O2k+1,2l(L), the remaining assertions will
be proved by computing values of (g̃2k)e2kL,e2k+2L, (g̃1)e2L,e4L, (g̃2k−1)e2k−1L,e2k−1L,
and (D̃2k+1)e2k+1L,e2k+1L.

Since 2k − 1 and 2k are in the same position in e2k+2L as they are in L, we see
that (g̃2k)e2k+2L,e2k+2L = (g̃2k)LL. Considering definitions (4.23) and (4.5), we have

(g̃1)e2L,e4L = −(q−1 + (g̃2)e4L,e4L) = −

q−1 +
q − q−1

1 − ct(L(1))
ct(L(2))


and

(g̃2k)e2kL,e2k+2L = q−1 + (g̃2k)e2k+2L,e2k+2L = q−1 +
q − q−1

1 − ct(L(2k−1))
ct(L(2k))

,

1 ≤ k ≤ n/2.
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Now, ct(L(2k − 1)) = −ct(L(2k)), since 2k − 1 and 2k are in the same position but
in different tableaux of the pair (Lα

1 , Lα
2 ). So we have

(g̃1)e2L,e4L = −
(

q−1 +
q − q−1

1 − (−1)

)
= −q + q−1

2
(1)

and

(g̃2k)e2kL,e2k+2L = q−1 +
q − q−1

1 − (−1)
=

q + q−1

2
, 1 ≤ k ≤ n/2.(2)

For 1 ≤ k ≤ n/2, the permutation e2k switches 2k − 1 and 2k in L, so
ct(e2kL(2k − 1)) = −ct(L(2k − 1)), and e2k fixes 2k − 2 in L, so ct(e2kL(2k − 2)) =
ct(L(2k − 2)). Therefore,

ct(e2kL(2k − 2))
ct(e2kL(2k − 1))

=
ct(L(2k − 2))

−ct(L(2k − 1))
=

ct(Lα
ε (k − 1))

−ε(Lα
ε (k))ct(Lα

ε (k))
.

Thus, for 1 < k ≤ n/2,

(g̃2k−1)e2kL,e2kL =
q − q−1

1 − ct(e2kL(2k−2))
ct(e2kL(2k−1))

=
q − q−1

1 + ct(Lα
ε (k−1))

ε(Lα
ε (k))ct(Lα

ε (k))

.(3)

By induction (or by looking at an example), one can readily check that

L(2k + 1) is in Lα
1 if (−1)k

k+1∏
j=1

ε(Lα
ε (j))

 = 1

and

L(2k + 1) is in Lα
2 if (−1)k

k+1∏
j=1

ε(Lα
ε (j))

 = −1.

It follows that,

ct(L(2k + 1)) = (−1)k

k+1∏
j=1

ε(Lα
ε (j))

 ct(Lα
ε (k + 1)).

Then, for k > 1,

(D̃2k+1)e2k+1L,e2k+1L = ct(e2k+1L(1))ct(e2k+2L(2k + 1))

= ct(L(1))(−ct(L(2k + 1)))

= ε(Lα
ε (1))

−(−1)k
k+1∏
j=1

ε(Lα
ε (j))

 ct(Lα
ε (k + 1))

= (−1)k+1

k+1∏
j=2

ε(Lα
ε (j))

 ct(Lα
ε (k + 1)).

(4)

The remaining assertions follow from (1), (2), (3), (4) and the definitions of
O2k+1,2l(L) and O2k,2l(L).
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Our goal is to compute the sum of the O~l(L) over all L ∈ AL2(α, α). Clearly, it
is equivalent to sum the values O~l(L

α
ε ) over all Lα

ε ∈ ST ε(α). We shall do this sum
in two steps: first we sum over all possible choices of the signs in a signed standard
tableau and then over all fillings.

For each standard tableau Lα (unsigned) of shape α define

O1,l(Lα) =
∑
Lα

ε

O1,l(Lα
ε ), O1,l(L

α) =
∑
Lα

ε

O1,l(L
α
ε ),

O1,l̆(L
α) =

∑
Lα

ε

O1,1̆(L
α
ε ),

Ok+1,l(Lα) =
∑
Lα

ε

Ok+1,l(Lα
ε ), and Ok+1,l(L

α) =
∑
Lα

ε

Ok+1,l(L
α
ε ),

(4.32)

where, in each case, we sum over all signed tableaux Lα
ε which equal Lα when the

signs are ignored. This is equivalent to summing over all choices of signs for each
box Lα

ε (i) for 1 < i ≤ n/2. The sign ε(Lα
ε (1)) is forced by the condition that the

product of the signs in Lα
ε is (−1)n/2−1, so the first three sums are slightly different

than the last two. Thus, we may write

O1,l(Lα) =
∑

ε(T (j))=±1
1<j≤l

O1,l(Lα
ε ), O1,l(L

α) =
∑

ε(T (j))=±1
1<j≤l

O1,l(L
α
ε ),

O1,ľ(L
α) =

∑
ε(T (j))=±1

1<j≤l

O1,ľ(L
α
ε ),

Ok+1,l(Lα) =
∑

ε(T (j))=±1
k+1≤j≤l

Ok+1,l(Lα
ε ), and Ok+1,l(L

α) =
∑

ε(T (j))=±1
k+1≤j≤l

Ok+1,l(L
α
ε ).

(4.33)

Proposition 4.34. Let Lα be an (unsigned) standard tableau of shape α. Then
using the definitions of (4.32), we have

O1,l(Lα) = O1,l(L
α) = −O1,ľ(L

α) =
(q + q−1)

2

l∏
j=2

(q2 − q−2)

1 − ct(Lα(j−1))2
ct(Lα(j))2

,(a)

and, for k > 0,

Ok+1,l(Lα) = (q + q−1)
l∏

j=k+2

(q2 − q−2)

1 − ct(Lα(j−1))2
ct(Lα(j))2

,(b)

Ok+1,l(L
α) = 0.(c)
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Proof. Let us first prove part (b). Let k > 0. Then, by Proposition 4.31,

Ok+1,l(Lα) =
∑
Lα

ε

Ok+1,l(Lα
ε )

=
∑
Lα

ε

(
q + q−1

2

)l−k l∏
j=k+2

q − q−1

1 + ct(Lα
ε (j−1))

ε(Lα
ε (j))ct(Lα

ε (j))

=
∑

ε(Lα
ε (k+1))=±1

(
q + q−1

2

)l−k l∏
j=k+2

 ∑
ε(Lα

ε (j))=±1

q − q−1

1 + ct(Lα
ε (j−1))

ε(Lα
ε (j))ct(Lα

ε (j))


=

∑
ε(Lα

ε (k+1))=±1

(
q + q−1

2

)l−k l∏
j=k+2

 q − q−1

1 + ct(Lα
ε (j−1))

ct(Lα
ε (j))

+
q − q−1

1 − ct(Lα
ε (j−1))

ct(Lα
ε (j))


= 2

(
q + q−1

2

)l−k l∏
j=k+2

2(q − q−1)

1 − ct(Lα
ε (j−1))2

ct(Lα
ε (j))2

= (q + q−1)
l∏

j=k+2

(q2 − q−2)

1 − ct(Lα
ε (j−1))2

ct(Lα
ε (j))2

.

The first two equalities in part (a) follows from the first two equalities in part (a)
of Proposition 4.31. The third equality in part (a) is the same as case (b) except
that k = 0. It follows by a similar calculation, except that the sign ε(Lα

ε (1)) is
forced by the condition that the product of the signs in Lα

ε is (−1)n/2−1. Thus this
case does not have the extra factor of 2 that appears when k > 0.

For part (c), we have that

Ok+1,l(L
α) =

∑
ε(T (j))=±1
k+1≤j≤l

Ok+1,l(L
α
ε )

=
∑

ε(Lα
ε (j))=±1

k+1<j≤l

∑
ε(Lα

ε (k+1))=±1

(−1)k+1

 k∏
j=2

ε(Lα
ε (j))

 ε(Lα
ε (k + 1))

· ct(Lα
ε (k + 1))

(
q + q−1

2

)l−k l∏
j=k+2

q − q−1

1 + ct(Lα
ε (j−1))

ε(Lα
ε (j))ct(Lα

ε (j))

= 0,

since
∑

ε(Lα
ε (k+1))=±1 ε(Lα

ε (k + 1)) = 1 + (−1) = 0.

Theorem 4.35. Let ~l = (l1, . . . , lt) be an increasing sequence. Let T̃~l be the element
of HDn(q2) determined by (4.16)–(4.17) and let TB

~l
be the element of HBn(1, q2)

determined by (2.13). When ~l is a marked increasing sequence we ignore the mark
when constructing TB

~l
.

(a) Then, for each pair of partitions (α, β) such that |α| + |β| = n,

χ
(α,β)
HDn(q2)(T̃~l) = χ

(α,β)
HBn(1,q2)(T

B
~l

).

(b) Suppose that n is even, and let m = n/2. If the increasing sequence ~l is such
that all li are even and all li are unbarred, then let ~m = (m1, m2, . . . , mt) be the
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increasing sequence given by 2mi = li for each 1 ≤ i ≤ t. Let TA
~m be TB

~m viewed as
an element of HAm−1(q4). Then, for each partition α such that 2|α| = n,

χ
(α,α)±

HDn(q2)(T̃~l)

=
1
2
χ

(α,α)
HBn(1,q2)(T

B
~l

) ±



1
2 (q + q−1)tχα

HAm−1(q4)(T
A
~m), if all li are even,

all li are unbarred,

and l1 is unmarked;
− 1

2 (q + q−1)tχα
HAm−1(q4)(T

A
~m), if all li are even,

all li are unbarred,

and l1 is marked;
0 otherwise,

where χλ
HDn(q2), χ

λ
HBn(1,q2), and χλ

HAm−1(q4) denote the irreducible characters of
HDn(q2), HBn(1, q2), and HAm−1(q4), respectively, that correspond to the shape
λ.

Proof. Part (a) is a restatement of Theorem 4.21. To prove part (b) let m = n/2.
By Proposition 4.27 we have that

χ
(α,α)±

HDn(q2)(T̃~l) =

{
1
2χ

(α,α)
HBn(1,q2)(T

B
~l

) ±
∑

L∈AL2(α,α) O~l(L), if ~l is even,
1
2χ

(α,α)
HBn(1,q2)(T

B
~l

), otherwise.

If ~l = (l1, . . . , lt) is even, let ~m = (m1, m2, . . . , mt) be the increasing sequence
given by mi = li/2, for 1 ≤ i ≤ t. Let m1 be marked if l1 is marked and let mi be
barred if li is barred. Then it follows from definitions of Okl(Lα

ε ) and Okl(Lα) in
Proposition 4.31 and (4.32), respectively, that∑

L∈AL2(α,α)

O~l(L) =
∑
Lα

O1,m1(L
α)O|m1|+1,m2(L

α) . . . O|mt−1|+1,mt
(Lα),

where the last sum is over all (ordinary, unsigned) standard tableaux of shape α.
If ~m has any bars, then it necessarily has an even number of bars, and∑

Lα

O1,m1(L
α)O|m1|+1,m2(L

α) . . . O|mt−1|+1,mt
(Lα) = 0,

since, by Proposition 4.34, Ok,l(L
α) = 0 when k > 1.

Now assume ~m = (m1, . . . , mt) has no bars. Then, by the definition of (gk)LαLα

in (2.5) and by Proposition 4.31, we have

O1,m(Lα) =
q + q−1

2
∆1,m(Lα),

O1,m̌(Lα) = −q + q−1

2
δ1,m(Lα), and

Ok,m(Lα) = (q + q−1)∆k,m(Lα), k > 1,
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where ∆k,m(Lα) is as defined in (2.16) except with respect to the algebra
HBm(1, q4). Thus, if ~l = (m1, . . . , mt) is unmarked (and has no bars), we have∑

Lα

O1,m1(L
α)O|m1|+1,m2(L

α) . . . O|mt−1|+1,mt
(Lα)

=
1
2
(q + q−1)t

∑
Lα

∆1,m1(L
α)∆|m1|+1,m2(L

α) . . . ∆|mt−1|+1,mt
(Lα)

=
1
2
(q + q−1)tχ

(α,∅)
HBn(1,q4)(T

B
~m ) (by Theorem 2.20)

=
1
2
(q + q−1)tχα

HAm−1(q4)(T
A
~m) (by Theorem 3.4),

where TB
~m is the same element as TA

~m except viewed as an element of HBm(1, q4).
The case where ~m is marked is entirely similar. The only difference is the sign

appearing in O1,m̌1(L
α). The theorem now follows from Proposition 4.27.

5. Greene’s poset theorem

Curtis Greene [Gr] uses the theory of partially ordered sets (posets) and Möbius
functions to prove a rational function identity ([Gr], Theorem 3.3) which can be
used to derive the Murnaghan-Nakayama rule for symmetric group characters. In
this section, we modify Greene’s theorem so that it can be applied to computing
Murnaghan-Nakayama rules for the irreducible characters of the Iwahori-Hecke al-
gebras of type An−1, Bn, and Dn. All of the results of this section are only slight
modifications and generalizations of the results in [Gr]. This section is completely
independent of sections 2, 3, and 4.

Greene’s poset theorem holds for posets P which are planar in the (strong) sense
that their Hasse diagrams may be order-embedded in R×R without edge crossings
even when extra bottom and top elements are added (see [Gr] for details). An
example of a nonplanar poset is shown in Figure 5.1.

Figure 5.1

The set [n] = {1, 2, . . . , n} with its usual order forms a poset with the special
property that any two elements are comparable. We call such posets chains. If P
is a poset with n elements, then a linear extension of P is a chain L = (P, ≤L) such
that the underlying set is P and such that the relations in L form an extension of
the relations in P to a chain. We denote by L(P ) the set of all linear extensions of
the poset P .

The Möbius function of a poset P, µ : P × P → Z, is defined inductively for
elements a, b ∈ P by

µ(a, b) = µP (a, b) =


1 if a = b,

−
∑

a≤x<b µ(x, z) if a < b,

0 if a � b.

(5.2)

(See [Sta] for more details on Möbius functions.)



IWAHORI-HECKE ALGEBRAS OF CLASSICAL TYPE 3989

The Main Poset Theorem. Let P̂ be a planar poset with a unique minimal
element u, and let xa, a ∈ P̂ be a set of commutative variables indexed by the
elements of P̂ . Let q be an indeterminate, define

wt(a, b) =
1 − xax−1

b

q − q−1 , for all a < b in P̂ with a 6= u,

and suppose that either

llwt(u, a) = 1, or
wt(u, a) = x−1

a , or
wt(u, a) = 1−xux−1

a

(q−q−1) ,

for all a ∈ P̂ with a > u. Define

κ(P̂ ) =


q − q−1, if wt(u, a) = 1 for all a ∈ P̂ , a > u;
0, if wt(u, a) = x−1

a for all a ∈ P̂ , a > u;

1, if wt(u, a) = 1−xux−1
a

(q−q−1) for all a ∈ P̂ , a > u.

Let P = P̂ − {u} be the poset obtained by removing the element u from P̂ , and
let cc(P̂ ) be the number of connected components of P .

Theorem 5.3. Let P̂ be a planar poset with a unique minimal element u, and let
µ be the Möbius function of P̂ . With notations as in the previous paragraph, define

∆(P̂ ) =
∏

a,b∈P̂
a 6=b

wt(a, b)µ(a,b).(5.4)

Then ∑
L̂∈L(P̂ )

∆(L̂) = κ(P̂ )cc(P̂ )−1∆(P̂ ),

where L(P̂ ) is the set of linear extensions of P̂ .

Proof. The proof is by induction on the size of P̂ and by reverse induction on the
number of order relations. Let |P̂ | = n, and assume that the theorem holds for all
posets Q̂ with |Q̂| < n and all posets Q̂ with |Q̂| = n having more order relations
than P̂ . The base case, when P̂ is a chain, is trivial, since a chain has only one
linear extension, itself.

Case 0. Suppose that P = P̂ − {u} has a unique minimal element v. Then
cc(P̂ ) − 1 = 1 − 1 = 0. Since P has fewer elements than P̂ , the following holds by
induction, ∑

L̂∈L(P̂ )

∆(L̂) = wt(u, v)µ(u,v)
∑

L∈L(P̂ )

∆(L)

= wt(u, v)µ(u,v)κ(P )cc(P )−1∆(P ).
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Now note that κ(P ) = 1 since wt(v, a) = (1−xvx−1
a )/(q − q−1) for all a ∈ P, a > v.

Thus, ∑
L̂∈L(P̂ )

∆(L̂) = wt(u, v)µ(u,v)∆(P ) = κ(P̂ )0∆(P̂ )

= κ(P̂ )cc(P̂ )−1∆(P̂ ).

Cases 1 and 2. Suppose that P = P̂ \ {u} has more than one minimal element.
Let s and t be two adjacent minimal elements (in a path along the boundary of P ).
Let P̂A be the same poset as P̂ except add in the extra relation s ≤ t and all other
relations implied by transitivity. Let P̂B be the same poset as P̂ except add in the
extra relation t ≤ s and all other relations implied by transitivity. To summarize,

P̂ : has unique minimal element u

and P = P̂ \ {u} has adjacent minimal elements s, t;

P̂A : P̂ with the extra relation s ≤ t;

P̂B : P̂ with the extra relation t ≤ s.

Note that P̂A and P̂B are both planar posets with unique minimal element u and
that both P̂A and P̂B have more relations than P̂ . Since wt is the same on P̂ , P̂A,
and P̂B , we have that κ(P̂ ) = κ(P̂A) = κ(P̂B). Moreover, cc(P̂A) = cc(P̂B).
Let µ, µA, and µB denote the Möbius functions on the posets P̂ , P̂A, and P̂B ,
respectively. Then, by induction,∑

L∈L(P̂ )

∆(L) =
∑

L∈L(P̂A)

∆(L) +
∑

L∈L(P̂B)

∆(L)

= κ(P̂A)cc(P̂A)−1
∏

a,b∈P̂A
a 6=b

wt(a, b)µA(a,b) + κ(P̂B)cc(P̂B)−1
∏

a,b∈P̂B
a 6=b

wt(a, b)µB(a,b)

= κ(P̂A)cc(P̂A)−1
∏

a,b∈P
a 6=b

wt(a, b)µ(a,b)

 ∏
a,b∈PA

a 6=b

wt(a, b)µA(a,b)−µ(a,b)

+
∏

a,b∈PB
a 6=b

wt(a, b)µB(a,b)−µ(a,b)



= κ(P̂ )cc(P̂A)−1∆(P̂ )

 ∏
a,b∈PA

a 6=b

wt(a, b)µA(a,b)−µ(a,b)

+
∏

a,b∈PB
a 6=b

wt(a, b)µB(a,b)−µ(a,b)

 .



IWAHORI-HECKE ALGEBRAS OF CLASSICAL TYPE 3991

Case 1. In P̂ , the least common multiple d = s ∧ t of s and t does not exist.
Then cc(P̂A) = cc(P̂ ) − 1. In [Gr], C. Greene uses the theory of Möbius algebras
to compute the differences

µA(u, t) − µ(u, t) = 1, µB(u, s) − µ(u, s) = 1,

µA(s, t) − µ(s, t) = −2, µB(t, s) − µ(t, s) = −1,

and µA(a, b) − µ(a, b) = µB(a, b) − µ(a, b) = 0 for all other a 6= b in P . Thus,∏
s6=t

wt(s, t)µA(s,t)−µ(s,t) +
∏
s6=t

wt(s, t)µB(s,t)−µ(s,t) =
wt(u, t)
wt(s, t)

+
wt(u, s)
wt(t, s)

=


1, if wt(u, a) =

1 − xux−1
a

(q − q−1)
;

q − q−1, if wt(u, a) = 1; for all a > u,

0, if wt(u, a) = x−1
a ,

= κ(P̂ ).

Case 2. In P̂ , the least common multiple d = s ∨ t exists. Then cc(P̂A) = cc(P̂ ).
In [Gr], C. Greene explains how to use the theory of Möbius algebras to compute
the differences

µA(u, t) − µ(u, t) = t, µB(u, s) − µ(u, s) = 1,

µA(u, d) − µ(u, d) = −1, µB(u, d) − µ(u, d) = −1,

µA(s, t) − µ(s, t) = −1, µB(t, s) − µ(t, s) = −1,

µA(s, d) − µ(s, d) = 1, µB(t, d) − µ(t, d) = 1,

and µA(a, b) − µ(a, b) = µB(a, b) − µ(a, b) = 0, for all other a 6= b in P . Thus∏
s6=t

wt(s, t)µA(s,t)−µ(s,t) +
∏
s6=t

wt(s, t)µB(s,t)−µ(s,t)

=
wt(s, d)wt(u, t)
wt(s, t)wt(u, d)

+
wt(t, d)wt(u, s)
wt(t, s)wt(u, d)

=


1, if wt(u, a) =

1 − xux−1
a

(q − q−1)
;

1, if wt(u, a) = 1; for all a > u.

1, if wt(u, a) = x−1
a ;

Shapes and Standard Tableaux. There is a natural extension of the theory of
partitions and tableaux to the theory of partially ordered sets in which partitions
correspond to posets and tableaux to their linear extensions. (For a full treatment
of this subject, see [Sta], whose notation we use here.) If ρ and λ are partitions with
ρ ⊆ λ, then we construct a corresponding poset Pλ/ρ by which has Hasse diagram
given by placing a node in each box of λ/ρ and drawing edges connecting nodes in
adjacent boxes. The order relation in this poset is so that the smallest nodes are
in the upper left corners, as shown in Figure 5.5.
Note that posets corresponding to skew-shapes are always planar.

If s is a minimal element of the poset Pλ/ρ then we say that the corresponding
box in the shape λ/ρ is a sharp corner. If d is an element of the poset Pλ/ρ such
that d = s∨ t where s and t are two adjacent sharp corners of λ/ρ, then we say that
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Figure 5.5

the box of λ/ρ corresponding to d is a dull corner. In Figure 2.21 the sharp and dull
corners of the partition are exactly the sharp and dull corners of the corresponding
poset.

Let P̂λ/ρ be the poset Pλ/ρ ∪ {u} where the adjoined element u satisfies u ≤ a

for all a ∈ Pλ/ρ. Let µ be the Möbius function of the poset P̂λ/ρ. Intervals of P̂λ/ρ

of the form of Figure 5.6.

Figure 5.6

where d = s ∨ t, have µ(u, s) = µ(u, t) = −1, µ(u, d) = 1, and µ(u, x) = 0 for all
other u ≤ x. Intervals of P̂λ/ρ of the form are given in Figure 5.7.

Figure 5.7

where s∨ t does not exist, have µ(u, s) = µ(u, t) = −1, and µ(u, x) = 0 for all other
u ≤ x.

Theorem 5.8. Let λ be any shape (or skew shape) with n boxes and let cc be the
number of connected components of λ. Let {xb} be a set of commutative variables
indexed by the boxes b ∈ λ and let q be an indeterminate. For each standard tableau
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L of shape λ and each 1 ≤ i ≤ n, let L(i) denote the box of L containing i, and
define

∆(L) =
n∏

i=2

(q − q−1)
1 − xL(i)x

−1
L(i−1)

, and ∆(L) = xL(1)

n∏
i=2

(q − q−1)
1 − xL(i)x

−1
L(i−1)

.

Then ∑
L∈L(λ)

∆(L) = (q − q−1)cc−1
( ∏

D(1 − xbx
−1
a )∏

R(1 − xbx
−1
a )

∏
C(1 − xbx

−1
a )

)
,

and

∑
L∈L(λ)

∆(L) =


∏

s∈SC xs∏
d∈DC xd

( ∏
D(1−xbx−1

a )∏
R(1−xbx−1

a )
∏

C(1−xbx−1
a )

)
,

if λ is connected,

0, otherwise,

where
D is the set of pairs (a, b) of boxes in λ adjacent (northwest to southeast) in a

diagonal,
R is the set of pairs (a, b) of boxes in λ adjacent (west to east) in a row,
C is the set of pairs (a, b) of boxes in λ adjacent (north to south) in a column,
SC is the set of sharp corners of λ, and
DC is the set of dull corners of λ.

Proof. Let λ be a shape (or a skew shape) and let L(λ) be the set of standard
tableaux of shape λ. Linear extensions of the poset Pλ are in one-to-one correspon-
dence with standard tableaux having skew shape λ as follows: Given a standard
tableau T of shape λ let T (k) denote the box containing k in T . Then the standard
tableau T corresponds to the linear extension L of the poset Pλ which has under-
lying set Pλ and order relations given by T (k) ≤L T (l) if k ≤ l. We can identify
the standard tableau T with the chain L.

Let P̂λ be the poset Pλ ∪ {u} where the adjoined element u satisfies u ≤ a for
all a ∈ Pλ. The linear extensions of the poset P̂λ are in one-to-one correspondence
with the linear extensions of the poset Pλ. Thus, we can identify a standard tableau
T of shape λ with a linear extension L̂ of the poset P̂λ.

Let µ be the Möbius function of the poset P̂λ. The values of the Möbius function
of the poset P̂λ are as indicated in (5.6) and (5.7). In particular, if u is the minimal
element of P̂λ, then it follows from (5.6) that the Möbius function of P̂λ satisfies

µ(u, s) = −1, if s is a sharp corner of λ,

µ(u, d) = 1, if d is a dull corner of λ.
(5.9)

Define weight functions wt and wt on P̂λ by

wt(a, b) = wt(a, b) =
1 − xax−1

b

q − q−1 , for a, b ∈ Pλ, a 6= b,

and

wt(u, a) = 1, and wt(u, a) = x−1
a , for a ∈ Pλ.
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Then, if L is a standard tableau of shape λ, which corresponds to a linear extension
L̂ of the poset P̂λ, we have that

∆(L̂) =
∏

a,b∈P̂λ
a 6=b

wt(a, b)µ(a,b) = ∆(L) and

∆(L̂) =
∏

a,b∈P̂λ
a 6=b

wt(a, b)µ(a,b) = ∆(L),
(5.10)

where ∆(L) and ∆(L) are as defined in the statement of the theorem. Thus, we
may use Theorem 5.3 to compute

∑
L∈L(λ)

∆(L) and
∑

L∈L(λ)

∆(L).

The result then follows from the computation of the values of the Möbius function
of P̂λ in (5.6), (5.7) and (5.9).
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