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Iwahori-Hecke Algebras of Type A, Bitraces

and Symmetric Functions

Tom Halverson, Robert Leduc, and Arun Ram

1 The bitrace of the regular representation of Hn(q)

Compositions and partitions

We use the notation λ |= n to indicate that λ is a composition of n; that is, λ = (λ1, λ2, . . .)

where the parts, λi, are nonnegative for all i and
∑

i λi = n. We write λ ` n if λ is a

partition of n, i.e., λ1 ≥ λ2 ≥ · · · ≥ λ`. The length `(λ) is the number of nonzero parts

of λ. If λ = (λ1, λ2, . . . , λ`) and µ = (µ1, µ2, . . . , µ`) are compositions such that λi ≤ µi for

1 ≤ i ≤ `, then we write λ ⊆ µ and denote their difference or skew shape byµ/λ. In general,

we adopt the notation of [Mac] for partitions and symmetric functions.

The Iwahori-Hecke Algebra

Let Sn denote the symmetric group on {1, 2, . . . , n}, and let q ∈ C such that q 6= 0 and q is

not a root of unity. The Iwahori-Hecke algebra Hn(q) corresponding to Sn is the algebra

over C given by generators 1, T1, T2, . . . , Tn−1 and relations

TiTj = TjTi, if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1, for 1 ≤ i ≤ n− 2,

T2
i = (q− 1)Ti + q, for 1 ≤ i ≤ n− 1.

(1.1)

Let si = (i, i + 1) ∈ Sn denote the simple transposition that exchanges i and i + 1. Given

a reduced word w = si1si2 · · · sik ∈ Sn, let Tw = Ti1Ti2 · · · Tik ∈ Hn(q). The element Tw is

well-defined (independent of choice of the reduced word for w). The elements Tw, w ∈ Sn,
form a basis of Hn(q).
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The irreducible representations of Hn(q) are labeled by the partitions λ ` n, and

their traces χλq are the irreducible characters of Hn(q). A character of Hn(q) is a linear map

χ: Hn(q) → C which satisfies χ(ab) = χ(ba) for all a, b ∈ Hn(q). Let γr = (1, 2, . . . , r) ∈ Sr
in cycle notation, and for a composition µ = (µ1, . . . , µ`) |= n define γµ = γµ1 × · · · × γµ` ∈
Sµ1 × · · · × Sµ` . Any character of Hn(q) is completely determined by its values on the

elements Tγµ, µ ` n (see [Ca] and [Ra1]).

The bitrace

Let x, y ∈ Sn and define

btr(Tx, Ty) =
∑
z∈Sn

TxTzTy
∣∣
Tz
, (1.2)

where TxTzTy|Tz denotes the coefficient of the basis element Tz when TxTzTy is expanded

in terms of the basis Tw, w ∈ Sn. If x ∈ Sn, let Lx and Rx denote the linear transforma-

tions of Hn(q) induced by the action of Tx on Hn(q) by left multliplication and by right

multiplication, respectively. If x, y ∈ Sn, then Lx and Ry commute and

btr(Tx, Ty) = Tr(LxRy). (1.3)

Left and right multiplication make Hn(q) into a bimodule and, by double central-

izer theory, we have

Hn(q) ∼=
⊕
λ`n

Hλ ⊗Hλ,

as Hn(q)-bimodules, where Hλ is the irreducible left Hn(q)-module labeled by λ, and Hλ

is the irreducible right Hn(q)-module labeled by λ. Taking traces on both sides of this

identity gives

btr(Tx, Ty) =
∑
λ`n

χλq(Tx)χ
λ
q(Ty). (1.4)

This formula is an Hn(q) analogue of the second orthogonality relation for the irreducible

characters of the symmetric group Sn.

Keeping in mind that any character of Hn(q) is completely determined by its values

on the elements Tγµ, µ ` n, we define

btr(µ, ν) = btr(Tγµ, Tγν ) (1.5)

for any two compositions µ, ν |= n.
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An inner product on Hn(q)

Suppose that q is a prime power and let Fq be the finite field with q elements. Let B be the

subgroup of the general linear group GLn(Fq) consisting of upper-triangular matrices.

Let 1GB be the GLn(Fq)-module which, as a vector space, is the linear span of the cosets in

G/B and where the G-action on cosets is by left multiplication. There is a natural action

of Hn(q) on 1GB and

Hn(q) ∼= EndG(1GB ).

Let w ∈ Sn. Then the trace of the action of Tw on 1GB is given by the formula

tr(Tw) =
{

[n]!, if w is the identity,

0, otherwise,

where [n] = 1+q+q2+ · · · +qn−1 and [n]! = [n][n− 1] · · · [2][1]. Define a bilinear form on

Hn(q) by

〈a, b〉 = 1

[n]!
tr(ab), for a, b ∈ Hn(q).

Note that the inner product 〈a, b〉 is the coefficient of 1 in the product ab. The dual basis

to the basis Tw, w ∈ Sn,with respect to the inner product 〈, 〉, is the basis q−`(w)Tw−1 , w ∈ Sn.

Very general arguments [CR, 9.17], which work for any semisimple algebra, com-

bined with the computation of the generic degrees in type A ([Ca2, 13.5] or [Hf, 3.4.14]),

will show that

∑
w∈Sn

χλ(Tw)χµ(q−`(w)Tw−1 ) = δλµn!
q−n(λ)Hλ(q)

h(λ)
, (1.6)

where

h(λ) =
∏
x∈λ
h(x), Hλ(q) =

∏
x∈λ

1− qh(x)

1− q , n(λ) =
`(λ)∑
i=1

(i− 1)λi, and

if x ∈ λ is the box in position (i, j) in λ, then h(x) = λi+λ′j− i− j+1 is the hook length at x.

Formula (1.6) is the Hn(q)-analogue of the first orthogonality relation for the irreducible

characters of the symmetric group Sn.

For any element x ∈ Sn, define

[Tx] =
∑
w∈Sn

TwTxq
−`(w)Tw−1 .
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This is some sort of analogue of a conjugacy class sum in the group algebra of Sn. If

x, y ∈ Sn,

〈Tx, [Ty]〉 =
∑
w∈Sn
〈Tx, TwTyq−`(w)Tw−1〉 =

∑
w∈Sn

1

[n]!
q−`(w) tr(TxTwTyTw−1 )

=
∑
w∈Sn
〈TxTwTy, q−`(w)Tw−1〉 =

∑
w∈Sn

TxTwTy
∣∣
Tw
,

and thus

〈Tx, [Ty]〉 = 〈[Tx], Ty〉 = btr(Tx, Ty). (1.7)

Specializing q to 1

For each µ ` n, the character χλq(Tγµ ) is a polynomial in q with integer coefficients and

χλq(Tγµ )
∣∣
q=1 = χλ(µ)

where χλ(µ) denotes the irreducible character of the symmetric group Sn corresponding

to the partition λ evaluated at a permutation of cycle type µ. It follows from (1.4) and the

second orthogonality relation for the characters of the symmetric group that

btr(µ, ν)
∣∣
q=1 =

∑
λ`n

χλ(µ)χλ(ν) = δµνzµ, where zµ = 1m1m1!2m2m2! · · ·

if µ is the partition µ = (1m12m2 · · ·).

Symmetric functions

Let x1, x2, . . . , xn be commuting variables. Define q0(x1, x2, . . . , xn;q) = 1 and for r > 0,

define qr(x1, x2, . . . , xn;q) by the generating function
n∏
i=1

1− xiz
1− qxiz = 1+ (q− 1)

∑
r>0

qr(x;q)zr.

For a composition µ = (µ1, µ2, . . . , µ`), define qµ(x;q) = qµ1qµ2 · · ·qµ` . From [Ra1], [VK], [KW]

we know that if µ |= n,

qµ(x;q) =
∑
λ`n

χλq(Tγµ )sλ(x), (1.8)

where sλ(x) is the Schur function corresponding to λ (see [Mac]). There is a standard inner

product on the ring of symmetric functions given by 〈sµ, sν〉 = δµν for all partitions µ, ν.

It follows from (1.8) and (1.4) that

btr(µ, ν) = 〈qµ(x;q), qν(x;q)〉. (1.9)
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Summary

Proposition 1.10. Let µ, ν |= n. With notation as above,

btr(µ, ν) =
∑
λ`n

χλq(Tγµ )χλq(Tγν ) =
∑
w∈Sn

TγµTwTγν
∣∣
Tw
= 〈qµ(x;q), qν(x;q)〉 = 〈Tγµ, [Tγν ]〉

and, for partitions µ, ν ` n,
btr(µ, ν)

∣∣
q=1 = δµνzµ,

where zµ = 1m1m1!2m2m2! · · · if µ is the partition µ = (1m12m2 · · ·).

2 The main theorem and corollaries

The following theorem is the main result of this paper and will be proved in Section 3.

Theorem 2.1. Let µ, ν |= n, µ = (µ1, . . . , µ`), and ν = (ν1, . . . , νm). Then

btr(µ, ν) = (q− 1)−`(µ)−`(ν)
∑
M

wt(M),

where the sum is over all ` ×m nonnegative integer matrices with row sums µ1, . . . , µ`,

column sums ν1, . . . , νm, and

wt(M) =
∏
x∈P(M)

(q− 1)2[x]q2 ,

where P(M) is the multiset of nonzero entries x in the matrix M and [x]q2 = 1+ q2 + q4 +
· · · + q2(x−1).

The trace of the regular representation of Hn(q)

Our main theorem has the following immediate corollary. This result has been obtained

in the paper [RR] by a different method.

Corollary 2.2 [RR]. The trace of the regular representation of the Iwahori-Hecke algebra

Hn(q) is given by

Tr(Tγµ ) = (q− 1)n−`(µ) n!

µ1!µ2! · · ·µ`! , for all compositions µ = (µ1, . . . , µ`) |= n.

Proof. It follows from (1.3) that the trace of the regular representation is given by the

formula Tr(Tγµ ) = btr(µ, (1n)). Applying Theorem 2.1, we find that the sum is over all

nonzero matrices with column sums (1n), and these are precisely the set of matrices

which have exactly one 1 in each column and all the rest 0’s. The weight of such a matrix

is (q− 1)2n, and the number of such matrices is n!/(µ1!µ2! · · ·µ`!).
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Inner products of symmetric functions

For a nonnegative integer r, define the symmetric function tr by the formula

∑
r≥0

tr(x;q)zr =
∏
i

(1− qxiz)2
(1− q2xiz)(1− xiz) ; (2.3)

and, for a composition µ = (µ1, µ2, . . . , µ`), define tµ(x;q) = tµ1tµ2 · · · tµ` .

Corollary 2.4. If µ, ν |= n, then

btr(µ, ν) = (q− 1)−`(µ)−`(ν) tµ(x;q)
∣∣
mν
,

where tµ(x;q)|mν denotes the coefficient of the monomial symmetric function mν in the

symmetric function tµ.

Proof. We have

1

1− q2x
− 1

1− x = (q2 − 1)x+ (q4 − 1)x2 + · · · .

So (
1

q2 − 1

)
(q2 − 1)x

(1− q2x)(1− x) = [1]q2x+ [2]q2x2 + · · · ,

and thus

(1− qx)2
(1− q2x)(1− x) = 1+

(
(q− 1)2

q2 − 1

)
(q2 − 1)x

(1− q2x)(1− x) = 1+
∑
k≥1

(q− 1)2[k]q2xk.

The result now follows from the interpretation of the bitrace as a weighted sum over

nonnegative integer matrices.

Corollary 2.5. Let µ, ν |= n and let qµ and tµ be the symmetric functions defined in (1.8)

and (2.3), respectively. Then

〈qµ(x;q), qν(x;q)〉 = (q− 1)−`(µ)−`(ν)〈tµ(x;q), hν(x)〉,

where hν(x) is the homogeneous symmetric function and 〈, 〉 is the inner product on sym-

metric functions that makes the Schur functions orthonormal.

Proof. This result follows immediately from Corollary 2.4 by noting that the homoge-

neous symmetric functions hµ are the dual basis to the monomial symmetric functions

mµ with respect to the inner product 〈, 〉.
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Specializations of 〈qµ, qν〉

Define q̃0(x;q, t) = 1 and, for positive integers r, define symmetric functions q̃r(x;q, t) by

the formula

(q− t)
∑
r≥0

q̃r(x;q, t)z
r =
∏
i

(1− txiz)
(1− qxiz) . (2.6)

For a composition µ = (µ1, µ2, . . . , µ`), define q̃µ(x;q, t) = q̃µ1 q̃µ2 · · · q̃µ` . These symmetric

functions differ from the symmetric functions qµ(x;q) only by a change in normalization.

On the other hand, they have the advantage that one can specialize either q, or t, or both

as follows:

(a) q̃µ(x;q, 0) = q|µ|−`(µ)hµ(x), where hµ is the homogeneous symmetric function;

(b) q̃µ(x; 0, t) = (−t)|µ|−`(µ)eµ(x), where eµ is the elementary symmetric function;

(c) q̃µ(x;q, q) = q|µ|−`(µ)pµ(x), where pµ is the power symmetric function.

The combinatorics of the symmetric functions q̃µ(x;q, t) is studied in depth in [RRW]. The

appropriate modifications to Theorem 2.1 give

〈q̃µ, q̃ν〉 = (q− t)−`(µ)−`(ν)
∑
M

w̃t(M), where w̃t(M) =
∏
x

(q− t)2t2(x−1)[x]q2t−2 ,

where the sum is over all nonnegative integer matrices M with row sums µ and column

sums ν, the product is over all nonzero entries x in the matrix M, and t2(x−1)[x]q2t−2 =
t2(x−1) + q2t2(x−2) + · · · + q2(x−2)t2 + q2(x−1). By specializing q and t, we have new proofs of

the following well-known formulas ([Mac, I (6.6) (iv), (6.7)(ii), (4.7)]):

(2.7a) 〈eµ, eν〉 is the number of nonnegative integer matrices with row sums µ and

column sums ν,

(2.7b) 〈hµ, hν〉 is the number of nonnegative integer matrices with row sums µ

and column sums ν,

(2.7c) 〈pµ, pν〉 = δµνzµ, where zµ = 1m1m1!2m2m2! · · · if µ is the partition µ =
(1m12m2 · · ·).

The adjoint of multiplication by q̃r

If f is a symmetric function, define f⊥ to be the adjoint of multiplication by f,with respect

to the inner product 〈, 〉, i.e.,

〈fg1, g2〉 = 〈g1, f
⊥g2〉 for all symmetric functions g1, g2.

In Section 3 we will prove the following recursion rule for the bitrace.
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Proposition 2.8. Let µ, ν |= n and ν = (ν1, . . . , ν`). Define ν′ = (ν1, . . . , ν`−1). Then

btr(µ, ν) =
∑
α

(q− 1)s(α,µ) btr(µ/α, ν′) btr(α, (ν`)),

where the sum is over all compositions α |= ν` such that α ⊆ µ and s(α, µ) = Card
({k | 0 <

αk < µk}
)
.

It follows from Theorem 2.1 that if α = (α1, . . . , αm) is a composition of n, then

btr(α, (n)) = (q− 1)`(α)−1
∏
αi 6=0

[αi]q2 .

Combining this formula with Proposition 2.8 and 1.9 gives the following corollary,where

we have done the necessary modifications to use q̃µ instead of qµ.

Corollary 2.9. Let r be a positive integer and let µ be a composition. Let q̃µ(x;q, t) be the

symmetric function defined in (2.6) and, if α is a composition contained in µ, let s(α, µ)

be as given in Proposition 2.8. Then

q̃⊥r q̃µ =
∑
α|=r

f(α, µ)q̃µ/α, where f(α, µ) = (q− t)`(α)−1+s(α,µ)
∏
αi 6=0

t2(αi−1)[αi]q2t−2 .

By specializing q and t, we get the following results:

(a) e⊥r eµ =
∑
α|=r eµ/α,

(b) h⊥r hµ =
∑
α|=r hµ/α, and

(c) p⊥r pµ = zµz−1
ν pν, if r is a part of µ, and ν is the partition obtained by removing

one part of size r from µ.

The result in (c) is well-known (see [Mac, I, §5, Ex. 3c]) and the results in (a) and (b) can

also be deduced directly from (2.7a) and (2.7b), above.

3 A recurrence relation for the bitrace

The Roichman formula

The starting point for the proof of our main result is a recent formula of Y. Roichman [Ro]

which expresses the irreducible character of the Iwahori-Hecke algebra as a weighted

sum over standard tableaux. Let µ, λ ` n be partitions of n and let Q be a standard
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tableau of shape λ. Then the µ-Roichman weight of Q is

rwtµq(Q) =
n∏
i=1
i6∈B(µ)

fµ(i,Q), where B(µ) = {µ1 + µ2 + · · · + µr | 1 ≤ r ≤ `(µ)}, and

fµ(i,Q) =


−1, if i+ 1 is southwest of i in Q,

0, if i+ 1 is northeast of i in Q, i+ 1 6∈ B(µ),

and i+ 2 is southwest of i+ 1 in Q,

q, otherwise.

In the definition of the Roichman weight, our notation for partitions and their Ferrers dia-

grams are as in [Mac]: “northeast” means weakly north and strictly east, and “southwest”

means strictly south and weakly west.

Theorem 3.1 [Ro]. If λ ` n and µ |= n, then

χλq(Tγµ ) =
∑
Q

rwtµq(Q),

where χλq is the irreducible character of Hn(q) indexed by the partition λ, and the sum is

taken over all standard tableaux Q of shape λ.

An elementary proof of (the type A case) Roichman’s theorem was given in [Ra2].

One of the ideas of [Ra2] was to convert the Roichman weight to a weight on sequences

as follows. A sequence w1, w2, . . . , wr of elements of {1, 2, . . . , n} has weight

wt(w1, w2, . . . , wr) =


1, if r = 1 or the sequence is empty;

(−1)t−1qr−t, if w1 < w2 < · · · < wt > wt+1 > · · · > wr;
0, otherwise.

If λ = (λ1, λ2, . . . , λ`) is a composition of n and w ∈ Sn is a permutation, define (w, λ) to be

the injective λ-tableau obtained by filling in the boxes of λ with w(1), w(2), . . . , w(n) from

left-to-right and top-to-bottom. Define

wtλ(w) = the product of the weights of the rows of (w, λ) and

wtλ(w) = wtλ(w
−1).

For w ∈ Sn, write w = [w1, w2, . . . , wn] if w(i) = wi for each 1 ≤ i ≤ n. If λ = (4, 3, 2) and

w = [2, 7, 5, 1, 9, 8, 3, 4, 6], then w−1 = [4, 1, 7, 8, 3, 9, 2, 6, 5],

(w, λ) =
2 7 5 1

9 8 3

4 6

, (w−1, λ) =
4 1 7 8

3 9 2

6 5

,

wtλ(w) = (−q2)(q2)(−1) = q4, and wtλ(w) = 0(−q)q = 0.
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The connection between this definition and the Roichman weight of a tableaux

Q is via Robinson-Schensted-Knuth (RSK) column insertion. (The original references for

the RSK insertion scheme are [Sz], [Sch], and [Kn]; for an expository treatment see [Sa].)

Applying RSK insertion on the sequence w produces a pair (P,Q) of standard tableaux of

the same shape λ ` n, where P is the result of insertion and Q is the so-called “recording

tableau.”

(a) RSK column insertion is a bijection between Sn and the set of all pairs of

standard tableaux (P,Q) having the same shape λ ` n.

(b) If applying RSK insertion tow ∈ Sn produces the pair (P,Q), then applying RSK

insertion to w−1 produces (Q,P) ([Scü], [Sa]).

(c) We have rwtµq(Q) = wtµ(w), where Q is the recording tableau produced by

column insertion of the sequence w = [w1, . . . , wn] (cf. [Ra2]).

Lemma 3.2. If µ, ν |= n, then

btr(µ, ν) =
∑
w∈Sn

wtµ(w) wtν(w).

Proof. By (1.4) and Theorem 3.1, we have

btr(µ, ν) =
∑
λ`n

χλq(Tγµ )χλq(Tγν ) =
∑
λ`n

∑
Q

rwtµq(Q)

(∑
P

rwtνq(P)

)
,

where the sums are over all standard tableaux Q (resp., P) of shape λ. If w ∈ Sn, let

(P(w), Q(w)) be the pair of tableaux obtained by performing RSK insertion of the sequence

w. Since RSK insertion is a bijection between Sn and all pairs of tableaux (P,Q) having

the same shape λ, as λ runs over all partitions of n, we have

btr(µ, ν) =
∑
λ`n

∑
P,Q

rwtµq(Q) rwtνq(P) =
∑
w∈Sn

rwtµq(Q(w)) rwtνq(P(w))

=
∑
w∈Sn

rwtµq(Q(w)) rwtνq(Q(w−1)) =
∑
w∈Sn

wtµ(w) wtν(w).

Proof of Theorem 2.1

Let Cn denote the set of compositions of n. For (w,µ) ∈ Sn×Cn, let (ŵ, λ) ∈ Sn−m×Cn−m be

the injective λ-tableau obtained by deleting {n−m+1, . . . , n} from (w,µ) and left justifying

the resulting tableau. Let (w/ŵ, µ/λ) be the diagram obtained by deleting {1, 2, . . . , n−m}
from (w,µ). Reading the elements of ((w/ŵ), µ/λ) from left to right and top to bottom, we

can vieww/ŵ as a permutation in the symmetric group S′m on {n−m+1, n−m+2, . . . , n}.
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We write (w,µ)→((ŵ, λ), (w/ŵ, µ/λ)). As an example, let m = 6, µ = (4, 3, 2, 2), and w =
[2, 7, 6, 1, 9, 8, 3, 11, 10, 4, 5] ∈ S11. Then the deletion of {6, 7, 8, 9, 10, 11} from

(w,µ) =

2 7 6 1

9 8 3

11 10

4 5

is ((ŵ, λ), (w/ŵ, µ/λ)),

where

(ŵ, λ) =

2 1

3

4 5

and (w/ŵ, µ/λ) =

7 6

9 8

11 10
.

Thus, ŵ = [2, 1, 3, 4, 5] ∈ S5, λ = (2, 1, 0, 2), and w/ŵ = [7, 6, 9, 8, 11, 10] ∈ S′6.

Lemma 3.3. Assume that (w,µ)→((ŵ, λ), (w/ŵ, µ/λ)) denotes the deletion of {n − m +
1, . . . , n}. If wtµ(w) 6= 0, then

(a) in each row of (w,µ), the elements from {n−m+1, . . . , n} appear in a contiguous

block;

(b) wtλ(ŵ) 6= 0 (thus the rows of (ŵ, λ) form up-down sequences).

(c) wtµ/λ(w/ŵ) 6= 0 (thus the rows of (w/ŵ, µ/λ) form up-down sequences).

(d) In each row of (w,µ), the elements from {n−m+1, . . . , n} appear either imme-

diately to the left or immediately to the right of the largest element from {1, 2, . . . , n−m}.

Proof.

(a) If wtµ(w) 6= 0, then within each row of (w,µ) the elements from {n−m+1, . . . , n}
must appear in a contiguous block; otherwise we go down from elements of {n − m +
1, . . . , n} to elements of {1, . . . , n−m} and back up to elements of {n−m+ 1, . . . , n}. This

down-up configuration would give a zero in the weight of that row.

(b)–(c) If either (ŵ, λ) or (w/ŵ, µ/λ) contains a down-up subsequence in one of its

rows, then, since the elements from {n−m+1, . . . , n} are contiguous in that row of (w,µ),

there is necessarily a down-up sequence in that row of (w,µ). Thus, wtµ(w) = 0.

(d) Suppose that (ŵ, λ) and (w/ŵ, µ/λ) are given. Consider the places where the

elements in the kth row of (w/ŵ, µ/λ) can be inserted into the kth row of (ŵ, λ) to form an

injective tableau (w,µ) such that wtµ(w) 6= 0.

(i) If λk = 0, then row k of (w,µ) is equal to row k of (w/ŵ, µ/λ).

(ii) If λk = µk, then row k of (w,µ) is equal to row k of (ŵ, λ).

(iii) Assume that 0<λk<µk, let a1 < a2 < · · · < at−1 < at > at+1 > · · · > ar
be the kth row of (ŵ, λ), and let b1 < b2 < · · · < bt > bt+1 > · · · > bs
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be the kth row of w/ŵ. Then, keeping in mind that all of the b’s

are bigger than the peak at, we see that the only two possible kth

rows of (w,µ) are

(L) a1 < a2 < · · · < at−1 < b1 < b2 < · · · < bt > bt+1 > · · · > bs︸ ︷︷ ︸
> at > at+1 > · · · > ar,

(R) a1 < a2 < · · · < at−1 < at < b1 < b2 < · · · < bt > bt+1 > · · · > bs︸ ︷︷ ︸
> at+1 > · · · > ar.

In the proof of Lemma 2.4 (d), the insertion in the case of (L) is a left insertion, and

the insertion in the case of (R) is a right insertion. Each (w,µ)→ ((ŵ, λ), (w/ŵ, µ/λ)) with

wtµ(ŵ) 6= 0 gives rise to a unique sequence I = (I1, I2, . . . , I`(µ)), where for each nonempty

row k of µ we have

Ik =


T, if λk = 0 or λk = µk,
L, if in row k a left insertion takes ((ŵ, λ), (w/ŵ, µ/λ)) to (w,µ),

R, if in row k a right insertion takes ((ŵ, λ), (w/ŵ, µ/λ)) to (w,µ).

In our example, the insertion sequence is I = (R,L,T,T).

Given compositions µ |= n and λ |= (n −m) with λ ⊆ µ, we define the following

sets:

Wµ→λ
n = {w ∈ Sn | wtµ(w) 6= 0 and (w,µ)→((ŵ, λ), (w/ŵ, µ/λ)) for some ŵ ∈ Sn−m},

Wλ
n−m = {x ∈ Sn−m | wtλ(x) 6= 0},

Wµ/λ
m = {y ∈ S′m | wtµ/λ(y) 6= 0},

I(µ, λ) =
{

(I1, I2, . . . , I`(µ))

∣∣∣∣∣ Ik ∈ {T}, if λk = 0 or λk = µk, and

Ik ∈ {L,R}, if 0 < λk < µk

}
.

Then we have a bijection

W
µ→λ
n −→ Wλ

n−m ×Wµ/λ
m × I(µ, λ),

w 7−→ (ŵ,w/ŵ, I).
(3.4)

Lemma 3.5. Let µ, ν |= n with ν = (ν1, . . . , ν`). Let ν′ = (ν1, . . . , ν`−1) and m = ν`. Assume

that wtµ(ŵ) 6= 0 and let

(w,µ)→((ŵ, λ), (w/ŵ, µ/λ), I)

denote the deletion of {n−m+ 1, . . . , n} from (w,µ). Then

(a) wtµ(w) = (−1)R(I)qL(I) wtλ(ŵ) wtµ/λ(w/ŵ), where L(I) is the number of Ls in the

insertion sequence I and R(I) is the number of Rs in I, and

(b) wtν(w) = wtν
′
(ŵ) wt(m)(w/ŵ).



Bitraces and Symmetric Functions 413

Proof. (a) If λk = 0, the weight of row k is the weight of row k of (w/ŵ, µ/λ). If λk = µk,
the weight of row k is the weight of row k of (ŵ, λ). If 0 < λk < µk, then we are either in the

situation of (L) or (R) (as in the proof of Lemma 3.3). In case (L), an extra > is introduced

and the weight of row k inw is q times the product of the weights in row k of ŵ andw/ŵ.

In case (R), an extra < is added and the weight of row k in w is −1 times the product of

the weights in row k of ŵ and w/ŵ. The corollary is now proved by taking the product of

the weights of each row.

(b) During the deletion process, when we break w into ŵ and w/ŵ, we maintain

the relative positions of the elements 1, 2, . . . , n−m and maintain the relative positions

of the elements n−m+ 1, n−m+ 2, . . . , n. The last row of the tableau (w−1, ν) contains

the positions of n−m+ 1, n−m+ 2, . . . , n in w. Relative to one another, these positions

are the same in w as they are in w/ŵ. Thus the weight of the last row of (w−1, ν) equals

wt(m)(w/ŵ). The rows before the last row of the tableau (w−1, ν) contain the positions of

1, 2, . . . , n−m inw and they are the same relative to one another as in ŵ. Thus the product

of the weights on the rows before the last row equals wtν
′
(ŵ).

Proposition 3.6. Let µ, ν |= n, ν = (ν1, . . . , ν`), and ν′ = (ν1, . . . , ν`−1). Then

btr(µ, ν) =
∑

λ|=(n−ν` )
λ⊆µ

(q− 1)s(λ,µ) btr(λ, ν′) btr(µ/λ, (ν`))

where the sum is over all compositions λ of n− ν` that are contained in µ and

s(λ, µ) = Card
({k | 0 < λk < µk}).

Proof. Letm = ν`. When we compute the bitrace,we will sum over only the w ∈ Sn with

wtµ(w) 6= 0, and we use Lemma 3.2, the bijection 3.4, and Lemma 3.5 as follows:

btr(µ, ν) =
∑
w∈Sn

wtµ(w) wtν(w)

=
∑

λ|=(n−m)
λ⊆µ

∑
w∈Wµ→λ

n

wtµ(w) wtν(w)

=
∑

λ|=(n−m)
λ⊆µ

∑
w∈Wµ→λ

n

(−1)R(I)qL(I) wtλ(ŵ) wtµ/λ(w/ŵ) wtν
′
(ŵ) wt(m)(w/ŵ)

=
∑

λ|=(n−m)
λ⊆µ

∑
x∈Wλ

n−m

∑
y∈Wµ/λ

m

∑
I∈I(µ,λ)

(−1)R(I)qL(I) wtλ(x) wtµ/λ(y) wtν
′
(x) wt(m)(y)

=
∑

λ|=(n−m)
λ⊆µ

∑
x∈Wλ

n−m

wtλ(x) wtν
′
(x)
∑

y∈Wµ/λ
m

wtµ/λ(y) wt(m)(y)
∑
I∈I(µ,λ)

(−1)R(I)qL(I)

=
∑

λ|=(n−m)
λ⊆µ

btr(λ, ν′) btr(µ/λ, (m))
∑
I∈I(µ,λ)

(−1)R(I)qL(I).
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In each row k where 0 < λk < µk, there are two possibilities in making the insertion

sequence I. The left insertions give a multiple of q and the right insertions give a multiple

of −1. Thus,

∑
I∈I(µ,λ)

(−1)R(I)qL(I) = (q− 1)s(λ,µ).

Proposition 3.7.

(a) btr((n), (n)) = [n]q2 .

(b) btr(α, (n)) = (q− 1)`(α)−1
∏
αi 6=0

[αi]q2 if α is the composition α = (α1, α2, . . . , αm).

Proof. (a) The elements w ∈ Sn such that wt(n)(w) wt(n)(w) 6= 0 are

w(r) = [1, 2, . . . , r, n, n− 1, n− 2, . . . , r+ 2, r+ 1],

where 0 ≤ r ≤ n− 1 and the case r = 0 is to be interpreted as meaning w(1) = n. Observe

that (w(r))−1 = w(r); hence

wt(n)(w
(r)) wt(n)(w(r)) = ((−1)rqn−r−1)2 = q2(n−r−1)

for 0 ≤ r ≤ n− 1. Thus,

btr((n), (n)) =
∑
w∈Sn

wt(n)(w) wt(n)(w) =
n−1∑
r=0

q2(n−r−1) = [n]q2 .

(b) First note that btr(α, (n)) = btr((n), α). Now use Proposition 3.6 and part (a).

Now we complete the proof of Theorem 2.1.

Proof. Let µ, ν |= n and suppose that ν = (ν1, . . . , ν`). By induction on Proposition 3.6,

we have that

btr(µ, ν) =
∑
L

`(ν)∏
k=1

(q− 1)s(λ
(k),λ(k−1)) btr(λ(k)/λ(k−1), (νk)),

where the sum is over all sequences

L = (∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(`) = µ) (3.8)

of compositions such that |λ(i)/λ(i−1)| = νi for each 1 ≤ i ≤ `. Note also that

btr(λ(k)/λ(k−1), (νk)) is determined by Proposition 3.7 (b).
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We can encode each sequence L = (∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(`) = µ) appearing in the

sum in (3.8) as an `(µ) × `(ν) matrix of nonnegative integers M by defining its (i, k)-entry

to be

(M)ik = λ(k)
i − λ(k)

i−1.

In other words, the composition λ(k) − λ(k−1) runs down the kth column of the matrix M.

The matrixM has nonnegative integer entries and has row sums given by the vector µ and

column sums given by the vector ν; this encoding procedure defines a bijection between

the sequences L appearing in (3.8), and the nonnegative integer matrices M with row

sums µ and column sums ν.

Let P(M) denote the multiset of nonzero entries in M. Notice that

`(λ(k)/λ(k−1)) = the number of nonzero entries in column k of M,

s(λ(k−1), λ(k)) = the number of nonzero entries in column k of M

which are not preceded in their row by all zeros

where, in the second case, we assume that the 0th column is a column of all zeros. Thus,∏̀
k=1

(q− 1)s(λ
(k−1),λ(k)) =

∏
columns

ofM

(q− 1)s(λ
(k−1),λ(k)) = (q− 1)−`(µ)

∏
x∈P(M)

(q− 1),

and
`∏
k=1

(q− 1)`(λ
(k)/λ(k−1)) =

∏
x∈P(M)

(q− 1).

It follows that

`∏
k=1

(q− 1)s(λ
(k),λ(k−1)) btr(λ(k)/λ(k−1), (νk))

= (q− 1)−`(µ)

( ∏
x∈P(M)

(q− 1)

) `∏
k=1

(q− 1)`(α
(k))−1

∏
α

(k)
i
6=0

[α(k)
i ]q2


= (q− 1)−`(µ)−`(ν)

∏
x∈P(M)

(q− 1)2[x]q2

where, for simplicity of notation, we have let α(k) = λ(k)/λ(k−1).
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