Iwahori-Hecke Algebras of Type A, Bitraces and Symmetric Functions

Tom Halverson, Robert Leduc, and Arun Ram

1 The bitrace of the regular representation of $\mathcal{H}_n(q)$

Compositions and partitions

We use the notation $\lambda \models n$ to indicate that λ is a composition of n; that is, $\lambda = (\lambda_1, \lambda_2, ...)$ where the parts, λ_i , are nonnegative for all i and $\sum_i \lambda_i = n$. We write $\lambda \vdash n$ if λ is a partition of n, i.e., $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell$. The length $\ell(\lambda)$ is the number of nonzero parts of λ . If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell)$ are compositions such that $\lambda_i \le \mu_i$ for $1 \le i \le \ell$, then we write $\lambda \subseteq \mu$ and denote their difference or skew shape by μ/λ . In general, we adopt the notation of [Mac] for partitions and symmetric functions.

The Iwahori-Hecke Algebra

Let S_n denote the symmetric group on $\{1, 2, ..., n\}$, and let $q \in \mathbb{C}$ such that $q \neq 0$ and q is not a root of unity. The Iwahori-Hecke algebra $\mathcal{H}_n(q)$ corresponding to S_n is the algebra over \mathbb{C} given by generators $1, T_1, T_2, ..., T_{n-1}$ and relations

$$\begin{split} T_i T_j &= T_j T_i, & \text{ if } |i - j| > 1, \\ T_i T_{i+1} T_i &= T_{i+1} T_i T_{i+1}, & \text{ for } 1 \leq i \leq n-2, \\ T_i^2 &= (q-1) T_i + q, & \text{ for } 1 \leq i \leq n-1. \end{split}$$

Let $s_i = (i, i + 1) \in S_n$ denote the simple transposition that exchanges i and i + 1. Given a reduced word $w = s_{i_1}s_{i_2}\cdots s_{i_k} \in S_n$, let $T_w = T_{i_1}T_{i_2}\cdots T_{i_k} \in \mathcal{H}_n(q)$. The element T_w is well-defined (independent of choice of the reduced word for w). The elements $T_w, w \in S_n$, form a basis of $\mathcal{H}_n(q)$.

Received 18 November 1996. Revision received 13 March 1997.

The irreducible representations of $\mathcal{H}_n(q)$ are labeled by the partitions $\lambda \vdash n$, and their traces χ_q^{λ} are the irreducible characters of $\mathcal{H}_n(q)$. A *character* of $\mathcal{H}_n(q)$ is a linear map $\chi: \mathcal{H}_n(q) \to \mathbb{C}$ which satisfies $\chi(ab) = \chi(ba)$ for all $a, b \in \mathcal{H}_n(q)$. Let $\gamma_r = (1, 2, ..., r) \in S_r$ in cycle notation, and for a composition $\mu = (\mu_1, ..., \mu_\ell) \models n$ define $\gamma_{\mu} = \gamma_{\mu_1} \times \cdots \times \gamma_{\mu_\ell} \in$ $S_{\mu_1} \times \cdots \times S_{\mu_\ell}$. Any character of $\mathcal{H}_n(q)$ is completely determined by its values on the elements $T_{\gamma_{\mu}}, \mu \vdash n$ (see [Ca] and [Ra1]).

The bitrace

Let $x, y \in S_n$ and define

$$\operatorname{btr}(\mathsf{T}_{\mathsf{x}},\mathsf{T}_{\mathsf{y}}) = \sum_{z \in S_{\mathfrak{n}}} \mathsf{T}_{\mathsf{x}}\mathsf{T}_{z}\mathsf{T}_{\mathsf{y}}\big|_{\mathsf{T}_{z}},\tag{1.2}$$

where $T_x T_z T_y|_{T_z}$ denotes the coefficient of the basis element T_z when $T_x T_z T_y$ is expanded in terms of the basis T_w , $w \in S_n$. If $x \in S_n$, let L_x and R_x denote the linear transformations of $\mathcal{H}_n(q)$ induced by the action of T_x on $\mathcal{H}_n(q)$ by left multiplication and by right multiplication, respectively. If $x, y \in S_n$, then L_x and R_y commute and

$$btr(T_x, T_y) = Tr(L_x R_y).$$
(1.3)

Left and right multiplication make $\mathcal{H}_{n}(q)$ into a bimodule and, by double centralizer theory, we have

$$\mathfrak{H}_{\mathfrak{n}}(\mathfrak{q})\cong \bigoplus_{\lambda\vdash\mathfrak{n}} \mathfrak{H}_{\lambda}\otimes \mathfrak{H}^{\lambda},$$

as $\mathcal{H}_n(q)$ -bimodules, where H_λ is the irreducible left $\mathcal{H}_n(q)$ -module labeled by λ , and H^λ is the irreducible right $\mathcal{H}_n(q)$ -module labeled by λ . Taking traces on both sides of this identity gives

$$btr(T_x, T_y) = \sum_{\lambda \vdash n} \chi_q^{\lambda}(T_x) \chi_q^{\lambda}(T_y).$$
(1.4)

This formula is an $\mathcal{H}_n(q)$ analogue of the second orthogonality relation for the irreducible characters of the symmetric group S_n .

Keeping in mind that any character of $\mathcal{H}_n(q)$ is completely determined by its values on the elements $T_{\gamma_{\mu}}$, $\mu \vdash n$, we define

$$btr(\mu, \nu) = btr(T_{\gamma_{\mu}}, T_{\gamma_{\nu}})$$
(1.5)

for any two compositions $\mu, \nu \models n$.

An inner product on $\mathcal{H}_n(q)$

Suppose that q is a prime power and let \mathbb{F}_q be the finite field with q elements. Let B be the subgroup of the general linear group $GL_n(\mathbb{F}_q)$ consisting of upper-triangular matrices. Let 1_B^G be the $GL_n(\mathbb{F}_q)$ -module which, as a vector space, is the linear span of the cosets in G/B and where the G-action on cosets is by left multiplication. There is a natural action of $\mathcal{H}_n(q)$ on 1_B^G and

$$\mathcal{H}_{n}(q) \cong \mathrm{End}_{\mathrm{G}}(1_{\mathrm{B}}^{\mathrm{G}}).$$

Let $w \in S_n$. Then the trace of the action of T_w on 1_B^G is given by the formula

$$tr(T_w) = \begin{cases} [n]!, & \text{if } w \text{ is the identity,} \\ 0, & \text{otherwise,} \end{cases}$$

where $[n] = 1 + q + q^2 + \cdots + q^{n-1}$ and $[n]! = [n][n-1]\cdots [2][1]$. Define a bilinear form on $\mathcal{H}_n(q)$ by

$$\langle a,b
angle = rac{1}{|n|!} \operatorname{tr}(ab), \quad ext{for } a,b\in \mathcal{H}_n(q).$$

Note that the inner product $\langle a, b \rangle$ is the coefficient of 1 in the product ab. The dual basis to the basis $T_w, w \in S_n$, with respect to the inner product \langle, \rangle , is the basis $q^{-\ell(w)}T_{w^{-1}}, w \in S_n$.

Very general arguments [CR, 9.17], which work for any semisimple algebra, combined with the computation of the generic degrees in type A ([Ca2, 13.5] or [Hf, 3.4.14]), will show that

$$\sum_{w \in S_n} \chi^{\lambda}(\mathsf{T}_w) \chi^{\mu}(\mathsf{q}^{-\ell(w)}\mathsf{T}_{w^{-1}}) = \delta_{\lambda\mu} \mathfrak{n}! \frac{\mathsf{q}^{-\mathfrak{n}(\lambda)} \mathsf{H}_{\lambda}(\mathsf{q})}{\mathfrak{h}(\lambda)},$$
(1.6)

where

$$h(\lambda) = \prod_{x \in \lambda} h(x), \quad H_{\lambda}(q) = \prod_{x \in \lambda} \frac{1 - q^{h(x)}}{1 - q}, \quad n(\lambda) = \sum_{i=1}^{\ell(\lambda)} (i - 1)\lambda_i, \quad \text{and}$$

if $x \in \lambda$ is the box in position (i, j) in λ , then $h(x) = \lambda_i + \lambda'_j - i - j + 1$ is the hook length at x. Formula (1.6) is the $\mathcal{H}_n(q)$ -analogue of the first orthogonality relation for the irreducible characters of the symmetric group S_n .

For any element $x \in S_n$, define

$$[T_x] = \sum_{w \in S_n} T_w T_x q^{-\ell(w)} T_{w^{-1}}$$

This is some sort of analogue of a conjugacy class sum in the group algebra of $S_n.$ If $x,y\in S_n,$

$$\begin{split} \langle \mathsf{T}_x, [\mathsf{T}_y] \rangle &= \sum_{\mathsf{w} \in S_n} \langle \mathsf{T}_x, \mathsf{T}_w \mathsf{T}_y \, q^{-\ell(\mathsf{w})} \mathsf{T}_{\mathsf{w}^{-1}} \rangle = \sum_{\mathsf{w} \in S_n} \frac{1}{|\mathsf{n}|!} q^{-\ell(\mathsf{w})} \operatorname{tr}(\mathsf{T}_x \mathsf{T}_w \mathsf{T}_y \mathsf{T}_{\mathsf{w}^{-1}}) \\ &= \sum_{\mathsf{w} \in S_n} \langle \mathsf{T}_x \mathsf{T}_w \mathsf{T}_y, q^{-\ell(\mathsf{w})} \mathsf{T}_{\mathsf{w}^{-1}} \rangle = \sum_{\mathsf{w} \in S_n} \left. \mathsf{T}_x \mathsf{T}_w \mathsf{T}_y \right|_{\mathsf{T}_w}, \end{split}$$

and thus

$$\langle \mathsf{T}_{\mathsf{x}}, [\mathsf{T}_{\mathsf{y}}] \rangle = \langle [\mathsf{T}_{\mathsf{x}}], \mathsf{T}_{\mathsf{y}} \rangle = \mathrm{btr}(\mathsf{T}_{\mathsf{x}}, \mathsf{T}_{\mathsf{y}}). \tag{1.7}$$

Specializing q to 1

For each $\mu \vdash n$, the character $\chi_q^{\lambda}(T_{\gamma_{\mu}})$ is a polynomial in q with integer coefficients and

$$\chi_{q}^{\lambda}(\mathsf{T}_{\gamma_{\mu}})\big|_{q=1} = \chi^{\lambda}(\mu)$$

where $\chi^{\lambda}(\mu)$ denotes the irreducible character of the symmetric group S_n corresponding to the partition λ evaluated at a permutation of cycle type μ . It follows from (1.4) and the second orthogonality relation for the characters of the symmetric group that

$$\begin{split} btr(\mu,\nu)\big|_{q=1} &= \sum_{\lambda\vdash n} \chi^{\lambda}(\mu)\chi^{\lambda}(\nu) = \delta_{\mu\nu}z_{\mu}, \quad \text{where } z_{\mu} = 1^{m_1}m_1!2^{m_2}m_2!\cdots \\ \text{if } \mu \text{ is the partition } \mu = (1^{m_1}2^{m_2}\cdots). \end{split}$$

Symmetric functions

Let x_1, x_2, \ldots, x_n be commuting variables. Define $q_0(x_1, x_2, \ldots, x_n; q) = 1$ and for r > 0, define $q_r(x_1, x_2, \ldots, x_n; q)$ by the generating function

$$\prod_{i=1}^{n} \frac{1 - x_i z}{1 - q x_i z} = 1 + (q - 1) \sum_{r > 0} q_r(x; q) z^r$$

For a composition $\mu = (\mu_1, \mu_2, \dots, \mu_\ell)$, define $q_\mu(x; q) = q_{\mu_1} q_{\mu_2} \cdots q_{\mu_\ell}$. From [Ra1], [VK], [KW] we know that if $\mu \models n$,

$$q_{\mu}(\mathbf{x};\mathbf{q}) = \sum_{\lambda \vdash n} \chi_{\mathbf{q}}^{\lambda}(\mathsf{T}_{\gamma_{\mu}}) s_{\lambda}(\mathbf{x}), \tag{1.8}$$

where $s_{\lambda}(x)$ is the Schur function corresponding to λ (see [Mac]). There is a standard inner product on the ring of symmetric functions given by $\langle s_{\mu}, s_{\nu} \rangle = \delta_{\mu\nu}$ for all partitions μ, ν . It follows from (1.8) and (1.4) that

$$btr(\mu,\nu) = \langle q_{\mu}(x;q), q_{\nu}(x;q) \rangle.$$
(1.9)

Summary

Proposition 1.10. Let $\mu, \nu \models n$. With notation as above,

$$btr(\mu,\nu) = \sum_{\lambda \vdash n} \chi_{q}^{\lambda}(T_{\gamma\mu})\chi_{q}^{\lambda}(T_{\gamma\nu}) = \sum_{w \in S_{n}} T_{\gamma\mu}T_{w}T_{\gamma\nu}\big|_{T_{w}} = \langle q_{\mu}(x;q), q_{\nu}(x;q) \rangle = \langle T_{\gamma\mu}, [T_{\gamma\nu}] \rangle$$

and, for partitions $\mu, \nu \vdash n$,

$$\operatorname{btr}(\mu, \nu)\Big|_{a=1} = \delta_{\mu\nu} z_{\mu},$$

where $z_{\mu} = 1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots$ if μ is the partition $\mu = (1^{m_1} 2^{m_2} \cdots)$.

2 The main theorem and corollaries

The following theorem is the main result of this paper and will be proved in Section 3.

Theorem 2.1. Let $\mu, \nu \models n, \mu = (\mu_1, \dots, \mu_\ell)$, and $\nu = (\nu_1, \dots, \nu_m)$. Then

$$btr(\mu,\nu)=(q-1)^{-\ell(\mu)-\ell(\nu)}\sum_{M}wt(M),$$

where the sum is over all $\ell \times m$ nonnegative integer matrices with row sums μ_1, \ldots, μ_ℓ , column sums ν_1, \ldots, ν_m , and

$$\operatorname{wt}(M) = \prod_{x \in \mathcal{P}(M)} (q-1)^2 [x]_{q^2},$$

where $\mathcal{P}(M)$ is the multiset of nonzero entries x in the matrix M and $|x|_{q^2} = 1 + q^2 + q^4 + \cdots + q^{2(x-1)}$.

The trace of the regular representation of $\mathcal{H}_n(q)$

Our main theorem has the following immediate corollary. This result has been obtained in the paper [RR] by a different method.

Corollary 2.2 [RR]. The trace of the regular representation of the Iwahori-Hecke algebra $\mathcal{H}_n(q)$ is given by

$$\mathrm{Tr}(\mathsf{T}_{\gamma_{\mu}}) = (\mathsf{q}-1)^{n-\ell(\mu)} \frac{n!}{\mu_{1}!\mu_{2}!\cdots\mu_{\ell}!}, \quad \text{for all compositions } \mu = (\mu_{1},\ldots,\mu_{\ell}) \models n. \quad \Box$$

Proof. It follows from (1.3) that the trace of the regular representation is given by the formula $Tr(T_{\gamma\mu}) = btr(\mu, (1^n))$. Applying Theorem 2.1, we find that the sum is over all nonzero matrices with column sums (1^n) , and these are precisely the set of matrices which have exactly one 1 in each column and all the rest 0's. The weight of such a matrix is $(q - 1)^{2n}$, and the number of such matrices is $n!/(\mu_1!\mu_2!\cdots\mu_\ell!)$.

Inner products of symmetric functions

For a nonnegative integer r, define the symmetric function t_r by the formula

$$\sum_{r\geq 0} t_r(x;q) z^r = \prod_i \frac{(1-qx_i z)^2}{(1-q^2 x_i z)(1-x_i z)};$$
(2.3)

and, for a composition $\mu = (\mu_1, \mu_2, \dots, \mu_\ell)$, define $t_{\mu}(x; q) = t_{\mu_1} t_{\mu_2} \cdots t_{\mu_\ell}$.

Corollary 2.4. If $\mu, \nu \models n$, then

$$\operatorname{btr}(\mu, \nu) = (q - 1)^{-\ell(\mu) - \ell(\nu)} \left. \operatorname{t}_{\mu}(x; q) \right|_{\mathfrak{m}_{\nu}},$$

where $t_{\mu}(x;q)|_{m_{\nu}}$ denotes the coefficient of the monomial symmetric function m_{ν} in the symmetric function t_{μ} .

Proof. We have

$$\frac{1}{1-q^2x} - \frac{1}{1-x} = (q^2 - 1)x + (q^4 - 1)x^2 + \cdots.$$

So

$$\left(\frac{1}{q^2-1}\right)\frac{(q^2-1)x}{(1-q^2x)(1-x)} = [1]_{q^2}x + [2]_{q^2}x^2 + \cdots,$$

and thus

$$\frac{(1-qx)^2}{(1-q^2x)(1-x)} = 1 + \left(\frac{(q-1)^2}{q^2-1}\right)\frac{(q^2-1)x}{(1-q^2x)(1-x)} = 1 + \sum_{k\geq 1} (q-1)^2 [k]_{q^2} x^k.$$

The result now follows from the interpretation of the bitrace as a weighted sum over nonnegative integer matrices.

Corollary 2.5. Let $\mu, \nu \models n$ and let q_{μ} and t_{μ} be the symmetric functions defined in (1.8) and (2.3), respectively. Then

$$\langle q_{\mu}(\mathbf{x};\mathbf{q}),q_{\nu}(\mathbf{x};\mathbf{q})\rangle = (\mathbf{q}-1)^{-\ell(\mu)-\ell(\nu)}\langle t_{\mu}(\mathbf{x};\mathbf{q}),h_{\nu}(\mathbf{x})\rangle,$$

where $h_v(x)$ is the homogeneous symmetric function and \langle, \rangle is the inner product on symmetric functions that makes the Schur functions orthonormal.

Proof. This result follows immediately from Corollary 2.4 by noting that the homogeneous symmetric functions h_{μ} are the dual basis to the monomial symmetric functions m_{μ} with respect to the inner product \langle , \rangle .

Specializations of $\langle q_{\mu},q_{\nu}\rangle$

Define $\tilde{q}_0(x;q,t)=1$ and, for positive integers r, define symmetric functions $\tilde{q}_r(x;q,t)$ by the formula

$$(q-t)\sum_{r\geq 0}\tilde{q}_{r}(x;q,t)z^{r}=\prod_{i}\frac{(1-tx_{i}z)}{(1-qx_{i}z)}.$$
(2.6)

For a composition $\mu = (\mu_1, \mu_2, \dots, \mu_\ell)$, define $\tilde{q}_{\mu}(x; q, t) = \tilde{q}_{\mu_1} \tilde{q}_{\mu_2} \cdots \tilde{q}_{\mu_\ell}$. These symmetric functions differ from the symmetric functions $q_{\mu}(x; q)$ only by a change in normalization. On the other hand, they have the advantage that one can specialize either q, or t, or both as follows:

(a) $\tilde{q}_{\mu}(x;q,0) = q^{|\mu|-\ell(\mu)}h_{\mu}(x)$, where h_{μ} is the homogeneous symmetric function;

(b) $\tilde{q}_{\mu}(x; 0, t) = (-t)^{|\mu| - \ell(\mu)} e_{\mu}(x)$, where e_{μ} is the elementary symmetric function;

(c)
$$\tilde{q}_{\mu}(x;q,q) = q^{|\mu|-\ell(\mu)}p_{\mu}(x)$$
, where p_{μ} is the power symmetric function.

The combinatorics of the symmetric functions $\tilde{q}_{\mu}(x;q,t)$ is studied in depth in [RRW]. The appropriate modifications to Theorem 2.1 give

$$\langle \tilde{q}_{\mu}, \tilde{q}_{\nu} \rangle = (q-t)^{-\ell(\mu)-\ell(\nu)} \sum_{M} \widetilde{\text{wt}}(M), \quad \text{where } \ \widetilde{\text{wt}}(M) = \prod_{x} (q-t)^2 t^{2(x-1)} [x]_{q^2 t^{-2}},$$

where the sum is over all nonnegative integer matrices M with row sums μ and column sums ν , the product is over all nonzero entries x in the matrix M, and $t^{2(x-1)}[x]_{q^2t^{-2}} =$ $t^{2(x-1)} + q^2t^{2(x-2)} + \cdots + q^{2(x-2)}t^2 + q^{2(x-1)}$. By specializing q and t, we have new proofs of the following well-known formulas ([Mac, I (6.6) (iv), (6.7)(ii), (4.7)]):

- (2.7a) $\langle e_{\mu},e_{\nu}\rangle$ is the number of nonnegative integer matrices with row sums μ and column sums $\nu,$
- (2.7b) $\langle h_{\mu},h_{\nu}\rangle$ is the number of nonnegative integer matrices with row sums μ and column sums $\nu,$
- (2.7c) $\langle p_{\mu}, p_{\nu} \rangle = \delta_{\mu\nu} z_{\mu}$, where $z_{\mu} = 1^{m_1} m_1 ! 2^{m_2} m_2 ! \cdots$ if μ is the partition $\mu = (1^{m_1} 2^{m_2} \cdots)$.

The adjoint of multiplication by \tilde{q}_r

If f is a symmetric function, define f^{\perp} to be the adjoint of multiplication by f, with respect to the inner product \langle, \rangle , i.e.,

$$\langle fg_1, g_2 \rangle = \langle g_1, f^{\perp}g_2 \rangle$$
 for all symmetric functions g_1, g_2 .

In Section 3 we will prove the following recursion rule for the bitrace.

408 Halverson, Leduc, and Ram

Proposition 2.8. Let $\mu, \nu \models n$ and $\nu = (\nu_1, \dots, \nu_\ell)$. Define $\nu' = (\nu_1, \dots, \nu_{\ell-1})$. Then

$$btr(\mu,\nu) = \sum_{\alpha} (q-1)^{s(\alpha,\mu)} \, btr(\mu/\alpha,\nu') \, btr(\alpha,(\nu_\ell)),$$

where the sum is over all compositions $\alpha \models \nu_{\ell}$ such that $\alpha \subseteq \mu$ and $s(\alpha, \mu) = Card(\{k \mid 0 < \alpha_k < \mu_k\})$.

It follows from Theorem 2.1 that if $\alpha = (\alpha_1, \dots, \alpha_m)$ is a composition of n, then

$$\operatorname{btr}(\alpha,(n)) = (q-1)^{\ell(\alpha)-1} \prod_{\alpha_i \neq 0} |\alpha_i|_{q^2}.$$

Combining this formula with Proposition 2.8 and 1.9 gives the following corollary, where we have done the necessary modifications to use \tilde{q}_{μ} instead of q_{μ} .

Corollary 2.9. Let r be a positive integer and let μ be a composition. Let $\tilde{q}_{\mu}(x; q, t)$ be the symmetric function defined in (2.6) and, if α is a composition contained in μ , let $s(\alpha, \mu)$ be as given in Proposition 2.8. Then

$$\tilde{\mathfrak{q}}_{r}^{\perp}\tilde{\mathfrak{q}}_{\mu}=\sum_{\alpha\models r}\mathfrak{f}(\alpha,\mu)\tilde{\mathfrak{q}}_{\mu/\alpha},\qquad\text{where }\mathfrak{f}(\alpha,\mu)=(q-t)^{\ell(\alpha)-1+s(\alpha,\mu)}\prod_{\alpha_{i}\neq 0}t^{2(\alpha_{i}-1)}[\alpha_{i}]_{q^{2}t^{-2}}.\quad \Box$$

By specializing q and t, we get the following results:

The result in (c) is well-known (see [Mac, I, §5, Ex. 3c]) and the results in (a) and (b) can also be deduced directly from (2.7a) and (2.7b), above.

3 A recurrence relation for the bitrace

The Roichman formula

The starting point for the proof of our main result is a recent formula of Y. Roichman [Ro] which expresses the irreducible character of the Iwahori-Hecke algebra as a weighted sum over standard tableaux. Let $\mu, \lambda \vdash n$ be partitions of n and let Q be a standard

tableau of shape λ . Then the μ -Roichman weight of Q is

$$\begin{split} \mathrm{rwt}_{q}^{\mu}(Q) &= \prod_{\substack{i=1\\ i \notin B(\mu)}}^{n} f_{\mu}(i,Q), \quad \text{where } B(\mu) = \{\mu_{1} + \mu_{2} + \dots + \mu_{r} \mid 1 \leq r \leq \ell(\mu)\}, \text{ and} \\ f_{\mu}(i,Q) &= \begin{cases} -1, & \text{if } i+1 \text{ is southwest of } i \text{ in } Q, \\ 0, & \text{if } i+1 \text{ is northeast of } i \text{ in } Q, i+1 \notin B(\mu), \\ & \text{ and } i+2 \text{ is southwest of } i+1 \text{ in } Q, \\ q, & \text{ otherwise.} \end{cases} \end{split}$$

In the definition of the Roichman weight, our notation for partitions and their Ferrers diagrams are as in [Mac]: "northeast" means weakly north and strictly east, and "southwest" means strictly south and weakly west.

Theorem 3.1 [Ro]. If $\lambda \vdash n$ and $\mu \models n$, then

$$\chi^{\lambda}_{\mathfrak{q}}(T_{\gamma_{\mu}}) = \sum_{Q} rwt^{\mu}_{\mathfrak{q}}(Q)$$

where χ_q^{λ} is the irreducible character of $\mathcal{H}_n(q)$ indexed by the partition λ , and the sum is taken over all standard tableaux Q of shape λ .

An elementary proof of (the type A case) Roichman's theorem was given in [Ra2]. One of the ideas of [Ra2] was to convert the Roichman weight to a weight on sequences as follows. A sequence w_1, w_2, \ldots, w_r of elements of $\{1, 2, \ldots, n\}$ has weight

$$wt(w_1, w_2, \dots, w_r) = \begin{cases} 1, & \text{if } r = 1 \text{ or the sequence is empty;} \\ (-1)^{t-1}q^{r-t}, & \text{if } w_1 < w_2 < \dots < w_t > w_{t+1} > \dots > w_r; \\ 0, & \text{otherwise.} \end{cases}$$

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_{\ell})$ is a composition of n and $w \in S_n$ is a permutation, define (w, λ) to be the injective λ -tableau obtained by filling in the boxes of λ with $w(1), w(2), \dots, w(n)$ from left-to-right and top-to-bottom. Define

 $wt_\lambda(w)=$ the product of the weights of the rows of (w,λ) and $wt^\lambda(w)=wt_\lambda(w^{-1}).$

For $w \in S_n$, write $w = [w_1, w_2, \dots, w_n]$ if $w(i) = w_i$ for each $1 \le i \le n$. If $\lambda = (4, 3, 2)$ and w = [2, 7, 5, 1, 9, 8, 3, 4, 6], then $w^{-1} = [4, 1, 7, 8, 3, 9, 2, 6, 5]$,

 $wt_\lambda(w)=(-q^2)(q^2)(-1)=q^4, \text{ and } wt^\lambda(w)=0(-q)q=0.$

The connection between this definition and the Roichman weight of a tableaux Q is via Robinson-Schensted-Knuth (RSK) column insertion. (The original references for the RSK insertion scheme are [Sz], [Sch], and [Kn]; for an expository treatment see [Sa].) Applying RSK insertion on the sequence w produces a pair (P, Q) of standard tableaux of the same shape $\lambda \vdash n$, where P is the result of insertion and Q is the so-called "recording tableau."

(a) RSK column insertion is a bijection between S_n and the set of all pairs of standard tableaux (P, Q) having the same shape $\lambda \vdash n$.

(b) If applying RSK insertion to $w \in S_n$ produces the pair (P, Q), then applying RSK insertion to w^{-1} produces (Q, P) ([Scü], [Sa]).

(c) We have $\operatorname{rwt}_q^{\mu}(Q) = \operatorname{wt}_{\mu}(w)$, where Q is the recording tableau produced by column insertion of the sequence $w = [w_1, \ldots, w_n]$ (cf. [Ra2]).

Lemma 3.2. If $\mu, \nu \models n$, then

$$btr(\mu,\nu) = \sum_{w \in S_n} wt_{\mu}(w) wt^{\nu}(w).$$

Proof. By (1.4) and Theorem 3.1, we have

$$\operatorname{btr}(\mu,\nu) = \sum_{\lambda \vdash n} \chi_q^{\lambda}(T_{\gamma_{\mu}}) \chi_q^{\lambda}(T_{\gamma_{\nu}}) = \sum_{\lambda \vdash n} \left(\sum_Q \operatorname{rwt}_q^{\mu}(Q) \right) \left(\sum_P \operatorname{rwt}_q^{\nu}(P) \right),$$

where the sums are over all standard tableaux Q (resp., P) of shape λ . If $w \in S_n$, let (P(w), Q(w)) be the pair of tableaux obtained by performing RSK insertion of the sequence w. Since RSK insertion is a bijection between S_n and all pairs of tableaux (P, Q) having the same shape λ , as λ runs over all partitions of n, we have

$$\begin{aligned} btr(\mu,\nu) &= \sum_{\lambda \vdash n} \sum_{P,Q} rwt^{\mu}_{q}(Q) rwt^{\nu}_{q}(P) = \sum_{w \in S_{n}} rwt^{\mu}_{q}(Q(w)) rwt^{\nu}_{q}(P(w)) \\ &= \sum_{w \in S_{n}} rwt^{\mu}_{q}(Q(w)) rwt^{\nu}_{q}(Q(w^{-1})) = \sum_{w \in S_{n}} wt_{\mu}(w) wt^{\nu}(w). \end{aligned}$$

Proof of Theorem 2.1

Let \mathcal{C}_n denote the set of compositions of n. For $(w, \mu) \in S_n \times \mathcal{C}_n$, let $(\hat{w}, \lambda) \in S_{n-m} \times \mathcal{C}_{n-m}$ be the injective λ -tableau obtained by deleting $\{n-m+1, \ldots, n\}$ from (w, μ) and left justifying the resulting tableau. Let $(w/\hat{w}, \mu/\lambda)$ be the diagram obtained by deleting $\{1, 2, \ldots, n-m\}$ from (w, μ) . Reading the elements of $((w/\hat{w}), \mu/\lambda)$ from left to right and top to bottom, we can view w/\hat{w} as a permutation in the symmetric group S'_m on $\{n-m+1, n-m+2, \ldots, n\}$. We write $(w, \mu) \rightarrow ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda))$. As an example, let $m = 6, \mu = (4, 3, 2, 2)$, and $w = [2, 7, 6, 1, 9, 8, 3, 11, 10, 4, 5] \in S_{11}$. Then the deletion of $\{6, 7, 8, 9, 10, 11\}$ from

$$(w, \mu) = \begin{array}{ccccc} 2 & 7 & 6 & 1 \\ 9 & 8 & 3 \\ 11 & 10 \\ 4 & 5 \end{array} \qquad \text{is} \qquad ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda)),$$

where

$$(\hat{w}, \lambda) = egin{array}{cccc} 2 & 1 & & 7 & 6 \\ 3 & & & & & \\ & & & & & and & & (w/\hat{w}, \mu/\lambda) = egin{array}{ccccc} 9 & 8 & & & \\ 11 & 10 & & & & \\ 4 & 5 & & & & \\ \end{array}$$

Thus, $\hat{w} = [2, 1, 3, 4, 5] \in S_5$, $\lambda = (2, 1, 0, 2)$, and $w/\hat{w} = [7, 6, 9, 8, 11, 10] \in S'_6$.

Lemma 3.3. Assume that $(w, \mu) \rightarrow ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda))$ denotes the deletion of $\{n - m + 1, ..., n\}$. If $wt_{\mu}(w) \neq 0$, then

(a) in each row of (w, μ) , the elements from $\{n-m+1, \ldots, n\}$ appear in a contiguous block;

(b) wt_{λ}(\hat{w}) \neq 0 (thus the rows of (\hat{w} , λ) form up-down sequences).

(c) $wt_{\mu/\lambda}(w/\hat{w}) \neq 0$ (thus the rows of $(w/\hat{w}, \mu/\lambda)$ form up-down sequences).

(d) In each row of (w, μ) , the elements from $\{n - m + 1, ..., n\}$ appear either immediately to the left or immediately to the right of the largest element from $\{1, 2, ..., n - m\}$.

Proof.

(a) If $wt_{\mu}(w) \neq 0$, then within each row of (w, μ) the elements from $\{n - m + 1, ..., n\}$ must appear in a contiguous block; otherwise we go down from elements of $\{n - m + 1, ..., n\}$ to elements of $\{1, ..., n - m\}$ and back up to elements of $\{n - m + 1, ..., n\}$. This down-up configuration would give a zero in the weight of that row.

(b)–(c) If either (\hat{w}, λ) or $(w/\hat{w}, \mu/\lambda)$ contains a down-up subsequence in one of its rows, then, since the elements from $\{n - m + 1, ..., n\}$ are contiguous in that row of (w, μ) , there is necessarily a down-up sequence in that row of (w, μ) . Thus, $wt_{\mu}(w) = 0$.

(d) Suppose that (\hat{w}, λ) and $(w/\hat{w}, \mu/\lambda)$ are given. Consider the places where the elements in the kth row of $(w/\hat{w}, \mu/\lambda)$ can be inserted into the kth row of (\hat{w}, λ) to form an injective tableau (w, μ) such that $wt_{\mu}(w) \neq 0$.

- (i) If $\lambda_k = 0$, then row k of (w, μ) is equal to row k of $(w/\hat{w}, \mu/\lambda)$.
- (ii) If $\lambda_k = \mu_k$, then row k of (w, μ) is equal to row k of (\hat{w}, λ) .
- (iii) Assume that $0 < \lambda_k < \mu_k$, let $a_1 < a_2 < \cdots < a_{t-1} < a_t > a_{t+1} > \cdots > a_r$ be the kth row of (\hat{w}, λ) , and let $b_1 < b_2 < \cdots < b_t > b_{t+1} > \cdots > b_s$

be the kth row of w/\hat{w} . Then, keeping in mind that all of the b's are bigger than the peak a_t , we see that the only two possible kth rows of (w, μ) are

$$\begin{array}{ll} \text{(L)} & a_1 < a_2 < \cdots < a_{t-1} < \underbrace{b_1 < b_2 < \cdots < b_t > b_{t+1} > \cdots > b_s}_{> a_t > a_{t+1} > \cdots > a_r, \\ \\ \text{(R)} & a_1 < a_2 < \cdots < a_{t-1} < a_t < \underbrace{b_1 < b_2 < \cdots < b_t > b_{t+1} > \cdots > b_s}_{> a_{t+1} > \cdots > a_r. \end{array}$$

In the proof of Lemma 2.4 (d), the insertion in the case of (L) is a *left insertion*, and the insertion in the case of (R) is a *right insertion*. Each $(w, \mu) \rightarrow ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda))$ with $wt_{\mu}(\hat{w}) \neq 0$ gives rise to a unique sequence $I = (I_1, I_2, \ldots, I_{\ell(\mu)})$, where for each nonempty row k of μ we have

$$I_{k} = \begin{cases} T, & \text{if } \lambda_{k} = 0 \text{ or } \lambda_{k} = \mu_{k}, \\ L, & \text{if in row } k \text{ a left insertion takes } ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda)) \text{ to } (w, \mu), \\ R, & \text{if in row } k \text{ a right insertion takes } ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda)) \text{ to } (w, \mu). \end{cases}$$

In our example, the insertion sequence is I = (R, L, T, T).

Given compositions $\mu\models n$ and $\lambda\models (n-m)$ with $\lambda\subseteq \mu,$ we define the following sets:

$$\begin{split} & \mathcal{W}_{n}^{\mu \rightarrow \lambda} = \{ w \in S_{n} \mid wt_{\mu}(w) \neq 0 \text{ and } (w, \mu) \rightarrow ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda)) \text{ for some } \hat{w} \in S_{n-m} \}, \\ & \mathcal{W}_{n-m}^{\lambda} = \{ x \in S_{n-m} \mid wt_{\lambda}(x) \neq 0 \}, \\ & \mathcal{W}_{m}^{\mu/\lambda} = \{ y \in S'_{m} \mid wt_{\mu/\lambda}(y) \neq 0 \}, \\ & I(\mu, \lambda) = \left\{ (I_{1}, I_{2}, \dots, I_{\ell(\mu)}) \middle| \begin{array}{l} I_{k} \in \{T\}, & \text{ if } \lambda_{k} = 0 \text{ or } \lambda_{k} = \mu_{k}, \text{ and} \\ & I_{k} \in \{L, R\}, & \text{ if } 0 < \lambda_{k} < \mu_{k} \end{array} \right\}. \end{split}$$

Then we have a bijection

$$\begin{array}{lcl}
\mathcal{W}_{n}^{\mu \to \lambda} & \longrightarrow & \mathcal{W}_{n-m}^{\lambda} \times \mathcal{W}_{m}^{\mu/\lambda} \times \mathrm{I}(\mu, \lambda), \\
\mathcal{W} & \longmapsto & (\hat{w}, w/\hat{w}, \mathrm{I}).
\end{array}$$
(3.4)

Lemma 3.5. Let $\mu, \nu \models n$ with $\nu = (\nu_1, \dots, \nu_\ell)$. Let $\nu' = (\nu_1, \dots, \nu_{\ell-1})$ and $m = \nu_\ell$. Assume that $wt_{\mu}(\hat{w}) \neq 0$ and let

 $(w, \mu) \rightarrow ((\hat{w}, \lambda), (w/\hat{w}, \mu/\lambda), I)$

denote the deletion of $\{n - m + 1, ..., n\}$ from (w, μ) . Then

(a) $wt_{\mu}(w) = (-1)^{R(I)}q^{L(I)}wt_{\lambda}(\hat{w})wt_{\mu/\lambda}(w/\hat{w})$, where L(I) is the number of Ls in the insertion sequence I and R(I) is the number of Rs in I, and

(b)
$$wt^{\nu}(w) = wt^{\nu'}(\hat{w}) wt^{(m)}(w/\hat{w}).$$

Proof. (a) If $\lambda_k = 0$, the weight of row k is the weight of row k of $(w/\hat{w}, \mu/\lambda)$. If $\lambda_k = \mu_k$, the weight of row k is the weight of row k of (\hat{w}, λ) . If $0 < \lambda_k < \mu_k$, then we are either in the situation of (L) or (R) (as in the proof of Lemma 3.3). In case (L), an extra > is introduced and the weight of row k in w is q times the product of the weights in row k of \hat{w} and w/\hat{w} . In case (R), an extra < is added and the weight of row k in w is -1 times the product of the weights in row k of \hat{w} and w/\hat{w} . The corollary is now proved by taking the product of the weights of each row.

(b) During the deletion process, when we break w into \hat{w} and w/\hat{w} , we maintain the relative positions of the elements 1, 2, ..., n - m and maintain the relative positions of the elements n - m + 1, n - m + 2, ..., n. The last row of the tableau (w^{-1}, v) contains the positions of n - m + 1, n - m + 2, ..., n in w. Relative to one another, these positions are the same in w as they are in w/\hat{w} . Thus the weight of the last row of (w^{-1}, v) equals $wt^{(m)}(w/\hat{w})$. The rows before the last row of the tableau (w^{-1}, v) contain the positions of 1, 2, ..., n - m in w and they are the same relative to one another as in \hat{w} . Thus the product of the weights on the rows before the last row equals $wt^{v'}(\hat{w})$.

Proposition 3.6. Let $\mu, \nu \models n, \nu = (\nu_1, \dots, \nu_\ell)$, and $\nu' = (\nu_1, \dots, \nu_{\ell-1})$. Then

$$\mathrm{btr}(\mu,
u) = \sum_{\substack{\lambda \models (n-
u_\ell) \ \lambda \subseteq \mu}} (\mathrm{q}-1)^{\mathrm{s}(\lambda,\mu)} \, \mathrm{btr}(\lambda,
u') \, \mathrm{btr}(\mu/\lambda,(
u_\ell))$$

where the sum is over all compositions λ of $n - v_{\ell}$ that are contained in μ and

$$s(\lambda, \mu) = \operatorname{Card}(\{k \mid 0 < \lambda_k < \mu_k\}).$$

Proof. Let $m = v_{\ell}$. When we compute the bitrace, we will sum over only the $w \in S_n$ with $wt_{\mu}(w) \neq 0$, and we use Lemma 3.2, the bijection 3.4, and Lemma 3.5 as follows:

$$\begin{split} btr(\mu,\nu) &= \sum_{\substack{w \in S_n \\ \lambda \subseteq \mu}} wt_{\mu}(w) wt^{\nu}(w) \\ &= \sum_{\substack{\lambda \models (n-m) \\ \lambda \subseteq \mu}} \sum_{\substack{w \in W_n^{\mu \to \lambda}}} wt_{\mu}(w) wt^{\nu}(w) \\ &= \sum_{\substack{\lambda \models (n-m) \\ \lambda \subseteq \mu}} \sum_{\substack{w \in W_n^{\mu \to \lambda}}} (-1)^{R(I)} q^{L(I)} wt_{\lambda}(\hat{w}) wt_{\mu/\lambda}(w/\hat{w}) wt^{\nu'}(\hat{w}) wt^{(m)}(w/\hat{w}) \\ &= \sum_{\substack{\lambda \models (n-m) \\ \lambda \subseteq \mu}} \sum_{\substack{x \in W_{n-m}^{\lambda}}} \sum_{\substack{y \in W_m^{\mu/\lambda}}} \sum_{I \in I(\mu,\lambda)} (-1)^{R(I)} q^{L(I)} wt_{\lambda}(x) wt_{\mu/\lambda}(y) wt^{\nu'}(x) wt^{(m)}(y) \\ &= \sum_{\substack{\lambda \models (n-m) \\ \lambda \subseteq \mu}} \sum_{\substack{x \in W_{n-m}^{\lambda}}} wt_{\lambda}(x) wt^{\nu'}(x) \sum_{\substack{y \in W_m^{\mu/\lambda}}} wt_{\mu/\lambda}(y) wt^{(m)}(y) \sum_{I \in I(\mu,\lambda)} (-1)^{R(I)} q^{L(I)} \\ &= \sum_{\substack{\lambda \models (n-m) \\ \lambda \subseteq \mu}} btr(\lambda,\nu') btr(\mu/\lambda,(m)) \sum_{I \in I(\mu,\lambda)} (-1)^{R(I)} q^{L(I)}. \end{split}$$

In each row k where $0 < \lambda_k < \mu_k$, there are two possibilities in making the insertion sequence I. The left insertions give a multiple of q and the right insertions give a multiple of -1. Thus,

$$\sum_{I \in I(\mu,\lambda)} (-1)^{R(I)} q^{L(I)} = (q-1)^{s(\lambda,\mu)}.$$

Proposition 3.7.

(a)
$$btr((n), (n)) = [n]_{q^2}$$
.
(b) $btr(\alpha, (n)) = (q-1)^{\ell(\alpha)-1} \prod_{\alpha_i \neq 0} [\alpha_i]_{q^2}$ if α is the composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$.

Proof. (a) The elements $w \in S_n$ such that $wt_{(n)}(w) wt^{(n)}(w) \neq 0$ are

$$w^{(r)} = [1, 2, \dots, r, n, n-1, n-2, \dots, r+2, r+1],$$

where $0 \le r \le n-1$ and the case r = 0 is to be interpreted as meaning w(1) = n. Observe that $(w^{(r)})^{-1} = w^{(r)}$; hence

$$wt_{(n)}(w^{(r)}) wt^{(n)}(w^{(r)}) = ((-1)^r q^{n-r-1})^2 = q^{2(n-r-1)}$$

for $0 \le r \le n - 1$. Thus,

$$btr((n), (n)) = \sum_{w \in S_n} wt_{(n)}(w) wt^{(n)}(w) = \sum_{r=0}^{n-1} q^{2(n-r-1)} = [n]_{q^2}.$$

(b) First note that $btr(\alpha, (n)) = btr((n), \alpha)$. Now use Proposition 3.6 and part (a).

Now we complete the proof of Theorem 2.1.

Proof. Let $\mu, \nu \models n$ and suppose that $\nu = (\nu_1, \dots, \nu_\ell)$. By induction on Proposition 3.6, we have that

$$\operatorname{btr}(\mu,\nu) = \sum_{L} \prod_{k=1}^{\ell(\nu)} (q-1)^{s(\lambda^{(k)},\lambda^{(k-1)})} \operatorname{btr}(\lambda^{(k)}/\lambda^{(k-1)},(\nu_k)),$$

where the sum is over all sequences

$$L = (\emptyset = \lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \dots \subseteq \lambda^{(\ell)} = \mu)$$
(3.8)

of compositions such that $|\lambda^{(i)}/\lambda^{(i-1)}| = \nu_i$ for each $1 \leq i \leq \ell$. Note also that $btr(\lambda^{(k)}/\lambda^{(k-1)}, (\nu_k))$ is determined by Proposition 3.7 (b).

We can encode each sequence $L = (\emptyset = \lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \cdots \subseteq \lambda^{(\ell)} = \mu)$ appearing in the sum in (3.8) as an $\ell(\mu) \times \ell(\nu)$ matrix of nonnegative integers M by defining its (i, k)-entry to be

$$(\mathcal{M})_{ik} = \lambda_i^{(k)} - \lambda_{i-1}^{(k)}.$$

In other words, the composition $\lambda^{(k)} - \lambda^{(k-1)}$ runs down the kth column of the matrix M. The matrix M has nonnegative integer entries and has row sums given by the vector μ and column sums given by the vector ν ; this encoding procedure defines a bijection between the sequences L appearing in (3.8), and the nonnegative integer matrices M with row sums μ and column sums ν .

Let $\ensuremath{\mathfrak{P}}(M)$ denote the multiset of nonzero entries in M. Notice that

 $\ell(\lambda^{(k)}/\lambda^{(k-1)}) =$ the number of nonzero entries in column k of M, $s(\lambda^{(k-1)}, \lambda^{(k)}) =$ the number of nonzero entries in column k of M which are not preceded in their row by all zeros

where, in the second case, we assume that the 0th column is a column of all zeros. Thus,

$$\prod_{k=1}^{\ell} (q-1)^{s(\lambda^{(k-1)},\lambda^{(k)})} = \prod_{\substack{\text{columns} \\ \text{of}\mathcal{M}}} (q-1)^{s(\lambda^{(k-1)},\lambda^{(k)})} = (q-1)^{-\ell(\mu)} \prod_{x \in \mathcal{P}(\mathcal{M})} (q-1),$$

and

$$\prod_{k=1}^\ell (q-1)^{\ell(\lambda^{(k)}/\lambda^{(k-1)})} = \prod_{x\in \mathcal{P}(M)} (q-1).$$

It follows that

$$\begin{split} &\prod_{k=1}^{\ell} (q-1)^{s(\lambda^{(k)},\lambda^{(k-1)})} \ btr(\lambda^{(k)}/\lambda^{(k-1)},(v_k)) \\ &= (q-1)^{-\ell(\mu)} \left(\prod_{x \in \mathcal{P}(M)} (q-1)\right) \left(\prod_{k=1}^{\ell} (q-1)^{\ell(\alpha^{(k)})-1} \prod_{\alpha_i^{(k)} \neq 0} [\alpha_i^{(k)}]_{q^2}\right) \\ &= (q-1)^{-\ell(\mu)-\ell(v)} \prod_{x \in \mathcal{P}(M)} (q-1)^2 [x]_{q^2} \end{split}$$

where, for simplicity of notation, we have let $\alpha^{(k)} = \lambda^{(k)} / \lambda^{(k-1)}$.

Acknowledgment

A. Ram's research was supported in part by National Science Foundation grant DMS-9622985.

416 Halverson, Leduc, and Ram

References

- [Ca] R. W. Carter, Representation theory of the 0-Hecke algebra, J. Algebra 104 (1986), 89–103.
- [Ca2] —, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Pure Appl. Math., Wiley-Intersci. Publ., John Wiley & Sons, New York, 1985.
- [CR] C. W. Curtis and I. Reiner, Methods of Representation Theory: With Applications to Finite Groups and Orders, Wiley Classics Lib. I and II, John Wiley & Sons, New York, 1981.
- [Hf] P. N. Hoefsmit, *Representations of Hecke algebras of finite groups with BN-pairs of classical type*, thesis, University of British Columbia, 1974.
- [KW] R. C. King and B. G. Wybourne, Representations and traces of the Hecke algebras $\mathcal{H}_n(q)$ of type A_{n-1} , J. Math. Phys. **33** (1992), 4–14.
- [Kn] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709–727.
- [Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, The Clarendon Press, Oxford University Press, New York, 1995.
- [Ra1] A. Ram, A Frobenius formula for the characters of the Hecke Algebras, Invent. Math. 106 (1991), 461–488.
- [Ra2] ——, An elementary proof of Roichman's rule for irreducible characters of Iwahori-Hecke algebras of type A, to appear in the Festschrift in honor of Gian-Carlo Rota, Birkhäuser, Boston, 1997.
- [RR] A. Ram and J. Remmel, Applications of the Frobenius formulas for the characters of the symmetric group and the Hecke algebras of type A, J. Algebraic Combin. 6 (1997), 59–87.
- [RRW] A. Ram, J. Remmel, and S. T. Whitehead, Combinatorics of the q-basis of symmetric functions, J. Combinatorial Th. Ser. A 76 (1996), 231–271.
- [Ro] Y. Roichman, A recursive rule for Kazhdan-Lusztig characters, to appear in Adv. Math.
- [Sa] B. E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Wadsworth & Brooks/Cole, Pacific Grove CA, 1991.
- [Sch] C. Schensted, *Longest increasing and decreasing subsequences*, Canad. J. Math. **13** (1961), 179–191.
- [Scü] M. P. Schutzenberger, Quelques remarques sur une construction de Schensted, Math. Scand. 12 (1963), 117–128.
- [Sz] —, "La correspondance de Robinson" in Combinatoire et Représentation du Groupe Symétrique 1976 (D. Foata, Ed.), Lecture Notes in Math. 579, Springer-Verlag, New York, 1977, 59–113.
- [VK] A. M. Vershik and S. V. Kerov, Characters and realizations of representations of an infinitedimensional Hecke algebra, and knot invariants, Sov. Math. Dokl. 38 (1989), 134–137.

Halverson: Department of Mathematics and Computer Science, Macalester College, St. Paul, Minnesota 55105, USA

Leduc: Department of Mathematics, University of North Dakota, Grand Forks, North Dakota 58202, USA

Ram: Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA