SEMINORMAL REPRESENTATIONS OF WEYL GROUPS
AND IWAHORI-HECKE ALGEBRAS

ARUN RAM

[Received 16 January 1996—Revised 21 June 1996]

0. Introduction

The purpose of this paper is to describe a general procedure for computing
analogues of Young’s seminormal representations of the symmetric groups. The
method is to generalize the Jucys—Murphy elements in the group algebras of the
symmetric groups to arbitrary Weyl groups and Iwahori—Hecke algebras. The
combinatorics of these elements allow one to compute irreducible representations
explicitly and often very easily. In this paper we do these computations for Weyl
groups and Iwahori—-Hecke algebras of types A,, B,, D,, G,. Although these
computations are within reach for types F,, E4, and E,, we shall, in view of the
length of the current paper, postpone this to another work.

In reading this paper, I would suggest that the reader begin with §3, the
symmetric group case, and go back and pick up the generalities from §§ 1 and 2 as
they are needed. This will make the motivation for the material in the earlier
sections much more clear and the further examples in the later sections very easy.

The realization that the Jucys—Murphy elements for Weyl groups and Iwahori-
Hecke algebras come from the very natural central elements in (2.1) and
Proposition 2.4 is one of the main points of this paper. There is a simple concrete
connection (Proposition 2.8) between Jucys—Murphy type elements in Iwahori—
Hecke algebras and Jucys—Murphy elements in group algebras of Weyl groups. I
know that the analogues of the Jucys—Murphy elements in Weyl groups of types
B and D will be new to some of the experts and known to others. These
Jucys—Murphy elements for types B and D are not new; similar elements appear
in the paper of Cherednik [7], but I was not able to recognize them there until
they were pointed out to me by M. Nazarov. I extend my thanks to him for this.
Some people were asking me for Jucys—Murphy elements in type G, as late as
June 1995. In July 1995 I was told that it was not known how to quantize the
elements of Cherednik, that is, to find analogues of them in the Iwahori—-Hecke
algebras of types B and D. Of course, this had been done already in 1974, by
Hoefsmit.

I have chosen to state my results in terms of the general mechanism of path
algebras which I have defined in § 1. This is a technique which I learned from H.
Wenzl during our work on the paper [30]. It is a well-known method in several
fields (with many different terminologies). I shall mention here only a few of the
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many possible references to these ideas: the book by Goodman, de la Harpe and
Jones [16], the book by Chen [6], the paper of Sunder [33], and the paper of
Gelfand and Tseitlin [15].

The theory and the method which I have applied in this paper also work for
studying the representations of centralizer algebras such as the Brauer algebra
and the Birman—-Wenzl-Murakami algebra. In the case of the Brauer centralizer
algebra, the analogues of the Jucys—Murphy elements are due to M. L. Nazarov
[28], and in the case of the Birman—Wenzl-Murakami algebra to N. Reshetikhin
[31] and R. Leduc and the author [22]. In the theory of centralizer algebras the
Jucys—Murphy elements ‘come from’ the Casimir element of the centralizing Lie
algebra or quantum group.

History. Alfred Young [35] wrote down several ways of describing the
irreducible representations of the symmetric group, one of which gives explicit
matrices for the images of the simple transpositions. These are the seminormal
representations of the symmetric group. In 1974 Hoefsmit [17] completed his
Ph.D. thesis in which he wrote down analogues of Young’s irreducible seminor-
mal representations for the Iwahori-Hecke algebras of types A, B, and D.
Hoefsmit’s thesis was never published and these representations were indepen-
dently rediscovered by H. Wenzl [34] (in the type A case).

Jucys and Murphy inserted a new and beautiful feature into Young’s theory by
writing down elements, which, in Young’s irreducible seminormal representations
of the symmetric group, are always diagonal matrices. Even better, the diagonal
entries of these matrices have an easy combinatorial description. They showed
that Young’s seminormal representations could be reconstructed from the
knowledge of these special elements.

The original work of Jucys ([18-20] 1966, 1971, 1974) was published mostly in
Lithuanian physics journals and was not read by many in the western mathemati-
cal community. Only when the work of Murphy ([24, 25] 1981, 1983) appeared
did these elements begin to receive wider attention. Cherednik [7] gave analogues
of the Jucys—Murphy elements for the Weyl groups of types B and D, but his
paper was read by almost no-one in the seminormal representations camp since
his paper was written from the point of view of constructing monodromy
representations. Hoefsmit ([17] 1974), unknowingly, had analogues of these
elements in the Iwahori—-Hecke algebras of type B but since his thesis was never
published, these elements remained largely unknown. Hoefsmit’s construction in
type B easily generalizes to Iwahori-Hecke algebras of types A and D. In the
period 1985-1995, Dipper, James, Murphy, and Pallikaros ([10-12] 1986, 1987,
1992, [26,27] 1992, 1995, [13] 1995, [29] 1995) have done a lot of work on
representations of Iwahori—-Hecke algebras and have produced analogues of the
Jucys—Murphy elements for Iwahori—-Hecke algebras of types A and B. Their
version of these elements in type A was written in such a way that it was not clear
to anybody that they were the same as the elements that were in Hoefsmit’s
thesis!

More recently, there have been new ‘Hecke algebras’ which have been
discovered by Ariki [1], Ariki and Koike [2], and Broué and Malle [5], which are
similar to the Iwahori—Hecke algebras of types B and D. Ariki and Koike [2] and
Ariki [1] have shown that Hoefsmit’s constructions can be extended to give
seminormal representations of these algebras as well. Ariki, Koike, and Broué
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and Malle have given essentially the same analogues of the Jucys—Murphy
elements as Hoefsmit had.
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1. What is a seminormal representation?

For convenience and simplicity we shall work over the field C of complex
numbers. Let {1} = G, = G, =... = G, = G be a chain of finite groups. Let V* be
an irreducible module for G. Upon restriction to the group G, _; the module V*
decomposes as a direct sum

Vi=VH@. OV

of irreducible modules for G,_,. Similarly each of these summands decomposes
into irreducible submodules on restriction to G, _,, and so on.

A seminormal basis of V* is a basis B* ={v,} of V" that explicitly realizes these
decompositions, that is, there is a partition of B* into subsets B*1, ..., B** such
that if V* = C-span(B*) then

VA=VHM@D.. DV

as G,_,;-modules (note that here there is an = sign rather than only =). Further,
we require that each of the subsets B*/ is partitioned into subsets which realize
the decomposition upon restricting to G,,_,, and so on, all the way down the
chain. Thus, to specify a seminormal basis one must give, not only the basis of V*
but also the series of partitions. The resulting representation

p G—>M,(C), d,=dim(V?"),

of G, which is specified by V* and the basis B*, is a seminormal representation of
G with respect to the chain Gy<... < G, = G.

The concepts of seminormal bases and seminormal representations apply
equally well to any chain of split semisimple algebras C=H,c H,<... € H,=H.

The graph T'. Let G, be an index set for the irreducible representations of G..
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Define non-negative integers c;‘L, where u e G;_1, A e G,, by the restriction rule
from G, to G;_;,

Vg = @ v
reGigq
In other words, upon restriction from G; to G,_; the irreducible module V*, with
ne G, 1, appears in the irreducible G,-module V*, with A € G,, with mult1-
plicity ¢},
Deﬁne a graph I" with

(11 vertices labelled by the elements of the sets G,, and such
' that u € G,_, and A e G, are connected by cﬁ edges.
The graph I' encodes the restriction rules for the chain {1}=Gy<=...2G, =G.
We shall assume that the unique element in G, is denoted .
Let uw € G, and A € G, where r <s. A path from w to A is a sequence of s —r
edges connecting u to A,

such that A\ € G, for r<i<s. We distinguish paths which ‘travel’ from A® to
A along different edges. We use the following notation:

F(A— p) is the set of paths from A to u;

F(A) is the set of paths from & to A;

F(X—s) is the set of paths from A to any element u € G,;

Z(m) is the set of paths from & to any element A € G,,,;

& = %(n), where n is the total number of groups in the chain Gy <... = G,;
Q(A) is the set of pairs (S, T') of paths such that S, T e Z(A);

Q(m) is the set of pairs (S, T') of paths such that S, T e #(A) for some A € G,,.

In general, by ‘a path in I’ we shall mean an element L=\ —.. > \") e £

Path algebras. For each 0<m <n define a path algebra P,, over C (see [16])
with basis Egp, where (S, T') € Q(m), and multiplication given by

(1-2) ESTEPQ = 6TPESQ-

To avoid confusion with another type of path algebra used in other parts of
representation theory, note that the multiplication in the path algebra does not
involve composition of paths. We have Fy=C. Each of the algebras P,
isomorphic to a direct sum of matrix algebras

Pu= @ M (O),

where M,;(C) denotes the algebra of d X d matrices with entries from C and
d, = Card(#£(A)). For each A € G,, define a P,,-module by defining

(1.3) V)\ = C'Span{UL | L e g()\)} and EST vy = STLvs,

for all paths S, T, L € (). The P,-modules V*, with A € G,,, realize all of the
irreducible P,,-modules.
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Given a path T=(A—...—» u) from A to p and a path S = (u—... — v) from
u to v define

T+*S=A—>..>u—>..—v)

to be the concatenation of the two paths. Let » <s and for each A € G, and each
pair (P, Q) € Q(A) view the element Ep, € P, as an element of P, by the formula

(1.4) Epo= >  Eprowr

T e L(A\—s)
This defines, in particular, an inclusion of P, _; into P, for every m >0. Let
A e G, and let V* be the irreducible representation of P,, corresponding to A as
given in (1.3). Then the restriction of V* to P,,_, decomposes as

vig =@V,

. e A
where the sum is over all edges u —— A that connect an element u € G,,_; to the
A e G,,. The basis vectors v, form a seminormal basis of the P,,-module V*.

Constructing seminormal representations of CG. As above, let

be a chain of finite groups, let I' be the graph which describes the restriction rules
for the inclusions in (1.5) and let P, for 0 <m <n, denote the corresponding
path algebras. By construction, the path algebras P, have natural seminormal
representations (1.3) with respect to the inclusions Pyc P, =... = P,. Thus, we
should try to find an isomorphism

o: P, =CG

Eyi—eyr

(1.6) such that ®(P) = CG,,

for all 0=<<i =<n. Given such an isomorphism, irreducible seminormal representa-
tions are given by the modules V* in (1.3) where the action of an element g € CG
is given by

(1.7) guL =27 (g)ve,
for all g € G.

Suppose that, for each 1 <k <n,
(1-8) Zy = {Zk,j}1sisrk

is a set of central elements in the group algebra CG;.

LeEmMA 1.9. Let z; be a central element in CGy. Let

L=A2= ... \X") e £(n)
be a path in the graph T and let X" be the irreducible character of Gy indexed by
the element \*® e G,. For any choice of isomorphism ® between the path algebra

P, and CG as in (1.6),

X/\(k)(Zk,j)

. = A/\(k) , h ‘)\(k) — .
Zijvr = (A vy, where ¢ ; (A7) )()‘(k)(l)
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Proof. By Schur’s lemma any central element z,; € CG, must act by a scalar
multiple of the identity in every irreducible representation of G,. Specifically, z; ;
acts by the scalar ¢, ;(u) in the irreducible G,-module indexed by u. Each of the
basis vectors v;, L=(A"—...—A"™) is in an irreducible P,-module which is
isomorphic to the irreducible P.-module V** indexed by A® e G,. It follows
that, for any choice of the isomorphism ®: P,— CG in (1.6), we must have

iV = (I)_l(zk,]-)UL = Ck‘j()t(k))UL.

ReMARK 1.10. The set Z =|_J{—¢ Z, is a set of elements of the group algebra
CG that all commute with each other. They generate a commutative subalgebra T
of CG. The subalgebra T acts diagonally on the basis v,, that is, for each t € T
and each L € &,

tv, =c(t, Lyv,

for some constant c(t, L) e C.

For each p e G, let ¢ (un) be the ordered re-tuple c,(p) = (crj(1t))1=jmr-
Define the weight of a path L =(A“, ..., A®) in T to be the n-tuple

(1.11) Wt(L) = (co(AD), ..., ca(A™)).

The following proposition shows that in many cases the isomorphism ® in (1.6)
can be determined more or less explicitly.

ProrosiTioN 1.12. The choice of an isomorphism ® as in (1.6) is determined by
the choice of elements

(D(EML) = €ey1 E CG

for each pair of paths L, M in I'. Assume that each path in 1 is distinguished by its
weight, that is, if L and M are paths in I and L # M, then wt(L) # wt(M).

(a) For each path L in T the element e, is determined uniquely by the elements
Zk; € Zy and the constants c; ;(w), where u € Gy for 0<k=<n.

(b) If M and L are paths in T such that M # L then ey, is determined up to a
constant by the elements z;; € Zx and the constants c; ;(w), where u G, and
Os<k=n

Proof. Let L=\, ..., A®) be a path in I'. For each 0<k<n and each
1=sj=r,let

Zkj — Ck,j(M)
ey eny A0 Ciof(AD) = ¢ ()

pk,j(/\(k)) =

where the product is over all ¢, ;(u), with u € Gy, such that ¢, ;(1) # ¢, ;(A%).
There may be elements u € G such that u # A® but such that ¢ ;(1) = ¢, ;(A%).
These u e G, are not included in the product. It follows from Lemma 1.9 that if
M=(u®—..— u™)is a path in I then, for any isomorphism ® as in (1.6),

Uy if Ck’]'(l.b(k)) = Ck,j(A(k)),

(D7] )\(k) :{
(Pij(A™))vm 0 otherwise.
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Define
e L= Hpk,j()\(k))'
k,j
If M=(u®—...—u"™)is a path in T then

-1 _ _
O (er)vm = = Epvn,

since, if L # M then wt(L) # wt(M). The result follows since ® is injective.

(b) Assume that M and L are paths in I' such that M # L. Let a € CG such
that ey;ae; ;, 7 0. Then e,,; must be a constant times the element ey ae;; € CG.
Since the elements e;; and e, are completely determined by the elements z;;
and the constants ¢ ;(n), it follows that the elements e,,; are determined (up to a
constant) by them.

REMARK 1.13. Suppose that

o P, —-CG o P, —-CG
and ,
Eyvp—emr Eyp—>enr
are two isomorphisms between the path algebra P, and CG. Let k,,; € C be such
that ey, = kprepr. The constants k,,;, must satisfy the relations

Kyrkeny =1 and Ky Ky = Kyn,

for all choices of paths M, L, N € %. These relations follow from the relations
eyreps = 8, peys in (1.2).

ExampLE 1.14. Suppose that {1}=G,<=... = G, =G is a chain of finite groups
such that, for each 1 =<i=<n, the restriction rules describing the decomposition of
irreducible G;-representations into irreducible G;_;-representations are multi-
plicity free. For each 1=<<i=<mn, let Z;, be the set of sums of elements in each
conjugacy class of G;. Clearly Z; is a set of central elements in CG;. This is an
example of a situation in which the paths in the graph I' are distinguished by their
weights.

2. Weyl groups and Iwahori—Hecke algebras
The branching rules for the chains of Weyl groups
S c85c...€8,,
WB,cWB;<c..cWB,,
WB, < WB; < WE,,
WDs < WEs< WE,,

are all multiplicity free. Thus, the Weyl groups S,,, WB,,, WFE,, WE¢, and WE; all
fall into the situation of Example 1.14 and one can use the sets Z, consisting of all
conjugacy class sums and Proposition 1.12 to compute all the irreducible
representations of these Weyl groups and their corresponding Iwahori—-Hecke
algebras. (In the WE, < WE; case the branching rule has multiplicities at most 2
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and could be treated in a similar fashion to Example 1.14 except that one would
also have to use some additional elements from the centralizer of the WE, action
on irreducible WEj representations.) We shall show in the remainder of this
paper that one can use much smaller sets for the Z, and obtain the same results in
a quicker way. We shall obtain ‘seminormal’ representations of the Weyl groups
and Iwahori—-Hecke algebras of type D, by using the representation theory for
type B,,; see § 5.

Weyl groups. Let &= Ry<=... = R, = R be a chain of root systems and let
{1I}=Wyc..cW,

be the corresponding chain of Weyl groups. Let Rf denote the set of positive
roots in the root system R and, for each a € R let s, denote the element of W,
which is the reflection in the hyperplane perpendicular to «.

(2.1a) If all roots in R, are the same length then the set of elements
{s.| a € R} is a conjugacy class in W,. It follows that
jugacy

e = 2 Se
aeR}F

is a central element of CW,. (The index ¢ here simply denotes that this is a sum
over the ‘long’ roots in Rj.)

(2.1b) If the roots in R, are not all the same length then there are two lengths
of roots. Let R, be the set of short positive roots and let R, be the set of long
positive roots in R,. The sets {s,| a € R{} and {s,| « € R} } are conjugacy
classes in W and the elements

ks = 2 s, and z, .= 2 Sas

aengS QER;/
are central elements in CW,.

(2.1c) If the longest element wy, in the Weyl group W, acts as —1 in the
reflection representation of W, then the element

2,0 = Wi0
is central in W,.

For each 0 <k <n, let Z, denote the set of central elements in CW, which are
determined by (2.1). Depending on which cases apply, the set Z, contains 1, 2, or
3 elements. In view of Lemma 1.9, we define, for each irreducible character x of
the Weyl group W, and each z;; € Z;, a constant

_ X))
(22) w0 =" i

We shall use the central elements in the sets Z; (with some slight modification in
the D, case) to compute seminormal representations for the Weyl groups of types
Anfl; Bn; Dn: G2~

REMARK 2.3. In my view, the central elements in (2.1) are the appropriate
generalization of Jucys—Murphy elements to arbitrary Weyl groups (or Coxeter
groups). Remarks 3.6 and 4.6 illustrate this idea in special cases.



SEMINORMAL REPRESENTATIONS 107

Iwahori—Hecke algebras. Let A be a Dynkin diagram of a finite Weyl group, let
R be the corresponding root system, and let W be the corresponding Weyl group.
Let {a,¢| i € A} be the set of simple roots in R, indexed by the nodes in the
Dynkin diagram A. The Iwahori-Hecke algebra H(p?, g*) corresponding to the
Weyl group W is the algebra over C(p, q) generated by elements 7;, with i € A,
and relations

(a) T,T.T.T; ... = T,T,T;T; ..., where each side contains m;; factors and m;; is the

order of the element 5,5, in the Weyl group W,

o) 7

If all roots in R are the same length then we make the convention, for the
purposes of the definition of the Iwahori-Hecke algebra, that all roots in R are
long and we simply define the Iwahori-Hecke algebra as an algebra H(q?) over
C(g).

It is a standard fact ([3, Chapter IV, §2, Ex. 23-24] or [8]) that the
Iwahori-Hecke algebra H(g”?) corresponding to a Weyl group W is split-
semisimple and its irreducible representations can be indexed by the same set W
that indexes the irreducible representations of W. Following the standard
notation, we see that if w e W then T, = T; ... T, where w =5, ... s; is a reduced
expression for w € W. The element T,, € H is well defined and does not depend
on the choice of the reduced expression for w.

Let =A,cA;=...cA,=A be a chain of Dynkin diagrams of finite Weyl
groups. These Dynkin diagrams correspond to a chain of root systems

R()gng...ERn:R

(p—p )T, +1 if ; is a short root,
(gq—q HT,+1 if @ is a long root.

and to a chain of Weyl groups Wocs W, =...c W, =W such that, for each
1=<i=n, the group W,_, is a parabolic subgroup of W, Let

C=Hyc..cH,=H

be the corresponding chain of Iwahori—-Hecke algebras.

ProrosiTioN 2.4. Let H, be the Iwahori—Hecke algebra corresponding to a finite
Weyl group W,. Let w,, denote the longest element in the Weyl group W,.

(a) The element T+, is central in Hy(p?, q°). If p is an irreducible representation
of H(p?, q°) corresponding to the irreducible character X of the Weyl group W,
then

p(T2 ) :p2ck,s(x)q2q;/(x) 1d,

Wr,0.

where ¢, ,(X) and ¢, /(X) are the constants given in (2.2).
(b) If wio= —1 in the reflection representation of Wy, then T,  is a central
element in H(p? q*). If p is an irreducible representation of H(p?, q°)

corresponding to the irreducible character X of the Weyl group W, then
p(To0) = cro( X)p™Xq X 1d,
where ¢, o(X), cr.o(X), and ¢, o(X) are the constants given in (2.2).

Proof. (a) By a theorem of Breiskorn and Saito [4] and Deligne [9], the
element T3,  is central in the generalized braid group. Thus T3,  is central in

Wi,0 Wik,0
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H(p?, q*) and it follows that kau acts by a constant in every irreducible
representation. The constant is computed by writing 7, as a product of

generators and taking the determinant of both sides of the equation

= (T, .. T, =p“q~1d.

Wk 0

It remains only to note that the number of short roots in Ry is the same as the
number of factors 7 in the product 7,, = T; ... T, such that a, is a short root in
R, and that the analogous result holds for the number of long roots in R,.

(b) The result of Brieskorn and Saito and Deligne says that 7,,  is central in
the braid group when w, o = —1 in the reflection representation of the Weyl group
W,. 1t follows that T,,  is central in H,(p?, q°). The eigenvalues of T, , must be
square roots of the eigenvalues of vakn and they must specialize to the

eigenvalues of w, o when p = g = 1. The result now follows from (a), (2.1)(c), and
the definition of the constant ¢, o( X).

REmARK 2.5. The above proposition is somewhat folklore in the subject of
Iwahori—-Hecke algebras. The argument given here appears in Propositions 26
and 27 of Kilmoyer’s thesis [21] and also appears in complete detail in the recent
paper of Geck and Michel [14].

Let w,, be the longest element in the Weyl group W, and define Z, ={z;}
where

TWAO
(26) L = {Tz

Wk,0

if wy,o = —1 in the reflection representation of W,,
otherwise.

We shall use these central elements (with some slight modification in the D,, case)
to compute seminormal representations for the Iwahori-Hecke algebras of types
A, _1, B, D,, G,. The cases F,, Es; and E, will be treated in future work.

REMARK 2.7. In my view, the central elements in Proposition 2.4 are the
analogues of the Jucys—Murphy elements for the Iwahori-Hecke algebras.
Remarks 3.17 and 4.22 illustrate this idea in special cases.

The following proposition describes concretely the connection between the
central elements of H,(p?, ¢*) in Proposition 2.4 and the central elements in CW,
given in (2.1).

ProvrosiTioN 2.8. If x € H,(p?, q%), use the notation [x),_, to denote the value of
X when q is specialized to 1. Then

[w] = D Su=Zks

q - q g=1 aeR,tx
(T ly-)" — 1
[ = ]71 = E Sa = Zk,(,’)
p—D p=1 aeRf,

[ Wku]p =g=1 = Wk,0 = 2k,0,

where Zi, Zi.¢, and z;.o are the central elements of CW, given in (2.1).
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Proof. Let us assume, for convenience, that all roots in R, are the same length.
In this case we have only one indeterminate g and we are working in the
Iwahori-Hecke algebra H,(q”). The proof is similar in the general case.

If 7;, ... T,, is a reduced expression for 7,  thensois T;, ... T;. We can expand

(T,,,)” by using the relation 77 = (q — g~ "7, +1 to obtain
T2

Wik,0

=T, .. T,T, .

LT,

1

. T,
N

=1+(@-q Y2 T, .. T, T,T,
j=1

+ terms divisible by (¢ —q )%

It follows that

TZ _ 1 N
[%] = E Sil e Sijflsijsijfl e Si1‘
q—4q g=1 j=1
The result now follows from [3, Chapter VI, § 1, Corollary 2].

REMARK 2.9. In Proposition 2.8 we have been carefree about the process of
specializing p and q to 1. Of course this really should be done properly. One must
define a Z-form of the Iwahori-Hecke algebra H,(p? g*) as an algebra over
s =7[q,q ", p,p""] and only specialize, by an appropriate tensor product
7®., H(p? q°), elements x which are in the Z-form of H,(p? ¢®). This is
standard and it is clear that the elements (75, —1)/(¢ —¢ ') in (the proof of)

Wik,0

Proposition 2.8 are elements in the Z-form of H,(q?).

3. Type A, _,, the symmetric group S,

The Weyl group. The Weyl group of the root system A,_; is the symmetric
group S, of permutations of {1, 2, ..., n}. The simple transpositions

s;=@(—1,i) for2<i<n,
generate S, and these elements satisfy the relations
sis;=s;5; for |i —j|>1,
(3.1) SiSi 18 = Si+15iSi+1 fOr 2$i<l’l - 1,

s?2=1 for2<i<n.

Partitions and standard tableaux. As in [23], we shall identify each partition A
with its Ferrers diagram and say that a box b in A is in position (, j) in A if b is in
row i and column j of A. The rows and columns of A are labelled in the same way
as for matrices. We shall write |A\| =n if A is a partition with n boxes. We shall
often refer to partitions as shapes.

A standard tableau L of shape A is a filling of the Ferrers diagram of A with the
numbers 1,2, ...,n such that the numbers are increasing left to right across the
rows of L and increasing down the columns of L. For any shape A, let #())
denote the set of standard tableaux of shape A and, for each standard tableau L,
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let L(k) denote the box containing k in L. For example, Fig. 3.2 illustrates a
standard tableau of shape (332).

11214
3|56
7|8

FiG. 3.2

The chain A= A, =...c A,_;. The chain of root systems Ay A, =... €A,
corresponds to the chain of Weyl groups

S8 c...e8,,

where S, denotes the symmetric group of permutations of 1,2,...,k. The
irreducible representations of the symmetric group S, are indexed by the
partitions A such that |A| = k. The restriction rule from S, to S,_; is given by

VAS, = @ VH
mEAT
where the sum is over all partitions p of kK —1 that are obtained from A by
removing one box. For the chain §; = §,<... =5, the graph I defined in (1.1) is
the Young lattice. For n =35, I is as in Fig. 3.3. A path (A — ... > A™) in I is
naturally identified with the standard tableau L of shape A which has i in the
box which is added to obtain A from A¢~V,

|
N
IZANVAN
IR
A LN

FiG. 3.3

Jucys—Murphy elements. Following (2.1), let us compute the sets Z, for this
case. Write permutations in the symmetric groups S in cycle notation. In the root
system A,_,, all roots are of one length and the longest element

weo=(1, k)2, k —1)...

of the Weyl group S, does not act by —1 in the reflection representation. For
each 1<k =<n, the set Z; contains a single element z, ,, which is the central
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element of CS, given by

(34) L0 = E Sa = 2 (l)])
aecAf_ 1=i<jsk
(The ¢ here is spurious; as in (2.1a) it only indicates the fact that in the root
system A,_; all roots are long.) Since the elements z,, for 1<k=n, all
commute with each other in CS,, it follows that the elements
k

(3.5) Me=2Zpe— 2-1.0= 2 (i—1,k) for2<k<n,

i=2

all commute with each other in CS,,.

REMARK 3.6. The elements m,, for 2 <k <n, are the elements defined by Jucys
[18-20] and Murphy [24-26].

Weights. The content of a box b in a shape A is given by
(3.7) ct(b)=j—i, if b isin position (i, j) in A.

It follows immediately from [23, I, § 7, Ex. 7, and I, § 1, Ex. 3] that, for each
1=k <n and for each partition w such that |u| =k,

(3.8) Cie(p) = X" )X (1) = 2 ct(b),

bep
where x* denotes the character of the irreducible representation of the symmetric
group S labelled by the partition w. Following (1.11), we see that the weight of a
standard tableau L = (A — ... — ™), where |AX| =k, is

wt(L) = (c1.dAD), ..., € ol(A™)).

Note that wt(L) is completely determined by the n-tuple
k

wt(L) = (ct(L(1)), ..., ct(L(n))), since ¢ (AP) =D ct(L(i)).

i=1

ProposiTiON 3.9. Each standard tableau L= (A" —...—A™) is determined
uniquely by its weight.

Proof. Two boxes b and b’ in a partition A have the same content only if they
lie on the same diagonal. It follows easily that, if A’ is a partition, then each of
the boxes b that can be added to A to get a new partition has a different content
ct(h). Thus, the shape A“*" in a standard tableau L is completely determined by
the previous shape A” and the content ct(bh) of the added box b. It follows that a
standard tableau L is completely determined by wt(L) and therefore by its weight
wt(L).

Proposition 1.12 and Proposition 3.9 together show that the seminormal
representations of S, corresponding to the chain of groups {l}=S§,<=... =S, are
essentially determined by the elements z; . in (3.4) and the constants ¢; () in
(3.8). It follows that we should be able to determine seminormal representations
of the group S, from the elements m,; and the constants ct(b). This is done in
Theorems 3.12 and 3.14 below.
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Seminormal representations. Let P, < P, <... < P, be the path algebras, defined
in (1.2), which are associated to the diagram I'" which describes the restriction
rules for the chain S, =... = §,. For each partition A of size n, let

(3.10) V*=C-spanf{v,, L e (M)},
so that the vectors v,, indexed by standard tableaux L of shape A, form a
seminormal basis of the P,-module V*. It follows from Lemma 1.9, that for any
choice of an isomorphism ® between the path algebra P, and CS, such that
d(P,) =CS, =CS, for all 1 <k <n, we have that

2, VL = Ck,(’(/\(k))vL:
if L=A%Y—...—>A™). If m, is as in (3.5), then

mkvL = Ct(L(k))UL,

for a standard tableau L = (A —... = A®").
For each 2 <k <n and each standard tableau L of size n, define

1
ct(L(k)) — ct(L(k — 1))

(3.11) (Se)rr =

In the interests of space we shall not give the proof of the following theorems
here. The proofs are essentially the same as the proofs which are given for
Theorem 4.15 and Theorem 4.18.

THEOREM 3.12 (Young [35]). Let A be a partition such that |A\|=n. Define an
action of each generator s, ..., s, of the symmetric group S, on V* by defining

(3.13) svp=()reve + (L4 (S)rp)vg for2<i<n,

where s;L is the same standard tableau as L except that the positions of i and i — 1
are switched in s;L. If s;L is not standard, then we define vy, =0. This action
extends to a well-defined action of S, on V*.

Tueorem 3.14 (Young [35]). The S, modules V* defined in Theorem 3.12,
where A runs over all partitions such that |A|=n, form a complete set of
non-isomorphic irreducible modules for the symmetric group S, and, for each A,
the basis {v,| L € #(\)} is a seminormal basis of the S,-module V.

Iwahori—Hecke algebras HA,,_1(q?%)

Let ¢ be an indeterminate. The Iwahori-Hecke algebra HA, ,(q*) corres-
ponding to the root system A, is the associative algebra with 1 over the field
C(q) given by generators 15, Ts, ..., T, and relations

LT,=T1T forli—jl>1,
(3.15) LT T,=T.TT,, for2sisk-—1,
Ti=(q—q ")T,+1 for2<isk

Analogues of Jucys—Murphy elements. For each 2 <k <n, define
(3.16) M =T,... LLLTL..T.
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In type A,_; the longest element w, , of the group S, does not act by —1 in the
reflection representation. Following Proposition 2.4, we define sets Z, = {z,}, for
2 <k <n, where z, is the central element of HA,_,(¢q*) given by

k= T2 = MkMkfl Mz.

Wk,0

Since the elements z;, for 2 <k <n, all commute in HA, _,(g?%), it follows that the
elements M,, for 2 <k <n, all commute with each other.

ReEMARK 3.17. Using the relation 77=(q —q ')7T;+1, an easy computation
shows that

(3.18)

k
= Ti* )
q-— q—1 Z:z (i—Lk)
where Ty =T Ti—1 ... 41 ;T4 ... Tr. The elements in (3.18) are elements
used by Dipper, James, and Murphy in their work on Iwahori-Hecke algebras of
type A, see [10, 11, 26, 27]. It is clear that (3.18) gives a g-analogue of the
Jucys—Murphy elements in (3.5).

Seminormal representations. Let P, P,<...< P, be the path algebras (over
the field C(q) instead of C), defined in (1.2), which are associated to the diagram
I' which describes the restriction rules for the chain S, <...<S,. For each
partition A of size n, let

(3.19) V*=C(q)-span{v,| L € Z(\)},

so that the vectors v,, indexed by standard tableaux L of shape A, form a
seminormal basis of the P,-module V*. It follows from Lemma 1.9, that for any
choice of an isomorphism @ between the path algebra P, and HA,,_,(q?) such that
®(P) = HA,_1(q>) € HA,_,(q?) for all 1 <k <n, we have

VL = T%wc,ovL = qu'((A(k))UL;
it L=\ c...cA®) and ¢, (A?) is as given in (3.8). Thus,
(3.20) Mkv[‘ = Tk EBBR Tkv[‘ = T%Vk,UT‘;kz—l,o = qth(L(k))'UL,

if L=("—..—A"™) is a standard tableau. For each 2<k<n and each

standard tableau L of size n, define
CT(L(k—1
G2 =a-a/(1- G )

where CT(b) = ¢*>*'“*). In the interests of space we shall not give the proof of
the following theorems here. The proofs are essentially the same as the proofs
which are given for Theorem 4.26 and Theorem 4.28.

THEOREM 3.22 (Hoefsmit [17], Wenzl [34]). Let A be a partition such that
|A| = n. Define an action of each generator T, ..., T,, of the Iwahori—Hecke algebra
HA, _(q%) on V* by defining

Tv,= () v +(q '+ () )v,, for2<is<n,

where s;L is the same standard tableau as L except that the positions of i and i — 1
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are switched in s;L. If s;L is not standard, then we define vy, =0. This action
extends to a well-defined action of HA,,_,(q*) on V.

THEOREM 3.23 (Hoefsmit [17], Wenzl [34]). The HA,,_(q*)-modules V* defined
in Theorem 3.22, where A runs over all partitions such that |\|=n, form a
complete set of non-isomorphic irreducible modules for the Iwahori—Hecke
algebra HA,,_,(q?) and, for each A, the basis {v,| L € ¥£(\)}is a seminormal basis
of the HA,,_,(q*)-module V*.

4. Type B, withn=2

The Weyl group. The Weyl group WB, of type B, is the group of signed
permutations of 1,2, ..., n. More specifically, WB,, consists of all permutations 77 of
{—n, ..., =1, 1,..., n} such that m(—k)= —rm(k) for all 1<k=<n. We represent
elements of WB,, in cycle notation as permutations of {—n, ..., =1, 1, ..., n}. The
elements

s1=(,—-1), and s;=(@G—1,i)(—(—1), i) for2<i=n,
generate WB,, and satisfy the relations

sis;=s;8; for i —jl>1,
(4.1) 884185 = Si1188;41 for2<isn-—1,

§1528182 = 52515251,

s2=1 forl<i<n.

Double partitions and standard tableaux. A double partition of size n,

A=(a, B),

is an ordered pair of partitions @ and B such that |«|+|B8|=n. We shall often
refer to double partitions as shapes. A standard tableau L = (L%, L?) of shape
A = (a, B) is a filling of the Ferrers diagram of A with the numbers 1, 2, ..., n such
that the numbers are increasing left to right across the rows of L* and L? and
increasing down the columns of L* and L”. For any shape A, let #(A) denote the
set of standard tableaux of shape A and, for each standard tableau L, let L(k)
denote the box containing k in L. For example, Fig. 4.2 shows a standard tableau
of shape ((332), (411)).

711113
812

Fi1G. 4.2
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The chain B, B, <... = B,.. By convention we let B, = be the empty root
system and B, = A,. The chain of root systems B, < B, ... € B,, corresponds to
the chain of Weyl groups

(4.3) {1} WB,cWB,<...c WB,,

where WB, denotes the hyperoctahedral group of signed permutations of
1,2,..., k.

The irreducible representations of the symmetric group WB, are indexed by
double partitions A = («, B) such that |A| = |a| + || = k. The restriction rule from
WB, to WB,_, is given by

V(e B) Vu‘jgf,l = (&) V)
(w,v)e(e,B)”

where the sum is over all double partitions (u,v) of size k — 1 that are obtained
from («, B) by removing one box. If we define the graph I' as in (1.1) for the
chain in (4.3), then a path (A‘” —...— A™) in I is naturally identified with the
standard tableau L of shape A" which has i in the box which is added to obtain
A® from AY"D. The graph T for the case of the chain {1} < WB, € WB, < WB; is
displayed in Fig. 4.4.

«a ra)
(z,u) (D %)
@, m) @.B (o,0) (0.2 (0, @)

IS

em e @h oo 0 v @o o EFo @@

FiG. 4.4

Analogues of Jucys—Murphy elements. Following (2.1), let us compute the sets
Z, for this case. In the root system B, with kK =2, we have both long and short
roots and the longest element wy o= (1, —1)(2, —=2) ... (k, —k) of the Weyl group
WB, acts by —1 in the reflection representation. For each 1<k <n, let

Zi= {Zk,s; oz Zk,O}:
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where
k
Zk,s = E sot = 2 (l) _l))
ae(By)y i=1
(4.5) Ze= X Sa= 2 )G —)(0)),

ae(Br)i l=i<jsk
2o = Wio= (1, =1)(2, =2) ... (k, —k).
In (4.5) the sets (By), and (B,); are, respectively, the sets of short and long

positive roots in the root system B,. Since the elements z,;, with j e {s, ¢, 0} and
1<k <n, all commute with each other in CWB,,, it follows that the elements

mk,s = Zk,s - Zk*l,s = (ky _k)) fOI' 1 = k = n,

My ¢ = 2,0 — Zk—1,¢

k
=>((—-1Lk)+(@G@—1,—k)(—@G—1),k), for2<k=n,
i=2

all commute with each other in CWB,,.

Remark 4.6. The elements m, ; and m, , are the appropriate B,-analogues of
the Jucys—Murphy elements (3.5) for the symmetric group. Cherednik [7] has
used a linear combination of m, ; and m, , as an analogue of the Jucys—Murphy
element.

Weights. The sign and the content of a box b in a shape («, B) are given
respectively by

1 ifbea,

sen(b) = {—1 ith e B,

4.7)
ct(b)=j—i 1if b isin position (i, j) (in either « or B).

ProposiTION 4.8. Fix 1<k =<n and let z;.,, 2i.¢, and z;o be the central elements
in CWB;, given in (4.5). Let (u, v) be a double partition such that || + |v| = k. Let
X" be the character of the irreducible representation of WB, indexed by the
double partition (u, v). Then, in the notation of Lemma 1.9 and (4.7),

Cos( V) = Xz ) XHV() = 2 sen(b),

be(p,v)
Cre(p, V) = X@ 2 ) X)) =2 2 ct(b),
be(u,v)
ceo(p, v) = X (zio) V(1) = 1(_[ )Sgn(b)-
be(u,v

Proof. Fix k and a double partition (u, v) such that |u|+|v|=k. Let a =|u|
and b=|v|. Let WB, be the subgroup of WB, of signed permutations of
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{1,2, ..., a} and let WB, be the subgroup of WB, of signed permutations of
{a+1, .., k}. Let S, and S, be the symmetric groups of permutations of {1, ...,a}
and {a + 1, ..., k} respectively.

Let V*# be the irreducible module for the symmetric group S, which is labelled
by the partition u. Extend this module to the group WB, by letting the signs, that
is, the element (1, —1) act trivially. Let V" be the irreducible module for the
symmetric group S, which is labelled by v. Extend this module to the group WB,
by letting the element (a +1, —(a + 1)) act by —1 on V". Then V* and V" are
irreducible modules for the groups WB, and WB, respectively; they are the
modules that are ordinarily denoted by V®? and V© respectively. It follows
from this construction of V®< and V" that

X2, 2) = x*((1, 2)),
X(M’Q)((li _1)) = X.U«(1)’
(49) X(M,Q)((lx _1)(2) _2) (ﬂ, _(1)) =X'U'(1)’
XO@+1,a+2)=x"((a+1,a+2),
XO(@+1, —(a+1) =—x"(D),
X“((a+1, —(@+1)(a+2,—(a+2) ... (k —k)) = (=1)’x"(1),
where x* and x" denote the irreducible characters of the symmetric groups S, and

S, labelled by u and v, respectively.
It is well known that the induced module

V(=2 X V(Q'V)T%gijB,, = v

is a realization of the irreducible WB;-module indexed by the double partition
(m, v). (I believe that this fact is originally due to Specht [32].) Given this
realization we can write down its character x**) explicitly by using the standard
formula for induced characters:

(4.10) XEwy= > X (g we)x (g we),
g 'wgie WB,XWB,
where the sum is over coset representatives g; of WB,/(WB, X WB,) such that
gi'wg; € WB, X WB,,.
Using (4.9) and (4.10), we have

X(”’V)(Eae(sk); 5.)
x(1)
_k(k = Dx™((1, 2))
x“(1)
_ k(k =D=M, 2)x M) + C XWX P (@ +1, a +2)))
EW2OxEI)
a(a—1) x*((1,2 bb-1)x"((a+1,a+2
= k(e - 1)<kEk - 1;)()((5(1) Dy kEk - 1;)( « x*'(1) )))

XM(EQ eAl Sa) XV(EaeAt Sa)
=2 + = .
( x“(1) x'(1) )
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The value for ¢, .(u, v) is obtained from this last equation and (3.8). A similar
calculation gives
)((M’V)(EaE(Bk);r sa)
X1
_ kx® (@, —1)
X1
_ K@ DX (A, =D)x V@) + (LI PO (@ + 1, —(a + 1))
(X 2(Dx (1)
_ax"(@, =) bx*((a+1, —(a+1))
x*(1) x*(1)
=a—b.
Since sgn(b) =1 for all boxes b € u, sgn(b) = —1 for all boxes b € v, and |u|=a

and |v|=b, the formula for ¢, (u, v) follows. The formula for c,o(u, v) is
obtained in a similar fashion.

Following (1.11), we define the weight of a standard tableau
L=AD=.. 5A"),
where [A®| =k, to be
wt(L) = (¢;(AY), ..., ¢,(A™)),
where, for a double partition (u, v), cx(u, v) is the triple

ck(/J“) V) = (ck,s(l*L7 V)’ Ck,((l"’: V)’ Ck,O(/"LJ V)):

determined by Proposition 4.8. Note that wt(L) is completely determined by the
n-tuples

wt; (L) = (ct(L(1)), ..., ct(L(n)))
and N
wiy(L) = (sgn(L(1)), ..., sgn(L(n))),
since ¢, ((A®) =35, sgn(L(i)), . (AP) =L, ct(L(i)), and

Ck,o()\(k)) = ﬁ sgn(L(i)).

ProposiTION 4.11. Each standard tableau L= (A" —...—\™) is determined
uniquely by its weight.

Proof. Suppose that the weight wt(L) of a standard tableau L is given but that
we do not know L. The vector wt(L) uniquely determines the vectors wt;(L) and
wh,(L). We want to show that the tableau L can be reconstructed from wt;(L)
and wt,(L). Assume that we have reconstructed L up to the ith step, that is,
assume that we know A, ..., A® but that we do not yet know AY*D. Suppose
that A is the double partition (u®, v®).

We need to figure out from wt,(L) and v’ﬁz(L) where to add the box to get
AED = (D DY The entry sgn(L(z +1)) in wiy(L) tells us whether we must
add the box to the partition u” or to the partition v”. As in the proof of
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Proposition 3.9, the entry ct(L(i + 1)) from wt,(L) indicates the position where
this box must be added. It follows that A“*" is uniquely determined. Thus L is
completely determined by wt(L).

Proposition 1.12 and Proposition 4.11 together show that the seminormal
representations of WB,, corresponding to the chain of groups

{1}=WB,c...= WB,

are essentially determined by the elements z,; in (4.5) and the constants ¢; (@) in
Proposition 4.8. It follows that we should be able to determine seminormal
representations of the group WB,, from the elements m,; ; and the constants ct(b)
and sgn(b). This is done in Theorems 4.15 and 4.18 below.

Seminormal representations. Let Py< P, = ... € P, be the path algebras, defined
in (1.2), which are associated to the diagram I' which describes the restriction
rules for the chain WB, =... € WB,. For each double partition («, 8) such that
la| +|B| =n, let

(4.12) VP = C-span{v,| L € X a, B)},

so that the vectors v;, indexed by standard tableaux L of shape («, 8), form a
seminormal basis of the P,-module V. It follows from Lemma 1.9, that for
any choice of an isomorphism @ between the path algebra P, and CWB,, such that
®(P,)=CWB,cCWB, for all l<k <n,
ZrsVL = Ck,x()\(k))vL; Lk, VL = Ck,f()\(k))vL; ZroVL = Ck,()()\(k))vL;

if L=A"—...— ™). Thus, by Proposition 4.8,
(4.13) my v =sgn(L(k))v, and my vp = ct(L(k))v,
if L=AD—... 5™,

For each 2 <k <n and each standard tableau L of length n, define

1+ sgn(L(k))sgn(L(k —1
w14) 50y, = L sEnL)sen(Lik = 1))

ct(L(k)) —ct(L(k — 1))

THEOREM 4.15 (Young [35]). Let (a, B) be a double partition such that
|| +|B| = n. Define an action of each generator s, ..., s, of WB, on V®P by
defining

SV, = Sgn(L(l))UL,

(4.16)
S,V = (Si)LLvL + (1 + (Si)LL)vS,L fOr 2si< n,

where s;L is the same standard tableau as L except that the positions of i and i — 1
are switched in s;L. If s;L is not standard, then we define v,; =0. This action
extends to a well-defined action of WB,, on VP,

Proof. We shall show that the action of s;, for 1 <i<n, on V*# is essentially
forced by the formulas in (4.13). We shall prove this for i = n. The proof for i <n
is similar. Note that the formula for the action of s, follows immediately from the
formula for the action of m, , in (4.13).
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For any two standard tableaux M and L of shape («, B) let (s,)y. be the
coefficient of vy, in s,v;.

Step 1. Let L=\ —...—A™) be a standard tableau of shape (e, 8). For
eachO<k<nandeachje{s, ¢,0} with1<j<r, let

Zkj — Ck,/(M)
cosmy2eny a0 Ciej(AD) — ¢ ()

Pi(A9) =

as in the proof of Proposition 1.12. Define

) prwa =11 1 p®).

k=1 jels, 6,0}
If M =(u®—...— u®™) is another standard tableau of shape («, 8) then

vy if u®=A®forl<k<sn-2,

n—21Vm = .
Prin-21Vm {0 otherwise.

Note that since A ? and A\*” = («, B) only differ by two boxes, there are only
two tableaux M such that u® = A® for all 1<k <n — 2. These two tableaux are
s,L and L itself. It follows that

vy fM=s,LorM=L,

n—21Vm = .
Prin-21Vm {O otherwise.

Since each of the elements z.,, Zi¢ Zro appearing in the product (*) is an
element of WB,,_,, it follows that p,,,_, commutes with s,, in WB,,. Thus

(n)erve + (Sp)s,r, Vs, = PrLin—25nV0 = SuPLin—2]V1 = SpVp.
It follows that (s, ), =0 unless M =s,L or M = L.
Step 2. A direct computation shows that
Snmnfl,f = mn,fsn - 1 - mn,smnfl,S'

Let both sides act on v, and take the coefficient of v, in the result. Then, using
(4.13), we have

() ct(L(n — 1)) = ct(L(n))(sn)re — 1 = sgn(L(n))sgn(L(n = 1)).

It follows that (s,),, is as given in (4.14).

Step 3. Consider the equation s, =1. Let both sides act on v, and take the
coefficient of v, in the result. We get the equation (s,)7, + (s.)za(S)a =1,
where M = s, L. It follows that

(4.17) () La(Sw)aar = (1 + () L) (L = ($n)L)-

By Proposition 1.12(b), the values of (s,);, and (s,,),,,. are determined only up to
a constant and we may choose them to be anything such that the equation in
(4.17) holds. Note that this is consistent with the definition of the action in the
statement of the theorem since 1 —(s,), 75,0 =1+ (5,)rr-

THeOREM 4.18 (Young [35]). The WB,,-modules V*? defined in Theorem 4.15,
where (a, B) runs over all ordered pairs of partitions such that |a| + |B| = n, form a
complete set of non-isomorphic irreducible modules for the Weyl group WB,, and,
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for each (a, ), the basis {v.| L € X(a, B)} is a seminormal basis of the
WB,,-module VP,

Proof. This now follows immediately by induction on n. Indeed, V*# is the
unique WB,,-module such that

(1) the equations for the action of z,,, z,.,, Z.0 are as in (4.13), and
(2) on restriction to WB,_; we have
V(&»B)lwlgn ~ @ V(M’V)’
U v elap)”

where the sum is over all double partitions (u, v) of size n —1 that are
obtained from («, B) by removing one box.

Iwahori—Hecke algebras HB, (p?, q%)

Let p and g be indeterminates. The Iwahori-Hecke algebra HB,(p?, q°)
corresponding to the root system WBy is the associative algebra with 1 over the
field C(p, q) given by generators T, T, ..., T and relations

TT =TT, forli—j|>1,
LT T,=TnTTy, for2s<isk-—1,
(4.19) LLTL=TLNLTT,
Ti=(p-p HL+1,
T2=(q—-q YT+1 forl<i=<k

Analogues of Jucys—Murphy elements. For each 1<k <n, define

The longest element wy o in the Weyl group WB, acts by —1 in the reflection
representation. Following (1.8) and Proposition 2.4, we define sets Z, = {z,} for
1<k <n, where z, is the central element of HB,(p?, ¢*) given by

(421) I = T = MkMkfl Mle.

Wik,0

Since the elements z;, for 1<k <n, all commute in HB,(p?, q°), it follows that
the elements M,, for 1 <k <n, all commute with each other.

Remark 4.22. The elements M, appear in Hoefsmit’s thesis [17, Proposition
3.3.3] and also in work of Ariki and Koike [2], Ariki [1], Broué and Malle [4], and
Dipper, James and Murphy [13]. These elements can be viewed as the quantized
versions of the elements in (4.13).

Seminormal representations. Let P, P,<...< P, be the path algebras (over
C(p, q) instead of C), defined in (1.2), which are associated to the diagram I
which describes the restriction rules for the chain WB, <...< WB,,. For each
double partition («, B) such that |a| + |B]| =n, let

(4.23) V@B =C(p, q)-spanfv,| L € #(a, B)},

so that the vectors v;, indexed by standard tableaux L of shape («, B), form a
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seminormal basis of the P,-module V(*#). It follows from Lemma 1.9 that, for
any choice of an isomorphism @ between the path algebra P, and HB,(p?, q°)
such that ®(P,) = HB(p?, q*) < HB,(p?, ¢*) for all 1 <k <n,

zv, =T, v = Ck,o()\(k))Pck"‘(A(k))q Ck'”(/\(k))vm

if L=\"—...— ™). Thus, by Proposition 4.8,
(4.24) Mu, =T, .. LT,Ty... T, v, =T, T.'

Wk,0 7 Wk—-1,0

= sgn(L(k))psgn(L(k))qz ct(L(k))vL,

vL

if L=(AY—...—>A®™) is a standard tableau. For each 2<k<n and each
standard tableau L of size n, define
| CT(L(k - 1)))

(4.25) (L) =(q — q_l)/ (1 CT(L(k))

where CT(b) = sgn(L(k))p " Dg?<tE&) " if p is a box in a shape A = (a, B).

THEOREM 4.26. Let (a, B) be a double partition such that |a| + |B| = n. Define an
action of each generator T,, ..., T, of HB,(p?, q*) on V*P) by defining
EUL = CT(L(l))UL,

(4.27)
Tv,=(T)pve + (g7 ' + (T)ro)vsy, for 2<isn,

where s;L is the same standard tableau as L except that the positions of i and i — 1
are switched in s;L. If s;L is not standard, then we define vy, =0. This action
extends to a well-defined action of HB, (p?, q*) on V*P,

Proof. The proof is similar to the proof of Theorem 4.15, in all essential
aspects. We shall only give the details for Step 2.

Step 2. It is immediate from the definition of M, in (4.20) that M,, = T,,M,,_ T,
which can be rewritten as

T,'=M,'"T.M,_,.

Rewrite T, ' as T, — (g — g "), let both sides act on v, and take the coefficient of
v, in the result. Using (4.24), we get

(L) —(q—q ) =CT(L(n)) (T,)r. CT(L(n — 1)).
It follows that (7,,),, is as given in (4.25).

As in the case of Weyl group WB,, Theorem 4.18, the following result follows
easily.

THeoREM 4.28 (Hoefsmit [17, Theorem 2.2.14]). The HB,(p? q°)-modules
V@B defined in Theorem 4.26, where (o, B) runs over all ordered pairs of
partitions such that |a|+|B|=n, form a complete set of non-isomorphic



SEMINORMAL REPRESENTATIONS 123

irreducible modules for the Iwahori—Hecke algebra HB,(p?, q*). For each (a, B),

the basis {v.| L € H(a, B)} is a seminormal basis of the HB,(p?, q*)-module
V(@B

5. Type D, with n =4

The Weyl group. The Weyl group WD, of type D, is the group of signed
permutations of {1, 2, ..., n} with an even number of signs. More specifically, WD,
consists of all permutations 1 of {—n, ..., =1, 1, ..., n} such that m(—k) = —rmi(k)
for all 1 <k <n, and an even number of the elements of {r(1), (2), ..., m(n)} are
negative. We represent elements of WD, in cycle notation as permutations of
{-n,..,—1,1, ..., n}

The elements

§51=(01,-2)2,-1), and §=(0G—-1,i)(—(@—1), —i) for2<is<n,
generate WD, and satisfy the relations
;=85 for|i—jl>1 andij>1,
§.5,=55, ifj#3,

(51) §1§3~1:§3§1§3,

The Weyl group WD, can be realized as a normal subgroup of the Weyl group
WB,, of index 2 by defining

(5.2) §,=5155,, and §,=s; for2<i=n,

where s;, for 1 <i<n, are as in (4.1).

Double partitions and standard tableaux. We shall use the same notation for
partitions, double partitions, shapes, and tableaux as in § 4. For each standard
tableau L = (L%, L?) of shape (a, B) define oL to be the standard tableau of
shape (B, a) given by oL = (L?, L),

o La, B)— LB, a),

(53) (L%, LP)— (LP, L*).

The map o is an involution on the set of standard tableaux whose shape is a
double partition.

Which chain? One finds that it is more natural to use the representation theory
of the Weyl groups WB,, and the fact that WD,, is a normal subgroup of index 2 in
WB,, rather than to try to choose an appropriate chain of root systems leading up
to D,,. The reason for this is that one wants to have an approach that treats all of
the groups WD,, for n =4, uniformly. Otherwise one must distinguish the cases
when 7 is even and when 7z is odd. In the end we shall find a set of commuting
elements in the group algebra of WD,,, analogues of the Jucys—Murphy elements,
which determine a complete set of irreducible representations.

Representations. We shall retain the notation from §4 for the sign and the
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content of a box in a double partition. Let A = (@, 8) be a double partition such
that |a| + || = n. As in (4.12), let

(5.4) V@P = C-span{v,| L e Ha, B)},

so that the vectors v, form a basis of the vector space V*#) indexed by standard
tableaux L of shape («, B).
For each standard tableau L, define

_ 1+sgn(L(k))sgn(L(k — 1)) L
5:5) (S)er = ct(L(k)) — ct(L(k — 1)) for2<k=n,

as in (4.14). Recall, Theorem 4.15, that there is an action of WB,, on the vector
space V(*A). Restricting this action to WD, gives

Sivp =s1881v = (82) v, — (14 (Sz)LL)UszL,

(5.6)
§,jUL =S8V, = (S,j)LLUL + (1 + (Si)LL)UX,L for 2 = l = n,

for each L € #(a, B), where, as in the case of type B,, we define v,;, =0 if 5;L is
not standard. In deriving the first formula of (5.6) it is helpful to note that
sgn(L(1)) = £1, and sgn(s,L(1)) = —sgn(L(1)) if s, L is standard.

Now suppose n is even, and let « be a partition such that 2 |a| = n. Define

(5.7) V@' = Cspanfv} =v, +v,, | L € Ha, @)l V*,

V@®)” = C-spanfv, =v, — v, | L € Hla, a)yc V@,

The following (well-known) results follow easily from Clifford theory [8] since
WD, is a subgroup of index 2 in WB,, and ¢ commutes with the action of WD, on
the vectors v, , where L € %

ProrosiTion 5.8. (a) For each pair of partitions (a, B) such that |a| + |B|=n,
V@B and VB gre isomorphic WD,-modules.

(b) For each partition « such that 2|a|=n, the subspaces V“*" are WD,,-
submodules of V*®, and

Y@ = @’ gy

as WD,,-modules.

THeEOREM 5.9 (Young [35]). The modules VP, where (o, B) runs over all
unordered pairs of partitions such that a # 3 and |a| + |B| = n and, when n is even,
the modules V" and V**"| where a runs over all partitions such that
2 |a| =n, form a complete set of non-isomorphic irreducible modules for WD,,.

REMARK 5.10. The involution ¢ on standard tableaux in (5.3) is a realization of
the module isomorphism between the WD,-modules V“# and V#*) which, in
turn, comes from the automorphism of the Dynkin diagram of type D,,.
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Instead of defining V(** as in (5.7), let us define them as the quotient spaces

V(@) - V(@)
5.11 y@d)' =————— apnd V@ =
( ) (v =v,1) (= —v,1)
where o is the involution given in (5.3) and (v, =v,;) and (v, = —v,,) denote

the subspaces spanned by the vectors v, — v, and v, + v, respectively. Clearly
the two definitions of the modules V(“®" are equivalent, the first represents
V(«®* a5 subspaces of V“®), and the second as quotient spaces of V*®). The
only difference is that for some computations the quotient module approach is
easier; one may compute the action as in the formulas in (5.6) and then apply the
relations v, = +v,;.

Analogues of Jucys—Murphy elements. We have the following theorem.

THEOREM 5.12. Define elements my, for 2<k <n, in the group algebra of the
Weyl group WD, by

A =1, —1)(k, —k) and i, ,= i (i—-Lk)y+@G@—1,—-k)(—@G-1),k),

where elements of WD, are written in cycle notation as permutations of
{—n, .., =1, 1, ..., n}. Then the elements rit, | and Wi, , all commute with each other
in CWD,, and they act in the representations V" and V" from (5.6) and (5.7)

by
i v = sgn(L(1))sgn(L(k))V,, for all standard tableaux L, and
i 1vr = sgn(L(1))sgn(L(k))v, for all standard tableaux L of shape (a, @),
iy v = ct(L(k))Vy,, for all standard tableaux L, and
i ovT = ct(L(k))vE, for all standard tableaux L of shape (o, a).

Proof. This follows immediately from (4.13) once one notices that
My =my My, and Ay, = my g,

where m, ; and m,_, are as in (4.5).

Weights. If L is a standard tableau of shape («, B), define

wt, (L) = (ct(L(1)), ..., ct(L(n))),
and

wts(L) = (sgn(L(1))%, ..., sgn(L(1))sgn(L(n))),

where sgn and ct are as given in (4.7).

Lemma 5.13. If L is a standard tableau_then there is only one other standard
tableau L' such that wt;(L") = wt,(L) and wty(L") = wty(L). This standard tableau
is L' = oL, where o is the involution defined in (5.3).

Proof. Let V’F[] and~\7vf2 be as geﬁned in Proposition 4.11. It follogs from
Proposition 4.11 that wt,(L) and wt,(L) uniquely determine L. Since wt;(L) is
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always either +1 or —1 times every entry in the sequence wt,(L), it follows that
there can be at most two standard tableaux L and L’ with the same weights
wt; (L") = wt;(L) and wt5(L') = wts(L). On the other hand, it is immediate that
one always has that wts(o-L) = wts(L) since sgn(oL(k)) = —sgn(L(k)) for all k.

Iwahori—Hecke algebras HD,,(q%)

Let g be an indeterminate. The Iwahori-Hecke algebra HD,(¢*) of type D, is
the associative algebra with 1 over the field C(q) given by generators Ty, T, ..., T,,
and relations

T.T,=TT, forli—jl>1,i,j>1,
TLLT,=TT, ifj#3,
(5.14) T.T-T,= T,T,T5,
T, T.=T,.T,T;,, for2<isn-—1,

T?=(q—q HT;+1 forl<isn.

Let HB,(1, g°) be the algebra over C(q) defined by generators T, ..., T, and
relations as in (4.19) except with p = 1. Define

(5.15) T.=T.T,T,, and T.=T, for2<i=<n.

Then one checks that with these definitions the 7; satisfy the relations in (5.14).
The elements 7T;, for 1<i<n, generate a subalgebra of the algebra HB,(1, g°)
which is isomorphic to the algebra HD,,(q%).

Representations. One derives the representation theory of the Iwahori-Hecke
algebra HD,(q”) using the results from §4 and the fact that HD,(q%) is a
subalgebra of the Iwahori—-Hecke algebra HB,,(1, ¢*). The procedure is exactly as
for the case (5.4)—(5.9) of the Weyl groups WD, = WB,,.

Let VA be as in (4.23). As in (4.25), for 2 <k <n and each standard tableau
L, define

~ CT(L(k—-1
(5.16) (T == -0/ (1- )

where CT(b) =sgn(L(k))q><"“*? for a box b in a shape A = (a, B). Restricting
the action (4.27) of HB,(1, ¢°) to HD,(q*) gives

Tle =T LTv, = (TZ)LLUL - (q_l + (T2)LL)vs2L;

(5.17) .
Tv, =T, = (T)LLvL+(q +(T)LL)v‘L for2<i<n,

for each L € #(a, B), where, as in the case of type B,, we define v,; =0 if 5;L is
not standard. In deriving the first formula of (5.17) it is helpful to note that
CT(L(1)) = %1, and CT(s,L(1)) = —CT(L(1)) if s,L is standard.

If n is even, and « is a partition such that 2 |a|=n, define V" as in (5.7)
except over the field C(g). The following results can be proved by ‘setting g =1
and then using Proposition 5.8 and Theorem 5.9.

ProposiTioN 5.18 (Hoefsmit [17, Lemmas 2.3.3 and 2.3.5]). (a) For each pair of
partitions (a, B) such that || + |B| =n, VP and V) are isomorphic HD,(q?)-
modules.
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(b) For each partition a such that 2 |a| = n, the subspaces V**" are HD,(q?)-
submodules of V*%, and

V() = @) gy
as HD,(q*)-modules.

Tueorem 5.19 (Hoefsmit [17, Theorem 2.3.9]). The modules V", where
(a, B) runs over all unordered pairs of partitions such that a # 3 and |a| +|B|=n
and, when n is even, the modules V“*" and V" where a runs over all

partitions such that 2 |a| =n, form a complete set of non-isomorphic irreducible
modules for HD,(q?).

Analogues of Jucys—Murphy elements. Define
Mlzl, MZZTle, and

(5.20) - o
Mk:Tkafl... ET2T1T3T4... Tk*lTk9 for3<sk=n.

If w, is the longest element of the Weyl group WD,, then T, = M,M,_, ... M, is
the corresponding element in the Iwahori—-Hecke algebra HD,,(¢?).

THEOREM 5.21. The action of the element M, in the irreducible representations
given by Theorem 5.19 is

M, = CT(L(1))CT(L(k))v,, for all standard tableaux L,
and

M3 =CT(L(1))CT(L(k))vi, for all standard tableaux L of shape (a, o).

Proof. Let M, be the elements of HB,(1, g*) given by (4.20), and use the
imbedding of HD,(q*) into HB,(1,q*). The case k=1 is trivial, since
CT(L(1)) = 1. For k =2, observe that M,=T,T,=T,T,T,T, = M,M,. For 3<
k <n, note that 7, commutes with 73, T, ... in HB,(1, ¢*), and thus

=TT .. Tsz(TszTl)EE o Ty Ty,
=Tl ... GLL LT ... T T, T = M .M,.

The result now follows from the definition of the action of HB,(1, g>) and of
HD,(g?) on irreducible modules and (4.24).

6. Type G,

The chain Ay < A, < G,. The Weyl group WG, is the dihedral group of order
12. The group WG, can be presented by generators sy, s, and relations

§185281828182 = §2515,515,8;, and s?=1 fori=1,2.
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The irreducible representations of the dihedral group WG, can be indexed by the
labels

Gz = {¢1,0) 1.6 d)l’,S’ ¢¥,3; b21, ¢2,2}
and the character table of the group WG, is as shown in Table 1.

TaABLE 1
1 Sq Sy 5185 51528185 81825152515
$ro | 1 1 1 1 1 1
bio | 1 - -1 1 1 1
bl | 1 1 -1 -1 1 -1
ol | 1 -1 1 -1 1 -1
$r1 | 2 0 0 1 -1 -2
brr | 2 0 0 -1 -1 2

The chain of root systems Ay< A, < G, corresponds to the chain of Weyl
groups S; €5, < WG,, where S, and S, are symmetric groups. The graph I, as
defined in (1.1), corresponding to the inclusion S; =S, € WG, is given by Fig. 6.1.
We have indexed the representations of the symmetric groups S; and S, by
partitions as in § 3.

1,0) (1,3 (2,1 (2,2 13y 1,6

T H

N

O

FIG. 6.1

Analogues of Jucys—Murphy elements. Following (1.8) and (2.1), let us
compute the sets Z, for this case. In the root system A,; all roots are the same
length and the longest element w;, in the Weyl group S, acts by —1 in the
reflection representation. In the root system G, we have both long and short roots
and the longest element w, o = s5,5,5;5,5,5, of the Weyl group WG, acts by —1 in
the reflection representation. Let

Z, = {ZI,O} and Z,= {Zz,s, 22,6 Zz,o};

where
21,0 = W10 = S1,
5= 2 Sq =81 T 85285152 T 5152815281,
(6.2) acl@n
Z00= 2 Sq =8 T 8515281 T 5251528152,
ae(Gy)f

22,0 = W20 = §1525152515>2.

In (6.2) the sets (G,);” and (G,);” are, respectively, the sets of short and long
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positive roots in the root system G,. The elements z; ; in (6.2) are the appropriate
G,-analogues of the Jucys—Murphy elements in (3.5).

Weights. Following Lemma 1.9 and (2.2), we use the character table of WG, to
compute

C25(10) =3, 2, (¢10) =3, ca0(P10) =1,

Cr(h16) = =3, albre) = =3, Cro(dre) =1,
c25(b13) =3, e, bi3) = =3, cro(dis)=—1,
Cos(P13) = =3, cr(di3) =3, c20(P75) = —1,

Ca,5($21) =0, C2,6(¢2,1) =0, Ca0(21) = —1,

C2,5($22) =0, C2(¢22) =0, Ca0(a2) =1,
(@) =1, (1) =-1,

so that ¢ ;(n) = x"(zx,;)/x*(1) where x* denotes the irreducible character
labelled by u. The weight of a path L = (00— A — A®) in the graph I is

(63) Wt(L) = (C1.(](/\(1))) CZ,.\‘(/\(Z))) C2, (,’()\(2))) CZ,()()\(Z)))'

ProPOSITION 6.4. Each path L= (0—A"—A®) in T is distinguished by its
weight, that is, if L and M are paths in I and L # M then wt(L) # wt(M).

Proof. This follows easily by a direct check.

Proposition 1.12 and Proposition 6.4 together show that the seminormal
representations of WG, corresponding to the chain of groups {1} = S, = WG, are
essentially determined by the elements z,; in (6.2) and the constants ¢, ;(w) which
appear in (6.3). These representations are given in Theorem 6.7 below.

Seminormal representations. Let P, = P, be the path algebras, defined in § 1,
which are associated to the diagram I' in Fig. 6.1. For each A € G, let

(6.5) V*=C-spanfv, | L € #(\)},

so that the vectors v, , indexed by the paths L = (00— A" —A® =) in " which
end at A, form a seminormal basis of the irreducible P-module V*. It follows

from Lemma 1.9, that for any choice of an isomorphism ® between the path
algebra P, and the CWG, such that ®(P) = CS, = CWG,,

Z1,0VL = C1,0()\(1))UL) 25V = CZ,S()\(Z))UL)

(6.6)

22,0V = Cz,o()\(z))UL, 22,V = Cz,f(/\(z))vl_,

if L=(0—-AY—-A®)is apathinT.
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THEOREM 6.7. Irreducible seminormal representations of the Weyl group WG,
with respect to the chain S, = S, < WG, can be given by

¢1,()(S1) = (1), ¢1,6(S1) = (_1),
¢1,0(52) = (1), ¢1,6(52) = (_1),
$13(s1) = (1), $1a(s1) = (=1),

$13(s2) = (=1), $13(s2) = (1),

-l ) o=y )

$2,1(52) = @ >: $2(s52) = <_

(SIS
NI= N
NI= N
~

Proof. For any two paths M and L in the graph I" which end at the same label
A, let (s)x. denote the coefficient of vy, in s,v;. The constant (s )y, is a matrix
entry in the matrix for s, in the irreducible representation labelled by A. It follows
from Proposition 1.12(a) and Proposition 6.4 that the diagonal entries of these
matrices must be determined by the equations in (6.6) and that the off-diagonal
entries are determined up to a constant.

The matrices giving the one-dimensional representations are easily obtained
from the relations in (6.6). Let us explain how one derives the matrices for the
two-dimensional case.

(a) The matrices for s, are determined by (6.6).

(b) From the definitions (6.2), one gets easily that

22,0=S21 21,5221, F 22,021,
Let both sides of this equation act on v; and take the coefficient of v, to get, via
(6.6), the equation
Cz,(/()\(z)) =(s2)r + Cl,f(/\(l))(s2)LLcl,{’(A(l)) + Cz,o()‘(z))cuk()\(l))-
It follows that
62,5(/\(2)) — Cz,o(/\(z))cl,o()\(]))
1+ ¢y o(AD)?
All of the diagonal entries in the matrices for s, are determined by this formula
and the values in (6.3).

(c) Let both sides of the equation s3=1 act on the vector v, and take the
coefficient of v, in the result. One gets the equation

(52)r =

(2)a(s2)amr + (52)12. =1,
where M is the path to A in I' which is not L. It follows that
(52)Lae(52)pr = (1 + (52) L) (1 — (52) )

Because of the freedom in the choice of the off-diagonal entries, Proposition
1.12(b), it follows that we may choose ()4 =1+ (52)22 =1 — (52)pas-

The Iwahori—Hecke algebra HG,(p?, q%)
Let p, g be indeterminates. The Iwahori-Hecke algebra HG,(p?, ¢*) of type G,
is the associative algebra with 1 over the field C(p, q) given by generators T;, T,
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and relations
LLLTLTL=LTTLTLTLT,

6.8
©9 Ti=(p-p "Ti+1 and T5=(¢—q L+L

Analogues of Jucys—Murphy elements. If w;, is the longest element of the
Weyl group S, = WA, and w,, is the longest element of the Weyl group WG,,
then the corresponding elements in the Iwahori-Hecke algebras HA,(p®) and
HG,(p?, q*) are given by

=T and z=T, ,=LLTLLNLD.

L0 w0

1= Tw
Following (1.8) and Proposition 2.4, define sets Z, = {z,}, for k =1, 2.
Seminormal representations. Let Py < P, be the path algebras over the field
C(p, q) which are associated to the diagram I" in Fig. 6.1. For each A € G,, let
(6.9) VA =C(p, q)-spanfu,. | L e (A},

so that the vectors v, , indexed by the paths L = (00— A" — 1@ =) in I" which
end at A, form a seminormal basis of the irreducible P,-module V*. It follows
from Lemma 1.9, that for any choice of an isomorphism @ between the path
algebra P, and HG,(p?, ¢*) such that ®(P,) = CHA,(p?) < HG,(p?, q?),

(6‘10) 21V :PCI'O(/\(U)UL and v, = C2,0(/\(2))pCZ’S(/\(Z))qcz'((/\a))vm
if L=(0—-AY—-)\?)is a path in T

THEOREM 6.11. Irreducible seminormal representations of HG,(p?, q*) are given
explicitly by

¢1.0(T1) = (p), ¢1.0(T2) = (q),
¢1,6(Tl) = (_Pil)) ¢16(Tz) = (_qil))
$13(Th) = (p), $i:(1) = (_q_]),

d15(T) =(-p ), $15(T) = (q),
$21(Th) = (I(; _l(j_l)’ $21(12) = (Z b>,

$22(Th) = (1(; _21): $22(T5) = (; Y >,

where

1+pNg—9q7") _—l+pNg—q7")
a= , X =

1 -1 ’

ptp ptp
b=q—a, y=q —x,
c=q '+a, z=q '+x,
d=(q—q ") —a, w=(q—q")—x

Proof. The proof is entirely similar to the proof of Theorem 6.7. Let us explain
only how to get the entries in the matrices ¢, (75) and ¢,(T5). Let A=(2,1) or
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A=(2,2) and suppose that L and M are the two paths to A in I. From the
definition of the element z, we get
Ti'T>'Ti'% =L .
By rewriting 75" as T, — (¢ — g~ ') we have
T7'LT '~ (@ —q )T %=L
Taking the (L, M) entry of each side of the above equation gives
(E)Zi(n)LM(n)ﬁwcz,o()‘) -0
= (B) (1) LT o + (1) Laa(T)nana (L) e

Since these representations are irreducible, it follows that (7)., # 0. Dividing by
(T3) . and using the fact that (7;),, =p and (T})yn = —p ', We get the equation

@) =20 =p (D) —p (T aan-

Now, the equation T3 =(q —q ')T> + 1 forces the trace of the matrix of 75 to be
qg—q~ ', and so

(ii) () + (B)wum=q—q "

The values for x and « in the statement of the theorem now follow easily from (i)
and (ii). The values of the off-diagonal entries are determined (up to a constant,
see Proposition 1.12(a)) by the equation

(B) s D) = (g + (1) 10)(q = (B)um)-
This equation is obtained by taking the (L, L) entry in the equation
T3=(q—q HL+1.
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