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 0 .  Introduction

 The purpose of this paper is to describe a general procedure for computing
 analogues of Young’s seminormal representations of the symmetric groups .  The
 method is to generalize the Jucys – Murphy elements in the group algebras of the
 symmetric groups to arbitrary Weyl groups and Iwahori – Hecke algebras .  The
 combinatorics of these elements allow one to compute irreducible representations
 explicitly and often very easily .  In this paper we do these computations for Weyl
 groups and Iwahori – Hecke algebras of types  A n ,   B n ,   D n ,   G 2 .  Although these
 computations are within reach for types  F 4  , E 6 ,  and  E 7 ,  we shall ,  in view of the
 length of the current paper ,  postpone this to another work .

 In reading this paper ,  I would suggest that the reader begin with  §  3 ,  the
 symmetric group case ,  and go back and pick up the generalities from  §§  1 and 2 as
 they are needed .  This will make the motivation for the material in the earlier
 sections much more clear and the further examples in the later sections very easy .

 The realization that the Jucys – Murphy elements for Weyl groups and Iwahori –
 Hecke algebras come from the very natural central elements in (2 . 1) and
 Proposition 2 . 4 is one of the main points of this paper .  There is a simple concrete
 connection (Proposition 2 . 8) between Jucys – Murphy type elements in Iwahori –
 Hecke algebras and Jucys – Murphy elements in group algebras of Weyl groups .  I
 know that the analogues of the Jucys – Murphy elements in Weyl groups of types
 B  and  D  will be new to some of the experts and known to others .  These
 Jucys – Murphy elements for types  B  and  D  are not new ;  similar elements appear
 in the paper of Cherednik [ 7 ] ,  but I was not able to recognize them there until
 they were pointed out to me by M .  Nazarov .  I extend my thanks to him for this .
 Some people were asking me for Jucys – Murphy elements in type  G 2  as late as
 June 1995 .  In July 1995 I was told that it was not known how to quantize the
 elements of Cherednik ,  that is ,  to find analogues of them in the Iwahori – Hecke
 algebras of types  B  and  D .  Of course ,  this had been done already in 1974 ,  by
 Hoefsmit .

 I have chosen to state my results in terms of the general mechanism of path
 algebras which I have defined in  §  1 .  This is a technique which I learned from H .
 Wenzl during our work on the paper [ 30 ] .  It is a well-known method in several
 fields (with many dif ferent terminologies) .  I shall mention here only a few of the
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 many possible references to these ideas :  the book by Goodman ,  de la Harpe and
 Jones [ 16 ] ,  the book by Chen [ 6 ] ,  the paper of Sunder [ 33 ] ,  and the paper of
 Gelfand and Tseitlin [ 15 ] .

 The theory and the method which I have applied in this paper also work for
 studying the representations of centralizer algebras such as the Brauer algebra
 and the Birman – Wenzl – Murakami algebra .  In the case of the Brauer centralizer
 algebra ,  the analogues of the Jucys – Murphy elements are due to M .  L .  Nazarov
 [ 28 ] ,  and in the case of the Birman – Wenzl – Murakami algebra to N .  Reshetikhin
 [ 31 ] and R .  Leduc and the author [ 22 ] .  In the theory of centralizer algebras the
 Jucys – Murphy elements ‘come from’ the Casimir element of the centralizing Lie
 algebra or quantum group .

 History .  Alfred Young [ 35 ] wrote down several ways of describing the
 irreducible representations of the symmetric group ,  one of which gives explicit
 matrices for the images of the simple transpositions .  These are the seminormal
 representations of the symmetric group .  In 1974 Hoefsmit [ 17 ] completed his
 Ph . D .  thesis in which he wrote down analogues of Young’s irreducible seminor-
 mal representations for the Iwahori – Hecke algebras of types  A , B ,  and  D .
 Hoefsmit’s thesis was never published and these representations were indepen-
 dently rediscovered by H .  Wenzl [ 34 ] (in the type  A  case) .

 Jucys and Murphy inserted a new and beautiful feature into Young’s theory by
 writing down elements ,  which ,  in Young’s irreducible seminormal representations
 of the symmetric group ,  are always diagonal matrices .  Even better ,  the diagonal
 entries of these matrices have an easy combinatorial description .  They showed
 that Young’s seminormal representations could be reconstructed from the
 knowledge of these special elements .

 The original work of Jucys ([ 18 – 20 ] 1966 ,  1971 ,  1974) was published mostly in
 Lithuanian physics journals and was not read by many in the western mathemati-
 cal community .  Only when the work of Murphy ([ 24 ,   25 ] 1981 ,  1983) appeared
 did these elements begin to receive wider attention .  Cherednik [ 7 ] gave analogues
 of the Jucys – Murphy elements for the Weyl groups of types  B  and  D ,  but his
 paper was read by almost no-one in the seminormal representations camp since
 his paper was written from the point of view of constructing monodromy
 representations .  Hoefsmit ([ 17 ] 1974) ,  unknowingly ,  had analogues of these
 elements in the Iwahori – Hecke algebras of type  B  but since his thesis was never
 published ,  these elements remained largely unknown .  Hoefsmit’s construction in
 type  B  easily generalizes to Iwahori – Hecke algebras of types  A  and  D .  In the
 period 1985 – 1995 ,  Dipper ,  James ,  Murphy ,  and Pallikaros ([ 10 – 12 ] 1986 ,  1987 ,
 1992 ,  [ 26 ,  27 ] 1992 ,  1995 ,  [ 13 ] 1995 ,  [ 29 ] 1995) have done a lot of work on
 representations of Iwahori – Hecke algebras and have produced analogues of the
 Jucys – Murphy elements for Iwahori – Hecke algebras of types  A  and  B .  Their
 version of these elements in type  A  was written in such a way that it was not clear
 to anybody that they were the same as the elements that were in Hoefsmit’s
 thesis!

 More recently ,  there have been new ‘Hecke algebras’ which have been
 discovered by Ariki [ 1 ] ,  Ariki and Koike [ 2 ] ,  and Broue ́   and Malle [ 5 ] ,  which are
 similar to the Iwahori – Hecke algebras of types  B  and  D .  Ariki and Koike [ 2 ] and
 Ariki [ 1 ] have shown that Hoefsmit’s constructions can be extended to give
 seminormal representations of these algebras as well .  Ariki ,  Koike ,  and Broue ́
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 and Malle have given essentially the same analogues of the Jucys – Murphy
 elements as Hoefsmit had .
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 1 .  What is a seminormal representation ?

 For convenience and simplicity we shall work over the field  C   of complex
 numbers .  Let  h 1 j  5  G 0  ‘  G 1  ‘  . . .  ‘  G n  5  G  be a chain of finite groups .  Let  V  l   be
 an irreducible module for  G .  Upon restriction to the group  G n 2 1  the module  V  l

 decomposes as a direct sum

 V  l  >  V  m  1  %  . . .  %  V  m k

 of irreducible modules for  G n 2 1  .  Similarly each of these summands decomposes
 into irreducible submodules on restriction to  G n 2 2  ,  and so on .

 A  seminormal basis  of  V  l   is a basis  B l  5  h y  L j   of  V  l   that explicitly realizes these
 decompositions ,  that is ,  there is a partition of  B l   into subsets  B  m  1  ,  . . . ,  B m k   such
 that if  V  m i  5  C -span( B  m i ) then

 V  l  5  V  m  1  %  . . .  %  V  m k

 as  G n 2 1 -modules (note that here there is an  5  sign rather than only  > ) .  Further ,
 we require that each of the subsets  B m i   is partitioned into subsets which realize
 the decomposition upon restricting to  G n 2 2  ,  and so on ,  all the way down the
 chain .  Thus ,  to specify a seminormal basis one must give ,  not only the basis of  V  l

 but also the series of partitions .  The resulting representation

 r  l :  G  5  M d l
 ( C ) ,  d l  5  dim( V  l ) ,

 of  G ,  which is specified by  V  l   and the basis  B  l ,  is a  seminormal representation of
 G with respect to the chain G 0  ‘  . . .  ‘  G n  5  G .

 The concepts of seminormal bases and seminormal representations apply
 equally well to any chain of split semisimple algebras  C  >  H 0  ‘  H 1  ‘  . . .  ‘  H n  5  H .

 The graph  G .  Let  G ̂  i   be an index set for the irreducible representations of  G i .
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 Define non-negative integers  c l
 m  ,  where  m  P  G ̂  i 2 1  ,  l  P  G ̂  i  ,  by the restriction rule

 from  G i   to  G i 2 1  ,

 V  l
 ‚

 G i
 G i 2 1  >  M

 m  P G ̂  i 2 1

 c l
 m V  m .

 In other words ,  upon restriction from  G i   to  G i 2 1  the irreducible module  V  m  ,  with
 m  P  G ̂  i 2 1  ,  appears in the irreducible  G i -module  V  l  ,  with  l  P  G ̂  i  ,  with multi-
 plicity  c l

 m .
 Define a graph  G   with

 (1 . 1)
 vertices  labelled  by  the  elements  of  the  sets  G ̂  i  ,  and  such
 that  m  P  G ̂  i 2 1  and  l  P  G ̂  i  are  connected  by  c  l

 m  edges .

 The graph  G   encodes the restriction rules for the chain  h 1 j  5  G 0  ‘  . . .  ‘  G n  5  G .
 We shall assume that the unique element in  G ̂  0  is denoted  [ .

 Let  m  P  G ̂  r   and  l  P  G ̂  s   where  r  ,  s .  A  path  from  m   to  l   is a sequence of  s  2  r
 edges connecting  m   to  l  ,

 L  5 S m  5  l ( r )
 ÅÅÅÅ 5

 e r
 l ( r 1 1)

 ÅÅÅÅ 5

 e r 1 1  . . .  ÅÅÅÅ 5

 e s 2 1
 l ( s )  5  l D ,

 such that  l ( i )  P  G ̂  i   for  r  <  i  <  s .  We distinguish paths which ‘travel’ from  l ( i )  to
 l ( i 1 1 )   along dif ferent edges .  We use the following notation :

 + ( l  5  m  ) is the set of paths from  l   to  m  ;

 + ( l ) is the set of paths from  [   to  l ;

 + ( l  5  s ) is the set of paths from  l   to any element  m  P  G ̂  s ;

 +  ( m ) is the set of paths from  [   to any element  l  P  G ̂  m ;

 +  5  +  ( n ) ,  where  n  is the total number of groups in the chain  G 0  ‘  . . .  ‘  G n ;

 Ω ( l ) is the set of pairs ( S ,  T  ) of paths such that  S ,  T  P  + ( l ) ;

 Ω ( m ) is the set of pairs ( S ,  T  ) of paths such that  S ,  T  P  + ( l ) for some  l  P  G ̂  m .

 In general ,  by ‘a path in  G ’ we shall mean an element  L  5  ( l ( 0 )
 5  . . .  5  l ( n ) )  P  + .

 Path algebras .  For each 0  <  m  <  n  define a  path algebra P m   over  C   (see [ 16 ])
 with basis  E S T  ,  where ( S ,  T  )  P  Ω ( m ) ,  and multiplication given by

 (1 . 2)  E S T E P Q  5  d T P E S Q .

 To avoid confusion with another type of path algebra used in other parts of
 representation theory ,  note that the multiplication in the path algebra does not
 involve composition of paths .  We have  P 0  .  C .  Each of the algebras  P m   is
 isomorphic to a direct sum of matrix algebras

 P m  .  M
 l P G ̂  m

 M d l
 ( C ) ,

 where  M d ( C ) denotes the algebra of  d  3  d  matrices with entries from  C   and
 d l  5  Card( + ( l )) .  For each  l  P  G ̂  m   define a  P m -module by defining

 (1 . 3)  V  l  5  C -span h y  L  3  L  P  + ( l ) j  and  E ST  y  L  5  d  TL y  S ,

 for all paths  S ,  T ,  L  P  + ( l ) .  The  P m -modules  V  l  ,  with  l  P  G ̂  m  ,  realize all of the
 irreducible  P m -modules .
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 Given a path  T  5  ( l  5  . . .  5  m  ) from  l   to  m   and a path  S  5  ( m  5  . . .  5  …  ) from
 m   to  …   define

 T  p  S  5  ( l  5  . . .  5  m  5  . . .  5  …  )

 to be the concatenation of the two paths .  Let  r  ,  s  and for each  l  P  G ̂  r   and each
 pair ( P ,  Q )  P  Ω ( l ) view the element  E P Q  P  P r   as an element of  P s   by the formula

 (1 . 4)  E P Q  5  O
 T  P + ( l 5 s )

 E P p T ,Q p T .

 This defines ,  in particular ,  an inclusion of  P m 2 1  into  P m   for every  m  .  0 .  Let
 l  P  G ̂  m   and let  V  l   be the irreducible representation of  P m   corresponding to  l   as
 given in (1 . 3) .  Then the restriction of  V  l   to  P m 2 1  decomposes as

 V  l
 ‚

 P m
 P m 2 1

 .  M  V  m  ,

 where the sum is over all edges  m  ÅÅ 5

 e
 l   that connect an element  m  P  G ̂  m 2 1  to the

 l  P  G ̂  m .  The basis vectors  y  L   form a seminormal basis of the  P m -module  V  l .

 Constructing seminormal representations of  C G .  As above ,  let

 (1 . 5)  h 1 j  5  G 0  ‘  . . .  ‘  G n  5  G

 be a chain of finite groups ,  let  G   be the graph which describes the restriction rules
 for the inclusions in (1 . 5) and let  P m  ,  for 0  <  m  <  n ,  denote the corresponding
 path algebras .  By construction ,  the path algebras  P n   have natural seminormal
 representations (1 . 3) with respect to the inclusions  P 0  ‘  P 1  ‘  . . .  ‘  P n .  Thus ,  we
 should try to find an isomorphism

 (1 . 6)
 F :  P n

 E M L

 .
 S

 C G

 e M L
 such  that  F ( P i )  5  C G i ,

 for all 0  <  i  <  n .  Given such an isomorphism ,  irreducible seminormal representa-
 tions are given by the modules  V  l   in (1 . 3) where the action of an element  g  P  C G
 is given by

 (1 . 7)  g y  L  5  F 2 1 ( g ) y  L  ,

 for all  g  P  G .
 Suppose that ,  for each 1  <  k  <  n ,

 (1 . 8)  Z k  5  h z k , j j 1 < j < r k

 is a set of central elements in the group algebra  C G k .

 L EMMA  1 . 9 .  Let z k , j  be a central element in  C G k . Let

 L  5  ( l ( 0 )
 5  . . .  5  l ( n ) )  P  + ( n )

 be a path in the graph  G   and let  χ  l ( k )
   be the irreducible character of G k  indexed by

 the element  l ( k )  P  G ̂  k . For any choice of isomorphism  F   between the path algebra
 P n  and  C G as in  (1 . 6) ,

 z k , j y  L  5  c k , j ( l ( k ) ) y  L  ,  where  c k , j ( l ( k ) )  5
 χ  l ( k )

 ( z k , j )
 χ  l ( k )

 (1)
 .
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 Proof .  By Schur’s lemma any central element  z k , j  P  C G k   must act by a scalar
 multiple of the identity in every irreducible representation of  G k .  Specifically ,   z k , j

 acts by the scalar  c k , j ( m  ) in the irreducible  G k -module indexed by  m .  Each of the
 basis vectors  y  L  , L  5  ( l ( 0 )

 5  . . .  5  l ( n ) ) is in an irreducible  P k -module which is
 isomorphic to the irreducible  P k -module  V  l ( k )

  indexed by  l ( k )  P  G ̂  k .  It follows
 that ,  for any choice of the isomorphism  F :  P n  5  C G  in (1 . 6) ,  we must have

 z k , j y  L  5  F 2 1 ( z k , j ) y  L  5  c k , j ( l ( k ) ) y  L .

 R EMARK  1 . 10 .  The set  Z  5  !
 n
 k 5 0  Z k   is a set of elements of the group algebra

 C G  that all commute with each other .  They generate a commutative subalgebra  T
 of  C G .  The subalgebra  T  acts diagonally on the basis  y  L  ,  that is ,  for each  t  P  T
 and each  L  P  + ,

 t y  L  5  c ( t ,  L ) y  L

 for some constant  c ( t ,  L )  P  C .

 For each  m  P  G ̂  k   let  c k ( m  ) be the ordered  r k -tuple  c k ( m  )  5  ( c k , j ( m  )) 1 < j < r k
 .

 Define the  weight  of a path  L  5  ( l ( 0 ) ,  . . . ,  l ( n ) ) in  G   to be the  n -tuple

 (1 . 11)  wt( L )  5  ( c 0 ( l ( 0 ) ) ,  . . . ,  c n ( l ( n ) )) .

 The following proposition shows that in many cases the isomorphism  F   in (1 . 6)
 can be determined more or less explicitly .

 P ROPOSITION  1 . 12 .  The choice of an isomorphism  F   as in  (1 . 6)  is determined by
 the choice of elements

 F ( E M L )  5  e M L  P  C G

 for each pair of paths L , M in  G . Assume that each path in  G   is distinguished by its
 weight , that is , if L and M are paths in  G   and L  ?  M , then  wt( L )  ?  wt( M ) .

 (a)  For each path L in  G   the element e L L  is determined uniquely by the elements
 z k , j  P  Z k  and the constants c k , j ( m  ) , where  m  P  G ̂  k  for  0  <  k  <  n .

 (b)  If M and L are paths in  G   such that M  ?  L then e M L  is determined up to a
 constant by the elements z k , j  P  Z K  and the constants c k , j ( m  ) , where  m  P  G ̂  k  and
 0  <  k  <  n .

 Proof .  Let  L  5  ( l ( 0 ) ,  . . . ,  l ( n ) ) be a path in  G .  For each 0  <  k  <  n  and each
 1  <  j  <  r k ,  let

 p k , j ( l ( k ) )  5  P
 c k , j ( m  ) ? c k , j ( l ( k ) )

 z k , j  2  c k , j ( m  )
 c k , j ( l ( k ) )  2  c k , j ( m  )

 ,

 where the product is over all  c k , j ( m  ) ,  with  m  P  G ̂  k  ,  such that  c k , j ( m  )  ?  c k , j ( l ( k ) ) .
 There may be elements  m  P  G ̂  k   such that  m  ?  l ( k )  but such that  c k , j ( m  )  5  c k , j ( l ( k ) ) .
 These  m  P  G ̂  k   are not included in the product .  It follows from Lemma 1 . 9 that if
 M  5  ( m  ( 0 )

 5  . . .  5  m  ( n ) )   is a path in  G   then ,  for any isomorphism  F   as in (1 . 6) ,

 F 2 1 (  p k , j ( l ( k ) )) y  M  5 H y  M

 0
 if  c k , j ( m  ( k ) )  5  c k , j ( l ( k ) ) ,

 otherwise .
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 Define

 e L L  5 P
 k ,j

 p k , j ( l ( k ) ) .

 If  M  5  ( m  ( 0 )
 5  . . .  5  m  ( n ) ) is a path in  G   then

 F 2 1 ( e L L ) y  M  5  d L M y  M  5  E L L y  M  ,

 since ,  if  L  ?  M  then wt( L )  ?  wt( M ) .  The result follows since  F   is injective .
 (b)  Assume that  M  and  L  are paths in  G   such that  M  ?  L .  Let  a  P  C G  such

 that  e M M ae L L  ?  0 .  Then  e M L   must be a constant times the element  e M M ae L L  P  C G .
 Since the elements  e L L   and  e M M   are completely determined by the elements  z k , j

 and the constants  c k , j ( m  ) ,  it follows that the elements  e M L   are determined (up to a
 constant) by them .

 R EMARK  1 . 13 .  Suppose that

 F :  P n

 E M L

 5

 S

 C G
 e M L

 and
 F 9 :  P n

 E M L

 5

 S

 C G
 e 9 M L

 are two isomorphisms between the path algebra  P n   and  C G .  Let  k M L  P  C   be such
 that  e M L  5  k M L e 9 M L .  The constants  k M L   must satisfy the relations

 k M L k L M  5  1  and  k M L k L N  5  k M N ,

 for all choices of paths  M , L , N  P  + .  These relations follow from the relations
 e M L e P S  5  d L P e M S   in (1 . 2) .

 E XAMPLE  1 . 14 .  Suppose that  h 1 j  5  G 0  ‘  . . .  ‘  G n  5  G  is a chain of finite groups
 such that ,  for each 1  <  i  <  n ,  the restriction rules describing the decomposition of
 irreducible  G i -representations into irreducible  G i 2 1 -representations are multi-
 plicity free .  For each 1  <  i  <  n ,  let  Z i   be the set of sums of elements in each
 conjugacy class of  G i .  Clearly  Z i   is a set of central elements in  C G i .  This is an
 example of a situation in which the paths in the graph  G   are distinguished by their
 weights .

 2 .  Weyl groups and Iwahori  – Hecke algebras

 The branching rules for the chains of Weyl groups

 S 1  ‘  S 2  ‘  . . .  ‘  S n ,

 WB 1  ‘  WB 3  ‘  . . .  ‘  WB n ,

 WB 2  ‘  WB 3  ‘  WF 4  ,

 WD 5  ‘  WE 6  ‘  WE 7 ,

 are all multiplicity free .  Thus ,  the Weyl groups  S n ,   WB n ,   WF 4  , WE 6  ,  and  WE 7  all
 fall into the situation of Example 1 . 14 and one can use the sets  Z k   consisting of all
 conjugacy class sums and Proposition 1 . 12 to compute all the irreducible
 representations of these Weyl groups and their corresponding Iwahori – Hecke
 algebras .  (In the  WE 7  ‘  WE 8  case the branching rule has multiplicities at most 2
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 and could be treated in a similar fashion to Example 1 . 14 except that one would
 also have to use some additional elements from the centralizer of the  WE 7  action
 on irreducible  WE 8  representations . ) We shall show in the remainder of this
 paper that one can use much smaller sets for the  Z k   and obtain the same results in
 a quicker way .  We shall obtain ‘seminormal’ representations of the Weyl groups
 and Iwahori – Hecke algebras of type  D n   by using the representation theory for
 type  B n ;  see  §  5 .

 Weyl groups .  Let  [  5  R 0  ‘  . . .  ‘  R n  5  R  be a chain of root systems and let

 h 1 j  5  W 0  ‘  . . .  ‘  W n

 be the corresponding chain of Weyl groups .  Let  R 1
 k    denote the set of positive

 roots in the root system  R k   and ,  for each  a  P  R  1
 k    let  s a   denote the element of  W k

 which is the reflection in the hyperplane perpendicular to  a .

 (2 . 1a)  If all roots in  R k   are the same length then the set of elements
 h s a 3  a  P  R 1

 k  j   is a conjugacy class in  W k .  It follows that

 z k , ,  5  O
 a P R k

 1

 s a

 is a central element of  C W k .  (The index  ,   here simply denotes that this is a sum
 over the ‘long’ roots in  R 1

 k  . )

 (2 . 1b)  If the roots in  R k   are not all the same length then there are two lengths
 of roots .  Let  R 1

 k , s   be the set of short positive roots and let  R 1
 k , ,   be the set of long

 positive roots in  R k .  The sets  h s a 3  a  P  R  1
 k ,s j   and  h s a 3  a  P  R  1

 k , , j   are conjugacy
 classes in  W  and the elements

 z k , s  5  O
 a P R 1

 k , s

 s a  and  z k , ,  5  O
 a P R 1

 k , ,

 s a  ,

 are central elements in  C W k .

 (2 . 1c)  If the longest element  w k , 0  in the Weyl group  W k   acts as  2 1 in the
 reflection representation of  W k   then the element

 z k , 0  5  w k , 0

 is central in  W k .

 For each 0  <  k  <  n ,  let  Z k   denote the set of central elements in  C W k   which are
 determined by (2 . 1) .  Depending on which cases apply ,  the set  Z k   contains 1 ,  2 ,  or
 3 elements .  In view of Lemma 1 . 9 ,  we define ,  for each irreducible character  χ   of
 the Weyl group  W k   and each  z k , j  P  Z k  ,  a constant

 (2 . 2)  c k , j (  χ  )  5
 χ  ( z k , j )
 χ  (1)

 .

 We shall use the central elements in the sets  Z k   (with some slight modification in
 the  D n   case) to compute seminormal representations for the Weyl groups of types
 A n 2 1  , B n  , D n  , G 2 .

 R EMARK  2 . 3 .  In my view ,  the central elements in (2 . 1) are the appropriate
 generalization of Jucys – Murphy elements to arbitrary Weyl groups (or Coxeter
 groups) .  Remarks 3 . 6 and 4 . 6 illustrate this idea in special cases .
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 Iwahori  – Hecke algebras .  Let  D   be a Dynkin diagram of a finite Weyl group ,  let
 R  be the corresponding root system ,  and let  W  be the corresponding Weyl group .
 Let  h a i 3  i  P  D j   be the set of simple roots in  R ,  indexed by the nodes in the
 Dynkin diagram  D .  The Iwahori – Hecke algebra  H (  p 2 ,  q 2 ) corresponding to the
 Weyl group  W  is the algebra over  C (  p ,  q ) generated by elements  T i  ,  with  i  P  D ,
 and relations

 (a)  T i T j T i T j  . . .  5  T j T i T j T i  . . .  ,  where each side contains  m i j   factors and  m i j   is the
 order of the element  s a i

 s a j
   in the Weyl group  W ,

 (b)  T  2
 i  5 H (  p  2  p 2 1 ) T i  1  1

 ( q  2  q 2 1 ) T i  1  1
 if  a i  is  a  short  root ,
 if  a i  is  a  long  root .

 If all roots in  R  are the same length then we make the convention ,  for the
 purposes of the definition of the Iwahori – Hecke algebra ,  that all roots in  R  are
 long and we simply define the Iwahori – Hecke algebra as an algebra  H ( q 2 ) over
 C ( q ) .

 It is a standard fact ([ 3 ,  Chapter IV ,   §  2 ,  Ex .  23 – 24] or [ 8 ]) that the
 Iwahori – Hecke algebra  H ( q 2 ) corresponding to a Weyl group  W  is split-
 semisimple and its irreducible representations can be indexed by the same set  W ̂
 that indexes the irreducible representations of  W .  Following the standard
 notation ,  we see that if  w  P  W  then  T w  5  T i 1  . . .  T i p   where  w  5  s i 1  . . .  s i p   is a reduced
 expression for  w  P  W .  The element  T w  P  H  is well defined and does not depend
 on the choice of the reduced expression for  w .

 Let  [  5  D 0  ‘  D 1  ‘  . . .  ‘  D n  5  D   be a chain of Dynkin diagrams of finite Weyl
 groups .  These Dynkin diagrams correspond to a chain of root systems

 R 0  ‘  R 1  ‘  . . .  ‘  R n  5  R

 and to a chain of Weyl groups  W 0  ‘  W 1  ‘  . . .  ‘  W n  5  W  such that ,  for each
 1  <  i  <  n ,  the group  W i 2 1  is a parabolic subgroup of  W i .  Let

 C  >  H 0  ‘  . . .  ‘  H n  5  H

 be the corresponding chain of Iwahori – Hecke algebras .

 P ROPOSITION  2 . 4 .  Let H k  be the Iwahori  – Hecke algebra corresponding to a finite
 Weyl group W k . Let w k , 0   denote the longest element in the Weyl group W k .

 (a)  The element T  2
 w k , 0   is central in H k (  p 2 ,  q 2 ) . If  r   is an irreducible representation

 of H k (  p 2 ,  q 2 )  corresponding to the irreducible character  χ   of the Weyl group W k  ,
 then

 r  ( T  2
 w k , 0 )  5  p 2 c k , s (  χ  ) q 2 c k , ,  (  χ  )  Id ,

 where c k , s (  χ  )  and c k , , (  χ  )  are the constants gi y  en in  (2 . 2) .
 (b)  If w k , 0  5  2 1  in the reflection representation of W k  , then T w k , 0   is a central

 element in H k (  p 2 ,  q 2 ) . If  r   is an irreducible representation of H k (  p 2 ,  q 2 )
 corresponding to the irreducible character  χ   of the Weyl group W k  , then

 r  ( T w k , 0 )  5  c k , 0 (  χ  ) p c k , s (  χ  ) q c k , ,  (  χ  )  Id ,

 where c k , s (  χ  ) , c k , , (  χ  ) , and c k , 0 (  χ  )  are the constants gi y  en in  (2 . 2) .

 Proof .  (a)  By a theorem of Breiskorn and Saito [ 4 ] and Deligne [ 9 ] ,  the
 element  T  2

 w k , 0
  is central in the generalized braid group .  Thus  T  2

 w k , 0
  is central in



 ARUN RAM 108

 H k (  p 2 ,  q 2 ) and it follows that  T  2
 w k , 0

  acts by a constant in every irreducible
 representation .  The constant is computed by writing  T w k , 0

  as a product of
 generators and taking the determinant of both sides of the equation

 T  2
 w k , 0

 5  ( T i 1
 . . .  T i N ) 2  5  p c 1 q c 2  Id .

 It remains only to note that the number of short roots in  R k   is the same as the
 number of factors  T i j   in the product  T w k , 0

 5  T i 1
 . . .  T i N   such that  a i j   is a short root in

 R k  ,  and that the analogous result holds for the number of long roots in  R k .
 (b)  The result of Brieskorn and Saito and Deligne says that  T w k , 0

  is central in
 the braid group when  w k , 0  5  2 1 in the reflection representation of the Weyl group
 W k .  It follows that  T w k , 0

  is central in  H k (  p 2 ,  q 2 ) .  The eigenvalues of  T w k , 0
  must be

 square roots of the eigenvalues of  T  2
 w k , 0

  and they must specialize to the
 eigenvalues of  w k , 0  when  p  5  q  5  1 .  The result now follows from (a) ,  (2 . 1)(c) ,  and
 the definition of the constant  c k , 0 (  χ  ) .

 R EMARK  2 . 5 .  The above proposition is somewhat folklore in the subject of
 Iwahori – Hecke algebras .  The argument given here appears in Propositions 26
 and 27 of Kilmoyer’s thesis [ 21 ] and also appears in complete detail in the recent
 paper of Geck and Michel [ 14 ] .

 Let  w k , 0  be the longest element in the Weyl group  W k   and define  Z k  5  h z k j
 where

 (2 . 6)  z k  5 H T w k , 0

 T  2
 w k , 0

 if  w k  , 0  5  2 1  in  the  reflection  representation  of  W k  ,

 otherwise .

 We shall use these central elements (with some slight modification in the  D n   case)
 to compute seminormal representations for the Iwahori – Hecke algebras of types
 A n 2 1  , B n  , D n  , G 2 .  The cases  F 4  , E 6  and  E 7  will be treated in future work .

 R EMARK  2 . 7 .  In my view ,  the central elements in Proposition 2 . 4 are the
 analogues of the Jucys – Murphy elements for the Iwahori – Hecke algebras .
 Remarks 3 . 17 and 4 . 22 illustrate this idea in special cases .

 The following proposition describes concretely the connection between the
 central elements of  H k (  p 2 ,  q 2 ) in Proposition 2 . 4 and the central elements in  C W k

 given in (2 . 1) .

 P ROPOSITION  2 . 8 .  If x  P  H k (  p 2 ,  q 2 ) , use the notation  [ x ] q 5 1   to denote the  y  alue of
 x when q is specialized to  1 . Then

 F ([ T w k , 0
 ] p 5 1 )

 2  2  1
 q  2  q 2 1  G

 q 5 1
 5  O

 a P R 1
 k , s

 s a  5  z k , s  ,

 F ([ T w k , 0 ] q 5 1 )
 2  2  1

 p  2  p 2 1  G
 p 5 1

 5  O
 a P R 1

 k , ,

 s a  5  z k , ,  ,

 [ T w k , 0
 ] p 5 q 5 1  5  w k , 0  5  z k , 0 ,

 where z k , s  , z k , ,  , and z k , 0   are the central elements of  C W k  gi y  en in  (2 . 1) .
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 Proof .  Let us assume ,  for convenience ,  that all roots in  R k   are the same length .
 In this case we have only one indeterminate  q  and we are working in the
 Iwahori – Hecke algebra  H k ( q 2 ) .  The proof is similar in the general case .

 If  T i 1
 . . .  T i N   is a reduced expression for  T w k , 0

  then so is  T i N  . . .  T i 1
 .  We can expand

 ( T w k , 0
 ) 2   by using the relation  T  2

 i  5  ( q  2  q 2 1 ) T i  1  1 to obtain

 T  2
 w k , 0

 5  T i 1
 . . .  T i N T i N  . . .  T i 1

 5  1  1  ( q  2  q 2 1 )  O N
 j 5 1

 T i 1  . . .  T i j 2 1
 T i j T i j 2 1

 . . .  T i 1

 1  terms  divisible  by  ( q  2  q 2 1 ) 2 .

 It follows that

 F T  2
 w k , 0

 2  1
 q  2  q 2 1  G

 q 5 1
 5  O N

 j 5 1
 s i 1  . . .  s i j 2 1 s i j s i j 2 1  . . .  s i 1 .

 The result now follows from [ 3 ,  Chapter VI ,   §  1 ,  Corollary 2] .

 R EMARK  2 . 9 .  In Proposition 2 . 8 we have been carefree about the process of
 specializing  p  and  q  to 1 .  Of course this really should be done properly .  One must
 define a  Z -form of the Iwahori – Hecke algebra  H k (  p 2 ,  q 2 ) as an algebra over
 !  5  Z [ q ,  q 2 1 ,  p ,  p 2 1 ]   and only specialize ,  by an appropriate tensor product
 Z  ̂  !  H k (  p 2 ,  q 2 ) ,  elements  x  which are in the  Z -form of  H k (  p 2 ,  q 2 ) .  This is
 standard and it is clear that the elements ( T  2

 w k , 0
 2  1) / ( q  2  q 2 1 ) in (the proof of)

 Proposition 2 . 8 are elements in the  Z -form of  H k ( q 2 ) .

 3 .  Type A n 2 1  , the symmetric group S n

 The Weyl group .  The Weyl group of the root system  A n 2 1  is the symmetric
 group  S n   of permutations of  h 1 ,  2 ,  . . . ,  n j .  The simple transpositions

 s i  5  ( i  2  1 ,  i )  for  2  <  i  <  n ,

 generate  S n   and these elements satisfy the relations

 s i s j  5  s j s i  for  u i  2  j u  .  1 ,

 (3 . 1)  s i s i 1 1 s i  5  s i 1 1 s i s i 1 1  for  2  <  i  <  n  2  1 ,

 s 2
 i  5  1  for  2  <  i  <  n .

 Partitions and standard tableaux .  As in [ 23 ] ,  we shall identify each partition  l
 with its Ferrers diagram and say that a box  b  in  l   is in position ( i ,  j ) in  l   if  b  is in
 row  i  and column  j  of  l .  The rows and columns of  l   are labelled in the same way
 as for matrices .  We shall write  u l u  5  n  if  l   is a partition with  n  boxes .  We shall
 often refer to partitions as  shapes .

 A  standard tableau L  of shape  l   is a filling of the Ferrers diagram of  l   with the
 numbers 1 ,  2 ,  ...,  n  such that the numbers are increasing left to right across the
 rows of  L  and increasing down the columns of  L .  For any shape  l  ,  let  + ( l )
 denote the set of standard tableaux of shape  l   and ,  for each standard tableau  L ,
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 let  L ( k ) denote the box containing  k  in  L .  For example ,  Fig .  3 . 2 illustrates a
 standard tableau of shape (332) .

 F IG .  3 . 2

 The chain A 0  ‘  A 1  ‘  . . .  ‘  A n 2 1  .  The chain of root systems  A 0  ‘  A 1  ‘  . . .  ‘  A n 2 1
 corresponds to the chain of Weyl groups

 S 1  ‘  S 2  ‘  . . .  ‘  S n ,

 where  S k   denotes the symmetric group of permutations of 1 ,  2 ,  ...,  k .  The
 irreducible representations of the symmetric group  S k   are indexed by the
 partitions  l   such that  u l u  5  k .  The restriction rule from  S k   to  S k 2 1  is given by

 V  l
 ‚

 S k
 S k 2 1

 >  M
 m  P l 2

 V  m  ,

 where the sum is over all partitions  m   of  k  2  1 that are obtained from  l   by
 removing one box .  For the chain  S 1  ‘  S 2  ‘  . . .  ‘  S n ,  the graph  G   defined in (1 . 1) is
 the Young lattice .  For  n  5  5 ,  G   is as in Fig .  3 . 3 .  A path ( l ( 0 )

 5  . . .  5  l ( n ) ) in  G   is
 naturally identified with the standard tableau  L  of shape  l ( n )  which has  i  in the
 box which is added to obtain  l ( i )  from  l ( i 2 1 ) .

 F IG .  3 . 3

 Jucys  – Murphy elements .  Following (2 . 1) ,  let us compute the sets  Z k   for this
 case .  Write permutations in the symmetric groups  S k   in cycle notation .  In the root
 system  A k 2 1  ,  all roots are of one length and the longest element

 w k , 0  5  (1 ,  k )(2 ,  k  2  1)  . . .

 of the Weyl group  S k   does not act by  2 1 in the reflection representation .  For
 each 1  <  k  <  n ,  the set  Z k   contains a single element  z k , ,  ,  which is the central
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 element of  C S k   given by

 (3 . 4)  z k , ,  5  O
 a P A 1

 k 2 1

 s a  5  O
 1 < i , j < k

 ( i ,  j ) .

 (The  ,   here is spurious ;  as in (2 . 1a) it only indicates the fact that in the root
 system  A k 2 1  all roots are long . ) Since the elements  z k , ,  ,  for 1  <  k  <  n ,  all
 commute with each other in  C S n  ,  it follows that the elements

 (3 . 5)  m k  5  z k , ,  2  z k 2 1 , ,  5  O k
 i 5 2

 ( i  2  1 ,  k )  for  2  <  k  <  n ,

 all commute with each other in  C S n .

 R EMARK  3 . 6 .  The elements  m k  ,  for 2  <  k  <  n ,  are the elements defined by Jucys
 [ 18 – 20 ] and Murphy [ 24 – 26 ] .

 Weights .  The  content  of a box  b  in a shape  l   is given by

 (3 . 7)  ct( b )  5  j  2  i ,  if  b  is  in  position  ( i ,  j )  in  l .

 It follows immediately from [ 23 ,  I ,   §  7 ,  Ex .  7 ,  and I ,   §  1 ,  Ex .  3] that ,  for each
 1  <  k  <  n  and for each partition  m   such that  u m  u  5  k ,

 (3 . 8)  c k , ,  ( m  )  5  χ  m ( z k , , ) / χ  m  (1)  5  O
 b P m

 ct( b ) ,

 where  χ  m   denotes the character of the irreducible representation of the symmetric
 group  S k   labelled by the partition  m .  Following (1 . 11) ,  we see that the  weight  of a
 standard tableau  L  5  ( l ( 1 )

 5  . . .  5  l ( n ) ) ,  where  u l ( k ) u  5  k ,  is

 wt( L )  5  ( c 1 , , ( l ( 1 ) ) ,  . . . ,  c n , , ( l ( n ) )) .

 Note that wt( L ) is completely determined by the  n -tuple

 , wt( L )  5  (ct( L (1)) ,  . . . ,  ct( L ( n ))) ,  since  c k , , ( l ( k ) )  5  O k
 i 5 1

 ct( L ( i )) .

 P ROPOSITION  3 . 9 .  Each standard tableau L  5  ( l ( 1 )
 5  . . .  5  l ( n ) )  is determined

 uniquely by its weight .

 Proof .  Two boxes  b  and  b 9  in a partition  l   have the same content only if they
 lie on the same diagonal .  It follows easily that ,  if  l ( i )  is a partition ,  then each of
 the boxes  b  that can be added to  l ( i )  to get a new partition has a dif ferent content
 ct( b ) .  Thus ,  the shape  l ( i 1 1 )  in a standard tableau  L  is completely determined by
 the previous shape  l ( i )  and the content ct( b ) of the added box  b .  It follows that a
 standard tableau  L  is completely determined by  , wt( L ) and therefore by its weight
 wt( L ) .

 Proposition 1 . 12 and Proposition 3 . 9 together show that the seminormal
 representations of  S n   corresponding to the chain of groups  h 1 j  5  S 0  ‘  . . .  ‘  S n   are
 essentially determined by the elements  z k , ,   in (3 . 4) and the constants  c k , , ( m  ) in
 (3 . 8) .  It follows that we should be able to determine seminormal representations
 of the group  S n   from the elements  m k   and the constants ct( b ) .  This is done in
 Theorems 3 . 12 and 3 . 14 below .
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 Seminormal representations .  Let  P 1  ‘  P 2  ‘  . . .  ‘  P n   be the path algebras ,  defined
 in (1 . 2) ,  which are associated to the diagram  G   which describes the restriction
 rules for the chain  S 1  ‘  . . .  ‘  S n .  For each partition  l   of size  n ,  let

 (3 . 10)  V  l  5  C -span h y  L  ,  L  P  + ( l ) j ,

 so that the vectors  y  L  ,  indexed by standard tableaux  L  of shape  l  ,  form a
 seminormal basis of the  P n -module  V  l .  It follows from Lemma 1 . 9 ,  that for any
 choice of an isomorphism  F   between the path algebra  P n   and  C S n   such that
 F ( P k )  5  C S k  ‘  C S n   for all 1  <  k  <  n ,  we have that

 z k , , y  L  5  c k , , ( l ( k ) ) y  L  ,

 if  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) .  If  m k   is as in (3 . 5) ,  then

 m k y  L  5  ct( L ( k )) y  L  ,

 for a standard tableau  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) .

 For each 2  <  k  <  n  and each standard tableau  L  of size  n ,  define

 (3 . 11)  ( s k ) L L  5
 1

 ct( L ( k ))  2  ct( L ( k  2  1))
 .

 In the interests of space we shall not give the proof of the following theorems
 here .  The proofs are essentially the same as the proofs which are given for
 Theorem 4 . 15 and Theorem 4 . 18 .

 T HEOREM  3 . 12 (Young [ 35 ]) .  Let  l   be a partition such that  u l u  5  n . Define an
 action of each generator s 2  ,  . . . ,  s n  of the symmetric group S n  on V  l   by defining

 (3 . 13)  s i y  L  5  ( s i ) L L y  L  1  (1  1  ( s i ) L L ) y  s i L  for  2  <  i  <  n ,

 where s i L is the same standard tableau as L except that the positions of i and i  2  1
 are switched in s i L . If s i L is not standard , then we define  y  s i L  5  0 . This action
 extends to a well - defined action of S n  on V  l .

 T HEOREM  3 . 14 (Young [ 35 ]) .  The S n  modules V  l   defined in Theorem  3 . 12 ,
 where  l   runs o y  er all partitions such that  u l u  5  n , form a complete set of
 non - isomorphic irreducible modules for the symmetric group S n  and , for each  l  ,
 the basis  h y  L 3  L  P  + ( l ) j   is a seminormal basis of the S n - module V  l .

 Iwahori  – Hecke algebras HA n 2 1 ( q 2 )
 Let  q  be an indeterminate .  The Iwahori – Hecke algebra  HA k 2 1 ( q 2 ) corres-

 ponding to the root system  A k 2 1  is the associative algebra with 1 over the field
 C ( q )   given by generators  T 2  ,  T 3  ,  . . . ,  T k   and relations

 T i T j  5  T j T i  for  u i  2  j u  .  1 ,

 (3 . 15)  T i T i 1 1 T i  5  T i 1 1 T i T i 1 1  for  2  <  i  <  k  2  1 ,

 T  2
 i  5  ( q  2  q 2 1 ) T i  1  1  for  2  <  i  <  k .

 Analogues of Jucys  – Murphy elements .  For each 2  <  k  <  n ,  define

 (3 . 16)  M k  5  T k  . . .  T 3 T 2 T 2 T 3  . . .  T k .
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 In type  A k 2 1  the longest element  w k , 0  of the group  S k   does not act by  2 1 in the
 reflection representation .  Following Proposition 2 . 4 ,  we define sets  Z k  5  h z k j ,  for
 2  <  k  <  n ,  where  z k   is the central element of  HA k 2 1 ( q 2 ) given by

 z k  5  T  2
 w k , 0  5  M k M k 2 1  . . .  M 2 .

 Since the elements  z k  ,  for 2  <  k  <  n ,  all commute in  HA n 2 1 ( q 2 ) ,  it follows that the
 elements  M k  ,  for 2  <  k  <  n ,  all commute with each other .

 R EMARK  3 . 17 .  Using the relation  T  2
 i  5  ( q  2  q 2 1 ) T i  1  1 ,  an easy computation

 shows that

 (3 . 18)
 M k  2  1
 q  2  q 2 1  5  O k

 i 5 2
 T ( i 2 1 ,k ) ,

 where  T ( i 2 1 ,k )  5  T k T k 2 1  . . .  T i 1 1 T i T i 1 1  . . .  T k .  The elements in (3 . 18) are elements
 used by Dipper ,  James ,  and Murphy in their work on Iwahori – Hecke algebras of
 type  A ,  see [ 10 ,   11 ,   26 ,   27 ] .  It is clear that (3 . 18) gives a  q -analogue of the
 Jucys – Murphy elements in (3 . 5) .

 Seminormal representations .  Let  P 1  ‘  P 2  ‘  . . .  ‘  P n   be the path algebras (over
 the field  C ( q ) instead of  C ) ,  defined in (1 . 2) ,  which are associated to the diagram
 G  which describes the restriction rules for the chain  S 1  ‘  . . .  ‘  S n .  For each
 partition  l   of size  n ,  let

 (3 . 19)  V  l  5  C ( q )-span h y  L 3  L  P  + ( l ) j ,

 so that the vectors  y  L  ,  indexed by standard tableaux  L  of shape  l  ,  form a
 seminormal basis of the  P n -module  V  l .  It follows from Lemma 1 . 9 ,  that for any
 choice of an isomorphism  F   between the path algebra  P n   and  HA n 2 1 ( q 2 ) such that
 F ( P k )  5  HA k 2 1 ( q 2 )  ‘  HA n 2 1 ( q 2 ) for all 1  <  k  <  n ,  we have

 z k y  L  5  T  2
 w k , 0

 y  L  5  q c k , ,  ( l ( k ) ) y  L  ,

 if  L  5  ( l ( 1 )  ‘  . . .  ‘  l ( n ) ) and  c k , , ( l ( k ) ) is as given in (3 . 8) .  Thus ,

 (3 . 20)  M k y  L  5  T k  . . .  T 3 T 2 T 2 T 3  . . .  T k y  L  5  T  2
 w k , 0

 T  2 2
 w k 2 1 , 0

 5  q 2  ct( L ( k )) y  L  ,

 if  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) is a standard tableau .  For each 2  <  k  <  n  and each

 standard tableau  L  of size  n ,  define

 (3 . 21)  ( T k ) L L  5  ( q  2  q 2 1 ) Y S 1  2
 CT( L ( k  2  1))

 CT( L ( k ))
 D

 where CT( b )  5  q 2ct( L ( k )) .  In the interests of space we shall not give the proof of
 the following theorems here .  The proofs are essentially the same as the proofs
 which are given for Theorem 4 . 26 and Theorem 4 . 28 .

 T HEOREM  3 . 22 (Hoefsmit [ 17 ] ,  Wenzl [ 34 ]) .  Let  l   be a partition such that
 u l u  5  n . Define an action of each generator T 2  ,  . . . ,  T n  of the Iwahori  – Hecke algebra
 HA n 2 1 ( q 2 )   on  V  l   by defining

 T i y  L  5  ( T i ) L L y  L  1  ( q 2 1  1  ( T i ) L L ) y  s i L  for  2  <  i  <  n ,

 where s i L is the same standard tableau as L except that the positions of i and i  2  1 
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 are switched in s i L . If s i L is not standard , then we define  y  s i L  5  0 . This action
 extends to a well - defined action of HA n 2 1 ( q 2 )  on V  l .

 T HEOREM  3 . 23 (Hoefsmit [ 17 ] ,  Wenzl [ 34 ]) .  The HA n 2 1 ( q 2 )- modules V  l   defined
 in Theorem  3 . 22 , where  l   runs o y  er all partitions such that  u l u  5  n , form a
 complete set of non - isomorphic irreducible modules for the Iwahori  – Hecke
 algebra HA n 2 1 ( q 2 )  and , for each  l  , the basis  h y  L 3  L  P  + ( l ) j   is a seminormal basis
 of the HA n 2 1 ( q 2 )- module V  l .

 4 .  Type B n  with n  >  2

 The Weyl group .  The Weyl group  WB n   of type  B n   is the group of signed
 permutations of 1 ,  2 ,  ...,  n .  More specifically ,   WB n   consists of all permutations  π   of
 h 2 n ,  . . . ,  2 1 ,  1 ,  . . . ,  n j   such that  π  ( 2 k )  5  2 π  ( k ) for all 1  <  k  <  n .  We represent
 elements of  WB n   in cycle notation as permutations of  h 2 n ,  . . . ,  2 1 ,  1 ,  . . . ,  n j .  The
 elements

 s 1  5  (1 ,  2 1) ,  and  s i  5  ( i  2  1 ,  i )( 2 ( i  2  1) ,  2 i )  for  2  <  i  <  n ,

 generate  WB n   and satisfy the relations

 (4 . 1)

 s i s j  5  s j s i  for  u i  2  j u  .  1 ,

 s i s i 1 1 s i  5  s i 1 1 s i s i 1 1  for  2  <  i  <  n  2  1 ,

 s 1 s 2 s 1 s 2  5  s 2 s 1 s 2 s 1  ,

 s 2
 i  5  1  for  1  <  i  <  n .

 Double partitions and standard tableaux .  A  double partition  of size  n ,

 l  5  ( a  ,  b  ) ,

 is an ordered pair of partitions  a   and  b   such that  u a  u  1  u b  u  5  n .  We shall often
 refer to double partitions as  shapes .  A  standard tableau L  5  ( L a  ,  L b  ) of shape
 l  5  ( a  ,  b  )   is a filling of the Ferrers diagram of  l   with the numbers 1 ,  2 ,  ...,  n  such
 that the numbers are increasing left to right across the rows of  L a   and  L b   and
 increasing down the columns of  L a   and  L b .  For any shape  l  ,  let  +  ( l ) denote the
 set of standard tableaux of shape  l   and ,  for each standard tableau  L ,  let  L ( k )
 denote the box containing  k  in  L .  For example ,  Fig .  4 . 2 shows a standard tableau
 of shape ((332) ,  (411)) .

 F IG .  4 . 2
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 The chain B 0  ‘  B 1  ‘  . . .  ‘  B n .  By convention we let  B 0  5  [   be the empty root
 system and  B 1  5  A 1  .  The chain of root systems  B 0  ‘  B 1  ‘  . . .  ‘  B n   corresponds to
 the chain of Weyl groups

 (4 . 3)  h 1 j  ‘  WB 1  ‘  WB 2  ‘  . . .  ‘  WB n  ,

 where  WB k   denotes the hyperoctahedral group of signed permutations of
 1 ,  2 ,  ...,  k .

 The irreducible representations of the symmetric group  WB k   are indexed by
 double partitions  l  5  ( a  ,  b  ) such that  u l u  5  u a  u  1  u b  u  5  k .  The restriction rule from
 WB k   to  WB k 2 1  is given by

 V  ( a  ,  b  )
 ‚

 WB k
 WB k 2 1

 >  M
 ( m  , …  ) P ( a  , b  ) 2

 V  ( m  , …  )

 where the sum is over all double partitions ( m  , …  ) of size  k  2  1 that are obtained
 from ( a  ,  b  ) by removing one box .  If we define the graph  G   as in (1 . 1) for the
 chain in (4 . 3) ,  then a path ( l ( 0 )

 5  . . .  5  l ( n ) ) in  G   is naturally identified with the
 standard tableau  L  of shape  l ( n )  which has  i  in the box which is added to obtain
 l ( i )   from  l ( i 2 1 ) .  The graph  G   for the case of the chain  h 1 j  ‘  WB 1  ‘  WB 2  ‘  WB 3  is
 displayed in Fig .  4 . 4 .

 F IG .  4 . 4

 Analogues of Jucys  – Murphy elements .  Following (2 . 1) ,  let us compute the sets
 Z k   for this case .  In the root system  B k ,  with  k  >  2 ,  we have both long and short
 roots and the longest element  w k , 0  5  (1 ,  2 1)(2 ,  2 2)  . . .  ( k ,  2 k ) of the Weyl group
 WB k   acts by  2 1 in the reflection representation .  For each 1  <  k  <  n ,  let

 Z k  5  h z k , s  ,  z k , ,  ,  z k , 0 j ,
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 where

 z k , s  5  O
 a P ( B k ) s

 1

 s a  5  O k
 i 5 1

 ( i ,  2 i ) ,

 (4 . 5)  z k , ,  5  O
 a  P ( B k ) ,

 1

 s a  5  O
 1 < i , j < k

 ( i ,  j )  1  ( i ,  2 j )( 2 i ,  j ) ,

 z k , 0  5  w k , 0  5  (1 ,  2 1)(2 ,  2 2)  . . .  ( k ,  2 k ) .

 In (4 . 5) the sets ( B k ) s
 1  and ( B k ) ,

 1  are ,  respectively ,  the sets of short and long
 positive roots in the root system  B k .  Since the elements  z k , j  ,  with  j  P  h s ,  , ,  0 j   and
 1  <  k  <  n ,  all commute with each other in  C WB n  ,  it follows that the elements

 m k , s  5  z k , s  2  z k 2 1 , s  5  ( k ,  2 k ) ,  for  1  <  k  <  n ,

 m k , ,  5  z k , ,  2  z k 2 1 , ,

 5  O k
 i 5 2

 ( i  2  1 ,  k )  1  ( i  2  1 ,  2 k )( 2 ( i  2  1) ,  k ) ,  for  2  <  k  <  n ,

 all commute with each other in  C WB n .

 R EMARK  4 . 6 .  The elements  m k , s   and  m k , ,   are the appropriate  B n -analogues of
 the Jucys – Murphy elements (3 . 5) for the symmetric group .  Cherednik [ 7 ] has
 used a linear combination of  m k , s   and  m k , ,   as an analogue of the Jucys – Murphy
 element .

 Weights .  The  sign  and the  content  of a box  b  in a shape ( a  ,  b  ) are given
 respectively by

 (4 . 7)
 sgn( b )  5 H  1

 2 1
 if  b  P  a  ,
 if  b  P  b  ,

 ct( b )  5  j  2  i  if  b  is  in  position  ( i ,  j )  (in  either  a  or  b  ) .

 P ROPOSITION  4 . 8 .  Fix  1  <  k  <  n and let z k , s  ,  z k , ,  , and z k , 0   be the central elements
 in  C WB k  gi y  en in  (4 . 5) . Let  ( m  ,  …  )  be a double partition such that  u m  u  1  u …  u  5  k . Let
 χ  ( m  , …  )   be the character of the irreducible representation of WB k  indexed by the
 double partition  ( m  ,  …  ) . Then , in the notation of Lemma  1 . 9  and  (4 . 7) ,

 c k , s ( m  ,  …  )  5  χ  ( m  , …  ) ( z k , s ) / χ  ( m  , …  ) (1)  5  O
 b P ( m  , …  )

 sgn( b ) ,

 c k , , ( m  ,  …  )  5  χ  ( m  , …  ) ( z k , , ) / χ  ( m  , …  ) (1)  5  2  O
 b P ( m  , …  )

 ct( b ) ,

 c k , 0 ( m  ,  …  )  5  χ  ( m  , …  ) ( z k , 0 ) / χ  ( m  , …  ) (1)  5  P
 b P ( m  , …  )

 sgn( b ) .

 Proof .  Fix  k  and a double partition ( m  ,  …  ) such that  u m  u  1  u …  u  5  k .  Let  a  5  u m  u
 and  b  5  u …  u  .  Let  WB a   be the subgroup of  WB k   of signed permutations of
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 h 1 ,  2 ,  . . . ,  a j   and let  WB b   be the subgroup of  WB k   of signed permutations of
 h a  1  1 ,  . . . ,  k j .  Let  S a   and  S b   be the symmetric groups of permutations of  h 1 ,  ...,  a j
 and  h a  1  1 ,  . . . ,  k j   respectively .

 Let  V  m   be the irreducible module for the symmetric group  S a   which is labelled
 by the partition  m .  Extend this module to the group  WB a   by letting the signs ,  that
 is ,  the element (1 ,  2 1) act trivially .  Let  V  …   be the irreducible module for the
 symmetric group  S b   which is labelled by  … .  Extend this module to the group  WB b

 by letting the element ( a  1  1 ,  2 ( a  1  1)) act by  2 1 on  V  … .  Then  V  m   and  V  …   are
 irreducible modules for the groups  WB a   and  WB b   respectively ;  they are the
 modules that are ordinarily denoted by  V  ( m  ,  [ )  and  V  ( [ , …  )  respectively .  It follows
 from this construction of  V  ( m  , [ )  and  V  ( [ , …  )  that

 (4 . 9)

 χ  ( m  , [ ) ((1 ,  2))  5  χ  m ((1 ,  2)) ,

 χ  ( m  , [ ) ((1 ,  2 1))  5  χ  m (1) ,

 χ  ( m  , [ ) ((1 ,  2 1)(2 ,  2 2)  . . .  ( a ,  2 a ))  5  χ  m  (1) ,

 χ  ( [ , …  ) (( a  1  1 ,  a  1  2))  5  χ  …  (( a  1  1 ,  a  1  2)) ,

 χ  ( [ , …  ) (( a  1  1 ,  2 ( a  1  1))  5  2 χ  …  (1) ,

 χ  ( [ , …  ) (( a  1  1 ,  2 ( a  1  1)( a  1  2 ,  2 ( a  1  2))  . . .  ( k ,  2 k ))  5  ( 2 1) b χ  …  (1) ,

 where  χ  m   and  χ  …   denote the irreducible characters of the symmetric groups  S a   and
 S b   labelled by  m   and  …  ,  respectively .

 It is well known that the induced module

 V  ( m  , [ )  ̂  V  ( [ , …  )
 „

 WB k
 WB a 3 WB b

 >  V  ( m  , …  )

 is a realization of the irreducible  WB k -module indexed by the double partition
 ( m  ,  …  ) .  (I believe that this fact is originally due to Specht [ 32 ] . ) Given this
 realization we can write down its character  χ  ( m  , …  )  explicitly by using the standard
 formula for induced characters :

 (4 . 10)  χ  ( m  , …  ) ( w )  5  O
 g i

 2 1 wg i P WB a 3 WB b

 χ  ( m  , [ ) ( g  2 1
 i  wg i ) χ  ( [ , …  ) ( g 2 1

 i  wg i ) ,

 where the sum is over coset representatives  g i   of  WB k  / ( WB a  3  WB b ) such that
 g 2 1

 i  wg i  P  WB a  3  WB b .
 Using (4 . 9) and (4 . 10) ,  we have

 χ  ( m  , …  ) ( o a  P ( B k ) ,
 1  s a )

 χ  ( m  , …  ) (1)

 5
 k ( k  2  1) χ  ( m  , …  ) ((1 ,  2))

 χ  ( m  , …  ) (1)

 5
 k ( k  2  1)(( k  2  2

 a  2  2 ) χ  ( m  , [ ) ((1 ,  2)) χ  ( [ , …  ) (1)  1  ( k  2  2
 a  ) χ  ( m  , [ ) (1) χ  ( [ , …  ) (( a  1  1 ,  a  1  2)))

 ( k
 a ) χ  ( m  , [ ) (1) χ  ( [ , …  ) (1)

 5  k ( k  2  1) S  a ( a  2  1)
 k ( k  2  1)

 χ  m  ((1 ,  2))
 χ  m (1)

 1
 b ( b  2  1)
 k ( k  2  1)

 χ  …  (( a  1  1 ,  a  1  2))
 χ  …  (1)

 D
 5  2 S χ  m ( o a  P A 1

 a 2 1
 s a  )

 χ  m  (1)
 1

 χ  …  ( o a  P A 1
 b 2 1

 s a )
 χ  …  (1)

 D .
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 The value for  c k , ,  ( m  ,  …  ) is obtained from this last equation and (3 . 8) .  A similar
 calculation gives

 χ  ( m  , …  ) ( o a  P ( B k ) s
 1  s a )

 χ  ( m  , …  ) (1)

 5
 k χ  ( m  , …  ) ((1 ,  2 1))

 χ  ( m  , …  ) (1)

 5
 k (( k  2  1

 a  2  1 ) χ  ( m  , [ ) ((1 ,  2 1)) χ  ( [ , …  ) (1)  1  ( k  2  1
 a  ) χ  ( m  , [ ) (1) χ  ( [ , …  ) (( a  1  1 ,  2 ( a  1  1))))

 ( k
 a ) χ  ( m  , [ ) (1) χ  ( [ , …  ) (1)

 5
 a χ  m  ((1 ,  2 1))

 χ  m (1)
 1

 b χ  …  (( a  1  1 ,  2 ( a  1  1)))
 χ  …  (1)

 5  a  2  b .

 Since sgn( b )  5  1 for all boxes  b  P  m  ,  sgn( b )  5  2 1 for all boxes  b  P  …  ,  and  u m  u  5  a
 and  u …  u  5  b ,  the formula for  c k , s ( m  ,  …  ) follows .  The formula for  c k , 0 ( m  ,  …  ) is
 obtained in a similar fashion .

 Following (1 . 11) ,  we define the  weight  of a standard tableau

 L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) ,

 where  u l ( k ) u  5  k ,  to be

 wt( L )  5  ( c 1 ( l ( 1 ) ) ,  . . . ,  c n ( l ( n ) )) ,

 where ,  for a double partition ( m  ,  …  ) , c k ( m  ,  …  ) is the triple

 c k ( m  ,  …  )  5  ( c k , s ( m  ,  …  ) ,  c k , , ( m  ,  …  ) ,  c k , 0 ( m  ,  …  )) ,

 determined by Proposition 4 . 8 .  Note that wt( L ) is completely determined by the
 n -tuples

 , wt 1 ( L )  5  (ct( L (1)) ,  . . . ,  ct( L ( n )))
 and  , wt 2 ( L )  5  (sgn( L (1)) ,  . . . ,  sgn( L ( n ))) ,

 since  c k , s ( l ( k ) )  5  o k
 i 5 1  sgn( L ( i )) ,  c k , , ( l ( k ) )  5  o k

 i 5 1  ct( L ( i )) ,  and

 c k , 0 ( l ( k ) )  5  P k
 i 5 1

 sgn( L ( i )) .

 P ROPOSITION  4 . 11 .  Each standard tableau L  5  ( l ( 1 )
 5  . . .  5  l ( n ) )  is determined

 uniquely by its weight .

 Proof .  Suppose that the weight wt( L ) of a standard tableau  L  is given but that
 we do not know  L .  The vector wt( L ) uniquely determines the vectors  , wt 1 ( L ) and , wt 2 ( L ) .  We want to show that the tableau  L  can be reconstructed from  , wt 1 ( L )
 and  , wt 2 ( L ) .  Assume that we have reconstructed  L  up to the  i th step ,  that is ,
 assume that we know  l ( 0 ) ,  . . . ,  l ( i ) ,  but that we do not yet know  l ( i 1 1 ) .  Suppose
 that  l ( i )  is the double partition ( m  ( i ) ,  …  ( i ) ) .

 We need to figure out from  , wt 1 ( L ) and  , wt 2 ( L ) where to add the box to get
 l ( i 1 1 )  5  ( m  ( i 1 1) ,  …  ( i 1 1) ) .  The entry sgn( L ( i  1  1)) in  , wt 2 ( L ) tells us whether we must
 add the box to the partition  m  ( i )  or to the partition  …  ( i ) .  As in the proof of
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 Proposition 3 . 9 ,  the entry ct( L ( i  1  1)) from  , wt 1 ( L ) indicates the position where
 this box must be added .  It follows that  l ( i 1 1 )  is uniquely determined .  Thus  L  is
 completely determined by wt( L ) .

 Proposition 1 . 12 and Proposition 4 . 11 together show that the seminormal
 representations of  WB n   corresponding to the chain of groups

 h 1 j  5  WB 0  ‘  .  .  .  ‘  WB n

 are essentially determined by the elements  z k , j   in (4 . 5) and the constants  c k , j ( m  ) in
 Proposition 4 . 8 .  It follows that we should be able to determine seminormal
 representations of the group  WB n   from the elements  m k , j   and the constants ct( b )
 and sgn( b ) .  This is done in Theorems 4 . 15 and 4 . 18 below .

 Seminormal representations .  Let  P 1  ‘  P 2  ‘  . . .  ‘  P n   be the path algebras ,  defined
 in (1 . 2) ,  which are associated to the diagram  G   which describes the restriction
 rules for the chain  WB 1  ‘  . . .  ‘  WB n .  For each double partition ( a  ,  b  ) such that
 u a  u  1  u b  u  5  n ,  let

 (4 . 12)  V  ( a  , b  )  5  C -span h y  L 3  L  P  + ( a  ,  b  ) j ,

 so that the vectors  y  L  ,  indexed by standard tableaux  L  of shape ( a  ,  b  ) ,  form a
 seminormal basis of the  P n -module  V  ( a  , b  ) .  It follows from Lemma 1 . 9 ,  that for
 any choice of an isomorphism  F   between the path algebra  P n   and  C WB n   such that
 F ( P k )  5  C WB k  ‘  C WB n   for all 1  <  k  <  n ,

 z k ,s y  L  5  c k ,s ( l ( k ) ) y  L  ,  z k , , y  L  5  c k , ,  ( l ( k ) ) y  L  ,  z k , 0 y  L  5  c k , 0 ( l ( k ) ) y  L  ,

 if  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) .  Thus ,  by Proposition 4 . 8 ,

 (4 . 13)  m k ,s y  L  5  sgn( L ( k )) y  L  and  m k , , y  L  5  ct( L ( k )) y  L  ,

 if  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) .

 For each 2  <  k  <  n  and each standard tableau  L  of length  n ,  define

 (4 . 14)  ( s k ) L L  5
 1  1  sgn( L ( k ))sgn( L ( k  2  1))

 ct( L ( k ))  2  ct( L ( k  2  1))
 .

 T HEOREM  4 . 15 (Young [ 35 ]) .  Let  ( a  ,  b  )  be a double partition such that
 u a  u  1  u b  u  5  n . Define an action of each generator s 1  ,  . . . ,  s n  of WB n  on V  ( a  , b  )   by
 defining

 (4 . 16)
 s 1 y  L  5  sgn( L (1)) y  L  ,

 s i y  L  5  ( s i ) L L y  L  1  (1  1  ( s i ) L L ) y  s i L  for  2  <  i  <  n ,

 where s i L is the same standard tableau as L except that the positions of i and i  2  1
 are switched in s i L . If s i L is not standard , then we define  y  s i L  5  0 . This action
 extends to a well - defined action of WB n  on V  ( a  , b  ) .

 Proof .  We shall show that the action of  s i  ,  for 1  <  i  <  n ,  on  V  ( a  ,  b  )  is essentially
 forced by the formulas in (4 . 13) .  We shall prove this for  i  5  n .  The proof for  i  ,  n
 is similar .  Note that the formula for the action of  s 1  follows immediately from the
 formula for the action of  m 1 , s   in (4 . 13) .
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 For any two standard tableaux  M  and  L  of shape ( a  ,  b  ) let ( s n ) M L   be the
 coef ficient of  y  M   in  s n y  L .

 Step  1 .  Let  L  5  ( l ( 0 )
 5  . . .  5  l ( n ) ) be a standard tableau of shape ( a  ,  b  ) .  For

 each 0  <  k  <  n  and each  j  P  h s ,  , ,  0 j   with 1  <  j  <  r k  ,  let

 p k ,j ( l ( k ) )  5  P
 c k , j ( m  ) ? c k , j ( l ( k ) )

 z k , j  2  c k , j ( m  )
 c k , j ( l ( k ) )  2  c k , j ( m  )

 ,

 as in the proof of Proposition 1 . 12 .  Define

 ( p )  p L [ n 2 2 ]  5  P n 2 2

 k 5 1
 P

 j P h s , , , 0 j
 p k , j ( l ( k ) ) .

 If  M  5  ( m  ( 0 )
 5  . . .  5  m  ( n ) ) is another standard tableau of shape ( a  ,  b  ) then

 p L [ n 2 2 ] y  M  5 H y  M

 0
 if  m  ( k )  5  l ( k )  for  1  <  k  <  n  2  2 ,

 otherwise .

 Note that since  l ( n 2 2)  and  l ( n )  5  ( a  ,  b  ) only dif fer by two boxes ,  there are only
 two tableaux  M  such that  m  ( k )  5  l ( k )  for all 1  <  k  <  n  2  2 .  These two tableaux are
 s n L  and  L  itself .  It follows that

 p L [ n 2 2] y  M  5 H y  M

 0
 if  M  5  s n L  or  M  5  L ,
 otherwise .

 Since each of the elements  z k , s  , z k , ,  , z k , 0  appearing in the product ( p ) is an
 element of  WB n 2 2  ,  it follows that  p L [ n 2 2 ]  commutes with  s n   in  WB n .  Thus

 ( s n ) L L y  L  1  ( s n ) s n L ,L y  s n L  5  p L [ n 2 2] s n y  L  5  s n  p L [ n 2 2] y  L  5  s n y  L .

 It follows that ( s n ) M L  5  0 unless  M  5  s n L  or  M  5  L .
 Step  2 .  A direct computation shows that

 s n m n 2 1 , ,  5  m n , ,  s n  2  1  2  m n , s m n 2 1 , s  .

 Let both sides act on  y  L   and take the coef ficient of  y  L   in the result .  Then ,  using
 (4 . 13) ,  we have

 ( s n ) L L  ct( L ( n  2  1))  5  ct( L ( n ))( s n ) L L  2  1  2  sgn( L ( n ))sgn( L ( n  2  1)) .

 It follows that ( s n ) L L   is as given in (4 . 14) .
 Step  3 .  Consider the equation  s 2

 n  5  1 .  Let both sides act on  y  L   and take the
 coef ficient of  y  L   in the result .  We get the equation ( s n ) 2

 LL  1  ( s n ) L M ( s n ) M L  5  1 ,
 where  M  5  s n L .  It follows that

 (4 . 17)  ( s n ) L M ( s n ) M L  5  (1  1  ( s n ) L L )(1  2  ( s n ) L L ) .

 By Proposition 1 . 12(b) ,  the values of ( s n ) L M   and ( s n ) M L   are determined only up to
 a constant and we may choose them to be anything such that the equation in
 (4 . 17) holds .  Note that this is consistent with the definition of the action in the
 statement of the theorem since 1  2  ( s n ) s n L ,s n L  5  1  1  ( s n ) L L .

 T HEOREM  4 . 18 (Young [ 35 ]) .  The WB n - modules V  ( a  , b  )   defined in Theorem  4 . 15 ,
 where  ( a  ,  b  )  runs o y  er all ordered pairs of partitions such that  u a  u  1  u b  u  5  n , form a
 complete set of non - isomorphic irreducible modules for the Weyl group WB n  and ,
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 for each  ( a  ,  b  ) , the basis  h y  L 3  L  P  + ( a  ,  b  ) j   is a seminormal basis of the
 WB n - module V  ( a  , b  ) .

 Proof .  This now follows immediately by induction on  n .  Indeed ,   V  ( a  , b  )  is the
 unique  WB n -module such that

 (1)  the equations for the action of  z n , s  , z n , ,  , z n , 0  are as in (4 . 13) ,  and

 (2)  on restriction to  WB n 2 1  we have

 V  ( a  , b  )
 ‚

 WB n
 WB n 2 1

 >  M
 ( m  , …  ) P ( a  , b  ) 2

 V  ( m  , …  ) ,

 where the sum is over all double partitions ( m  ,  …  ) of size  n  2  1 that are
 obtained from ( a  ,  b  ) by removing one box .

 Iwahori  – Hecke algebras HB n (  p 2 ,  q 2 )
 Let  p  and  q  be indeterminates .  The Iwahori – Hecke algebra  HB k (  p 2 ,  q 2 )

 corresponding to the root system  WB k   is the associative algebra with 1 over the
 field  C (  p ,  q ) given by generators  T 1  ,  T 2  ,  . . . ,  T k   and relations

 T i T j  5  T j T i  for  u i  2  j u  .  1 ,

 T i T i 1 1 T i  5  T i 1 1 T i T i 1 1  for  2  <  i  <  k  2  1 ,

 (4 . 19)  T 1 T 2 T 1 T 2  5  T 2 T 1 T 2 T 1  ,

 T  2
 1  5  (  p  2  p 2 1 ) T 1  1  1 ,

 T  2
 i  5  ( q  2  q 2 1 ) T i  1  1  for  1  <  i  <  k .

 Analogues of Jucys  – Murphy elements .  For each 1  <  k  <  n ,  define

 (4 . 20)  M k  5  T k  . . .  T 2 T 1 T 2  . . .  T k .

 The longest element  w k , 0  in the Weyl group  WB k   acts by  2 1 in the reflection
 representation .  Following (1 . 8) and Proposition 2 . 4 ,  we define sets  Z k  5  h z k j   for
 1  <  k  <  n ,  where  z k   is the central element of  HB k (  p 2 ,  q 2 ) given by

 (4 . 21)  z k  5  T w k , 0
 5  M k M k 2 1  . . .  M 2 M 1 .

 Since the elements  z k  ,  for 1  <  k  <  n ,  all commute in  HB n (  p 2 ,  q 2 ) ,  it follows that
 the elements  M k ,  for 1  <  k  <  n ,  all commute with each other .

 R EMARK  4 . 22 .  The elements  M k   appear in Hoefsmit’s thesis [ 17 ,  Proposition
 3 . 3 . 3] and also in work of Ariki and Koike [ 2 ] ,  Ariki [ 1 ] ,  Broue ́   and Malle [ 4 ] ,  and
 Dipper ,  James and Murphy [ 13 ] .  These elements can be viewed as the quantized
 versions of the elements in (4 . 13) .

 Seminormal representations .  Let  P 1  ‘  P 2  ‘  . . .  ‘  P n   be the path algebras (over
 C (  p ,  q )   instead of  C ) ,  defined in (1 . 2) ,  which are associated to the diagram  G
 which describes the restriction rules for the chain  WB 1  ‘  . . .  ‘  WB n .  For each
 double partition ( a  ,  b  ) such that  u a  u  1  u b  u  5  n ,  let

 (4 . 23)  V  ( a  , b  )  5  C (  p ,  q )-span h y  L 3  L  P  + ( a  ,  b  ) j ,

 so that the vectors  y  L  ,  indexed by standard tableaux  L  of shape ( a  ,  b  ) ,  form a
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 seminormal basis of the  P n -module  V  ( a  , b  ) .  It follows from Lemma 1 . 9 that ,  for
 any choice of an isomorphism  F   between the path algebra  P n   and  HB n (  p 2 ,  q 2 )
 such that  F ( P k )  5  HB k (  p 2 ,  q 2 )  ‘  HB n (  p 2 ,  q 2 ) for all 1  <  k  <  n ,

 z k y  L  5  T w k , 0 y  L  5  c k , 0 ( l ( k ) ) p c k , s ( l ( k ) ) q c k , , ( l ( k ) ) y  L  ,

 if  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) .  Thus ,  by Proposition 4 . 8 ,

 (4 . 24)  M k y  L  5  T k 2 1  . . .  T 2 T 1 T 2  . . .  T k 2 1 y  L  5  T w k , 0 T
 2 1
 w k 2 1 , 0  y  L

 5  sgn( L ( k )) p sgn( L ( k )) q 2  ct( L ( k )) y  L  ,

 if  L  5  ( l ( 1 )
 5  . . .  5  l ( n ) ) is a standard tableau .  For each 2  <  k  <  n  and each

 standard tableau  L  of size  n ,  define

 (4 . 25)  ( T k ) L L  5  ( q  2  q 2 1 ) Y S 1  2
 CT( L ( k  2  1))

 CT( L ( k ))
 D  ,

 where CT( b )  5  sgn( L ( k )) p sgn( L ( k )) q 2  ct( L ( k )) ,  if  b  is a box in a shape  l  5  ( a  ,  b  ) .

 T HEOREM  4 . 26 .  Let  ( a  ,  b  )  be a double partition such that  u a  u  1  u b  u  5  n . Define an
 action of each generator T 1  ,  . . . ,  T n  of HB n (  p 2 ,  q 2 )  on V  ( a  , b  )   by defining

 (4 . 27)
 T 1 y  L  5  CT( L (1)) y  L  ,

 T i y  L  5  ( T i ) L L y  L  1  ( q 2 1  1  ( T i ) L L ) y  s i L  for  2  <  i  <  n ,

 where s i L is the same standard tableau as L except that the positions of i and i  2  1
 are switched in s i L . If s i L is not standard , then we define  y  s i L  5  0 . This action
 extends to a well - defined action of HB n (  p 2 ,  q 2 )  on V  ( a  , b  ) .

 Proof .  The proof is similar to the proof of Theorem 4 . 15 ,  in all essential
 aspects .  We shall only give the details for Step 2 .

 Step  2 .  It is immediate from the definition of  M k   in (4 . 20) that  M n  5  T n M n 2 1 T n  ,
 which can be rewritten as

 T  2 1
 n  5  M  2 1

 n  T n M n 2 1  .

 Rewrite  T  2 1
 n    as  T n  2  ( q  2  q 2 1 ) ,  let both sides act on  y  L   and take the coef ficient of

 y  L   in the result .  Using (4 . 24) ,  we get

 ( T n ) L L  2  ( q  2  q 2 1 )  5  CT( L ( n )) 2 1 ( T n ) L L  CT( L ( n  2  1)) .

 It follows that ( T n ) L L   is as given in (4 . 25) .

 As in the case of Weyl group  WB n  ,  Theorem 4 . 18 ,  the following result follows
 easily .

 T HEOREM  4 . 28 (Hoefsmit [ 17 ,  Theorem 2 . 2 . 14]) .  The HB n (  p 2 ,  q 2 )- modules
 V  ( a  , b  )  defined in Theorem  4 . 26 , where  ( a  ,  b  )  runs o y  er all ordered pairs of
 partitions such that  u a  u  1  u b  u  5  n , form a complete set of non - isomorphic
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 irreducible modules for the Iwahori  – Hecke algebra HB n (  p 2 ,  q 2 ) . For each  ( a  ,  b  ) ,
 the basis  h y  L 3  L  P  + ( a  ,  b  ) j   is a seminormal basis of the HB n (  p 2 ,  q 2 )- module
 V  ( a  , b  ) .

 5 .  Type D n  with n  >  4

 The Weyl group .  The Weyl group  WD n   of type  D n   is the group of signed
 permutations of  h 1 ,  2 ,  . . . ,  n j   with an even number of signs .  More specifically ,   WD n

 consists of all permutations  π   of  h 2 n ,  . . . ,  2 1 ,  1 ,  . . . ,  n j   such that  π  ( 2 k )  5  2 π  ( k )
 for all 1  <  k  <  n ,  and an even number of the elements of  h π  (1) ,  π  (2) ,  . . . ,  π  ( n ) j   are
 negative .  We represent elements of  WD n   in cycle notation as permutations of
 h 2 n ,  . . . ,  2 1 ,  1 ,  . . . ,  n j .

 The elements

 s ̃  1  5  (1 ,  2 2)(2 ,  2 1) ,  and  s ̃  i  5  ( i  2  1 ,  i )( 2 ( i  2  1) ,  2 i )  for  2  <  i  <  n ,

 generate  WD n   and satisfy the relations

 s ̃  i s ̃  j  5  s ̃  j s ̃  i  for  u i  2  j u  .  1  and  i ,  j  .  1 ,

 s ̃  1 s ̃  j  5  s ̃  j s ̃  1  if  j  ?  3 ,

 (5 . 1)  s ̃  1 s ̃  3 s ̃  1  5  s ̃  3 s ̃  1 s ̃  3  ,

 s ̃  i s ̃  i 1 1 s ̃  i  5  s ̃  i 1 1 s ̃  i s ̃  i 1 1  for  2  <  i  <  n  2  1 ,

 s ̃  2
 i  5  1  for  1  <  i  <  n .

 The Weyl group  WD n   can be realized as a normal subgroup of the Weyl group
 WB n   of index 2 by defining

 (5 . 2)  s ̃  1  5  s 1 s 2 s 1  ,  and  s ̃  i  5  s i  for  2  <  i  <  n ,

 where  s i  ,  for 1  <  i  <  n ,  are as in (4 . 1) .

 Double partitions and standard tableaux .  We shall use the same notation for
 partitions ,  double partitions ,  shapes ,  and tableaux as in  §  4 .  For each standard
 tableau  L  5  ( L a  ,  L b ) of shape ( a  ,  b  ) define  s L  to be the standard tableau of
 shape ( b  ,  a  ) given by  s L  5  ( L b  ,  L a  ) ,

 (5 . 3)
 s  :  + ( a  ,  b  )  5  + ( b  ,  a  ) ,

 ( L a  ,  L b  )  S  ( L b  ,  L a  ) .

 The map  s   is an involution on the set of standard tableaux whose shape is a
 double partition .

 Which chain ?  One finds that it is more natural to use the representation theory
 of the Weyl groups  WB n   and the fact that  WD n   is a normal subgroup of index 2 in
 WB n   rather than to try to choose an appropriate chain of root systems leading up
 to  D n .  The reason for this is that one wants to have an approach that treats all of
 the groups  WD n  ,  for  n  >  4 ,  uniformly .  Otherwise one must distinguish the cases
 when  n  is even and when  n  is odd .  In the end we shall find a set of commuting
 elements in the group algebra of  WD n  ,  analogues of the Jucys – Murphy elements ,
 which determine a complete set of irreducible representations .

 Representations .  We shall retain the notation from  §  4 for the sign and the
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 content of a box in a double partition .  Let  l  5  ( a  ,  b  ) be a double partition such
 that  u a  u  1  u b  u  5  n .  As in (4 . 12) ,  let

 (5 . 4)  V  ( a  , b  )  5  C -span h y  L 3  L  P  + ( a  ,  b  ) j ,

 so that the vectors  y  L   form a basis of the vector space  V  ( a  , b  )  indexed by standard
 tableaux  L  of shape ( a  ,  b  ) .

 For each standard tableau  L ,  define

 (5 . 5)  ( s k ) L L  5
 1  1  sgn( L ( k ))sgn( L ( k  2  1))

 ct( L ( k ))  2  ct( L ( k  2  1))
 ,  for  2  <  k  <  n ,

 as in (4 . 14) .  Recall ,  Theorem 4 . 15 ,  that there is an action of  WB n   on the vector
 space  V  ( a  , b  ) .  Restricting this action to  WD n   gives

 (5 . 6)
 s ̃  1 y  L  5  s 1 s 2 s 1 y  L  5  ( s 2 ) L L y  L  2  (1  1  ( s 2 ) L L ) y  s 2 L  ,

 s ̃  i y  L  5  s i y  L  5  ( s i ) L L y  L  1  (1  1  ( s i ) L L ) y  s i L  for  2  <  i  <  n ,

 for each  L  P  + ( a  ,  b  ) ,  where ,  as in the case of type  B n  ,  we define  y  s i L  5  0 if  s i L  is
 not standard .  In deriving the first formula of (5 . 6) it is helpful to note that
 sgn( L (1))  5  Ú 1 ,  and sgn( s 2 L (1))  5  2 sgn( L (1)) if  s 2 L  is standard .

 Now suppose  n  is even ,  and let  a   be a partition such that 2  u a  u  5  n .  Define

 (5 . 7)
 V  ( a  , a  ) 1

 5  C -span h y  1
 L  5  y  L  1  y s L  3  L  P  + ( a  ,  a  ) j  ‘  V  ( a  , a  ) ,

 V  ( a  , a  ) 2

 5  C -span h y  2
 L  5  y  L  2  y s L  3  L  P  + ( a  ,  a  ) j  ‘  V  ( a  , a  ) .

 The following (well-known) results follow easily from Clif ford theory [ 8 ] since
 WD n   is a subgroup of index 2 in  WB n   and  s   commutes with the action of  WD n   on
 the vectors  y  L  ,  where  L  P  + .

 P ROPOSITION  5 . 8 .  (a)  For each pair of partitions  ( a  ,  b  )  such that  u a  u  1  u b  u  5  n ,
 V  ( a  , b  )  and V  ( b  , a  )   are isomorphic WD n - modules .

 (b)  For each partition  a   such that  2  u a  u  5  n , the subspaces V  ( a  , a  ) Ú

   are WD n -
 submodules of V  ( a  , a  ) , and

 V  ( a  , a  )  >  V  ( a  , a  ) 1

 %  V  ( a  , a  ) 2

 ,

 as WD n - modules .

 T HEOREM  5 . 9 (Young [ 35 ]) .  The modules V  ( a  , b  ) , where  ( a  ,  b  )  runs o y  er all
 unordered pairs of partitions such that  a  ?  b   and  u a  u  1  u b  u  5  n and , when n is e y  en ,
 the modules V  ( a  , a  ) 1

   and V  ( a  , a  ) 2

 , where  a   runs o y  er all partitions such that
 2  u a  u  5  n , form a complete set of non - isomorphic irreducible modules for WD n .

 R EMARK  5 . 10 .  The involution  s   on standard tableaux in (5 . 3) is a realization of
 the module isomorphism between the  WD n -modules  V  ( a  , b  )  and  V  ( b  , a  ) ,  which ,  in
 turn ,  comes from the automorphism of the Dynkin diagram of type  D n .
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 Instead of defining  V  ( a  , a  ) Ú

   as in (5 . 7) ,  let us define them as the quotient spaces

 (5 . 11)  V  ( a  , a  ) 1

 5
 V  ( a  , a  )

 k y  L  5  y  s L l
 and  V  ( a  , a  ) 2

 5
 V  ( a  , a  )

 k y  L  5  2 y  s L l
 ,

 where  s   is the involution given in (5 . 3) and  k y  L  5  y s L l   and  k y  L  5  2 y s L l   denote
 the subspaces spanned by the vectors  y  L  2  y s L   and  y  L  1  y  s L   respectively .  Clearly
 the two definitions of the modules  V  ( a  , a  ) Ú

   are equivalent ,  the first represents
 V  ( a  , a  ) Ú

   as subspaces of  V  ( a  , a  ) ,  and the second as quotient spaces of  V  ( a  , a  ) .  The
 only dif ference is that for some computations the quotient module approach is
 easier ;  one may compute the action as in the formulas in (5 . 6) and then apply the
 relations  y  L  5  Ú y  s L .

 Analogues of Jucys  – Murphy elements .  We have the following theorem .

 T HEOREM  5 . 12 .  Define elements m k  , for  2  <  k  <  n , in the group algebra of the
 Weyl group WD n  by

 m ̃  k , 1  5  (1 ,  2 1)( k ,  2 k )  and  m ̃  k , 2  5  O k
 i 5 2

 ( i  2  1 ,  k )  1  ( i  2  1 ,  2 k )( 2 ( i  2  1) ,  k ) ,

 where elements of WD n  are written in cycle notation as permutations of
 h 2 n ,  . . . ,  2 1 ,  1 ,  . . . ,  n j . Then the elements m ̃  k , 1   and m ̃  k , 2   all commute with each other
 in  C WD n  and they act in the representations V  ( a  , b  )   and V  ( a  , a  ) Ú

   from  (5 . 6)  and  (5 . 7)
 by

 m ̃  k , 1 y  L  5  sgn( L (1))sgn( L ( k )) V L  , for all standard tableaux L , and
 m ̃  k , 1 y  Ú

 L  5  sgn( L (1))sgn( L ( k )) y  Ú

 L  , for all standard tableaux L of shape  ( a  ,  a  ) ,
 m ̃  k , 2 y  L  5  ct( L ( k )) V L  , for all standard tableaux L , and
 m ̃  k , 2 y  Ú

 L  5  ct( L ( k )) y  Ú

 L  , for all standard tableaux L of shape  ( a  ,  a  ) .

 Proof .  This follows immediately from (4 . 13) once one notices that

 m ̃  k , 1  5  m 1 , s m k , s  and  m ̃  k , 2  5  m k , , ,

 where  m k , s   and  m k , ,   are as in (4 . 5) .

 Weights .  If  L  is a standard tableau of shape ( a  ,  b  ) ,  define
 , wt 1 ( L )  5  (ct( L (1)) ,  . . . ,  ct( L ( n ))) ,

 and  , wt 9 2 ( L )  5  (sgn( L (1)) 2 ,  . . . ,  sgn( L (1))sgn( L ( n ))) ,

 where sgn and ct are as given in (4 . 7) .

 L EMMA  5 . 13 .  If L is a standard tableau then there is only one other standard
 tableau L 9   such that  , wt 1 ( L 9 )  5

 , wt 1 ( L )  and  , wt 9 2 ( L 9 )  5
 , wt 9 2 ( L ) . This standard tableau

 is L 9  5  s L , where  s   is the in y  olution defined in  (5 . 3) .

 Proof .  Let  , wt 1  and  , wt 2  be as defined in Proposition 4 . 11 .  It follows from
 Proposition 4 . 11 that  , wt 1 ( L ) and  , wt 2 ( L ) uniquely determine  L .  Since  , wt 9 2 ( L ) is
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 always either  1 1 or  2 1 times every entry in the sequence  , wt 2 ( L ) ,  it follows that
 there can be at most two standard tableaux  L  and  L 9  with the same weights , wt 1 ( L 9 )  5

 , wt 1 ( L )   and  , wt 9 2 ( L 9 )  5
 , wt 9 2 ( L ) .  On the other hand ,  it is immediate that

 one always has that  , wt 9 2 ( s L )  5
 , wt 9 2 ( L ) since sgn( s L ( k ))  5  2 sgn( L ( k )) for all  k .

 Iwahori  – Hecke algebras HD n ( q 2 )
 Let  q  be an indeterminate .  The Iwahori – Hecke algebra  HD n ( q 2 ) of type  D n   is

 the associative algebra with 1 over the field  C ( q ) given by generators  T ̃  1  ,  T ̃  2  ,  . . . ,  T ̃  n

 and relations

 T ̃  i T ̃  j  5  T ̃  j T ̃  i  for  u i  2  j u  .  1 ,  i ,  j  .  1 ,

 T ̃  1 T ̃  j  5  T ̃  j T ̃  1  if  j  ?  3 ,

 (5 . 14)  T ̃  1 T ̃  3 T ̃  1  5  T ̃  3 T ̃  1 T ̃  3  ,

 T ̃  i T ̃  i 1 1 T ̃  i  5  T ̃  i 1 1 T ̃  i T ̃  i 1 1  for  2  <  i  <  n  2  1 ,

 T ̃  2
 i  5  ( q  2  q 2 1 ) T ̃  i  1  1  for  1  <  i  <  n .

 Let  HB n (1 ,  q 2 ) be the algebra over  C ( q ) defined by generators  T 1  ,  . . . ,  T n   and
 relations as in (4 . 19) except with  p  5  1 .  Define

 (5 . 15)  T ̃  1  5  T 1 T 2 T 1  ,  and  T ̃  i  5  T i  for  2  <  i  <  n .

 Then one checks that with these definitions the  T ̃  i   satisfy the relations in (5 . 14) .
 The elements  T ̃  i  ,  for 1  <  i  <  n ,  generate a subalgebra of the algebra  HB n (1 ,  q 2 )
 which is isomorphic to the algebra  HD n ( q 2 ) .

 Representations .  One derives the representation theory of the Iwahori – Hecke
 algebra  HD n ( q 2 ) using the results from  §  4 and the fact that  HD n ( q 2 ) is a
 subalgebra of the Iwahori – Hecke algebra  HB n (1 ,  q 2 ) .  The procedure is exactly as
 for the case (5 . 4) – (5 . 9) of the Weyl groups  WD n  ‘  WB n .

 Let  V  ( a  , b  )  be as in (4 . 23) .  As in (4 . 25) ,  for 2  <  k  <  n  and each standard tableau
 L ,  define

 (5 . 16)  ( T ̃  k ) L L  5  ( T k ) L L  5  ( q  2  q 2 1 ) Y S 1  2
 CT( L ( k  2  1))

 CT( L ( k ))
 D

 where CT( b )  5  sgn( L ( k )) q 2  ct( L ( k )) ,  for a box  b  in a shape  l  5  ( a  ,  b  ) .  Restricting
 the action (4 . 27) of  HB n (1 ,  q 2 ) to  HD n ( q 2 ) gives

 (5 . 17)
 T ̃  1 y  L  5  T 1 T 2 T 1 y  L  5  ( T ̃  2 ) L L y  L  2  ( q 2 1  1  ( T ̃  2 ) L L ) y  s 2 L  ,

 T ̃  i y  L  5  T i y  L  5  ( T ̃  i ) L L y  L  1  ( q 2 1  1  ( T ̃  i ) L L ) y  s i L  for  2  <  i  <  n ,

 for each  L  P  + ( a  ,  b  ) ,  where ,  as in the case of type  B n  ,  we define  y  s i L  5  0 if  s i L  is
 not standard .  In deriving the first formula of (5 . 17) it is helpful to note that
 CT( L (1))  5  Ú 1 ,  and CT( s 2 L (1))  5  2 CT( L (1)) if  s 2 L  is standard .

 If  n  is even ,  and  a   is a partition such that 2  u a  u  5  n ,  define  V  ( a  , a  ) Ú

   as in (5 . 7)
 except over the field  C ( q ) .  The following results can be proved by ‘setting  q  5  1’
 and then using Proposition 5 . 8 and Theorem 5 . 9 .

 P ROPOSITION  5 . 18 (Hoefsmit [ 17 ,  Lemmas 2 . 3 . 3 and 2 . 3 . 5]) .  ( a )  For each pair of
 partitions  ( a  ,  b  )  such that  u a  u  1  u b  u  5  n , V  ( a  , b  )   and V  ( b  , a  )   are isomorphic HD n ( q 2 )-
 modules .
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 (b)  For each partition  a   such that  2  u a  u  5  n , the subspaces V  ( a  , a  ) Ú

   are HD n ( q 2 )-
 submodules of V  ( a  , a  ) , and

 V  ( a  , a  )  >  V  ( a  , a  ) 1

 %  V  ( a  , a  ) 2

 ,

 as HD n ( q 2 )- modules .

 T HEOREM  5 . 19 (Hoefsmit [ 17 ,  Theorem 2 . 3 . 9]) .  The modules V  ( a  , b  ) , where
 ( a  ,  b  )  runs o y  er all unordered pairs of partitions such that  a  ?  b   and  u a  u  1  u b  u  5  n
 and , when n is e y  en , the modules V  ( a  , a  ) 1

   and V  ( a  , a  ) 2

 , where  a   runs o y  er all
 partitions such that  2  u a  u  5  n , form a complete set of non - isomorphic irreducible
 modules for HD n ( q 2 ) .

 Analogues of Jucys  – Murphy elements .  Define

 (5 . 20)
 M ̃  1  5  1 ,  M ̃  2  5  T ̃  2 T ̃  1  ,  and

 M ̃  k  5  T ̃  k T ̃  k 2 1  . . .  T ̃  3 T ̃  2 T ̃  1 T ̃  3 T ̃  4  . . .  T ̃  k 2 1 T ̃  k  ,  for  3  <  k  <  n .

 If  w 0  is the longest element of the Weyl group  WD n  ,  then  T ̃  w 0  5  M ̃  n M ̃  n 2 1  . . .  M ̃  1  is
 the corresponding element in the Iwahori – Hecke algebra  HD n ( q 2 ) .

 T HEOREM  5 . 21 .  The action of the element M ̃  k  in the irreducible representations
 gi y  en by Theorem  5 . 19  is

 M ̃  k y  L  5  CT( L (1))CT( L ( k )) y  L  ,  for  all  standard  tableaux  L ,

 and

 M ̃  k y  Ú

 L  5  CT( L (1))CT( L ( k )) y  Ú

 L  ,  for  all  standard  tableaux  L  of  shape  ( a  ,  a  ) .

 Proof .  Let  M k   be the elements of  HB n (1 ,  q 2 ) given by (4 . 20) ,  and use the
 imbedding of  HD n ( q 2 ) into  HB n (1 ,  q 2 ) .  The case  k  5  1 is trivial ,  since
 CT( L (1))  5  Ú 1 .  For  k  5  2 ,  observe that  M ̃  2  5  T ̃  2 T ̃  1  5  T 2 T 1 T 2 T 1  5  M 2 M 1  .  For 3  <
 k  <  n ,  note that  T 1  commutes with  T 3  ,  T 4  ,  . . .  in  HB n (1 ,  q 2 ) ,  and thus

 M ̃  k  5  T ̃  k T ̃  k 2 1  . . .  T ̃  3 T ̃  2 T ̃  1 T ̃  3 T ̃  4  . . .  T ̃  k 2 1 T ̃  k

 5  T k T k 2 1  . . .  T 3 T 2 ( T 1 T 2 T 1 ) T 3 T 4  . . .  T k 2 1 T k

 5  T k T k 2 1  . . .  T 3 T 2 T 1 T 2 T 3 T 4  . . .  T k 2 1 T k T 1  5  M k M 1 .

 The result now follows from the definition of the action of  HB n (1 ,  q 2 ) and of
 HD n ( q 2 )   on irreducible modules and (4 . 24) .

 6 .  Type G 2

 The chain A 0  ‘  A 1  ‘  G 2 .  The Weyl group  WG 2  is the dihedral group of order
 12 .  The group  WG 2  can be presented by generators  s 1  , s 2  and relations

 s 1 s 2 s 1 s 2 s 1 s 2  5  s 2 s 1 s 2 s 1 s 2 s 1  ,  and  s 2
 i  5  1  for  i  5  1 ,  2 .
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 The irreducible representations of the dihedral group  WG 2  can be indexed by the
 labels

 G ̂  2  5  h f  1 , 0 ,  f  1 , 6 ,  f 9 1 , 3  ,  f 0 1 , 3  ,  f  2 , 1  ,  f  2 , 2 j

 and the character table of the group  WG 2  is as shown in Table 1 .

 T ABLE  1

 1  s 1  s 2  s 1 s 2  s 1 s 2 s 1 s 2  s 1 s 2 s 1 s 2 s 1 s 2

 f  1 , 0
 f  1 , 6
 f 9 1 , 3
 f 0 1 , 3
 f  2 , 1
 f  2 , 2

 1
 1
 1
 1
 2
 2

 1
 2 1

 1
 2 1

 0
 0

 1
 2 1
 2 1

 1
 0
 0

 1
 1

 2 1
 2 1

 1
 2 1

 1
 1
 1
 1

 2 1
 2 1

 1
 1

 2 1
 2 1
 2 2

 2

 The chain of root systems  A 0  ‘  A 1  ‘  G 2  corresponds to the chain of Weyl
 groups  S 1  ‘  S 2  ‘  WG 2  ,  where  S 1  and  S 2  are symmetric groups .  The graph  G ,  as
 defined in (1 . 1) ,  corresponding to the inclusion  S 1  ‘  S 2  ‘  WG 2  is given by Fig .  6 . 1 .
 We have indexed the representations of the symmetric groups  S 1  and  S 2  by
 partitions as in  §  3 .

 F IG .  6 . 1

 Analogues of Jucys  – Murphy elements .  Following (1 . 8) and (2 . 1) ,  let us
 compute the sets  Z k   for this case .  In the root system  A 1  all roots are the same
 length and the longest element  w 1 , 0  in the Weyl group  S 2  acts by  2 1 in the
 reflection representation .  In the root system  G 2  we have both long and short roots
 and the longest element  w 2 , 0  5  s 1 s 2 s 1 s 2 s 1 s 2  of the Weyl group  WG 2  acts by  2 1 in
 the reflection representation .  Let

 Z 1  5  h z 1 , 0 j  and  Z 2  5  h z 2 , s  ,  z 2 , ,  ,  z 2 , 0 j ,
 where

 (6 . 2)

 z 1 , 0  5  w 1 , 0  5  s 1  ,

 z 2 , s  5  O
 a P ( G 2 ) s

 1

 s a  5  s 1  1  s 2 s 1 s 2  1  s 1 s 2 s 1 s 2 s 1  ,

 z 2 , ,  5  O
 a P ( G 2 ) ,

 1

 s a  5  s 2  1  s 1 s 2 s 1  1  s 2 s 1 s 2 s 1 s 2  ,

 z 2 , 0  5  w 2 , 0  5  s 1 s 2 s 1 s 2 s 1 s 2  .

 In (6 . 2) the sets ( G 2 )
 1
 s    and ( G 2 )

 1
 l    are ,  respectively ,  the sets of short and long
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 positive roots in the root system  G 2 .  The elements  z k , j   in (6 . 2) are the appropriate
 G 2 -analogues of the Jucys – Murphy elements in (3 . 5) .

 Weights .  Following Lemma 1 . 9 and (2 . 2) ,  we use the character table of  WG 2  to
 compute

 c 2 , s ( f  1 , 0 )  5  3 ,  c 2 , , ( f  1 , 0 )  5  3 ,  c 2 , 0 ( f  1 , 0 )  5  1 ,

 c 2 , s ( f  1 , 6 )  5  2 3 ,  c 2 , , ( f  1 , 6 )  5  2 3 ,  c 2 , 0 ( f  1 , 6 )  5  1 ,

 c 2 , s ( f 9 1 , 3 )  5  3 ,  c 2 , , ( f 9 1 , 3 )  5  2 3 ,  c 2 , 0 ( f 9 1 , 3 )  5  2 1 ,

 c 2 , s ( f 0 1 , 3 )  5  2 3 ,  c 2 , , ( f 0 1 , 3 )  5  3 ,  c 2 , 0 ( f 0 1 , 3 )  5  2 1 ,

 c 2 , s ( f  2 , 1 )  5  0 ,  c 2 , , ( f  2 , 1 )  5  0 ,  c 2 , 0 ( f  2 , 1 )  5  2 1 ,

 c 2 , s ( f  2 , 2 )  5  0 ,  c 2 , l ( f  2 , 2 )  5  0 ,  c 2 , 0 ( f  2 , 2 )  5  1 ,

 c 1 , 0 ((2))  5  1 ,  c 1 , 0 ((1 2 ))  5  2 1 ,

 so that  c k , j ( m  )  5  χ  m  ( z k , j ) / χ  m  (1) where  χ  m   denotes the irreducible character
 labelled by  m .  The  weight  of a path  L  5  ( h  5  l ( 1 )

 5  l ( 2 ) ) in the graph  G   is

 (6 . 3)  wt( L )  5  ( c 1 , 0 ( l ( 1 ) ) ,  c 2 , s ( l ( 2 ) ) ,  c 2 , , ( l ( 2 ) ) ,  c 2 , 0 ( l ( 2 ) )) .

 P ROPOSITION  6 . 4 .  Each path L  5  ( h  5  l ( 1 )
 5  l ( 2 ) )  in  G   is distinguished by its

 weight , that is , if L and M are paths in  G   and L  ?  M then  wt( L )  ?  wt( M ) .

 Proof .  This follows easily by a direct check .

 Proposition 1 . 12 and Proposition 6 . 4 together show that the seminormal
 representations of  WG 2  corresponding to the chain of groups  h 1 j  ‘  S 2  ‘  WG 2  are
 essentially determined by the elements  z k , j   in (6 . 2) and the constants  c k , j ( m  ) which
 appear in (6 . 3) .  These representations are given in Theorem 6 . 7 below .

 Seminormal representations .  Let  P 1  ‘  P 2  be the path algebras ,  defined in  §  1 ,
 which are associated to the diagram  G   in Fig .  6 . 1 .  For each  l  P  G ̂  2  ,  let

 (6 . 5)  V  l  5  C -span h y  L  3  L  P  + ( l ) j ,

 so that the vectors  y  L  ,  indexed by the paths  L  5  ( h  5  l ( 1 )
 5  l ( 2 )  5  l ) in  G   which

 end at  l  ,  form a seminormal basis of the irreducible  P 2 -module  V  l .  It follows
 from Lemma 1 . 9 ,  that for any choice of an isomorphism  F   between the path
 algebra  P 2  and the  C WG 2  such that  F ( P 1 )  5  C S 2  ‘  C WG 2  ,

 (6 . 6)
 z 1 , 0 y  L  5  c 1 , 0 ( l ( 1 ) ) y  L  ,  z 2 , s y  L  5  c 2 , s ( l ( 2 ) ) y  L  ,

 z 2 , 0 y  L  5  c 2 , 0 ( l ( 2 ) ) y  L  ,  z 2 , , y  L  5  c 2 , , ( l ( 2 ) ) y  L  ,

 if  L  5  ( h  5  l ( 1 )
 5  l ( 2 ) ) is a path in  G .
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 T HEOREM  6 . 7 .  Irreducible seminormal representations of the Weyl group WG 2
 with respect to the chain S 1  ‘  S 2  ‘  WG 2   can be gi y  en by

 f  1 , 0 ( s 1 )  5  (1) ,  f  1 , 6 ( s 1 )  5  ( 2 1) ,

 f  1 , 0 ( s 2 )  5  (1) ,  f  1 , 6 ( s 2 )  5  ( 2 1) ,

 f 9 1 , 3 ( s 1 )  5  (1) ,  f 0 1 , 3 ( s 1 )  5  ( 2 1) ,

 f 9 1 , 3 ( s 2 )  5  ( 2 1) ,  f 0 1 , 3 ( s 2 )  5  (1) ,

 f  2 , 1 ( s 1 )  5 S 1
 0

 0
 2 1

 D ,  f  2 , 2 ( s 1 )  5 S 1
 0

 0
 2 1

 D ,

 f  2 , 1 ( s 2 )  5 S  1 – 2
 3 – 2

 1 – 2

 2 1 – 2
 D ,  f  2 , 2 ( s 2 )  5 S 2  1 – 2

 3 – 2
 1 – 2

 1 – 2
 D .

 Proof .  For any two paths  M  and  L  in the graph  G   which end at the same label
 l  ,  let ( s k ) M L   denote the coef ficient of  y  M   in  s k y  L .  The constant ( s k ) M L   is a matrix
 entry in the matrix for  s k   in the irreducible representation labelled by  l .  It follows
 from Proposition 1 . 12(a) and Proposition 6 . 4 that the diagonal entries of these
 matrices must be determined by the equations in (6 . 6) and that the of f-diagonal
 entries are determined up to a constant .

 The matrices giving the one-dimensional representations are easily obtained
 from the relations in (6 . 6) .  Let us explain how one derives the matrices for the
 two-dimensional case .

 (a)  The matrices for  s 1  are determined by (6 . 6) .
 (b)  From the definitions (6 . 2) ,  one gets easily that

 z 2 , ,  5  s 2  1  z 1 , , s 2 z 1 , ,  1  z 2 , 0 z 1 , ,  .

 Let both sides of this equation act on  y  L   and take the coef ficient of  y  L   to get ,  via
 (6 . 6) ,  the equation

 c 2 , , ( l ( 2 ) )  5  ( s 2 ) L L  1  c 1 , , ( l ( 1 ) )( s 2 ) L L c 1 , , ( l ( 1 ) )  1  c 2 , 0 ( l ( 2 ) ) c 1 , , ( l ( 1 ) ) .

 It follows that

 ( s 2 ) L L  5
 c 2 , , ( l ( 2 ) )  2  c 2 , 0 ( l ( 2 ) ) c 1 , 0 ( l ( 1 ) )

 1  1  c 1 , 0 ( l ( 1 ) ) 2  .

 All of the diagonal entries in the matrices for  s 2  are determined by this formula
 and the values in (6 . 3) .

 (c)  Let both sides of the equation  s 2
 2  5  1 act on the vector  y  L   and take the

 coef ficient of  y  L   in the result .  One gets the equation

 ( s 2 ) L M ( s 2 ) M L  1  ( s 2 )
 2
 LL  5  1 ,

 where  M  is the path to  l   in  G   which is not  L .  It follows that

 ( s 2 ) L M ( s 2 ) M L  5  (1  1  ( s 2 ) L L )(1  2  ( s 2 ) L L ) .

 Because of the freedom in the choice of the of f-diagonal entries ,  Proposition
 1 . 12(b) ,  it follows that we may choose ( s 2 ) M L  5  1  1  ( s 2 ) L L  5  1  2  ( s 2 ) M M .

 The Iwahori  – Hecke algebra HG 2 (  p 2 ,  q 2 )
 Let  p ,  q  be indeterminates .  The Iwahori – Hecke algebra  HG 2 (  p 2 ,  q 2 ) of type  G 2

 is the associative algebra with 1 over the field  C (  p ,  q ) given by generators  T 1  ,  T 2
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 and relations

 (6 . 8)
 T 1 T 2 T 1 T 2 T 1 T 2  5  T 2 T 1 T 2 T 1 T 2 T 1  ,

 T  2
 1  5  (  p  2  p 2 1 ) T 1  1  1  and  T  2

 2  5  ( q  2  q 2 1 ) T 2  1  1 .

 Analogues of Jucys  – Murphy elements .  If  w 1 , 0  is the longest element of the
 Weyl group  S 2  5  WA 1  and  w 2 , 0  is the longest element of the Weyl group  WG 2  ,
 then the corresponding elements in the Iwahori – Hecke algebras  HA 1 (  p 2 ) and
 HG 2 (  p 2 ,  q 2 )   are given by

 z 1  5  T w 1 , 0  5  T 1  and  z 2  5  T w 2 , 0  5  T 1 T 2 T 1 T 2 T 1 T 2 .

 Following (1 . 8) and Proposition 2 . 4 ,  define sets  Z k  5  h z k j ,  for  k  5  1 ,  2 .

 Seminormal representations .  Let  P 1  ‘  P 2  be the path algebras over the field
 C (  p ,  q )   which are associated to the diagram  G   in Fig .  6 . 1 .  For each  l  P  G ̂  2  ,  let

 V  l  5  C (  p ,  q )-span h y  L  3  L  P  + ( l ) j , (6 . 9)

 so that the vectors  y  L  ,  indexed by the paths  L  5  ( h  5  l ( 1 )
 5  l ( 2 )  5  l ) in  G   which

 end at  l  ,  form a seminormal basis of the irreducible  P 2 -module  V  l .  It follows
 from Lemma 1 . 9 ,  that for any choice of an isomorphism  F   between the path
 algebra  P 2  and  HG 2 (  p 2 ,  q 2 ) such that  F ( P 1 )  5  C HA 1 (  p 2 )  ‘  HG 2 (  p 2 ,  q 2 ) ,

 (6 . 10)  z 1 y  L  5  p c 1 , 0 ( l ( 1 ) ) y  L  and  z 2 y  L  5  c 2 , 0 ( l ( 2 ) ) p c 2 , s ( l ( 2 ) ) q c 2 , , ( l ( 2 ) ) y  L  ,

 if  L  5  ( h  5  l ( 1 )
 5  l ( 2 ) ) is a path in  G .

 T HEOREM  6 . 11 .  Irreducible seminormal representations of HG 2 (  p 2 ,  q 2 )  are gi y  en
 explicitly by

 f  1 , 0 ( T 1 )  5  (  p ) ,  f  1 , 0 ( T 2 )  5  ( q ) ,

 f  1 , 6 ( T 1 )  5  ( 2 p 2 1 ) ,  f  1 , 6 ( T 2 )  5  ( 2 q 2 1 ) ,

 f 9 1 , 3 ( T 1 )  5  (  p ) ,  f 9 1 , 3 ( T 2 )  5  ( 2 q 2 1 ) ,

 f 0 1 , 3 ( T 1 )  5  ( 2 p 2 1 ) ,  f 0 1 , 3 ( T 2 )  5  ( q ) ,

 f  2 , 1 ( T 1 )  5 S p
 0

 0
 2 p 2 1 D ,  f  2 , 1 ( T 2 )  5 S a

 c
 b
 d
 D ,

 f  2 , 2 ( T 1 )  5 S p

 0
 0

 2 p 2 1 D ,  f  2 , 2 ( T 2 )  5 S x

 z

 y

 w
 D ,

 where

 a  5
 1  1  p 2 1 ( q  2  q 2 1 )

 p  1  p 2 1  ,  x  5
 2 1  1  p 2 1 ( q  2  q 2 1 )

 p  1  p 2 1  ,

 b  5  q  2  a ,  y  5  q  2  x ,

 c  5  q 2 1  1  a ,  z  5  q 2 1  1  x ,

 d  5  ( q  2  q 2 1 )  2  a ,  w  5  ( q  2  q 2 1 )  2  x .

 Proof .  The proof is entirely similar to the proof of Theorem 6 . 7 .  Let us explain
 only how to get the entries in the matrices  f  2 , 1 ( T 2 ) and  f  2 , 2 ( T 2 ) .  Let  l  5  (2 ,  1) or
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 l  5  (2 ,  2) and suppose that  L  and  M  are the two paths to  l   in  G .  From the
 definition of the element  z 2  we get

 T  2 1
 1  T  2 1

 2  T  2 1
 1  z 2  5  T 2 T 1 T 2 .

 By rewriting  T  2 1
 2   as  T 2  2  ( q  2  q 2 1 ) we have

 T  2 1
 1  T 2 T  2 1

 1  z 2  2  ( q  2  q 2 1 ) T  2 2
 1  z 2  5  T 2 T 1 T 2 .

 Taking the ( L ,  M ) entry of each side of the above equation gives

 ( T 1 )
 2 1
 LL ( T 2 ) L M ( T 1 )

 2 1
 MM c 2 , 0 ( l )  2  0

 5  ( T 2 ) L L ( T 1 ) L L ( T 2 ) L M  1  ( T 2 ) L M ( T 1 ) M M ( T 2 ) M M .

 Since these representations are irreducible ,  it follows that ( T 2 ) L M  ?  0 .  Dividing by
 ( T 2 ) L M   and using the fact that ( T 1 ) L L  5  p  and ( T 1 ) M M  5  2 p 2 1 ,  we get the equation

 (i)  2 c 2 , 0 ( l )  5  p ( T 2 ) L L  2  p 2 1 ( T 2 ) M M .

 Now ,  the equation  T  2
 2  5  ( q  2  q 2 1 ) T 2  1  1 forces the trace of the matrix of  T 2  to be

 q  2  q 2 1 ,  and so

 (ii)  ( T 2 ) L L  1  ( T 2 ) M M  5  q  2  q 2 1 .

 The values for  x  and  a  in the statement of the theorem now follow easily from (i)
 and (ii) .  The values of the of f-diagonal entries are determined (up to a constant ,
 see Proposition 1 . 12(a)) by the equation

 ( T 2 ) L M ( T 2 ) M L  5  ( q 2 1  1  ( T 2 ) L L )( q  2  ( T 2 ) M M ) .

 This equation is obtained by taking the ( L ,  L ) entry in the equation

 T  2
 2  5  ( q  2  q 2 1 ) T 2  1  1 .
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