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Abstract. Let G be a semisimple complex Lie group, B a Borel subgroup, and
T ⊆ B a maximal torus of G. The projective variety G/B is a generalization
of the classical flag variety. The structure sheaves of the Schubert subvarieties
form a basis of the K-theory K(G/B) and every character of T gives rise
to a line bundle on G/B. This note gives a formula for the product of a
dominant line bundle and a Schubert class in K(G/B). This result generalizes
a formula of Chevalley which computes an analogous product in cohomology.
The new formula applies to the relative case, the K-theory of a G/B-bundle
over a smooth base X, and is presented in this generality. In this setting the
new formula is a generalization of recent G = GLn(C) results of Fulton and
Lascoux.

Let G be a complex, semisimple, simply connected algebraic group and B ⊆ G
a Borel subgroup. We fix a smooth closed complex projective variety X and a
principal algebraic B-bundle over it: B −→ E

π−→X . For any complex algebraic
variety F with a left algebraic B-action, we denote by E(F ) the total space of the
associated fibre bundle with fibre F . Thus E(F ) = E ×B F and the projection to
X is obtained from projection on the first factor.

Fix a maximal torus T ⊆ B and let W be its Weyl group. For each w ∈ W the
Bruhat cell Y ◦

w = BwB ⊆ G/B and the Schubert variety Yw = BwB ⊆ G/B are B-
stable subsets of G/B so we have inclusions of bundles E(Y ◦

w ) ⊆ E(Yw) ⊆ E(G/B).
The closed subvarieties Ωw = E(Yw) determine classes [OΩw ] in K(E(G/B)). 1 In
fact, by a well-known result of Grothendieck, these classes form a K(X)-basis for
K(E(G/B)). On E(G/B)) we also have “homogeneous” line bundles associated to
irreducible representations of B (see below). The main result of this announcement
is a formula for the tensor product of the class of a homogeneous line bundle with
a Schubert class, expressed as a K(X)-linear combination of Schubert classes.

We believe that this formula is the most general uniform result in the intersection
theory of Schubert classes: it is related to a recent result of Fulton and Lascoux
[FL], who presented a similar formula for a GLn(C)/B-bundle. Indeed, in this
case, their formula and ours coincide once one knows how to translate between
their combinatorics with tableaux and ours with Littelmann paths. O. Mathieu
has also proved the positivity which is implied by our formula; see [FP, p. 101].
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Applying the Chern character to our formula, and equating the lowest order terms
we obtain a relative version of the result of Chevalley [Ch] alluded to in the title of
this paper.

The ring K(E(G/B)) is a K(X)-module via the map π∗ : K(X) → K(E(G/B)).
Since G/B has a unique fixed point for the B-action, there is a canonical section
σ : X → E(G/B) of the bundle E(G/B). Consider the diagram

G → E(G) → X
↓ ↓ ρ ‖

G/B → E(G/B) → X

where the vertical maps are quotients by the right action of B on G; precisely,
E(G/B) ' (E×B G)/B. Thus ρ is the projection map of a principal B-bundle over
E(G/B).

There are two vector bundles naturally associated to each B-module V :

E(V ) −→ X, and EG(V ) = E(G)×B V −→ E(G/B),

where the projection map for the latter of these is via ρ. This assignment V 7→
EG(V ) of B-modules to vector bundles over E(G/B) preserves direct sums and
tensor products, and hence induces a ring homomorphism R(B)

φ−→K(E(G/B)),
where R(B) is the representation ring of B. By construction σ∗(EG(V )) = E(V )
as vector bundles on X . One also checks that if V is the restriction of a G-module,
then EG(V ) = π∗(σ∗(EG(V ))). Thus we have a commutative diagram

R(G) − − → K(X)
↓ res ↓ π∗

R(B) −→ K(E(G/B))

and a map

K(X)⊗R(G) R(B)
π∗⊗φ−→ K(E(G/B)),

where R(G) is the representation ring of G and the R(G)-action on K(X) is given
by the map V 7→ E(V ).

Let P be the weight lattice of g = Lie(G). Then R(B) = R(T ) ∼= Z[P ], the
group algebra of P , and R(G) = R(T )W . If λ ∈ P , let eλ be the corresponding
element of R(T ) and define

xλ = E(eλ) ∈ K(X) and yλ = EG(eλ) ∈ K(E(G/B)).(1)

The statement that EG(V ) = π∗(σ∗(EG(V ))) if V is a G-module is equivalent to
the statement that, in K(E(G/B)),

χ(x) = E(χ) is equal to χ(y) = EG(χ), for all χ ∈ R(T )W .

We recall from [P] that R(T ) is a free R(G)-module of rank |W |, and R(T )⊗R(G)

Z −→ K(G/B) is an isomorphism.2 According to Steinberg, [S] there is an R(G)-
basis of R(T ) of the form {eεw | w ∈ W}, where the εw are certain specific el-
ements of P . Since the set {yεw | w ∈ W} is a set of globally defined elements
in K(E(G/B)) which behaves properly under restriction, and which forms a basis

2The discussion in [P] is entirely in terms of compact groups and the K-theory of C∞ vector
bundles; with trivial modifications the results hold in the present context also.
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locally, it follows from standard yoga that it is also a K(X)-basis for K(E(G/B)).
Thus the map K(X)⊗R(G) R(T ) −→ K(E(G/B)) is an isomorphism and

K(E(G/B)) ∼=
K(X)⊗R(T )

I ,(2)

where I is the ideal in K(X)⊗R(T ) generated by the set {χ(x)⊗ 1− 1⊗ χ | χ ∈
R(T )W}.

Define a W -action on K(X)⊗R(T ) as the K(X)-linear extension of the action
given by

wyλ = ywλ, for w ∈ W , λ ∈ P .

This action descends to an action on K(E(G/B)), since the generators of the ideal
I are W -invariants for this action. Using this W -action on K(E(G/B)), we can
define the analogues of BGG-operators in this context. Such operators were defined
in the “absolute case” (X = pt) by Demazure, in KT (G/B) by Kostant and Kumar
[KK], and finally by Fulton and Lascoux [FL] when G = SL(n, C). To make the
definition, let α be a positive root with respect to the pair (B, T ) and let sα ∈ W
be the corresponding reflection. Define Tα : R(T ) → R(T ) by setting

Tα(eλ) = (eλ+α − sα(eλ))/(eα − 1)

and extending Z-linearly. Since Tα fixes elements of R(T )W , this operation can be
extended K(X)-linearly to a well-defined operator on K(E(G/B)).

Now fix a simple system of roots α1, . . . , α` for (B, T ) and let Pj be the minimal
parabolic subgroup corresponding to αj ; this is the closed connected subgroup of G
whose Lie algebra pj is spanned by the Lie algebra b of B and the root space g−αj .
Let fj : E(G/B) −→ E(G/Pj) be the projection induced from the B-equivariant
P1-bundle G/B −→ G/Pj (the canonical projection). The following result explains
the geometric significance of the operators Tαj (henceforth abbreviated as Tj).
P. Deligne pointed out an error in the proof of (a) below in an earlier version of
this preprint. We are grateful to him for pointing this out and have corrected the
argument.

Proposition. With the notation as above,

(a) (fj)! ◦ (fj)!([OΩw ]) =

{
[OΩwsj

] if `(wsj) > `(w),
[OΩw ] if `(wsj) < `(w).

(b) For any element x ∈ K(E(G/B)), (fj)! ◦ (fj)!(x) = Tj(x).

Proof. (a) Let w̄ = {w, wsj} be the coset of w relative to 〈sj〉. The essential point
is to prove the following two equations:

f![OΩv ] = [OΩw̄ ], for v ∈ w̄,

where Ωw̄ ⊆ E(G/Pj) is the relative Schubert variety constructed from Yw̄ ⊆
E(G/Pj). In turn, these equations will follow from the isomorphisms

(i) f∗(OΩv ) = OΩw̄ , (ii) Rqf∗(OΩv ) = 0, for q > 0, v ∈ w̄.

To prove (i) and (ii) relabel the elements of w̄ as w′ and w′′ where w′ < w′′.
Then f : Ωw′ → Ωw̄ is birational, and since the varieties in question have at worst
rational singularities, (i) and (ii) for w′ follow from known arguments. Secondly, f :
Ωw′′ → Ωw̄ is a P1-bundle, so (i) and (ii) are standard. Finally, f ![OΩw̄ ] = [OΩw′′ ]
follows because, in this case, f is the projection of a P1-bundle.
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(b) There is a 2-dimensional algebraic vector bundle Ej −→ E(G/Pj) associ-
ated to a 2-dimensional representation of Pj . Its projectivization is E(G/B), i.e.,
P(Ej) ' E(G/B) as bundles over E(G/Pj). It follows that K(E(G/B)) is a free
module over K(E(G/Pj)) on two generators, 1 and Lωj , where ωj is the jth funda-
mental weight. Since both sides are K(X)-linear, it suffices to check the assertion
for 1 and Lωj , and this reduces to the “same” computation as in the absolute
case.

The operators Ti, 1 ≤ i ≤ `, satisfy T 2
i = Ti and the generalized braid relations.

For each w ∈ W , let w = si1 · · · sip be a reduced word for w and define Tw =
Ti1 · · ·Tip . Since the Ti satisfy the braid relations, the operators Tw are well defined
and, by the above Proposition,

[OΩw ] = Tw−1[OΩ1 ], for w ∈ W.(3)

For each λ ∈ P let Y λ be the “left multiplication” operator on K(E(G/B))
defined by Y λ(x) = yλx. Since [OΩ1 ] = σ(X),

Y λ[OΩ1 ] = xλ[OΩ1 ],(4)

where xλ is as in (1). As operators on K(E(G/B)),

Y λTi = TiY
siλ +

Y λ − Y siλ

1− Y −αi
,(5)

where the second term is always viewed as a linear combination of Y µ, µ ∈ P . We
will iterate this formula to obtain an expansion of the product eλ[OXw ] in K(G/B)
in terms of the K(X)-basis {[OXv ] | v ∈ W} of K(E(G/B)). The path model of
P. Littelmann [Li] is exactly what is needed for controlling the resulting expansion.

Let h∗ = R⊗P be the real span of the weight lattice. A path in h∗ is a piecewise
linear map π : [0, 1] → h∗ such that π(0) = 0. P. Littelmann [Li] defined root
operators f1, . . . , f` which act on the paths. The action of a root operator fi on a
path π either produces another path or returns 0.

Let λ be a dominant integral weight and let Wλ be the stabilizer of λ. The cosets
in W/Wλ are partially ordered by the Bruhat-Chevalley order. Let πλ be the path
given by

πλ(t) = tλ, 0 ≤ t ≤ 1, and let T λ = {fi1fi2 · · · fil
πλ}

be the set of all paths obtained by applying sequences of root operators fi = fαi ,
1 ≤ i ≤ ` to πλ. Each path π ∈ T λ can be encoded with a pair of sequences

~τ = (τ1 > τ2 > · · · > τr), τi ∈ W/Wλ, and
~a = (0 = a0 < a1 < a2 < · · · < ar = 1), ai ∈ Q,

so that π is given by

π(t) = (t− aj−1)τjλ +
j−1∑
i=1

(ai − ai−1)τiλ, for aj−1 ≤ t ≤ aj .

The initial direction of π is ι(π) = τ1 and the endpoint of π is π(1) ∈ h∗.
Fix w ∈ W , let w̄ = wWλ ∈ W/Wλ and assume that π is a path in the set

T λ
≤w = {π ∈ T λ | ι(π) ≤ w̄}.
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A maximal lift of ~τ with respect to w is a choice of representatives ti ∈ W of the
cosets τi such that w ≥ t1 > · · · > tr and each ti is maximal in Bruhat order such
that ti−1 > ti. The final direction of π with respect to w is

v(π, w) = tr,

where w ≥ t1 > · · · > tr is a maximal lift of τ1 > · · · > τr with respect to w.

Theorem. Let λ be a dominant integral weight and let w ∈ W . Then

Y λTw−1 =
∑

η∈T λ
≤w

Tv(η,w)−1Y η(1)

as operators on K(E(G/B)).

Sketch of proof. Fix a simple root αi. Every path is in a unique αi-string of paths

Sαi(π) = {fm
i π, . . . , f2

i π, fiπ, π},

where fm
i π = 0 and there does not exist any path η such that fiη = π. In a manner

similar to that of [Li, Lemma 5.3] one shows that, for any αi-string Sαi(π),∑
η∈Sαi

(π)

Tv(η,w)−1Y η(1) = Tv(π,w)−1Y π(1)Ti.

Given these facts, the proof of the Theorem follows the same lines as the proof of
the Demazure character formula given in [Li, 5.5].

By applying the formula in the Theorem to the element [OΩ1 ] ∈ K(E(G/B))
and using (3) and (4) we obtain the following.

Corollary. Let λ be a dominant integral weight and let w ∈ W . In K(E(G/B)),

yλ[OΩw ] =
∑

η∈T λ
w

[OΩv(η,w) ]x
η(1).
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