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ABSTRACT 

Let H,,(q) be the Iwahori-Hecke algebra of the symmetric group S,,. Let F, be a finite field with y 
elements and let B be the Bore1 subgroup of upper triangular matrices in the general linear group 
G = GL,(F,). Let 1: denote the trivial representation of B induced to G. Then H,,(q) has a natural 
action on 1; that commutes with the G-action, and we define the bitrace btr(g, a) to be the trace of 
g E G and a E H,(q) acting simultaneously in lg. For partitions, p, v of n, let Tw be a standard basis 
element of H,,(q) corresponding to the S,-conjugacy class p, and let u, be a unipotent element of G 
with Jordan block structure V. We give a combinatorial formula for btr(u,, Tp) as a weighted sum of 
column strict tableaux of shape v and content p. This bitrace also essentially counts Ifs-rational 
points in the intersection of a conjugacy class with a Schubert cell, provides a new proof of the 
Frobenius formula for characters of H,(q), and gives a natural pairing between the conjugacy 
classes of S, and the unipotent classes in G. 

0. INTRODUCTION 

Motivation for this paper 

In the original work of Frobenius, where he determined the irreducible char- 
acters of the symmetric groups, one of the key features was a formula 
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which says that the transition matrix between the power sum symmetric func- 
tions and the Schur functions is the character table of the symmetric group. 
Later Schur explained that this formula was coming from the simultaneous 
trace of two commuting actions: 

(a) G&(C) acting on VBn, where V = C’ is the natural representation of 
GL,(@), and 

(b) the symmetric group S,, acting on V @’ by permuting the tensor factors. 

If g E G&.(C) and y E S, is a permutation of cycle type p, then the trace of gy 
on Van is 

where pP is a power sum symmetric formula and xi, . . . ,x, are the eigenvalues 
ofg. The ‘bitrace’ btrvx” is simultaneously a trace on G_&(C) and a trace on S,,. 
Combined with the fact that GL,(C) and S, are full centralizers of each other 
on I’@“, formula (0.2) forces formula (O.l), where the Schur function sx is an 
irreducible character of G&(C). 

The same technique works well for computing the irreducible characters of 
the Iwahori-Hecke algebra of type A,_ I (see [Ral]). The quantum group 
U,(gl,) takes the place of G&(C), the Iwahori-Hecke algebra H,,(q) takes the 
place of S, and both algebras are centralizers of each other on I’on where V is 
the ‘natural’ representation of the quantum group. A bitrace computation 
analogous to (0.2) yields an analogue of the Frobenius formula (0.1). This 
generalization of Frobenius’ formula was independently obtained (using 
several different methods) by Gyoja [Gy], King-Wybourne [KW], Ram [Ral], 
Vershik-Kerov [VK], and Ueno-Shibukawa [US]. 

A priori, it is not clear how to generalize the Frobenius-Schur approach to 
compute the irreducible characters of Iwahori-Hecke algebras of other types. 
This paper is a first step in this direction. We have computed a new bitrace for 
the Iwahori-Hecke algebra of type A. Although the Frobenius-Schur bitrace 
does not make sense for Iwahori-Hecke algebras of general type, the bitrace 
that we study in this paper does, and it is our hope that the methods of this 
paper will eventually yield general formulas for computing the irreducible 
characters of all the Iwahori-Hecke algebras. 

Let IF, be a field with q elements. We compute the bitrace of GL,(lF,) and the 
Iwahori-Hecke algebra of type A, 1 acting on the representation lg, where B 
is the subgroup of upper triangular matrices in GL,(F,) and 1; is the trivial 
representation of B induced to GL,(F,). In Section 3 we derive a combinatorial 
formula for this bitrace as a weighted sum of column strict tableaux. 

In Section 4 we show that our new formula is equivalent to the original 
‘Frobenius formula’ for the irreducible characters of the Iwahori-Hecke 
algebras of type A. This lends credibility to our idea that this type of bitrace 
formula will be a good tool for computing the irreducible characters of Iwa- 
hori-Hecke algebras of general type. In Section 2, we derive several other in- 
terpretations of the bitrace. 
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In general type the situation will be the following: Let G be a finite Chevalley 
group and let B be a Bore1 subgroup of G. Let 1; be the trivial representation of 
B induced to G. The Iwahori-Hecke algebra H acts on 1: and commutes with 
the action of G. These two actions are full centralizers of each other, and one 
would like to give a formula for the bitrace (simultaneous trace) of these two 
actions. With this more general goal in mind we have, when possible, presented 
our type A computations using algebraic group notations in order to indicate 
how the computation might be done in general type. 

Some of the results of Kawanaka [Ka] are related to the results in this paper. 
In particular, interpretations (2) and (3) and special case (3) which we have 
given in Section 2 appear in [Ka] Lemma 3.6, the remark after formula (7.1), 
and formula (7. l), respectively. 

We thank F. Digne for conversations which elucidated formula (2.3), T. 
Springer for explaining the relationship of formula (2.3) to the variety FU,, in 
Section 2 and pointing us to the paper of Kawanaka [Ka], and I.G. Macdonald 
for invaluable help with the symmetric function approach in Section 4. We also 
thank J. Ramagge for energetic assistance with some messy calculations that 
we were doing at the beginning of this project. 

Some of the research of A. Ram was conducted during extended stays at 
University of Sydney, Australia and Mathematical Sciences Research Institute, 
Berkeley, California. A. Ram thanks these institutions for their wonderful 
hospitality and for financial support from an Australian Research Council 
Fellowship and a Postdoctoral Fellowship, respectively. 

Remarks on the results in this paper 

(1) Surprisingly, the matrix of polynomials determined by the bitraces is 
upper triangular with respect to appropriate orderings on the unipotent classes 
of G&(5,) and on the conjugacy classes of the symmetric group. This fact 
makes one wonder whether a similar phenomenon might occur in general type. 
Is there an ordering on the unipotent classes of G (possibly by closure relations 
as in [Ca2]) and an ordering on the conjugacy classes of the Weyl group such 
that the matrix of the bitraces is upper triangular? If so, there is a natural cor- 
respondence between unipont classes in G and conjugacy classes in W. It is 
possible that this is an incarnation of the map from the unipotent classes to 
the conjugacy classes of the Weyl group which was given by Kazhdan and 
Lusztig [KL]? 

(2) A consequence of our calculations in Section 4 has been to show that the 
matrix of Kostka-Foulkes polynomials appears naturally as the portion of the 
character table of G&(5,) formed by the characters which appear in 1; eval- 
uated at the unipotent classes of GL,(ff,) (see Theorem 4.9 (c)). This formula is 
well-known and appears, for example, in [Lu], formula (2.2). This interpreta- 
tion of the Kostka-Foulkes polynomials indicates a natural generalization of 
these polynomials to other Lie types, one which, to our knowledge, has not 
been studied by combinatorialists. 
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Statement of the main result 

We will use the notations for partitions and tableaux from [Mac]. A partition X 
of 12, denoted A k n, is a sequence X = (Xi > X2 2 . . .) where the parts Xi are 
nonnegative integers satisfying Ci Xi = n. We identify X with its Ferrers dia- 
gram, given by Xi left justified boxes in the ith row. For example, the Ferrers 
diagram of X = (5533 11) is 

The length e(x) is the number of nonzero parts of X, mi(x) is the number of 
parts of X that are equal to i, and 

(0.3) n(X) = C (i - 1)Xi. 
i>l 

If v and p are partitions and pi 5 Vi for each i, then we say that p C V. The skew 
diagram Y/P = (~1 - pi, vz - ~2,. . .) consists of the boxes in v which are not 
in p. A horizontal strip is a skew diagram Y/P which has at most one box in each 
column. If p C I/ and Y/P is a horizontal strip, define 

(0.4) wt(y/p) = n (1 - q-“i’“‘), 
iEI 

where Z is the set of i such that Y/P has a box in column i and does not have a 
box in column i + 1. 

A column strict tableau of shape v is a filling of boxes in the Ferrers diagram 
of Y with positive integers such that the rows of Tare weakly increasing and the 
columns of Tare strictly increasing. The content of T is the sequence p = 
(~1, ,u2, . .) where pi is the number of i’s in T. For example 

11111111223444 

2222223344555 

T=333366 

4455 

556 

is a column strict tableau of shape Y = (14,13,6,4,3) and content p= 
(8,8,7,7,7,3). We will identify T with the sequence of partitions T = (0 = 
v(O) C v(l) G . . . C Y(‘) = v) where ~(~1 
5 i. For each i, v~/v(~-I) ’ 

is the partition containing the numbers 
IS a horizontal strip. The weight of T is given by 

(0.5) wt(T) = n wt(v(‘)/& ‘)), 
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where the weights wt(v(‘)/V(‘-‘1) are as defined in (0.4). In our example, 
wt(v(s)/V(4)) = (1 -q-1)(1 -q-2). 

Let B be the Bore1 subgroup of upper triangular matrices in GL,(lF,) and let 
1: denote the trivial representation of B induced to G. There is an action of the 
Iwahori-Hecke algebra of type A, _ 1, H,(q), on 1: which commutes with G (see 
(1.2)). Let p, v be partitions of n, let uV be a unipotent element of GL,([F,) such 
that the sizes of the blocks of the Jordan normal form of a,, are given by V, and 
let T7,i be a standard basis element of H,(q) corresponding to the S,-conjugacy 
class ,LL. The following theorem is the main result of this paper. It is proved in 
Section 3. 

Theorem 3.4. Let V, p. F n. Then, with notations as in thepreviousparagraph, the 
bitrace of TY,, E H,,(q) and u, E G on 1; is given by 

n +n(v) 

btr(uV, T?,,) = ’ 
(q _ 1)&l) T wt(T), 

where the sum is over all column strict tableaux Tof shape v and content p and 
wt( T) is given by (0.5). 

I. PRELIMINARIES 

The representation 1; 

Let [F, be the finite field with q elements and let G = GL,(F,). Fix B to be the 
Bore1 subgroup of upper triangular matrices in G. Let 1: denote the trivial 
representation of B induced to G. Then 

1: = C-span{gB ( gB E G/B} 

is the vector space of formal linear combinations of cosets of B with the action 
of G given by left multiplication. 

The matrices which have the property that 

(1.1) the rightmost nonzero entry in each row is a 1 and is thejirst nonzero 
entry in its column 

form a set of coset representatives of the cosets in G/B. See the example for 
GLd(lF,), below. This is justified by the fact that every matrix can be ‘row re- 
duced’ to one of this form by right multiplying by elements of B. The row re- 
duction can be done inductively, one row at a time, where in the ith row one 
uses the leftmost nonzero entry which has all zeros above it to zero out all the 
entries to its right. 

The permutation wo = (A ,,! 1 ::I ; ) is the longest element of the Weyl 
group W = S,, and B- = WOBWO is the subgroup of lower triangular matrices 
in G. If w E W, the B-cosets in the set B-wB are the ones which have 
representatives such that the rightmost nonzero entries in each row form the 
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permutation matrix w. For example, in GLd(lF,), the Bcosets in the sets B-wB 

are represented as follows: 

BpsmB={(; f ~)B~acFq,}, Bps,szB={(I ; ~)B~cYE+ 

0 0 1 
B-woB= 0 1 0 B. 

( ) 1 0 0 

(Analogous coset representatives can be found in general Lie type, see [Snb] 
p. 34, Theorem 4’.) 

AJug is a sequencef = ( VO C Vi C . . . 5 Vn) of subspaces of ‘F: such that 
dim(Vl)=iforO<i<n.Let 

3 = {f = ( VO C Vi C . . . & Vn) 1 dim( Vi) = i}. 

There is a left action of G on 3 given by 

g(l-‘o/o ViC...C V,)=(gVo~gVIC...~gV,), forallgEG. 

Let ei, 652,. . . , e, be the standard basis of ff y”, i.e., ei is the column vector with a I 
in the ith row and all other entries 0. The Bore1 subgroup B is the stabilizer of 
the standard flag 

fi =(0,span(el),span{el,e2},...,span{el,e2,...,e,}), 

so 3 can be identified with the quotient G/B, 

G/B * 3 

gB cf gfi. 

Note that gf = ( I’0 C . . & V,) where Vi is the span of the first i columns of g. 

The Iwahori-Hecke algebra 

Iwahori [Iw] began the study of the Hecke algebra of the pair (G, B), i.e., the 
subalgebra of the group algebra C[G] given by 

H,(q) = c a,g ] an E c, and ug = ah if BgB = BhB . 
REG 

The Weyl group W = S,, is the symmetric group of permutation matrices in 
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CL, ( F4). The elements of W form a set of representatives of the B-double cosets 
in G. Thus G = U,, W BwB, and the elements 

Tn, = j&&B x, 
WE w, 

form a basis of H,(q). There is a right action of H,,(q) on 1; defined by 

(1.2) (gB)T,,b = C hB, 
hB E G/B 

hB E gBwB 

for g E G. This action commutes with the action of G since G acts on the left 
and H,(q) acts on the right. In fact, 

(1.3) The action of G generates the centralizer algebra EndHn(II,(lg), and 
H,(q) E Endo( 

Let si = (i, i + 1) be the transposition in S, which switches i and i + 1 and let 
Ti = T,,, . The elements Ti, 1 5 i < n - 1, generate H,(q) and satisfy the relations 

TiTj = 7jTi, if Ii--j1 > 1, 

TiTi+lTi = Ti+lTiT;+l, for 1 5 i 5 n - 2, 

Ti2=(q-l)Ti+q, forlli<n-1. 

For more details on the construction of the Iwahori-Hecke algebra, see [CR]. 
For each 1 5 i 5 n - 1 and each t E F,, let 

hi(t) = 
1 
t 1 

1 

be the matrix with 1s on the diagonal, t in the (i + 1, i) entry and zeros every- 
where else. The double coset BsiB is a union of the coset SiB with the cosets 
x,, (t)B, where t is in the multiplicative group F:. Using this, it follows from 
(1.2) that 

(1.4) (gB)Ti =gsiB+ C gx,,(t)B. 
I#0 

If we write this equation in terms of flags we get 

(1.5) (VOG...C Vn)Ti= C (VO C . . . C Vi-1 G WC Vi+1 c . . . c V,), 
W# K 

where the sum is over all subspaces Vi C W C Vi+ 1 such that dim( W) = i and 
W# Vi. 
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2. THE BITRACE 

Definition. Let u E G and h E H,(q). The trace of the action of uh on 1; is 

(2.1) btr(W = C uWPlgB, 
gBt G/B 

where u(gB)hlRB denotes the coefficient of gB in u(gB)h. 

Interpretations of the bitrace 

(1) By double centralizer theory, we have the following decomposition of 1; as 
a G x H,(q)-bimodule, 

where GX is an irreducible G-module and HA is an irreducible H,(q)-module. 
By taking traces on both sides of this isomorphism we get 

(2.2) btr(g4 = F x&dxk(hL 

where xi and x i denote irreducible characters of G and H,,(q), respectively. 
(2) For u E G and a basis element T, E H,(q), we use formula (1.2) to get 

btr(u, T,.) = c u(gB)T&B 
gBc G/B 

= gBg,B k’)T~~.-~,B 

= gB$B hBg,B hB’u-‘gB 
hB~gBtvB 

= Card{gB E G/B ( u-‘gB E gBwB} 

= Card{gB E G/B 1 gplu-‘g E gBwB}. 

If g E G such that g-‘uP’g E BwB, then gb satisfies (gb)-‘uP1(g6) E BwB for 
all b E B. Thus, if we let C,-, and Z,-I denote the conjugacy class and the cen- 
tralizer of u-l in G, respectively, then 

btr(u, Tw) = iCard{g E G 1 g-‘u-‘g E BwB} 
IBI 

This gives the following expression for the bitrace 

(2.3) 
IGI IcUml n BWB[ 

btr(u, T,) = - 
PI IGll ’ 

where C,-I is the conjugacy class of u-i in G. 
(3) Let w E W be a permutation. A pair of flags (f,f’) E 3 x F is said to be 
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in relative position w if there is a g E G such that (gf,gf’) = (fi, wfi), where f, 
is the standard flag. The computation in the previous paragraph included the 
equation btr(u, r,,,) = Card{gB E G/B 1 u-‘gB E gBwB} which is equivalent to 

btr(u, T,) = Card{f E F 1 (uf,f) is in relative position w}. 

Let E4 be the algebraic closure of F, and consider the variety .F of flags in the 
vector space E,“. Then 

Z&, = {f E F I (xf>f) is in relative position w} 

is an algebraic subvariety of the flag variety .F. It follows that 

(2.4) btr(u, T,,,) = number of IF,-rational points in F’,,,. 

(4) In Section 4 we shall show that the bitrace btr(u, h) can be given purely in 
terms of symmetric functions. The formula is 

(2.5) btr(u, Ty,) = 
ql4 

(q - l)‘(P) 
(@fi)(Y,,)&,> 

for unipotent elements u E GL, (lF,) in the conjugacy class labeled by V. Section 
4 gives a thorough discussion of the objects in this formula. In particular, the 
symmetric functions qp, 0; are defined in (4.10) and (4.2) respectively, the inner 
product is as defined in (4.3), and Ty,, is defined at the beginning of Section 3. 

Special cases 

(1) It follows from (2.3) that when g = 1 we have 

(2.6) where P&q) = ,Fw qecW), 

is the Poincare polynomial of W. Setting q = 1 in this formula shows that 
btr( 1, T,) is a generalization of the trace of the regular representation of W. 

(2) It follows from (2.5), [Mac] Chapter IV, 56, Example 1 and [Mac] Chap- 
ter III, $7, that when w = 1 and u E G is a unipotent element, 

(2.7) btr(u, 7’1) = QcnJ(q), 

where v is the partition determined by the sizes of the blocks in the Jordan 
normal form of U, and Q;(q) is the Green polynomial. 

(3) It follows from formula (7.1) in [Ka] that if u is a unipotent element of 
GL,(F,) which has a single Jordan block in its Jordan normal form then 

(2.8) btr(u, T,) = qe(‘+‘), 

where e(w) is the length of w E S,, (the minimum number of factors needed to 
write w as a product of the transpositions si = (i, i + l), 1 2 i I n - 1.) We shall 
not prove this formula in this paper. Although it can be derived easily from our 
general result, Kawanaka’s proof gives better insight into what actually makes 
this case work the way it does. 
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3. COMPUTATION OF THE BITRACE 

In this section we shall derive a formula for the bitrace btr(u,h) for all cases 
where u is a unipotent element in GL,(ff,). The main theorem, Theorem (3.4), is 
that this bitrace can be written as a weighted sum of column strict tableaux. 

Reduction to a function on a pair of partitions 

A matrix u E G is unipotent if u - 1 is nilpotent, where 1 is the identity matrix 
in G. Our goal is to compute the bitrace btr(u, h) where u f G is unipotent and 
h E H,(q). We have the following facts: 

(a) Each unipotent u E G is conjugate to a unipotent u,,, v = (vi, 14, . . .) t- n, 

in Jordan normal form with Jordan blocks of sizes vi (see [Mac] Chapter IV, 52, 
Example 1 and 3). 

(b) Let “ir = (1,2,. . . , Y) E S, in cycle notation and for a composition b = 
(pi,. . , pp) k n define rP = rP, x . . . x rP, E S,, x . . . x S,,. Any character of 
H,(q) is completely determined by its values on the elements T?!,, p t n (see 
[Cal] and [Ral]). 

In view of (a) and (b) it is sufficient to compute the bitrace 

btr(y, p) := btr(u,, T_,,,), forp, Y F n. 

We will obtain a combinatorial formula (Theorem 3.4) which expresses 
btr(v, p) as a weighted sum of column strict tableaux of shape v and content p. 

Computing btr(v, (n)) 

Forp=(w,p2,... , pg) t- n, define the Young subgroup S, = S,, x . . . x S,, C 
S,. Recall from Section 1 that B- = w&vo. 

Lemma 3.1. Let glB,gIB E BPwB. If (glB)Tyw(g2B # 0, then W is a minimal 
length conjugacy class representative of &/SK. 

Proof. By Bourbaki [Bou] Chapter IV, $2, #1 (3’), 

(B-WB)(BsiB) = Wo(BWoWB)(BsjB) 

={ 

WoBWoWSjB, if [(wow) < f?(WOWSj), 

W~BWOWB U WoBWoWsjB, if [(WOW) > C(WoWSj), 

= B-WsjB, 

{ 

if [(WOW) < Qwowsj), 

B-WB U B- WsjB, if C(WoW) > C(WOWSj), 

= B-WsjB, 

{ 

if j?(W) > I?(WSj), 

B-wBU B-WsjB, if f?(w) < l(wSj). 

It follows that (gB) TY,, only contains terms in B-wB if C(WSi) > t(w) for all the 
Sj such that T,, is a factor of T7,. Since the factors of Tyc are the si E S, it fol- 
lows that w must be a minimal length coset representative of S,,/SU. q 
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Proposition 3.2. Let TrC,, = T,_ 1 . . . TI E H,,(q), let u E G he unipotent, andlet v 

he the partition of n determined by the sizes of the blocks in the Jordan normal 

form of u. Then 

n-1 

btr(v, (n)) = 
:, ’ 

if v = (n), 
otherwise. 

Proof. Assume that gZ3 E B-wB and that u E B- (since u is conjugate to a 
lower triangular matrix). Then u(gB) E B-wB and, by Lemma 3.1, 

(gB)T,, lu-lgB # 0 implies w = 1, 

since 1 is the only minimal length coset representative for &I$. So 

The cosets gB in B- 1 B are the ones with coset representatives given by lower 
triangular matrices with 1s on the diagonal: 

g= 

1 

a2,1 1 

a3.1 a3.2 1 

. . . 
. . 
. * 

. . . an+2 an,n - I I 

By formula (1.4), we have (gB)T,_ 1 . . . TI lUmlgB # 0 implies that 

gx,n_,(tn-l). . .x,,(tl)B = u-‘gB, for some tl,...,tn #O. 

Sinceg,xan_,(tn-l).. . x,, (tt), and U-’ are all lower triangular matrices with 1s 
on the diagonal, and these matrices are coset representatives of the cosets in 
B- 1 B, it follows that we must have 

(*) gx,,_,(tn-l)...xa,(tl) =u-‘g. 

This implies that U-’ is conjugate to x,,_, (tn_ 1) . . . x,, (tl) and thus (by [Ca2], 
Proposition 5.1.3) that the Jordan block structure of u is given by the partition 
(n). So 

btr(v, (n)) = 0, unless v = (n). 

Now assume the Jordan normal form of u is (n). Since btr is a trace on G we 
may assume that u-t = x,,_, (1) . . . x,, (1). Then, by explicitly computing the 
matrices gx,“_ I (t, _ 1) . . . x,, (tl) and u-‘g, we easily check that equation (*) 
implies that ti = 1, for all 1 5 i 5 n - 1, and that 
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forsomebr,... , b,_ 1 E F,. Since there are q”- ’ such matrices it follows that 
btr(y, (n)) = q”-‘. 0 

The main theorem 

Fix a unipotent element u of G and let W G V be a subspace of V which is fixed 
by U. The type of W is the partition p determined by the sizes of the Jordan 
blocks of the restricted transformation uIW and the co-type is the partition K 
determined by sizes of the Jordan blocks of the unipotent transformation of 
V/W induced by the action of U. If dim(W) = n - d, then p k (n - d) and 
n k d. 

Proposition 3.3 (Macdonald, [Mac], Chapter II, (4.12) and (4.13)). Let 1 5 
d < n, v F n, p I- (n - d), and let g,“,(q) denote the number of subspaces W 2 V, 
for which the type and co-type of W (determined by uy) are p and r, respectively. 
Then 

q”(“l -n(P) 
gpV,(dj(q) = 0,_4m, wt(v, p), if V/P is a horizontal strip of length d, 

> otherwise. 

where the weight wt(u/p) is as given in (0.5). 

The following theorem is the main result of this paper. 

Theorem 3.4. Let v, p t n. Then the bitrace of TY,, E H,(q) and u, E G on 1; is 
given by 

n + n(u) 

btr(v, p) = ’ 
(q _ l)W F wt(T), 

where the sum is over all column strict tableaux Tof shape I/ and content ~1 and 
wt( T) is given by (0.5). 

Proof. The proof uses induction on n. Let e = e(p), d = ,t~, and p* = 

(Pl,P2r...,Wl). 

Suppose that f = ( VO C . . C V, _d C . . 2 Vn). Formula (1.5) shows that 
the action of Ty, leaves the vector space Vn_d fixed, and thus Vi_d = Vn_d 
for all flags f’ = (Vi C . . . C V,‘) which appear in the expansion of f T7,_ 
If uvf T7,, If # 0 then u;‘f = (Vd & . . . c V,‘) with Vd_d = I/n-d, since 

uvf Ty,, If =f Ty, Iu,lY. Thus 
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aVf7’& # 0 implies that the action of u, onf fixes l/“-d. 

Using this we get 

= WTV c c 
dim(W)=n-d 

f,=(v,~...cV”-d=W) f2=(W~Vn-d+l~.-CVn) 

We use induction to evaluate the first factor and get 

f,=(VoC...~V*_d=W) f, =(v,z...c Vn_d= w) 

4 
n~d+n(p) 

= c WV’) 
(q _ l)!(P’) T! 

where p is the type of u, on Wand the sum on the right hand side is over column 
strict tableaux T’ of shape p and content p *. 

Let U, be the transformation of Vn/ W induced by the action of u,. Then we 
use Proposition 3.3 to evaluate the second factor and get 

/2=(W/W=Vn_d/WC...CVn/W) 

= 
c %f-‘Tyd If’ 

f’=(OC v;c,,.c Vi=IF,d) 

1 

4 d-‘, if u, has cotype (d) on (0 G W 2 V,), 
= 

0, otherwise. 

Let X;(d) 
denote the set of subspaces W C V, such that u, has type p t- (n - d) 

and cotype (d). Then, using Proposition 3.2, btr(v, p) is equal to 

c c uvfi Tr,,. lfi c 
W&V f,=(v,~...~v,_,=w) ~=(w=vn-,,~...~ v”) 

dim(W)=n-d 

c g;,(d) (4) 
q-d+4d 

ptn-d 
u/pa horiz. strip 

(q _ l)e(p*) 5 wt(T’) 

= c 
ptn-d 

qln~~“~j~I (1 - q-mj(V)) 
)( 

~‘~“l;~~~lC wt(T’) 
T’ 

v/pa horiz. strip 

4 
n+n(v) 

= c NT), 
(q - l)‘(‘“) T 
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where I is the set of i such that Y/P has a box in column i and does not have a 
box in column i + 1 (see (0.4)), and the last sum over column strict tableaux Tof 
shape v and weight p. 0 

4. THE FROBENIUS FORMULA 

In this section we reinterpret the bitrace in terms of symmetric functions. There 
are two important points here: Theorem 4.11 says that the combinatorial for- 
mula for the bitrace given in Theorem 3.4 is equivalent to the ‘Frobenius for- 
mula’ for the characters of the Iwahori-Hecke algebra, and Corollary 4.12 
shows that the values of the bitrace are the values of certain inner products of 
symmetric functions. 

Characters and conjugacy classes of GL,(F,) 

We will work with the irreducible characters of GL,(ff,) using symmetric 
functions and the notations of [Mac], Chapter IV. Let us summarize briefly 
these notations. 

Let F4 denote the algebraic closure of [F,. Let M denote the multiplicative 
group of E4, and let A4, be the multiplicative group of IF4” 5 Eq so that 

A4 = U 1M, and if m divides n, then h4, C M,,. 
n>l 

Let L, be the group of complex characters of M, and let L = U, > 1 L,. We have _ 
L, C L,, if m divides n. For < E L, and x E M,,, define 

65 x)n = t(x). 

The Frobenius maps are given by 

F: M-M F: L+L 

x ++ xq and E ++ cq. 

Let @be the set of Forbits in M, 0 be the set of F-orbits in L, and P be the set of 
partitions. Iff E @ and 4 E 0 then d(f) and d(4) are the number of elements of 
fand 4 respectively. For maps fi: @ -+Pand X:Q-+Pwedefine 

llczll =fF@d(f)/fi(f)l and II ill = dI$e 449 i MI, 

respectively. With these notations 
(a) the conjugacy classes of GL,( IF,) are indexed by maps of the form 

b: @ --) P, such that 1lfill = n, 

(b) the irreducible representations of GL,([F,) are indexed by maps of the form 

x: 0 ---f ‘P, such that // x]l = n. 

For b: @ --+ P, the support of b is the set off E @ for which l?;(f) # 0. 
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Let A, be the space of complex-valued class functions on GL, (IF,). Define an 
inner product on the vector space 

A = $ A, = C-span{Xx} by (x1,x”) = S,,, 
iI>0 

where xX denotes the irreducible character of GL,(F,) corresponding to the 
map A:@+?. 

Let Vbe a GL#,)-module and let Wbe a G&(lF,)-module. Then V @ W is a 
G_&([F,) x G&(5,)-module. Inside of GLk +p(lF,), identify G&([F,) x G&(lF,) 
with the Levi subgroup 

L= 1 A E GL#,),~ E GL&) 

of the parabolic subgroup 

A * 
P= {( > o B 1 A E GL&)J E GJW,) . 

Extend V @ W to a P-module by letting the matrices in the unipotent radical 

U= {(Z I)}> 
where rj denotes the j xj identity matrix, 

act trivially on V @ W. If XV is the character of Yand xw is the character of W. 

define 

xvoxw =In$(xv~), 

where Ind~(xvo~) is the character of Y 18 W induced from P to G. The 
operation o makes A into an associative ring. 

Symmetric functions 

For each 4 E 0, let Ym be a set of variables. Define 

s,= n 
&E@ 

SX@,(Y& 

where SA( Y) denotes the Schur function in the variables in the set Y. Define an 
inner product on the ring 

I= C-span{Si} by (S,, S,$ = 6x,-. 

For each f E @, let Xf be a set of variables. We shall assume that any symmetric 
function in the variables in the sets .A’,-, f E @, can be written as a symmetric 
function in the variables in the sets Y4, 4 E 0, by using the ‘Fourier transform’ 
formula in (4.5), below. Let PA be the Hall-Littlewood symmetric functions 
defined in [Mac], Chapter III (2.1) and define 

where PA(~) = q-d(f)n(X)P~(X~; q-d(f)). 
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The following theorem connects the characters of the groups GL,(lF,) to the 
symmetric functions Si and PG. 

Theorem 4.1 (Macdonald, [Mac] Chapter IV, (4.1) and (6.8)). Let xi, be the ir- 
reducible character of GL,(F,) indexed by i and let r; be the characteristic 
function of the conjugacy class of GL,(fF,) which is indexed by 17. The character- 

istic map 

ch: A -+II” 

Xi, I----) sj, 

r, H Pi, 

is an isometric isomorphism. 

Let QA be the symmetric functions (also called Hall-Littlewood symmetric 
functions) defined in [Mac], Chapter III (2.11) and define 

(4.2) 0, =/‘m &,(f), where o,(f) = qd(f)(lX”“(x))Qx(xf;q-d(f)). 

By [Mac], Chapter IV (4.7), the r’, and the Q, are dual bases of A, 

(4.3) (P&J = &liy, and thus, from Theorem 4.1, X”(g) = (SJ,&), 

when Xx is the irreducible character of GL,(iF,) indexed by 1 and g is an ele- 
ment of the conjugacy class labeled by ti. 

Let pk(Xf) denote the kth power sum symmetric function in the variables in 
the set X, and let pk( Y,) be the kth power sum symmetric function in the vari- 
ables in the set Y+. For x E M and [ E L, define 

El(x) = 
pn,d(f)(Xf), if n is a multiple of d(f), 

(4.4) 
{ 

0 

~l,d(~)( Y$), 

otherwise, 

P,(l) = 0 
{, 

if n is a multiple of d(4), 

otherwise, 

where f E Pj and 4 E 8 are the F-orbits of x and <, respectively. Then P,(x) = 0 
if x $A4,, and pn(x) =i,,(y) f i x and y are in the same F-orbit. Similarly, 
p,(e) = 0 if t $! L, and P,(c) = fin(n) if t and 77 are in the same F-orbit. With 
these notations, the relationship between the variables in the sets XJ, f E Sp, 
and the variables in the sets Y,, 4 E 0, is determined by the formulas 

(4.5) 

I%(l) = wY~M (&4,&(4r 

P,(x) = C-l)“-‘Cq” 1 l)-‘<g K,xMAS), 
n 

for each n 2 0, each e E L,, and each x E A4,. The second equation follows 
from the first using orthogonality of characters of the group M,, (which has 
order q” - I). 
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Let u E G be unipotent and let v = (VI, ~2,. . .) 1 n be the partition de- 
termined by the sizes of the blocks in the Jordan normal form of u. Then u is in 
the conjugacy class labeled by the map 3: @ --f P given by 

(4.61 fi(f) = 
v, iff = {l}, 
0, otherwise. 

There is an involutive automorphism of the ring of symmetric functions 
wCp,) = (- l)T-‘~T, where pr is the rth power sum symmetric function. By 
[Mac], Chapter I (3.8), 

(4.7) W(Q) = SX’, 

where A’ is the partition conjugate to A. 
The following technical lemma is similar to the observation in the last line of 

[Mac], Chapter IV, 56, Example 1. 

Lemma 4.8 (Technical lemma). Let ~$1 be the F-orbit of the trivial character 
i E LI and let f~ = {I} be the F-orbit of the element I E ffqx. Let u k n and let 
fi: @ + P be the map given in (4.6). Then, for any symmetric functionA 

(f(%M& = (~(f>(+A&) 

Proof. Note that 1 E L1 for all n and d( i) = 1, since 41 = (1). Thus 

p,(b) =&(i) and p,(h) = P,(i), for a partition P = (PI, 112,. . . , pt). By (4.5) 
and (4.4) 

where fx is the F-orbit of x. Since the right hand side of the inner product only 
involves the variables in the set Xf,, it follows from (4.3) that the only term on 
the left hand side which gives a nonzero contribution is x = 1. In other words, if 
the variables are different, then fi and V have different support, so S,, = 0. 
Thus, 

The following proposition gives information about the irreducible GL,(lF,) 
characters which appear in the decomposition of lg. 

Theorem 4.9. Let C#II be the F-orbit of the trivial character i E Ll. 
(a) Let p be a partition of n and let Pcl be the parabolic subgroup of GL,(IFq) 
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consisting of block upper triangular matrices where the diagonal blocks have sizes 
pt, ~2,. . Let Igfi be the trivial representation of Pcl induced to G. The char- 
acteristic of this character is 

ch($) = e,(Y4, ), 

where e,( Y,, ) is the elementary symmetric function in the variables in the set Y,, . 

(b) Zf X t n we let XA be the irreducible character of H,(q) which, at q = 1, 
specializes to the irreducible character xi of the symmetric group S,, which is 
indexed by A. Let xi be the irreducible character of GL,([F,) such that 
ch(xi) = sx!( Yd,). Then 

Wg,h) = AFn xiVdx&L 

for allg E Gand h E H,(q). 
(c) if v I- n and u, is a unipotent of GL,, ( F4) such that Jordan normalform of uV 

has blocks of sizes Vi then 

X&V) = 4 n(y’KAV(q-l), 

where KxV(qpl) is the Kostka-Foulkes polynomial (see [Mac], Chapter III, 86) 
defined by 

qn(“)KAU(q-‘) = (sx(+, )t &, 

and V is the map defined in (4.6). 

Proof. (a) Since ch is a ring isomorphism it is sufficient to show that the char- 
acteristic of the trivial character of GLk([F,) is ek( Y,,). This will be accom- 
plished by showing that 

C ek( Y4,)tk = C tllZllP- II’ 
k>O F 

The proof of this identity is similar to the argument in [Mac], Chapter IV, $6, p. 
285 -286 except that we use the homomorphism 

in place of 6 and we invoke [Mac], Chapter III, $2 Example 1 instead of invok- 
ing Chapter I, $3, Example 2. 

In greater detail: For c E $ write c = C tp pb with cI1 E C, and define c = - 
C cfi PG. Since y sends in(<) to 0 unless < = 1, we know that y(Si) = 0 unless 
the support of x is (41). If ,u k k, then let Z~ = n,,, iMI(fi) By the or- 
thogonality of characters of the symmetric group &we have, for X k k, 

It follows that 
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C SKY = C ek(Y4,)tk. 
i, k>O 

Now, using (4.9, 

-h%(4) = (-1)“~‘w - l)-lcgL (~,-4Y@A~)) 

= (_l)“-‘(qn - I)_‘. 1 :fy_1y 
t” 

=- 
q”- 1’ 

for x E A4,. Hence, for all f E Qi, 

-&n(f)) = tdCfjn (qf _ 1)-i = c td(fJn4fm’ 
i>l 

where qf = qd(f). Sop,(f) =pn(td(f)qyl, td(f)qT2,. . .), and we get that 

r@,(f)) = Y(#+‘l%&(xf; 4/‘)) 

= ?Y+n(P) 
QP(td(/)qfi, Id(/)q/* I*.. ;4f’) 

= iiLl+n(lL)td(f)l~lqfluiq~n(~) = tW)l~l 
qf 1 

by [Mac], Chapter III, 42, Example 1. Thus, by [Mac], Chapter IV (4.7), 

as desired. 
(b) By [Mac], Chapter I, $6, 

e/P+,) = A~~KxPW(y$G): 

where KxP is the number of column strict tableaux of shape X and content p. So 
we have that 

On the other hand, the remark after (7.8) in [Mac], Chapter I, says that 

1; = C J&x;, 
Xtn 

where S, = S,, x .._ x S,,. Thus we may use [CR] 68.24 and 68.26, [Ca2] 
10.1.14, and double centralizer theory (2.2) to conclude that 

btr(g, rW) = AT xi(Tw)x&). 
n 

(c) By (4.3) and (4.6), 
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and, by the technical lemma and (4.7), (s~/(Y$,),e,) = (w(s~~)(X~,),~~) = 

(sx(xf, ), Q,,. 0 

The Frobenius formula 

If Y is a set of variables we define symmetric functions qr( Y; t) via the generat- 
ing function 

and define qp = qp, . . . qpc, for a partition p = (pi,. . . , pe). The ‘Frobenius for- 
mula’ for the characters of H,(q) is 

(4.10) 
qlPl 

(q_ l)@)%(YA-i) = c x%,)sx(Y). 
Xkn 

This formula was discovered independently by Gyoja [Gy], King-Wybourne 
[Kw, Ram [Ral], Vershik-Kerov [VK], and Ueno-Shibukawa [US]. It has 
been applied to give combinatorial formulas for the irreducible characters of 

H,(q), see [Ra21. 

Theorem 4.11. The Frobenius formula (4.10) and the bitrace formula, Theorem 
3.4, are equivalent in the sense that each can be derivedfrom the other. 

Proof. (a) Let us first show that (4.10) implies Theorem 3.4. 

btr(+ Ty,) = C x~(Ty,)x$(u,), by Theorem 4.9 (b), 
Xtn 

= AFn x~(T,,,)(~(xf,), e,), by Theorem 4.9 (CL 

q IPI 

= (q - l)@) (qD’f,;q-l),&), by (4.101, 

q 1-k + Iv1 +nc4 

(q - l)e(p) 
(q~(Xj,;q-‘),Qv(xf,;q-l)), by (4.2). 

It follows from [Mac], Chapter III (5.10) that 

k&v-I), Q&W')) = $,T wt(T), 

(In doing the conversion from [Mac], Chapter III (5.10) to the formula above it 
is important to note that the inner product which is used in Chapter III of 
[Mac] differs from the inner product used in Chapter IV by a factor of ql”1.) 
Thus 

btr(uvr Ty,) = q’P’+n(v) c wt(T) 
(q - l)+J T 
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(b) To show that Theorem 3.4 implies (4.10) we reorder 
proof of (a), 

the equalities in the 

q’“‘+n(“) c wt(T) 

= cq- 1)W T 

a IPI + I4 +n(v) 
1 

z 

(q - 1)e(@’ 
(q~(Xf,;q-'),Qv(xf,;q-')) 

ql/4 
ZZ 

(q - l)e(fi) 
Mfl??-~~~&). 

Since the 0, = q l”l+“(“)QV(X,,; q-l) form a basis of the ring of symmetric 
functions in the variables in the set Xf, we conclude that 

Corollary 4.12. Let p, u F n. Let u, be a unipotent element of GL,(F,) such that 
the sizes of the blocks in the Jordan normalform of u, are given by u and let T,* 
be the element of the Iwahori-Hecke algebra H,(q) defined at the beginning of 
Section 3. Then 

btr(u”, TY,,) = 
qlPl 

(q - l)@) 
~&,)(%)J2,L 

where qP is as defined in (4. lo), w is the involution on symmetric functions given in 
(4.7), V is as given in (4.6), and 0, is as defined in (4.2). 

Proof. By Theorem 4.9 (b) and (4.10), 
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