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Abstract. A general method for computing irreducible representations of Weyl groups and
Iwahori—-Hecke algebras was introduced by the first author in [10]. In that paper the repre-
sentations of the algebras of typ&s, B, D, andGo were computed and itis the purpose of
this paper to extend these computationg40The main goal here is to compute irreducible
representations of the Iwahori—-Hecke algebra of t§géy only using information in the
character table of the Weyl group.

1. Introduction

In his thesis [8] P. N. Hoefsmit wrote down explicit irreducible represen-
tations of the Iwahori—-Hecke algebraésA, 1, HB,, and HD,,, of types
A,_1, B,, andD,, respectively. Hoefsmit's thesis was never published and
H. Wenzl [11] independently discovered these representations in the type
A,_1 case. The irreducible representations of Hoefsmit are analogues of the
“seminormal” representations of the Weyl groups of tyges,, B, andD,,

which were written down by A. Young [12]. The lwahori-Hecke algebras
depend on parametersandg and one can recover the representations of
Young by settingp andg equal to 1 in Hoefsmit’s representations.

In this paper we shall extend Hoefsmit's result and determine explicit
realizations of all the irreducible representations of the Iwahori—-Hecke alge-
bra H F,. The matrix entries of these representations are well defined when
p = g = 1land, when one sefs= ¢ = 1, our representations specialize to
give explicit realizations of all the irreducible representations of the Weyl
group of typeF,. The final results are tabulated in the last section of this
paper. Our numbering scheme for the irreducible characteidaffollows
Geck [6].
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In analogy with Hoefsmit, our representationsit, are in “seminor-
mal” form with respect to the chain of subalgebras

HF42 HB3 2 HAz 2 HA,

which means that we choose the irreducible representatibo$ H F, so
that, for alls € H B3, the matriceg* (1) are block diagonal matrices where
the blocksep* (h) are determined by the irreducible representatiptiof
H B3. Similarly, for allh € HA,, the matricesy*(h) are block diagonal
where the blocks are determined by the irreducible representatiqhs
of HA,. In this way we construct the irreducible representation# &,
inductively, by using the branching rules for restricting representations from
H F,t0 H Bzand fromH B3 to H A,. These branching rules can be calculated
easily from the character tables of the corresponding Weyl groups.

The matrix entries of our representations are rational functions in the
variablesp andq. These rational functions are quotients of polynomials in
Zlp, q, p~1, ¢ and the denominators contain only the polynomials

21, 121y [20pgs [21p1s [21,2,, [2],241, [3,, and [3],,  (1.1)

where[2], = x + x T and[3], = x2 + 1+ x~2. This means that our
representations are well defined over any figléuch thatp, g € F and
none of the polynomials in (1.1) are equal to 0.

There are several important applications of these results.

(a) Given explicit representation matrices it is virtually trivial to compute
the irreducible characters (on any element). This obviates the need for
the induction restriction analysis used in [6]. Furthermore, any such
irreducible character can be specializedyat 1 to obtain the corre-
sponding character of the Weyl group.

(b) These representations are helpful for studying the modular represen-
tations of the lwahori—-Hecke algebra, see [7]. In fact, as pointed out
above, our representations are well defined except at square roots and
cube roots of unity and this shows that the lwahori—-Hecke algebra is
semsimple whenever our representations are well defined.

(c) We expect that these explicit representations will be helpful for un-
derstanding the Springer correspondence and the relationship of the
Springer correspondence to the representations of the affine Hecke al-
gebra of typeF,, see [1].

(d) Explicitinformation about the Iwahori—-Hecke algebra is always helpful
for studying the representations of the corresponding finite Chevalley

group.



Representations of the Iwahori—-Hecke algekrB, 15

2. Preliminaries

Let p andg be indeterminates. The Iwahori-Hecke algebf#, is the
associative algebra with 1 over the fiéldp, ¢) generated by, T, T3, T4
with relations

LT =1TN0T:
T3T4Ts = TaT3Ty
131,13 = 131,131,
TT, =TT, ifj#i+1,
TP=(p—-p HTi+1 fori=12,
T?=(q—qHT; +1, fori =34

This is the lwahori—-Hecke algebra corresponding to the Weyl gitiuf.
The Weyl groupW F, is generated by, so, s3, s4 Which satisfy the same
relations as th&; exceptwithp = ¢ = 1. LetH A1, H A,, andH B3 be the
subalgebras off F, such that

HA1 isgenerated by,
HA, is generated by} and7>», and
H B3 is generated by, o andTs.

These are the lwahori-Hecke algebras corresponding to the Weyl groups
WAL =< s1 >, WA, =< 51, 52 > andW B3 =< 51, 52, 53 >, respectively.
Our goal in this paper is to compute explicit representation&l &t
using only the information in the character tables of the Weyl grdligs,
W A,, W B3z andW F4. We shall use the following notations.

(a) d, will denote the dimension of the irreducible representation indexed
by A;

(b) x* willdenote the character of the irreducible representation of the Weyl
groupW indexed bya;

(c) Id; will denote thed; x d; identity matrix;

(d) T, w € W, will denote the usual basis of the Iwahori—-Hecke algebra
H givenbyT, =T, ---T; if w=s;, ---s;, is areduced word fow.

(e) If AandB are matrices thed & B andA ® B will denote the standard
operations of direct sum and tensor product of matrices.

We shall need the following well known facts:

Fact 1. The irreducible representations of the lwahori—-Hecke algebra are
indexed in the same way as the corresponding Weyl group. Thus,
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(&) The irreducible representations #fF, are indexed by € {1, 2,
..., 25} (in the same manner as in [6] and in the same order as in
the table on p. 412 of [3]).

(b) Theirreducible representationsiiB; are indexed by pairs of partitions
(a, B) such thaix| + |B| = 3.

(c) Theirreducible representationsi#fd, are indexed by partitionisof 3.

(d) Theirreducible representationsifA; are indexed by partitiong of 2.

Fact2[3,810.11] Thedimensionofanirreducible Iwahori-Hecke algebra
representation is the same as that of the corresponding representation of the
Weyl group and the branching rules for Iwahori-Hecke algebras are the
same as for the corresponding Weyl groups. Thus the branching rules for
the inclusionsH F, © HB3 2 H A, can be calculated directly from the
character tables of the corresponding Weyl groups. We have tabulated these
branching rules in Tables 4.2 and 4.3.

Fact 3[3, 810.9] and [5, (9.21)] Let H be an lwahori—-Hecke algebra and
let W be the corresponding Weyl group.Afis an index for an irreducible
representation of the lwahori-Hecke algeléfathen the minimal central
idempotent corresponding tocan be written in the form

a=_ T
weW
wherez? € C(p, ¢) are elements which are well defined wher- ¢ = 1.
Furthermore, ap = g = 1,
x* (D)

_ Afy—1
p=q=1 - |W| X (w )w’ (21)

weW

4

wherey” is the character of the irreducible representatioWdhdexed by
A

Fact4. LetH beanlwahori-Hecke algebra andiébe the corresponding
Weyl group. LetR be the root system correspondingitoand let
r, = a reflection in a short root,
r; = areflection in a long root,
N, = the number of positive short roots k&, and
N, = the number of positive long roots iR.
If there is only one root length then we declare all roots to be short. For each

A indexing an irreducible representationfflet x* be the character of the
corresponding irreducible representation of the Weyl group and define

c(h) = x*(wo) p*g ™Y, (2.2)
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where

Nst(rs) lek(rl)
———— and c(},l) = ——

x*(1) x*(1)
Let ¢* be a realization of the irreducible representation indexed duyd let
Id;. be thed, x d, identity matrix, whered, is the dimension o§”. Then
we have the following result [9], [6], [10]:

(@) If wois central inW theng”(T,,) = c¢(}) 1d;,
(b) If wo is not central inW theny(T2) = c()?1d;..

c(h,s) =

3. Seminormal representations

We shall compute the irreducible representationg/df, inductively: the
representations @i A; are one dimensional and one can immediately write
them down, then we compute irreducible representatiohs4f, thenH Bs,
and finallyH F,. At each step we use the information from the previous cases
since we construct the representations such that upon restriction to any of
these subalgebras they are in block diagonal form with diagonal blocks
determined by the previous calculations. The irreducible representations of
H A, are easy to derive and the irreducible representatio#s B can be
derived in a similar fashion to the way that we complete the calculations
for HF, below. Thus, in our description below we shaisume that the
irreducible representations df A,, H A,, and H Bz are already knowand
we shall describe how to obtain the irreducible representationd 6.
The irreducible “seminormal” representationsibfi, H A,, andH B; are
tabulated in Section 4 below.

Letk be anindexforanirreducible representatiodf,. The branching
rule

(pk ¢H33§ g0#<1> @ <p“(2) N (pu“)

describing the restriction of representation&faf, to H B3 can be computed
from the character table of the corresponding Weyl groups. We shall say that
the irreducible representatigrt of H F, is in seminormal fornif

Fm =" @@ @ (h), forallhe HBs (3.1)

We require the two sides of (3.1) to be equal as matrices.

We shall compute irreducible representation&ldf, which are in semi-
normal form. Assuming that the irreducible representationgi@; are
known, the seminormal condition implies that to determine the irreducible
representations af F, itis only necessary to determine the matrip&gry)
for eachk.
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Suppose thap* andy* are two solutions to this problem, i@ andy*
are both realizations of the irreducible representatioH &f, indexed byk
and we have

O (hy =y h) = " () @ " () @ -~ @ 0" (h),

for all h € HB3. Then there is a matri® € GL(dy), whered, is the
dimension ofg*, such thatPe*(h)P~t = y*(h), for all h € HF,. By
Schur’s lemma this matrix is unique up to constant multiples. On the other
hand we have

P((p“(b (h) @ (pﬂ(z) e - (p“([) (h))P_1 = P¢k(h)P_l = ‘pk(h)
=" @’y @@ ),

for all h € H Bs. By inspection of the table of branching rules frdF, to

H B3 one sees that the summam&i’é” are all distinct irreducible represen-
tations ofH B3. Hence, Schur’s lemma implies that

P =pild,0 ®p2ld,0 ®---® p,ld, 0, (3.2)

where thep; are nonzero constants. Replacihdpy pl_lP we may suppose
thatp; = 1. Conversely, any choice pf # 0, p; = 1, inthe equation (3.2)
defines a matrix? such thatP¢* P~ is a seminormal representation. Thus
we have the following result.

Proposition 3.3. If ¢* is in seminormal form then the matrip@(7;) is
determined up to the choice 6f 1 free parameters whereis the number
of irreducible summands ig* on restriction toH Bs.

Let wo 1, wo,2, wo 3, andwg 4 be the longest elements in the Weyl groups
W A1, WA,, W B3, andW Fy, respectively. Define elements

Dl = Two.l = Tla
D, =T, , = (WTxTh)?,
D3 = Ty, = (TTT1)3, (3.4)

Dy =Ty, = (T4Two,3)3Tw_o,22‘
in HF;,.

Lemma 3.5. If ¢* is in seminormal form then the matriced(D;) are
uniquely determined, forall < k < 25 1< j < 4.

Proof. This follows from Fact 4. O
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The matrices* (D,) are tabulated in 5.4.
Leto be a permutation matrix such that
ot ot =P @ - @™ (h)
& oM@ e (h)
® o e ®e®h) (3.6)

=P e

AR3

for all h € HA,. The constantz,, is the number of times the matrix: (h)
appears. Since ¢*(T4)o ~1 commutes with all of the matrices in (3.6), it
follows from Schur’s lemma that

o ¢ (To ™t = (Tl ® 1d@) @ (T ® 1d21) & (Ts) ® Id3))

:@Tf@ld,\,

AR3

where, for eachi, Tf is anm; x m; matrix and Id is thed, x d, identity
matrix. Note that

T ®1d, = 09" (3 Ta)o (3.7)

wheregz, is the minimal central idempotent | A, corresponding ta. We
can use the same method to write

o¢! (D)ot = P D} ®1d;,
AR3

whereDs; = T, ,, as given in (3.4).

To determine the matricgsg (73) itis sufficient to determine the matrices
7). The matrice®* are completely determined by Lemma 3.5 and can easily
be determined from the tables in 5.4. The relati¢figDs)® = D4D3 and
the relation7? = (g — ¢~} T4 + 1 imply that

(T¥DY® = c(k)e(v)?1d,, and (TF)2 = (g — ¢ HT  +1d,,, (3.8)

wherec(k) andc()) are the constants given in equation (2.2).

3.1. Determining the diagonal entries @f(7})

We shall determine the diagonal entries of the matrices the mafffcby
determining the traces of the matrices

THDY™2, THDYH™E, T, TFDF, and TF(DNHZ
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Proposition 3.9. Fix an indexk for an irreducible representation off F,
and let be an index for an irreducible representation/éfd,. Let 7}, D}
andz, be as above and let* and x* be the irreducible characters of the
Weyl groups F, and W A, which correspond té and A, respectively. Let
c(k) andc(1) be the constants defined in (2.2). Then

1
@ T(TH =55 D 1w ™ (@ —g™x"w) + (g +97Hx"wsa),

weWAr
‘ L}
0y Tr(rt gy = LT 5ty sawo),
weW Az
c(k)%c(k)%

(©) Tr(TD})?) = Y w ) (wlsawo ).

weW Az

6

Proof. (a) From the second equation in (3.8) we have that each eigenvalue
of T} is eitherg or —g~1 and consequently TT¥) = r1g — f2¢~* for some
positive integerg, andr,. These constants are determined as follows. Using
(3.7) we get that

1

h—t2= Tr(TXk)|p=q=1 - x (1)

(T, ®1d;)|

p:q:l

1 _
=D Tr(o¢" (2o )|

-1 Tr(p" (22 Tw)|
x*(1) A

Then we use (2.1) to obtain

1 x* () _
In—hn= Xl(l)Xk( 6 Z Xk(w 1)wS4)

weW Az

p:q:l

p:q:l'

1
=5 > X Hx (wsa).

weW Az

If Id¥ is the identity matrix of the same dimension&sthen

1
n+n=Trld)| _ _, = pevey Trddy @1dy)|,_,
1 1 B

- x*(1) Tr((pk(zk))|p:q:1 -6 Z X " (w).

weW Az

These two equations determineandzs, and thus T(Tf) is determined.
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(b) It follows from Fact 4 and the first equation in (3.8) that the eigenval-
ues ofTA"D’; are all of the forrrw"c(k)%c(k)% wherew is a primitive cube
root of unity. Hence

TH(TE DY) = ne(h)3e(k)?
for some constani € C. By settingp andq equal to 1 we have

1
nx*(woa) = Tr(TA"D’;)|p:q:1 =D TH(T{ D} ® |dk)|p:q:1
1 k
= 0 Tr(e (ZAT4Tw0,3))|qu:1

asin (3.1). Using (2.1) we get

1
nx*woa) =2 Y A" Hx" (wsawog).
weW Ao

The proof of (c) is similar to that of (b) once one notes that Fact 4 and
the first equation in (3.8) imply that the eigenvalues of the mafjxD%)?

are all of the formw? c(A)3c(k)3. O

Lemma 3.10. Given matrices” and D such thatT? = (¢ — ¢ )T + Id
and(T D)® = ¢ Id wherec is a constant, we have

(@ TTD™) =(qg—g HTr(D™Y + ¢ Tr((T D)?).
(b) TI(TD?) =cTr(D™Y — (g — ¢~ 1) Tr((T D)?).
() T(TD™?) =(q—qg HTr(D? +cg—q H)Tr(TD)+c1Tr(D).

Proof. (a) Writing the given equations in the forfh= (g —¢ 1) 1d +7 1
and(T D)~ = ¢cX(T D)?, we have

TTITDYHY=@q—-gHTr(dDH+Tr(r DY
=@q—-—g HTr(DYH + T (T DT D).
(b) Similarly, from the factthal 2 = Id —(¢ — g )T,
To(TD? =Tr(DTD) = cTr(T DT ™Y = cTr(T72D7Y)
=cTr(DYH—clg—qgHTr(T D™
=cTr(DYH — (g — ¢ HT(TDTD).

(c) T(ID %) =(q—q¢ HTr(D?+Tr(T D72
=(@—-q¢HT(D?+Tr(D 1 D™
=(@q—q¢g HTr(D? 4+ 1Tr(TDT)
=(q—qg HTr(D™® +c1Tr(T?D)
=(q—-q HTr(D?

+cYg-—gHT(TD)+c1Tr(D). O
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Assume thaf’} has dimension at most 5 and wrif = diag(ds, dz,
..., d,). The diagonal entries dp* are determined by Proposition 3.5 and
one can check directly that these diagonal entries are always all distinct. Let

S be a subset ofl, 2, ..., r}\{i} such thatS and its complement have at
most 2 elements. Then the diagonal entrieg,bfre given by
(TX);; = Tr(TE;) where, foreachki <r, (3.11)
b= (T2 ) (2=
! ; dl'—d/ 5 dt—d1 '
jes E JES l J
J# J#i

These values can be evaluated explicitly by expandihgin terms of
(D¥)/ and using Lemma 3.10 and Proposition 3.9 to evaluate the traces
Tr(T}(DX)7).

Formula (3.11) suffices for computing the diagonal entries of the matrices
T, and thus of the matrices (73), for all k exceptk = 25. The matrixr 33,
has dimension 6 and formula (3.11) is not applicable. The diagonal entries
of the matrixp?°(T,) are computed as follows. Since the matri(ﬁéé) and

Té? are each of dimension two we use formula (3.11) to determine their
diagonal entries. By Lemma 3.10 and Proposition 3.9 we can determine the
traces of the matrices

25 25 -2 25 25 \—1 25 25 25 25 25 2
Ton (D) Ton(Dgy) s Tay, TenDeay. Ten(Diay)’s

and these traces give five linear relations that the diagonal entriﬁéﬁpf
must satisfy. Finally, we use the formula

0= Tr(p*(TaTsTaT1) = Y *(Tw)ii0®*(T3)ii ™ (T2)ii”*(T1)is

1

to determine the diagonal entries@°(7;) completely. This last formula
is a consequence of the following lemma.

Lemma 3.12. (a) Tr(p?>(T4T5T»T1)) = O.
(b) The diagonal entries of the matré (T, T37>T1) satisfy

(T TTh)ii = " (Ta)ii 0" (T3)i: 0" (T2)ii 0 (T1ii.

Proof. (a) Since the Coxeter number for the Weyl grodF, is 12 (see
[2]) we have thalT4T57,T1)® = T4 Then it follows from Fact 4 that the
eigenvalues of the matrip®>(7,T57>T1) must be of the formna’ ¢(25) where
w is a primitive 6th root of unity and(25) is the constant given in (2.2). It
follows that Tp?>(TxT3T>T1)) = nc(25) for some constani. Then, from
the character table of the Weyl groWipF,, we have

n= ’7C(25)|p:q=1 = Tr(§025(T4T3T2T1))|p:q:1 = x*°(sas35251) = 0.



Representations of the Iwahori—-Hecke algekrB, 23

(b) Leth € H Bs. Letz;, A F 3, be the minimal central idempotentsiii .
Sinceg* is in seminormal form the matriceg (z,) are diagonal matrices
with 1's and 0’s on the diagonal, their sum is the identity matrix and they
are mutually orthogonal. It follows that there is a single partiticguch that

gok(T4h),‘i = (ﬂk(ZATzlh)ii = (Wk(ZkT4)(pk(Z)~h))ii

It follows from the seminormal condition and the fact that the branching
rules for restricting representations fraF, to H Bz are multiplicity free
that the matrixp*(z,4) is a diagonal matrix. Thus the diagonal entries of
the matrixe* (T4h) satisfy

" (Tah)ii = @ (Tw)ii* ()i,

forall 1 € H Bs3. Since the irreducible representationgbB; andH A, that
we are using are also chosen to be in seminormal form, their representations
also satisfy a similar identity. The result then follows by inductian.

3.2. Computing the off-diagonal entries@f(7,)

Proposition 3.13. Let T = (t;;) and D = diag(d1, do, ..., d,) ber x r
matrices such that the diagonal entriesiofare distinct, none of the entries
t;j of T are 0, and

T?2=(q —q¢ HT +1d and (TD)%=cld,

for some constant. For distinct indices, j, k definey;; = u;; = t;;t;; and
Vijk = tijtjk/tik- Then

(@) Z”ij = —f,-Z,- + (g — q_l)fii +1,
J#i
(b) > uyd; = —tid; + ctyd? — c(q — g Hd;
J#
(c) Z Vijk = —tii — e + (g — g Y, fori#k,
J#ik
(d) > viud; = —tid; — tigdy + cd; MY, fori # k.
J#ik

Proof. Equations (a) and (b) are obtained by comparing(ihg entries
on each side of the matrix equatiofi$ = (g — ¢ )T + g andT DT =
cD~1T1D~1. Equations (c) and (d) are obtained by comparing(ihg)
entries. O
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The equations

V1 U1k Viki Ujj 1115
Vijk = ————, Vi = —, lijj=——, (3.14)

b
Uik V1 11

imply that all of the values in Proposition 3.13 are determined once we know
u;j andvy;; fori < jands; forl <i <r.

In view of the relations (3.8) we may apply Proposition 3.13 to the
matricesT} and D¥. Equations (a) and (b) of Proposition 3.13 give

4 equations in the single variahig, when dim(7}) = 2,
6 equations in the 3 variables; when din’(Tf) =3,

8 equations in the 6 variables; when dim(7}") = 4,

12 equations in the 15 variableg when dirr(TAk) = 6.

These equations are sufficient to determine the produgts ¢;t;; for all
T} exceptT 33 where we have di7 33 = 6.

If dim(7F) = 2,3, or 4 we use the linear equations in (a) and (b) of
Proposition 3.13 to solve for the;. Then we use the equations in (3.14)
to write the equations in (c) and (d) of Proposition 3.13 in terms of the
variablesty;, andvy;;, i < j. After doing this we are able to use the subset
of the resulting equations which are linear in thg to uniquely determine
the values of thery;;, i < j. This determines th&F up to the choice of
thery;. Finally, the equations resulting from the conditibyY, 75 = T4T374
force certain relations between tiig for fixed k and different.. For each
fixed k we picked out a few nice equations resulting from this condition
to determine thg* completely for allx. This completely determined the
representationg* for all k exceptk = 25.

The case ofp?® is slightly more complex. We used the same methods
as above to determine the matriczﬁﬁ5 in terms of the variableg; for
eachi. except73; . In the case off33, we have din73;) = 6 and the
system of 12 equations obtained from (a) and (b) of Proposition 3.13 is
a rank 11 system in the 15 unknowns. These linear equations can be
used to write 11 of the;; variables in terms of the other 4. Next we chose
the nicest equations resulting from (c) and (d) of Proposition aridhe
conditionT,T3T, = T3T,T3 and used Maple [4] to solve these equations.
These equations are quite nontrivial and we found that we needed to choose
these equations carefully in order to stay within the bounds of the capability
of Maple. In this way we determined the matricg®, for all x, and thus
determinedy?® completely.
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4. Branching rules

4.1. The branching rules frof A, to HA;

" dim Restriction toH A,

e® 1 p®

p@b 2 0@ @ e
3 2

o™ 1 L)

4.2. The branching rules frof B3 to HA,

" dim Restriction toH A,
PEX. 1 o®
P9 1 @
@@ 1 o®

PH @ 1 @
(p(21),(/) 2 §0(21)
(p(/),(21) 2 ¢(21)
e@® 3 0® @ @
P®@ 3 0@ @ @
oD@ 3 0@ @ Y
e®-@ 3 0@ @ @

4.3. The branching rules frorl F4 to H B3

The bands inthis table separate the orbits of the group of field automorphisms
(ap, 0 ), S€€ 5.4,
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o*  dim Restriction toH B3
(pl 1 (p(a),w
3
@2 1 ™9
(,03 1 (p(b,(S)
3
o 1 ? @)
@5 2 (P(Zl)’@
(pG 2 (p@,(Zl)
907 2 (,0(3)’0) @ ¢@»(3)
3 % (13
(p8 2 §0(l 19 @ q)@,(l )
(pg 4 (p(21),@ @ (pQ),(Zl)
o0 9 @9 @ @I g ;. g .
3 2 2
ol 9 @YY g (1.0 gy (D). (1) gy (D, (1)
o2 9 9D g oD@ g I g (D
2 2 3
o 9 91D g o0.1)) g YWD g (1)
o4 6 1.0 g 0.2
o156 @D g p1.01%
2 2
o 12 e@D g 1.0 g ;0. g 1.5
o7 4 @9 g @)
o 4 o9 g (15
o 4 oD@ g I3
00 4 (1% g (1)
2
0l 8 @O0 g p@.(D) g (15, (D)
2
0?2 8 oD@ g 1,15 g WD
03 8 039 @ @D g D). g Y3
3 2 2 3
04 8 e g 1. g .17 g .15
05 16 ¢@VI g 2.0 g 1D g DR g 1.1 g YD

5. Seminormal representations forHA1, HA,, HB3,and HF,
5.1. The Iwahori—-Hecke algebid A,

The irreducible representatiops$ of H A; are indexed by the partitioris
of 2 and we have

@ (T) = (p) and ™ (Ty) = (—p™H.
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5.2. The Iwahori-Hecke algebrd A,

The irreducible representatiop$ of H A, are indexed by the partitions of
3 and can be given explicitly by

(1) = (p), (1) = (p),
@Y (Ty) = diag(p, —p ™), eV (T2) = Ma(p, ),
eP(Ty) = (—p Y, 0PN(Ty) = (=p7 Y.

where
1 p?  a(2l,-1
MZ(pv O() = T AT
2, \1q21,+1 —p?

and[2], = p + p~L. The variable is a free parameter, see Lemma 3.3.

5.3. The Iwahori-Hecke algebid B

The irreducible representatiopg = ¢*# of H B3(p?, ¢°) are indexed by
pairs of partitiongt = («, 8) suchthata|+|8| = 3.LetdiadA, B, ..., C)
denote the block diagonal matrix with the matricgésB, ... , C in order
on the diagonal. Then, using the notation

2, = x +x 1, 38, =x>+1+x2 and [0, =x —x %,

irreducible seminormal representations of the lwahori-Hecke algéBa
can be given explicitly as follows:

e®(Ty) = (p), e®(Ty) = (p), e®(T3) = (¢),
o1 = (=p™D), PN = (—p Y, P (T3) = (¢).
"3 (1) = (p), " (T = (p), " C(T3) = (=g,

3 _ 3 _ 3 —
(PM’(:L )(Tl) — (—p l)’ g0(/),(1 )(TZ) =(—p 1)’ (pﬂ,(l )(Tg) = (—q l)’

e #(Ty) = diag(p, —p7Y),
9@V (Ty) = Ma(p, D),
9@P(T3) = diag(q, 9).
¢"@(1y) = diag(p, —p 1),

¢" (1) = Ma(p, D),

" (Ty) = diag—g*, —¢ 7).
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@ V(1) = diag(p, p, —p~ ),
9@V (Ty) = diag(p, Ma(p, 1)),
oD (1y) = diagp, —p~ L, —p D),
01D (Ty) = diagMa(p, 1), —p™D),
0@ (1) = diag(p, p, —p~ D),
@ (1) = diag(p, M2(p, 1)),
oD@ (1) = diag(p, —p~L, —p ),
0Ty = diag Ma(p. 1), —p ™).

@D (T3) = diag(M ) 1), ),
o@D (1) = diaglg, Mz, 1))
oD@ (Ty) = diag M) 2, —q ),
oD ®)(T3) = diag—g L, M 12)).

where
y 1 (q+p20l, —I[21,02],/
2,) = 47 ,
Bl —121,, =g+ p210),
M l _q_l + p_z[o]q _[Z]pz/q
12, = 147 s
B\ —2,021,., g+ p20l
1 (—g7*+p7?01, [2],[2]
q p rq
My = —— ,

31, 21,2, ¢+ pl0),

M 1 q + P_Z[O]q [2]1,2q
1,12 = o7 .
Bl \ 121,121,/ —q~*+ p20],

5.4. The Iwahori-Hecke algebrd F,

Leta, be the automorphism @(p, ¢) which fixesq and sendg to —p 1.
Similarly, lete, be the automorphism which fixgsand sendg to —g 1.
These field automorphisms act on the entries of the matr¢és) and
thereby permute the representatigrts The representation resulting from
the application of a field automorphism to a representation in seminormal
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form may no longer be seminormal. In order to bring the representation
back to seminormal form it may be necessary to conjugate by a permutation
matrix 7. The orbits of the irreducible representations under the action of
o, ande, and the permutations for conjugating back to seminormal form
are given in the following table. I is a representation @i F, andr is a
permutation then we shall lato ¢ denote the representation determined by
(r 0 )(h) = w(h)x %, forallh € HF,.

o Orbit of (ap, oty )

(pl (p2 = otp<p1, (p3 = aq(pl, and (p4 = ozpozqgol
g05 (p6 — aq(ps

§07 (08 — Olp(/?7

@10 ¢ = 7110 (@p9t0), wherer1; = (1, 3)(4,6)(7,9)

912 = 1150 (4g91%), wherengp = (1,7)(2,8)(3,9)
o138 = 1130 (@pag 9%, whereniz = (1,9)(2, 8)(3, 7)(4, 6)

pt4 91 = 1150 (0pe'), wheremys = (1,3)(4, 6)

ot 918 = w150 (@pp'’), wheremig = (2,4)
o1 = 1190 (¢g917), wherenjg = (1,4,3,2)
920 = ma00 (apagel?), wheremso = (1,4)(2,3)

ot 9?2 =m0 (ag9?Y), wherengy = (1,7,5,3)(2,8,6,4)

23 9?4 =140 (app®3), wheremps = (2,4)(5,7)

Let wo 1, wo 2, wo 3 @andwg 4 be the longest elements in the Weyl groups
WA,, WA,, WBz andW Fy, respectively. Let

Dy =Ty, =T,
Dy =T2 = (TiT2T1)?,

wo,2
D3 = Ty, = (T3T2Th)3,
Dy = Ty, = (TaT )T, 2

wo,2

in H F4. The following tables give the values of (D;), for one rep-
resentative from each equivalence class of representations. The rest of the
matricesp® (D;) are easily obtained by applying the automorphismand
a, and conjugating by a permutatianas indicated in 5.4 above.
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o (T) = (p), ¢°(T1) = diag(p, —p ™),
(T2 ,) = (p°), @>(T2,,) = 1d,
0 (Tugs) = (P54, 9°(Tugs) = ¢° Id,
0 (Tuos) = (p%¢™), 9> (Tup,) = ¢ 1d,

¢ (Ty) = p Id, ¢°(Ty) = diag(p, —p~*, p. —p ™,
0 (T],,) = p°Id, QT2 = 1d,
wZETwo,S; = diggf§6q3, —p6q3),szTwo,3; = ?(;ag(qE’, 7> —q% —-q7),
% Tw0,4 =P ) % Two,4 =14,

Ty = diagp, p. —p L p. p.—p L p.p.—p7L),
(T2 )y =diag(p® 1,1, p®, 1,1, p®, 1, 1),

wo,2
9" (Tu) = diag(p®q®, 42, 4%, —p?q. —p’q.
— p?q, p%q7 Y pPq7h pPq 7Y,
¢*(T,,) = p*q* 1d,

™ (1) =diagp, —p~ L, —p~ L, p, p. —p7 ),
(T2 ) =diagL, 1, p~° p° 1, 1),

wo,2
oM (Tys) = diag—p~2q, —p~2q, —p~2q, p°q¢ %, p’q "t p?q ™),
@™ (Tyo0) = 10,

¢'%Ty) =diagp. p.—p . p.—p L. —p L p.p.—ph p,
—ph-pH,
o172 ) =diagp® 1,1,1,1,p7° p° 1,1,1,1, p®),
¢'%(T ) = diag(—p?q. —p*q. —p?q.
—p%q.—p?q.—p %q. pPq " p*a . pPq
p g p % pPg Y,
@*(Ty) =1,

¢*'(T) = diag(p, p, p, —p ™),
o(T2 ) =diag(p®, p° 1, 1),

wo,2
¢ (Tues) = diag(p®q®, —p°q, —p%q, —p?q).
§017(Tw0y4) = _p6q6 Id»
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(le(Tl) == dlaqp’ _p_lv pv pv _p_19 p» _p_la _p_l)a
¢ (T3, ) = diagl, 1, p° 1,1, 1,1, p~°),

wo,2
9™ (Tuyo) = diadq®, ¢°, —p?q, —p°q. —p°q. —p~2q. —p2q. —p %),
¢21(Tw0v4) == _q6 Ida

1

(ng(Tl) = dlaqpv P, D _p717 PP, _p7 9p)9

(T2 )y = diag(p®, p® 1,1, p° 1,1, p®),

wo,2
9*(Tyy5) = diag(p®q®, —p®q, —p*q. —pq.
pPq " p*a~t pPat —p% ),
9*(T o) = —p° Id,
¢?>(Ty) =diagp, —p ' p.p.—p L p.—p L —p",
p.p.—p p.—p L —p Tt p.—pY,
e®™(T2 y=diag1, 1, p% 1,1,1,1, p % p51,1,1,1, p75 1,1,

wo,2
9*°(Tuy,) = diagq®, ¢°, —p®q. —p°q. —pq.
—p%q.—p%q.—p " %q. p’q7. pPq . pPq ",
p g% p P g% g7,
@*(Typ,) = —1d.

Using the methods described in the previous sections we have produced
matricesgpX(T;) giving the 25 irreducible representatiop’ of H F4. The
following tables give the values gf (T;), for one representative from each
equivalence class of representations. The rest of the matiu@s) are
obtained by applying the automorphisims and«, and conjugating by a
permutationt as indicated in 5.4 above.

We shall use the notations

2], = x +x7 1, 3, = x>+ 1+ x72 and [0], = x — x 1,
and the notation
(pk(Ti)[al,az,‘.. Jar ]

will denote the: x r submatrix ofp* (7;) which is formed by the intersection
oftheay, ... , a,throws and columns. The notation digg B, ... , C) will
denote the block diagonal matrix with the matricgésB, ... , C in order
along the diagonal. The matri, (x, y) will be as givenin 5.2, the matrices
M, g areasgivenin 5.3 andthe variableg, £, 6, andy are free parameters,
see Lemma 3.3Any entries of the matriceg*(7;) which are not given
explicitly below are taken to b@
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The representationg! and¢®

oN(T) = (p),  ¢°(Ty) =diaglp, —p ™),
o' () =(p), ¢°(Tr) = Ma(p, 1),

o' (Ts) = (q),  ¢°(Ty) = diagq, q).

o' (T = (q).  ¢°(Ty) = diagq, 9).

The representations’ and¢®

¢'(Ty) = diag(p, p), ¢%(Ty) = diag(p, —p~*, p. —p ™),
¢'(T») = diag(p, p), ¢°(T») = diagMa(p, 1), Ma(p, 1)),
¢’ (T3) = diaglg, —¢ ™), ¢°(T3) = diaglq, ¢, —¢ . ¢,
¢"(Ty) = Ma(q, @), (T = *(T)*Y = My(q, o).

The representatiop'©

¢'%Ty) =diag(p, p.—p~" p.p.—p N p.p.—p 7Y,
¢'%Ty) = diag(p. Ma(p., 1), p. Ma(p. 1), p, Ma(p, 1)),
¢™(T3) = diaglq. ¢, 9, M1y, . M1.2), ),

@' UATHM* = My,

! UT2 % = TP = Ny,

where
P2 7H214[00,  —[214[21 20260t —[2]412] 2,28
— 1 -1 2
M]_()— [z]q[z]pzq _[2]1;2(1—177";: [2]1)2(1 + p Q[Z]q[o]q _[Z]pzq_ln
_[2]p2qs_1 _[2]1)2[177_1 qz[z]qu
and

pg 21,00, —[2,02,, 260" —[2],[2],, 26

1
Nlozm _[2]1711779_1 [2]pq’1+1’_1‘1[2]q[0]q —[2]pqn

—[2] 167" —[2] 167" q%[2] py1

The representatiop'4
(p14(Tl) = dlaqp’ _p_17 _p_l7 p7 p7 _p_l)9
¢™(Ty) = diagM2(p, 1), —p 1, p, Ma(p, 1)),
@'(T3) = diag(g, M 12 1y, M(1,2), —q7h,
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P (T = —¢71,

(T = ¢,
P (T = My,
P (Ty)?0 = My,

The representatiop®
1607y — di -1 o1 1
(p ( l)_ Iaqp’p’ P ’p’ p £ p ’
DD, _p_l’ D —P_l» —P_l),
¢™(Ty) = diag(p, Ma(p, 1), Ma(p, 1),
—p 7Y p. Ma(p, 1), Ma(p, 1), —p 7Y,
¢*(T3) = diagM@2.1), 4, ¢, Maz.1), M1.2), —q 4, —q 7, M1.12)),

where

1+ p%q~10], —[3],

(1 —[2],2,-2)a~t =1+ p~2q[0],

1
[2] 241

My =

) |

P (T = Mye(%),
e (1)1 = My(n),

¢16(T4)[2,4,8,10] — §016(T4)[3’5’9’12] — NlG,

where
1 [ 1+4¢710], —3u
Mip(a) = o ,
[21g \ —[3],2/a[3], —1 + ¢I0],
Nig = ! X
7 21,021,
3[2] 456 3[2] 4% 3[2] 466
J16lp- ) (212,41 (2,2, [2],2,
[3]p2[2]p/q77 _ ] [3]p2[2]p/q77 3[2]p/q77
(21,20 fe(=p4) 21,2/, 21,2,
[3]q2[2]p/q [3]q2[2]p/q9 _ ] 3[2]p/q9
B2t Bl2en 07T TR,
[3]p2[3]q2[2]pq [3]q2[2]pq _[3]p2[2]pq P |
3[31,[21,2,60  [31,12],2/7 2l,.,0 P4
and
—2x/y +xy +1/xy — 1/xy* — y/x — 1/x3y3 4+ y/x3
fie(x,y) = 2] .
x2y
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The representatiop!’
o(Ty) = diag(p, p. p. —p ).
¢'(T) = diag(p, p. M2(p. 1)),
¢''(T3) = diagq, Moy, q),
o'(Ty) = diag(Ma7. q. q),

where

M7 =

1 1+ p_zq_l[o]q _[3][70[
[2],2, \ (1 —[2] 2,2)a™t =1+ p?q[0], ]

The representatiop?!
¢*X(Ty) =diagp, —p~*. p.p.—p . p.—p . —p 7.
9?!(T) = diagMa(p, 1), p, Ma(p, 1), Ma(p, 1), —p™H),
9?!(Ts) = diag(q. q. M21). 4. 4. M1z 1)),
¢ T = ¢ (T = q.
¢ (TN = P T2 = Mo,

where
(ql21,2 + ¢~?[01)[2],
1
Myy= —----- —[3],[2 -1
21 [2]p[2]Pq[2]p/q [ ]p[ ]pqn‘i:
—[31,[2],/,& 71
—[2],3[2],€n~" —[2],2[2],&
(p_lCI[Z]p[O]q + 1)[2]17(1 _[3][)[2]17(177

_[3]p[2]p/q77_1 (pQ[Z]p[O]q + 1)[2]p/q

The representatiop??

¢*%(T) = diag(p, p. p.—p ™. p. p.—p . P).
¢*(T,) = diag(p, p, M2(p, 1), p, M2(p, 1), p),
0?(T3) = diaglq, M1y, ¢, Mi1.2), —q %, —q ™),
?3(T5)38 = (T = Ma(q, n/([2], — D),
@Z(Ty) 1228 = My,

where
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Myz= —
23 2, X
o) (21,2 [21p/g[20,g28 (2,28
3P 21,2020pqn  [20,00[28,0  [2],24[2p
(31,2121 (1212 = DI2lpn  —[3],2021p1
P 823(P, q) . . rer
(21,2, 121p/q%

1pg[21,2,0  [21p/412) 2,
(3141312216 (12],2 — DI3]412],0

1) (3] 21210
2p/gl2208  Rpg2lzn 2P 7Y 21,020,
3]4/[2 —[3],12 2
2[ 14121,/ (3141212 (21,2 o)
[ ]p/q[z]pZ/qS [Z]p/q[z]pZ/qu [Z]pq[z]pZ/q9
where
4 4.2 2.,2
yr=xtyt —xy -1
Sfa3(x,y) =
x3y4 2]y [2],2y
and

23\A = .
xy4[2]x/y[2]x2y

The representatiop?®

¢*(Ty) =diagp, —p Y, p.p.—p *.p.—p L —p L,
p.p.—p Lp.—p L=ptp —ph,
@?>(T2) = diagM2(p, 1), p, Ma(p, 1), Ma(p, 1), —p~ ",
p. Ma(p, 1), Ma(p. 1), —p~, Ma(p, 1)),
¢*>(T3) = diagq. q. M1, 4. q. M 12,1,
Maz, —q 5 —q  Maz, —q 5 —q D),
(TP = Ma(q, a/ (2], — D),
?>(T))"* = My(q, B/ (2], — 1O),
¢25(T4)[1’4’6’10’12’15] — (p25(T4)[2,5,7,11,13,16] — M25»

where




36

A. Ram, D. E. Taylor

—121p2/45
f25(p, @) W
—2[31,[2],2, 20
] 825(p. q)
[21p[2]p/4 [2]p2q [2]p2/q€
—2(3]p[2] 2,28 (31pl2] 2428

[21p[21pgl2 24121 12,6 [21p[21pq[2] 2,
—231p[21 2/42[8lgn  —([3], — [3lg + 2)[3lyn
[21p[21pg121 24121 2/, & [21p[2]pql2] 24

—2[3][2] ,2,2[3]40 [31p121 2,213146
21p121,/q121,24(21 2 /g6 [21p[21,/4[2] 2,
21242121 y2/42 (21242
[21pg121p/q120 2421 2/,E  [21pgl2],/q12] 20

1212, 12,2,
(21pqgl21p/q P (21 pq[2]p/qn

[31p[2] 2,20 —([31p — [3ly + 2«
[21,[215/121 2/, [21p120p/g[21 21
(31,121 2,28
—1/p, ey i A
s (21512154121 21
(311212 ,,2[3171
iy v — =1
21, 20pgl2 2/, B g25(p, —1/q)
—([31p — [3lg + 2[3]40 —[31p[2] 2420
[21p[21,/4121 2,8 (21,121,421 2,1
[212/42 —[2242

[21pg121p/q120,2,0B  121pg121p/g121 2/, (3141

—121,2/48 (8412124121 2/4§
[21pql21p/q8 [21pql21p/q
[31pl2] 2,42t 23] (34

[21p[2]p/412] 2,0 [21p[2]p/q
—(3lp = [3lg + 28 2[3]p314 B
[Z]p[z]pq [z]que [Z]p[z]pq
—[31p[2 2/42n —=2[3],[3l47
[2]p[2]pq [Z]qug [z]p[z]pq
—825(—1/p, —-1/q) %’;][j]/qf
L2y — fo5(p. ~1/)

[21pg121,/412] 2,131
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and where
x4y? 4 x2 — x%yt 4 y?
y) = — , and
fas(x, y) X2y4[21 (2L
(x,y) s
X, = — :
825 Y x4y4[2]x [2]x/y [2]):2)7
with

N = xSy% — x40 — xAy2 Lot xhy A p x2y2 4 x? — x2)8 4 2 6
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