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Abstract. A general method for computing irreducible representations of Weyl groups and
Iwahori–Hecke algebras was introduced by the first author in [10]. In that paper the repre-
sentations of the algebras of typesAn,Bn,Dn andG2 were computed and it is the purpose of
this paper to extend these computations toF4. The main goal here is to compute irreducible
representations of the Iwahori–Hecke algebra of typeF4 by only using information in the
character table of the Weyl group.

1. Introduction

In his thesis [8] P. N. Hoefsmit wrote down explicit irreducible represen-
tations of the Iwahori–Hecke algebrasHAn−1, HBn, andHDn, of types
An−1, Bn, andDn, respectively. Hoefsmit’s thesis was never published and
H. Wenzl [11] independently discovered these representations in the type
An−1 case. The irreducible representations of Hoefsmit are analogues of the
“seminormal” representations of the Weyl groups of typesAn−1,Bn andDn

which were written down by A. Young [12]. The Iwahori–Hecke algebras
depend on parametersp andq and one can recover the representations of
Young by settingp andq equal to 1 in Hoefsmit’s representations.

In this paper we shall extend Hoefsmit’s result and determine explicit
realizations of all the irreducible representations of the Iwahori–Hecke alge-
braHF4. The matrix entries of these representations are well defined when
p = q = 1 and, when one setsp = q = 1, our representations specialize to
give explicit realizations of all the irreducible representations of the Weyl
group of typeF4. The final results are tabulated in the last section of this
paper. Our numbering scheme for the irreducible characters ofHF4 follows
Geck [6].
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In analogy with Hoefsmit, our representations ofHF4 are in “seminor-
mal” form with respect to the chain of subalgebras

HF4 ⊇ HB3 ⊇ HA2 ⊇ HA1,

which means that we choose the irreducible representationsϕk of HF4 so
that, for allh ∈ HB3, the matricesϕk(h) are block diagonal matrices where
the blocksϕµ(h) are determined by the irreducible representationsϕµ of
HB3. Similarly, for all h ∈ HA2, the matricesϕk(h) are block diagonal
where the blocks are determined by the irreducible representationsϕλ(h)

of HA2. In this way we construct the irreducible representations ofHF4

inductively, by using the branching rules for restricting representations from
HF4 toHB3 and fromHB3 toHA2. These branching rules can be calculated
easily from the character tables of the corresponding Weyl groups.

The matrix entries of our representations are rational functions in the
variablesp andq. These rational functions are quotients of polynomials in
Z[p, q, p−1, q−1] and the denominators contain only the polynomials

[2]p, [2]q, [2]pq, [2]pq−1, [2]p2q, [2]p2q−1, [3]p, and [3]q, (1.1)

where[2]x = x + x−1 and [3]x = x2 + 1 + x−2. This means that our
representations are well defined over any fieldF such thatp, q ∈ F and
none of the polynomials in (1.1) are equal to 0.

There are several important applications of these results.

(a) Given explicit representation matrices it is virtually trivial to compute
the irreducible characters (on any element). This obviates the need for
the induction restriction analysis used in [6]. Furthermore, any such
irreducible character can be specialized atq = 1 to obtain the corre-
sponding character of the Weyl group.

(b) These representations are helpful for studying the modular represen-
tations of the Iwahori–Hecke algebra, see [7]. In fact, as pointed out
above, our representations are well defined except at square roots and
cube roots of unity and this shows that the Iwahori–Hecke algebra is
semsimple whenever our representations are well defined.

(c) We expect that these explicit representations will be helpful for un-
derstanding the Springer correspondence and the relationship of the
Springer correspondence to the representations of the affine Hecke al-
gebra of typeF4, see [1].

(d) Explicit information about the Iwahori–Hecke algebra is always helpful
for studying the representations of the corresponding finite Chevalley
group.
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2. Preliminaries

Let p and q be indeterminates. The Iwahori–Hecke algebraHF4 is the
associative algebra with 1 over the fieldC(p, q) generated byT1, T2, T3, T4

with relations

T1T2T1 = T2T1T2

T3T4T3 = T4T3T4

T2T3T2T3 = T3T2T3T2

TiTj = TjTi, if j 6= i ± 1,

T 2
i = (p − p−1)Ti + 1, for i = 1,2,

T 2
i = (q − q−1)Ti + 1, for i = 3,4.

This is the Iwahori–Hecke algebra corresponding to the Weyl groupWF4.
The Weyl groupWF4 is generated bys1, s2, s3, s4 which satisfy the same
relations as theTi except withp = q = 1. LetHA1,HA2, andHB3 be the
subalgebras ofHF4 such that

HA1 is generated byT1,

HA2 is generated byT1 andT2, and

HB3 is generated byT1, T2 andT3.

These are the Iwahori–Hecke algebras corresponding to the Weyl groups
WA1 =< s1 >,WA2 =< s1, s2 > andWB3 =< s1, s2, s3 >, respectively.

Our goal in this paper is to compute explicit representations ofHF4

using only the information in the character tables of the Weyl groupsWA1,
WA2,WB3 andWF4. We shall use the following notations.

(a) dλ will denote the dimension of the irreducible representation indexed
by λ;

(b) χλ will denote the character of the irreducible representation of theWeyl
groupW indexed byλ;

(c) Idλ will denote thedλ × dλ identity matrix;
(d) Tw, w ∈ W , will denote the usual basis of the Iwahori–Hecke algebra

H given byTw = Ti1 · · · Tik if w = si1 · · · sik is a reduced word forw.
(e) IfA andB are matrices thenA⊕B andA⊗B will denote the standard

operations of direct sum and tensor product of matrices.

We shall need the following well known facts:

Fact 1. The irreducible representations of the Iwahori–Hecke algebra are
indexed in the same way as the corresponding Weyl group. Thus,
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(a) The irreducible representations ofHF4 are indexed byk ∈ {1,2,
. . . ,25} (in the same manner as in [6] and in the same order as in
the table on p. 412 of [3]).

(b) The irreducible representations ofHB3 are indexed by pairs of partitions
(α, β) such that|α| + |β| = 3.

(c) The irreducible representations ofHA2 are indexed by partitionsλ of 3.
(d) The irreducible representations ofHA1 are indexed by partitionsγ of 2.

Fact 2[3, §10.11]. The dimension of an irreducible Iwahori–Hecke algebra
representation is the same as that of the corresponding representation of the
Weyl group and the branching rules for Iwahori–Hecke algebras are the
same as for the corresponding Weyl groups. Thus the branching rules for
the inclusionsHF4 ⊇ HB3 ⊇ HA2 can be calculated directly from the
character tables of the corresponding Weyl groups. We have tabulated these
branching rules in Tables 4.2 and 4.3.

Fact 3[3, §10.9] and [5, (9.21)]. LetH be an Iwahori–Hecke algebra and
letW be the corresponding Weyl group. Ifλ is an index for an irreducible
representation of the Iwahori–Hecke algebraH then the minimal central
idempotent corresponding toλ can be written in the form

zλ =
∑
w∈W

zλwTw,

wherezλw ∈ C(p, q) are elements which are well defined whenp = q = 1.
Furthermore, atp = q = 1,

zλ
∣∣
p=q=1 = χλ(1)

|W |
∑
w∈W

χλ(w−1)w, (2.1)

whereχλ is the character of the irreducible representation ofW indexed by
λ.

Fact 4. LetH be an Iwahori–Hecke algebra and letW be the corresponding
Weyl group. LetR be the root system corresponding toW and let

rs = a reflection in a short root,

rl = a reflection in a long root,

Ns = the number of positive short roots inR, and

Nl = the number of positive long roots inR.

If there is only one root length then we declare all roots to be short. For each
λ indexing an irreducible representation ofH let χλ be the character of the
corresponding irreducible representation of the Weyl group and define

c(λ) = χλ(w0)p
c(λ,s)qc(λ,`), (2.2)
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where

c(λ, s) = Nsχ
λ(rs)

χλ(1)
and c(λ, l) = Nlχ

λ(rl)

χλ(1)
.

Letϕλ be a realization of the irreducible representation indexed byλ and let
Idλ be thedλ × dλ identity matrix, wheredλ is the dimension ofϕλ. Then
we have the following result [9], [6], [10]:

(a) If w0 is central inW thenϕλ(Tw0) = c(λ) Idλ,
(b) If w0 is not central inW thenϕλ(T 2

w0
) = c(λ)2 Idλ .

3. Seminormal representations

We shall compute the irreducible representations ofHF4 inductively: the
representations ofHA1 are one dimensional and one can immediately write
them down, then we compute irreducible representations ofHA2, thenHB3,
and finallyHF4.At each step we use the information from the previous cases
since we construct the representations such that upon restriction to any of
these subalgebras they are in block diagonal form with diagonal blocks
determined by the previous calculations. The irreducible representations of
HA2 are easy to derive and the irreducible representations ofHB3 can be
derived in a similar fashion to the way that we complete the calculations
for HF4 below. Thus, in our description below we shallassume that the
irreducible representations ofHA1,HA2, andHB3 are already knownand
we shall describe how to obtain the irreducible representations ofHF4.
The irreducible “seminormal” representations ofHA1,HA2, andHB3 are
tabulated in Section 4 below.

Letk be an index for an irreducible representation ofHF4. The branching
rule

ϕk ↓HB3
∼= ϕµ

(1) ⊕ ϕµ
(2) ⊕ · · · ⊕ ϕµ

(`)

describing the restriction of representations ofHF4 toHB3 can be computed
from the character table of the corresponding Weyl groups. We shall say that
the irreducible representationϕk of HF4 is in seminormal formif

ϕk(h) = ϕµ
(1)
(h)⊕ ϕµ

(2)
(h)⊕ · · · ⊕ ϕµ

(`)

(h), for all h ∈ HB3. (3.1)

We require the two sides of (3.1) to be equal as matrices.
We shall compute irreducible representations ofHF4 which are in semi-

normal form. Assuming that the irreducible representations ofHB3 are
known, the seminormal condition implies that to determine the irreducible
representations ofHF4 it is only necessary to determine the matricesϕk(T4)

for eachk.
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Suppose thatϕk andψk are two solutions to this problem, i.e.ϕk andψk

are both realizations of the irreducible representation ofHF4 indexed byk
and we have

ϕk(h) = ψk(h) = ϕµ
(1)
(h)⊕ ϕµ

(2)
(h)⊕ · · · ⊕ ϕµ

(`)

(h),

for all h ∈ HB3. Then there is a matrixP ∈ GL(dk), wheredk is the
dimension ofϕk, such thatPϕk(h)P−1 = ψk(h), for all h ∈ HF4. By
Schur’s lemma this matrix is unique up to constant multiples. On the other
hand we have

P(ϕµ
(1)
(h)⊕ ϕµ

(2)
(h)⊕ · · · ⊕ ϕµ

(`)

(h))P−1 = Pϕk(h)P−1 = ψk(h)

= ϕµ
(1)
(h)⊕ ϕµ

(2)
(h)⊕ · · · ⊕ ϕµ

(`)

(h),

for all h ∈ HB3. By inspection of the table of branching rules fromHF4 to
HB3 one sees that the summandsϕµ

(i)

are all distinct irreducible represen-
tations ofHB3. Hence, Schur’s lemma implies that

P = p1 Idµ(1) ⊕p2 Idµ(2) ⊕ · · · ⊕ p` Idµ(`) , (3.2)

where thepi are nonzero constants. ReplacingP byp−1
1 P we may suppose

thatp1 = 1. Conversely, any choice ofpi 6= 0,p1 = 1, in the equation (3.2)
defines a matrixP such thatPϕkP−1 is a seminormal representation. Thus
we have the following result.

Proposition 3.3. If ϕk is in seminormal form then the matrixϕk(T4) is
determined up to the choice of`− 1 free parameters wherèis the number
of irreducible summands inϕk on restriction toHB3.

Letw0,1,w0,2,w0,3, andw0,4 be the longest elements in the Weyl groups
WA1,WA2,WB3, andWF4, respectively. Define elements

D1 = Tw0,1 = T1,

D2 = T 2
w0,2

= (T1T2T1)
2,

D3 = Tw0,3 = (T3T2T1)
3, (3.4)

D4 = Tw0,4 = (T4Tw0,3)
3T −2
w0,2
.

in HF4.

Lemma 3.5. If ϕk is in seminormal form then the matricesϕk(Dj) are
uniquely determined, for all1 ≤ k ≤ 25, 1 ≤ j ≤ 4.

Proof. This follows from Fact 4. ut
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The matricesϕk(Dj) are tabulated in 5.4.
Let σ be a permutation matrix such that

σϕk(h)σ−1 = ϕ(1
3)(h)⊕ · · · ⊕ ϕ(1

3)(h)

⊕ ϕ(21)(h)⊕ · · · ⊕ ϕ(21)(h)

⊕ ϕ(3)(h)⊕ · · · ⊕ ϕ(3)(h) (3.6)

=
⊕
λ`3

ϕλ(h)⊕mλ

for all h ∈ HA2. The constantmλ is the number of times the matrixϕλ(h)
appears. Sinceσϕk(T4)σ

−1 commutes with all of the matrices in (3.6), it
follows from Schur’s lemma that

σϕk(T4)σ
−1 = (T k(3) ⊗ Id(3))⊕ (T k(21) ⊗ Id(21))⊕ (T k

(13)
⊗ Id(13))

=
⊕
λ`3

T kλ ⊗ Idλ,

where, for eachλ, T kλ is anmλ ×mλ matrix and Idλ is thedλ × dλ identity
matrix. Note that

T kλ ⊗ Idλ = σϕk(zλT4)σ
−1, (3.7)

wherezλ is the minimal central idempotent inHA2 corresponding toλ. We
can use the same method to write

σϕk(D3)σ
−1 =

⊕
λ`3

Dk
λ ⊗ Idλ,

whereD3 = Tw0,3, as given in (3.4).
To determine the matricesϕk(T4) it is sufficient to determine the matrices

T kλ .The matricesDk
λ are completely determined by Lemma 3.5 and can easily

be determined from the tables in 5.4. The relations(T4D3)
3 = D4D

2
2 and

the relationT 2
4 = (q − q−1)T4 + 1 imply that

(T kλ D
k
λ)

3 = c(k)c(λ)2 Idmλ and (T kλ )
2 = (q − q−1)T kλ + Idmλ, (3.8)

wherec(k) andc(λ) are the constants given in equation (2.2).

3.1. Determining the diagonal entries ofϕk(T4)

We shall determine the diagonal entries of the matrices the matricesT kλ by
determining the traces of the matrices

T kλ (D
k
λ)

−2, T kλ (D
k
λ)

−1, T kλ , T kλ D
k
λ, and T kλ (D

k
λ)

2.
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Proposition 3.9. Fix an indexk for an irreducible representation ofHF4

and letλ be an index for an irreducible representation ofHA2. LetT kλ ,Dk
λ

andzλ be as above and letχk andχλ be the irreducible characters of the
Weyl groupsWF4 andWA2 which correspond tok andλ, respectively. Let
c(k) andc(λ) be the constants defined in (2.2). Then

(a) Tr(T kλ ) = 1

12

∑
w∈WA2

χλ(w−1)
(
(q − q−1)χk(w)+ (q + q−1)χk(ws4)

)
,

(b) Tr(T kλ D
k
λ) = χk(w0,4)c(k)

1
3c(λ)

2
3

6

∑
w∈WA2

χλ(w−1)χk(ws4w0,3),

(c) Tr((T kλ D
k
λ)

2) = c(k)
2
3c(λ)

4
3

6

∑
w∈WA2

χλ(w−1)χk(w(s4w0,3)
2).

Proof. (a) From the second equation in (3.8) we have that each eigenvalue
of T kλ is eitherq or −q−1 and consequently Tr(T kλ ) = t1q − t2q

−1 for some
positive integerst1 andt2. These constants are determined as follows. Using
(3.7) we get that

t1 − t2 = Tr(T kλ )
∣∣
p=q=1 = 1

χλ(1)
Tr(T kλ ⊗ Idλ)

∣∣
p=q=1

= 1

χλ(1)
Tr(σϕk(zλT4)σ

−1)
∣∣
p=q=1

= 1

χλ(1)
Tr(ϕk(zλT4))

∣∣
p=q=1.

Then we use (2.1) to obtain

t1 − t2 = 1

χλ(1)
χk

(
χλ(1)

6

∑
w∈WA2

χλ(w−1)ws4

)

= 1

6

∑
w∈WA2

χλ(w−1)χk(ws4).

If Id k
λ is the identity matrix of the same dimension asT kλ then

t1 + t2 = Tr(Idkλ)
∣∣
p=q=1 = 1

χλ(1)
Tr(Idkλ ⊗ Idλ)

∣∣
p=q=1

= 1

χλ(1)
Tr(ϕk(zλ))

∣∣
p=q=1 = 1

6

∑
w∈WA2

χλ(w−1)χk(w).

These two equations determinet1 andt2 and thus Tr(T kλ ) is determined.
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(b) It follows from Fact 4 and the first equation in (3.8) that the eigenval-
ues ofT kλ D

k
λ are all of the formωic(λ)

2
3c(k)

1
3 whereω is a primitive cube

root of unity. Hence

Tr(T kλ D
k
λ) = ηc(λ)

2
3c(k)

1
3

for some constantη ∈ C. By settingp andq equal to 1 we have

ηχk(w0,4) = Tr(T kλ D
k
λ)
∣∣
p=q=1 = 1

χλ(1)
Tr(T kλ D

k
λ ⊗ Idλ)

∣∣
p=q=1

= 1

χλ(1)
Tr(ϕk(zλT4Tw0,3))

∣∣
p=q=1

as in (3.1). Using (2.1) we get

ηχk(w0,4) = 1

6

∑
w∈WA2

χλ(w−1)χk(ws4w0,3).

The proof of (c) is similar to that of (b) once one notes that Fact 4 and
the first equation in (3.8) imply that the eigenvalues of the matrix(T kλ D

k
λ)

2

are all of the formω2ic(λ)
4
3c(k)

2
3 . ut

Lemma 3.10. Given matricesT andD such thatT 2 = (q − q−1)T + Id
and(T D)3 = c Id wherec is a constant, we have

(a) Tr(T D−1) = (q − q−1)Tr(D−1)+ c−1 Tr((T D)2).
(b) Tr(T D2) = c Tr(D−1)− (q − q−1)Tr((T D)2).
(c) Tr(T D−2) = (q−q−1)Tr(D−2)+ c−1(q−q−1)Tr(T D)+ c−1 Tr(D).

Proof. (a) Writing the given equations in the formT = (q− q−1) Id +T −1

and(T D)−1 = c−1(T D)2, we have

Tr(T D−1) = (q − q−1)Tr(D−1)+ Tr(T −1D−1)

= (q − q−1)Tr(D−1)+ c−1 Tr(T DTD).

(b) Similarly, from the fact thatT −2 = Id −(q − q−1)T −1,

Tr(T D2) = Tr(DTD) = c Tr(T −1D−1T −1) = c Tr(T −2D−1)

= c Tr(D−1)− c(q − q−1)Tr(T −1D−1)

= c Tr(D−1)− (q − q−1)Tr(T DTD).

(c) Tr(T D−2) = (q − q−1)Tr(D−2)+ Tr(T −1D−2)

= (q − q−1)Tr(D−2)+ Tr(D−1T −1D−1)

= (q − q−1)Tr(D−2)+ c−1 Tr(T DT )

= (q − q−1)Tr(D−2)+ c−1 Tr(T 2D)

= (q − q−1)Tr(D−2)

+ c−1(q − q−1)Tr(T D)+ c−1 Tr(D). ut
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Assume thatT kλ has dimension at most 5 and writeDk
λ = diag(d1, d2,

. . . , dr). The diagonal entries ofDk
λ are determined by Proposition 3.5 and

one can check directly that these diagonal entries are always all distinct. Let
S be a subset of{1,2, . . . , r}\{i} such thatS and its complement have at
most 2 elements. Then the diagonal entries ofT kλ are given by

(T kλ )ii = Tr(T Eii) where, for each 1≤ i ≤ r, (3.11)

Eii =
(∏
j∈S
j 6=i

Dk
λ − dj

di − dj

)(∏
j 6∈S
j 6=i

(Dk
λ)

−1 − d−1
j

d−1
i − d−1

j

)
.

These values can be evaluated explicitly by expandingEii in terms of
(Dk

λ)
j and using Lemma 3.10 and Proposition 3.9 to evaluate the traces

Tr(T kλ (D
k
λ)
j ).

Formula (3.11) suffices for computing the diagonal entries of the matrices
T kλ , and thus of the matricesϕk(T4), for all k exceptk = 25. The matrixT 25

(21)
has dimension 6 and formula (3.11) is not applicable. The diagonal entries
of the matrixϕ25(T4) are computed as follows. Since the matricesT 25

(13)
and

T 25
(3) are each of dimension two we use formula (3.11) to determine their

diagonal entries. By Lemma 3.10 and Proposition 3.9 we can determine the
traces of the matrices

T 25
(21)(D

25
(21))

−2, T 25
(21)(D

25
(21))

−1, T 25
(21), T 25

(21)D
25
(21), T 25

(21)(D
25
(21))

2,

and these traces give five linear relations that the diagonal entries ofT 25
(21)

must satisfy. Finally, we use the formula

0 = Tr(ϕ25(T4T3T2T1)) =
∑
i

ϕ25(T4)iiϕ
25(T3)iiϕ

25(T2)iiϕ
25(T1)ii

to determine the diagonal entries ofϕ25(T4) completely. This last formula
is a consequence of the following lemma.

Lemma 3.12. (a) Tr(ϕ25(T4T3T2T1)) = 0.
(b) The diagonal entries of the matrixϕk(T4T3T2T1) satisfy

ϕk(T4T3T2T1)ii = ϕk(T4)iiϕ
k(T3)iiϕ

k(T2)iiϕ
k(T1)ii .

Proof. (a) Since the Coxeter number for the Weyl groupWF4 is 12 (see
[2]) we have that(T4T3T2T1)

6 = Tw0,4. Then it follows from Fact 4 that the
eigenvalues of the matrixϕ25(T4T3T2T1)must be of the formωjc(25)where
ω is a primitive 6th root of unity andc(25) is the constant given in (2.2). It
follows that Tr(ϕ25(T4T3T2T1)) = ηc(25) for some constantη. Then, from
the character table of the Weyl groupWF4, we have

η = ηc(25)
∣∣
p=q=1 = Tr(ϕ25(T4T3T2T1))

∣∣
p=q=1 = χ25(s4s3s2s1) = 0.
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(b) Leth ∈ HB3. Letzλ,λ ` 3, be the minimal central idempotents inHA2.
Sinceϕk is in seminormal form the matricesϕk(zλ) are diagonal matrices
with 1’s and 0’s on the diagonal, their sum is the identity matrix and they
are mutually orthogonal. It follows that there is a single partitionλ such that

ϕk(T4h)ii = ϕk(zλT4h)ii = (
ϕk(zλT4)ϕ

k(zλh)
)
ii

It follows from the seminormal condition and the fact that the branching
rules for restricting representations fromHF4 toHB3 are multiplicity free
that the matrixϕk(zλh) is a diagonal matrix. Thus the diagonal entries of
the matrixϕk(T4h) satisfy

ϕk(T4h)ii = ϕk(T4)iiϕ
k(h)ii,

for all h ∈ HB3. Since the irreducible representations ofHB3 andHA2 that
we are using are also chosen to be in seminormal form, their representations
also satisfy a similar identity. The result then follows by induction.ut

3.2. Computing the off-diagonal entries ofϕk(T4)

Proposition 3.13. Let T = (tij ) andD = diag(d1, d2, . . . , dr) be r × r

matrices such that the diagonal entries ofD are distinct, none of the entries
tij of T are 0, and

T 2 = (q − q−1)T + Id and (T D)3 = c Id,

for some constantc. For distinct indicesi, j, k defineuij = uji = tij tj i and
vijk = tij tjk/tik. Then

(a)
∑
j 6=i

uij = −t2ii + (q − q−1)tii + 1,

(b)
∑
j 6=i

uij dj = −t2iidi + ctiid
−2
i − c(q − q−1)d−2

i ,

(c)
∑
j 6=i,k

vijk = −tii − tkk + (q − q−1), for i 6= k,

(d)
∑
j 6=i,k

vijkdj = −tiidi − tkkdk + cd−1
i d−1

k , for i 6= k.

Proof. Equations (a) and (b) are obtained by comparing the(i, i) entries
on each side of the matrix equationsT 2 = (q − q−1)T + q andTDT =
cD−1T −1D−1. Equations (c) and (d) are obtained by comparing the(i, k)

entries. ut
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The equations

vijk = v1ij v1jkv1ki

uik
, v1ji = uij

v1ij
, tij = t1j v1ij

t1i
, (3.14)

imply that all of the values in Proposition 3.13 are determined once we know
uij andv1ij for i < j andt1i for 1< i ≤ r.

In view of the relations (3.8) we may apply Proposition 3.13 to the
matricesT kλ andDk

λ. Equations (a) and (b) of Proposition 3.13 give

4 equations in the single variableu12 when dim(T kλ ) = 2,

6 equations in the 3 variablesuij when dim(T kλ ) = 3,

8 equations in the 6 variablesuij when dim(T kλ ) = 4,

12 equations in the 15 variablesuij when dim(T kλ ) = 6.

These equations are sufficient to determine the productsuij = tij tj i for all
T kλ exceptT 25

(21) where we have dim(T 25
(21)) = 6.

If dim(T kλ ) = 2,3, or 4 we use the linear equations in (a) and (b) of
Proposition 3.13 to solve for theuij . Then we use the equations in (3.14)
to write the equations in (c) and (d) of Proposition 3.13 in terms of the
variablest1i , andv1ij , i < j . After doing this we are able to use the subset
of the resulting equations which are linear in thev1ij to uniquely determine
the values of thev1ij , i < j . This determines theT kλ up to the choice of
thet1i . Finally, the equations resulting from the conditionT3T4T3 = T4T3T4

force certain relations between theT kλ for fixed k and differentλ. For each
fixed k we picked out a few nice equations resulting from this condition
to determine theT kλ completely for allλ. This completely determined the
representationsϕk for all k exceptk = 25.

The case ofϕ25 is slightly more complex. We used the same methods
as above to determine the matricesT 25

λ in terms of the variablest1i for
eachλ exceptT 25

(21). In the case ofT 25
(21) we have dim(T 25

(21)) = 6 and the
system of 12 equations obtained from (a) and (b) of Proposition 3.13 is
a rank 11 system in the 15 unknownsuij . These linear equations can be
used to write 11 of theuij variables in terms of the other 4. Next we chose
the nicest equations resulting from (c) and (d) of Proposition 3.13and the
conditionT4T3T4 = T3T4T3 and used Maple [4] to solve these equations.
These equations are quite nontrivial and we found that we needed to choose
these equations carefully in order to stay within the bounds of the capability
of Maple. In this way we determined the matricesT 25

λ , for all λ, and thus
determinedϕ25 completely.
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4. Branching rules

4.1. The branching rules fromHA2 toHA1

ϕλ dim Restriction toHA1

ϕ(3) 1 ϕ(2)

ϕ(2,1) 2 ϕ(2) ⊕ ϕ(1
2)

ϕ(1
3) 1 ϕ(1

2)

4.2. The branching rules fromHB3 toHA2

ϕµ dim Restriction toHA2

ϕ(3),∅ 1 ϕ(3)

ϕ(1
3),∅ 1 ϕ(1

3)

ϕ∅,(3) 1 ϕ(3)

ϕ∅,(13) 1 ϕ(1
3)

ϕ(21),∅ 2 ϕ(21)

ϕ∅,(21) 2 ϕ(21)

ϕ(2),(1) 3 ϕ(3) ⊕ ϕ(21)

ϕ(1
2),(1) 3 ϕ(21) ⊕ ϕ(1

3)

ϕ(1),(2) 3 ϕ(3) ⊕ ϕ(21)

ϕ(1),(1
2) 3 ϕ(21) ⊕ ϕ(1

3)

4.3. The branching rules fromHF4 toHB3

The bands in this table separate the orbits of the group of field automorphisms
〈αp, αq 〉, see 5.4.
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ϕk dim Restriction toHB3

ϕ1 1 ϕ(3),∅

ϕ2 1 ϕ(1
3),∅

ϕ3 1 ϕ∅,(3)

ϕ4 1 ϕ∅,(13)

ϕ5 2 ϕ(21),∅

ϕ6 2 ϕ∅,(21)

ϕ7 2 ϕ(3),∅ ⊕ ϕ∅,(3)

ϕ8 2 ϕ(1
3),∅ ⊕ ϕ∅,(13)

ϕ9 4 ϕ(21),∅ ⊕ ϕ∅,(21)

ϕ10 9 ϕ(3),∅ ⊕ ϕ(21),∅ ⊕ ϕ(2),(1) ⊕ ϕ(1),(2)

ϕ11 9 ϕ(21),∅ ⊕ ϕ(1
3),∅ ⊕ ϕ(1

2),(1) ⊕ ϕ(1),(1
2)

ϕ12 9 ϕ(2),(1) ⊕ ϕ(1),(2) ⊕ ϕ∅,(3) ⊕ ϕ∅,(21)

ϕ13 9 ϕ(1
2),(1) ⊕ ϕ(1),(1

2) ⊕ ϕ∅,(21) ⊕ ϕ∅,(13)

ϕ14 6 ϕ(1
2),(1) ⊕ ϕ(1),(2)

ϕ15 6 ϕ(2),(1) ⊕ ϕ(1),(1
2)

ϕ16 12 ϕ(2),(1) ⊕ ϕ(1
2),(1) ⊕ ϕ(1),(2) ⊕ ϕ(1),(1

2)

ϕ17 4 ϕ(3),∅ ⊕ ϕ(2),(1)

ϕ18 4 ϕ(1
3),∅ ⊕ ϕ(1

2),(1)

ϕ19 4 ϕ(1),(2) ⊕ ϕ∅,(3)

ϕ20 4 ϕ(1),(1
2) ⊕ ϕ∅,(13)

ϕ21 8 ϕ(21),∅ ⊕ ϕ(2),(1) ⊕ ϕ(1
2),(1)

ϕ22 8 ϕ(1),(2) ⊕ ϕ(1),(1
2) ⊕ ϕ∅,(21)

ϕ23 8 ϕ(3),∅ ⊕ ϕ(2),(1) ⊕ ϕ(1),(2) ⊕ ϕ∅,(3)

ϕ24 8 ϕ(1
3),∅ ⊕ ϕ(1

2),(1) ⊕ ϕ(1),(1
2) ⊕ ϕ∅,(13)

ϕ25 16 ϕ(21),∅ ⊕ ϕ(2),(1) ⊕ ϕ(1
2),(1) ⊕ ϕ(1),(2) ⊕ ϕ(1),(1

2) ⊕ ϕ∅,(21)

5. Seminormal representations forHA1, HA2, HB3, and HF4

5.1. The Iwahori–Hecke algebraHA1

The irreducible representationsϕλ of HA1 are indexed by the partitionsλ
of 2 and we have

ϕ(2)(T1) = (p) and ϕ(1
2)(T1) = (−p−1).
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5.2. The Iwahori–Hecke algebraHA2

The irreducible representationsϕλ of HA2 are indexed by the partitions of
3 and can be given explicitly by

ϕ(3)(T1) = (p), ϕ(3)(T2) = (p),

ϕ(21)(T1) = diag(p,−p−1), ϕ(21)(T2) = M2(p, α),

ϕ(1
3)(T1) = (−p−1), ϕ(1

3)(T2) = (−p−1),

where

M2(p, α) = − 1

[2]p


 p−2 α([2]p − 1)

1
α
([2]p + 1) −p2




and[2]p = p + p−1. The variableα is a free parameter, see Lemma 3.3.

5.3. The Iwahori–Hecke algebraHB3

The irreducible representationsϕµ = ϕα,β of HB3(p
2, q2) are indexed by

pairs of partitionsµ = (α, β)such that|α|+|β| = 3. Let diag(A,B, . . . , C)
denote the block diagonal matrix with the matricesA,B, . . . , C in order
on the diagonal. Then, using the notation

[2]x = x + x−1, [3]x = x2 + 1 + x−2, and [0]x = x − x−1,

irreducible seminormal representations of the Iwahori–Hecke algebraHB3

can be given explicitly as follows:

ϕ(3),∅(T1) = (p), ϕ(3),∅(T2) = (p), ϕ(3),∅(T3) = (q),

ϕ(1
3),∅(T1) = (−p−1), ϕ(1

3),∅(T2) = (−p−1), ϕ(1
3),∅(T3) = (q),

ϕ∅,(3)(T1) = (p), ϕ∅,(3)(T2) = (p), ϕ∅,(3)(T3) = (−q−1),

ϕ∅,(13)(T1) = (−p−1), ϕ∅,(13)(T2) = (−p−1), ϕ∅,(13)(T3) = (−q−1),

ϕ(21),∅(T1) = diag(p,−p−1),

ϕ(21),∅(T2) = M2(p,1),

ϕ(21),∅(T3) = diag(q, q),

ϕ∅,(21)(T1) = diag(p,−p−1),

ϕ∅,(21)(T2) = M2(p,1),

ϕ∅,(21)(T3) = diag(−q−1,−q−1).
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ϕ(2),(1)(T1) = diag(p, p,−p−1),

ϕ(2),(1)(T2) = diag(p,M2(p,1)),

ϕ(1
2),(1)(T1) = diag(p,−p−1,−p−1),

ϕ(1
2),(1)(T2) = diag(M2(p,1),−p−1),

ϕ(1),(2)(T1) = diag(p, p,−p−1),

ϕ(1),(2)(T2) = diag(p,M2(p,1)),

ϕ(1),(1
2)(T1) = diag(p,−p−1,−p−1),

ϕ(1),(1
2)(T2) = diag(M2(p,1),−p−1).

ϕ(2),(1)(T3) = diag(M(2),(1), q),

ϕ(1
2),(1)(T3) = diag(q,M(12),(1)),

ϕ(1),(2)(T3) = diag(M(1),(2),−q−1),

ϕ(1),(1
2)(T3) = diag(−q−1,M(1),(12)),

where

M(2),(1) = 1

[3]p


q + p−2[0]q −[2]p[2]p/q

−[2]p2q −q−1 + p2[0]q


 ,

M(12),(1) = 1

[3]p


−q−1 + p−2[0]q −[2]p2/q

−[2]p[2]p2q q + p2[0]q


 ,

M(1),(2) = 1

[3]p


−q−1 + p−2[0]q [2]p[2]pq

[2]p2/q q + p2[0]q


 ,

M(1),(12) = 1

[3]p


q + p−2[0]q [2]p2q

[2]p[2]p/q −q−1 + p2[0]q


 .

5.4. The Iwahori–Hecke algebraHF4

Letαp be the automorphism ofQ(p, q)which fixesq and sendsp to−p−1.
Similarly, letαq be the automorphism which fixesp and sendsq to −q−1.
These field automorphisms act on the entries of the matricesϕλ(Ti) and
thereby permute the representationsϕλ. The representation resulting from
the application of a field automorphism to a representation in seminormal
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form may no longer be seminormal. In order to bring the representation
back to seminormal form it may be necessary to conjugate by a permutation
matrix π . The orbits of the irreducible representations under the action of
αp andαq and the permutationsπ for conjugating back to seminormal form
are given in the following table. Ifϕ is a representation ofHF4 andπ is a
permutation then we shall letπ ◦ϕ denote the representation determined by
(π ◦ ϕ)(h) = πϕ(h)π−1, for all h ∈ HF4.

ϕk Orbit of 〈αp, αq 〉
ϕ1 ϕ2 = αpϕ

1, ϕ3 = αqϕ
1, and ϕ4 = αpαqϕ

1

ϕ5 ϕ6 = αqϕ
5

ϕ7 ϕ8 = αpϕ
7

ϕ10 ϕ11 = π11 ◦ (αpϕ10), whereπ11 = (1,3)(4,6)(7,9)

ϕ12 = π12 ◦ (αqϕ10), whereπ12 = (1,7)(2,8)(3,9)

ϕ13 = π13 ◦ (αpαqϕ10), whereπ13 = (1,9)(2,8)(3,7)(4,6)

ϕ14 ϕ15 = π15 ◦ (αpϕ14), whereπ15 = (1,3)(4,6)

ϕ17 ϕ18 = π18 ◦ (αpϕ17), whereπ18 = (2,4)

ϕ19 = π19 ◦ (αqϕ17), whereπ19 = (1,4,3,2)

ϕ20 = π20 ◦ (αpαqϕ17), whereπ20 = (1,4)(2,3)

ϕ21 ϕ22 = π22 ◦ (αqϕ21), whereπ22 = (1,7,5,3)(2,8,6,4)

ϕ23 ϕ24 = π24 ◦ (αpϕ23), whereπ24 = (2,4)(5,7)

Letw0,1,w0,2,w0,3 andw0,4 be the longest elements in the Weyl groups
WA1,WA2,WB3 andWF4, respectively. Let

D1 = Tw0,1 = T1,

D2 = T 2
w0,2

= (T1T2T1)
2,

D3 = Tw0,3 = (T3T2T1)
3,

D4 = Tw0,4 = (T4Tw0,3)
3T −2
w0,2

in HF4. The following tables give the values ofϕk(Dj), for one rep-
resentative from each equivalence class of representations. The rest of the
matricesϕk(Dj) are easily obtained by applying the automorphismsαp and
αq and conjugating by a permutationπ as indicated in 5.4 above.
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ϕ1(T1) = (p), ϕ5(T1) = diag(p,−p−1),

ϕ1(T 2
w0,2
) = (p6), ϕ5(T 2

w0,2
) = Id,

ϕ1(Tw0,3) = (p6q3), ϕ5(Tw0,3) = q3 Id,
ϕ1(Tw0,4) = (p12q12), ϕ5(Tw0,4) = q12 Id,
ϕ7(T1) = p Id, ϕ9(T1) = diag(p,−p−1, p,−p−1),

ϕ7(T 2
w0,2
) = p6 Id, ϕ9(T 2

w0,2
) = Id,

ϕ7(Tw0,3) = diag(p6q3,−p6q−3),ϕ9(Tw0,3) = diag(q3, q3,−q−3,−q−3),

ϕ7(Tw0,4) = p12 Id, ϕ9(Tw0,4) = Id,

ϕ10(T1) = diag(p, p,−p−1, p, p,−p−1, p, p,−p−1, ),

ϕ10(T 2
w0,2
) = diag(p6,1,1, p6,1,1, p6,1,1),

ϕ10(Tw0,3) = diag(p6q3, q3, q3,−p2q,−p2q,

− p2q, p2q−1, p2q−1, p2q−1),

ϕ10(Tw0,4) = p4q4 Id,

ϕ14(T1) = diag(p,−p−1,−p−1, p, p,−p−1),

ϕ14(T 2
w0,2
) = diag(1,1, p−6, p6,1,1),

ϕ14(Tw0,3) = diag(−p−2q,−p−2q,−p−2q, p2q−1, p2q−1, p2q−1),

ϕ14(Tw0,4) = Id,

ϕ16(T1) = diag(p, p,−p−1, p,−p−1,−p−1, p, p,−p−1, p,

− p−1,−p−1),

ϕ16(T 2
w0,2
) = diag(p6,1,1,1,1, p−6, p6,1,1,1,1, p−6),

ϕ16(Tw0,3) = diag(−p2q,−p2q,−p2q,

− p−2q,−p−2q,−p−2q, p2q−1, p2q−1, p2q−1,

p−2q−1, p−2q−1, p−2q−1),

ϕ16(Tw0,4) = Id,

ϕ17(T1) = diag(p, p, p,−p−1),

ϕ17(T 2
w0,2
) = diag(p6, p6,1,1),

ϕ17(Tw0,3) = diag(p6q3,−p2q,−p2q,−p2q),

ϕ17(Tw0,4) = −p6q6 Id,
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ϕ21(T1) = diag(p,−p−1, p, p,−p−1, p,−p−1,−p−1),

ϕ21(T 2
w0,2
) = diag(1,1, p6,1,1,1,1, p−6),

ϕ21(Tw0,3) = diag(q3, q3,−p2q,−p2q,−p2q,−p−2q,−p−2q,−p−2q),

ϕ21(Tw0,4) = −q6 Id,

ϕ23(T1) = diag(p, p, p,−p−1, p, p,−p−1, p),

ϕ23(T 2
w0,2
) = diag(p6, p6,1,1, p6,1,1, p6),

ϕ23(Tw0,3) = diag(p6q3,−p2q,−p2q,−p2q,

p2q−1, p2q−1, p2q−1,−p6q−3),

ϕ23(Tw0,4) = −p6 Id,

ϕ25(T1) = diag(p,−p−1, p, p,−p−1, p,−p−1,−p−1,

p, p,−p−1, p,−p−1,−p−1, p,−p−1),

ϕ25(T 2
w0,2
) = diag(1,1, p6,1,1,1,1, p−6, p6,1,1,1,1, p−6,1,1),

ϕ25(Tw0,3) = diag(q3, q3,−p2q,−p2q,−p2q,

− p−2q,−p−2q,−p−2q, p2q−1, p2q−1, p2q−1,

p−2q−1, p−2q−1, p−2q−1,−q−3, q−3),

ϕ25(Tw0,4) = − Id .

Using the methods described in the previous sections we have produced
matricesϕk(Ti) giving the 25 irreducible representationsϕk of HF4. The
following tables give the values ofϕk(Ti), for one representative from each
equivalence class of representations. The rest of the matricesϕk(Ti) are
obtained by applying the automorphismsαp andαq and conjugating by a
permutationπ as indicated in 5.4 above.

We shall use the notations

[2]x = x + x−1, [3]x = x2 + 1 + x−2, and [0]x = x − x−1,

and the notation

ϕk(Ti)
[a1,a2,... ,ar ]

will denote ther×r submatrix ofϕk(Ti)which is formed by the intersection
of thea1, . . . , ar th rows and columns. The notation diag(A,B, . . . , C)will
denote the block diagonal matrix with the matricesA,B, . . . , C in order
along the diagonal. The matrixM2(x, y)will be as given in 5.2, the matrices
Mα,β are as given in 5.3 and the variablesα,β,ξ ,θ , andη are free parameters,
see Lemma 3.3.Any entries of the matricesϕk(Ti) which are not given
explicitly below are taken to be0.
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The representationsϕ1 andϕ5

ϕ1(T1) = (p),

ϕ1(T2) = (p),

ϕ1(T3) = (q),

ϕ1(T4) = (q),

ϕ5(T1) = diag(p,−p−1),

ϕ5(T2) = M2(p,1),
ϕ5(T3) = diag(q, q),
ϕ5(T4) = diag(q, q).

The representationsϕ7 andϕ9

ϕ7(T1) = diag(p, p),
ϕ7(T2) = diag(p, p),
ϕ7(T3) = diag(q,−q−1),

ϕ7(T4) = M2(q, α),

ϕ9(T1) = diag(p,−p−1, p,−p−1),

ϕ9(T2) = diag(M2(p,1),M2(p,1)),
ϕ9(T3) = diag(q, q,−q−1, q−1),

ϕ9(T4)
[1,3] = ϕ9(T4)

[2,4] = M2(q, α).

The representationϕ10

ϕ10(T1) = diag(p, p,−p−1, p, p,−p−1, p, p,−p−1),

ϕ10(T2) = diag(p,M2(p,1), p,M2(p,1), p,M2(p,1)),

ϕ10(T3) = diag(q, q, q,M(2,1), q,M(1,2), q),

ϕ10(T4)
[1,4,7] = M10,

ϕ10(T4)
[2,5,8] = ϕ10(T4)

[3,6,9] = N10,

where

M10= 1

[2]q[2]p2q



p−2q−1[2]q[0]q −[2]q[2]p2q2ξη−1 −[2]q[2]p2q2ξ

−[2]p2q−1ηξ−1 [2]p2q + p2q[2]q[0]q −[2]p2q−1η

−[2]p2qξ
−1 −[2]p2qη

−1 q2[2]p2q




and

N10= 1

[2]q[2]pq−1



pq−1[2]q[0]q −[2]q[2]pq−2θη−1 −[2]q[2]pq−2θ

−[2]pqηθ−1 [2]pq−1+p−1q[2]q[0]q −[2]pqη
−[2]pq−1θ−1 −[2]pq−1θ−1 q2[2]pq−1


.

The representationϕ14

ϕ14(T1) = diag(p,−p−1,−p−1, p, p,−p−1),

ϕ14(T2) = diag(M2(p,1),−p−1, p,M2(p,1)),

ϕ14(T3) = diag(q,M(12,1),M(1,2),−q−1),
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ϕ14(T4)
[3] = −q−1,

ϕ14(T4)
[4] = q,

ϕ14(T4)
[1,5] = M14,

ϕ14(T4)
[2,6] = M14,

where

M14 = 1

[2]p2q−1


 1 + p2q−1[0]q −[3]pα
(1 − [2]p2q−2)α−1 −1 + p−2q[0]q


 .

The representationϕ16

ϕ16(T1) = diag(p, p,−p−1, p,−p−1,−p−1,

p, p,−p−1, p,−p−1,−p−1),

ϕ16(T2) = diag(p,M2(p,1),M2(p,1),

− p−1, p,M2(p,1),M2(p,1),−p−1),

ϕ16(T3) = diag(M(2,1), q, q,M(12,1),M(1,2),−q−1,−q−1,M(1,12)),

ϕ16(T4)
[1,7] = M16(ξ),

ϕ16(T4)
[6,12] = M16(η),

ϕ16(T4)
[2,4,8,10] = ϕ16(T4)

[3,5,9,12] = N16,

where

M16(α) = 1

[2]q


 1 + q−1[0]q −3α

−[3]q2/α[3]q −1 + q[0]q


 ,

N16 = 1

[2]p[2]q ×


f16(p, q)
3[2]pqξθ
[2]p2/qη

3[2]pqξ
[2]p2/q

3[2]pqξθ
[2]p2q

[3]p2[2]p/qη
[2]p2qξθ

−f16(−p−1, q)
[3]p2[2]p/qη

[2]p2/qθ

3[2]p/qη
[2]p2q

[3]q2[2]p/q
[3]q[2]p2qξ

[3]q2[2]p/qθ
[3]q[2]p2/qη

−f16(p,−q−1) −3[2]p/qθ
[2]p2q

[3]p2[3]q2[2]pq
3[3]q[2]p2qξθ

[3]q2[2]pq
[3]q[2]p2/qη

−[3]p2[2]pq
[2]p2/qθ

f16(−p−1,−q−1)



,

and

f16(x, y) = −2x/y + xy + 1/xy − 1/xy3 − y/x − 1/x3y3 + y/x3

[2]x2y

.
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The representationϕ17

ϕ17(T1) = diag(p, p, p,−p−1),

ϕ17(T2) = diag(p, p,M2(p,1)),

ϕ17(T3) = diag(q,M(2,1), q),

ϕ17(T4) = diag(M17, q, q),

where

M17 = 1

[2]p2q

(
1 + p−2q−1[0]q −[3]pα
(1 − [2]p2q2)α−1 −1 + p2q[0]q

)
.

The representationϕ21

ϕ21(T1) = diag(p,−p−1, p, p,−p−1, p,−p−1,−p−1),

ϕ21(T2) = diag(M2(p,1), p,M2(p,1),M2(p,1),−p−1),

ϕ21(T3) = diag(q, q,M(2,1), q, q,M(12,1)),

ϕ21(T4)
[3] = ϕ21(T4)

[8] = q,

ϕ21(T4)
[1,4,6] = ϕ21(T4)

[2,5,7] = M21,

where

M21 = 1

[2]p[2]pq[2]p/q



(q[2]p2 + q−2[0]q)[2]p

−[3]p[2]pqηξ−1

−[3]p[2]p/qξ−1

−[2]q3[2]pξη−1 −[2]q3[2]pξ
(p−1q[2]p[0]q + 1)[2]pq −[3]p[2]pqη

−[3]p[2]p/qη−1 (pq[2]p[0]q + 1)[2]p/q


 .

The representationϕ23

ϕ23(T1) = diag(p, p, p,−p−1, p, p,−p−1, p),

ϕ23(T2) = diag(p, p,M2(p,1), p,M2(p,1), p),

ϕ23(T3) = diag(q,M(2,1), q,M(1,2),−q−1,−q−1),

ϕ23(T4)
[3,6] = ϕ23(T4)

[4,7] = M2(q, η/([2]q − 1)θ),

ϕ23(T4)
[1,2,5,8] = M23,

where
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M23 = 1

[2]q ×



f23(p, q)
[2]pq2ξ

[2]p2q [2]pqη
[2]p/q [2]pq2ξ

[2]p2q [2]2pqθ
[2]pq2ξ

[2]p2q [2]pq
[3]p2[2]pη

[2]p2q [2]p/qξ g23(p, q)
([2]q2 − 1)[2]pη

[2]pq [2]p2qθ

−[3]p2[2]pη
[2]p/q [2]p2q

[3]q [3]p2[2]pθ
[2]p/q [2]p2/qξ

([2]q2 − 1)[3]q [2]pθ
[2]p/q [2]p2/qη

−g23(p,−1/q)
[3]p2[2]pθ

[2]p/q [2]p2/q

[3]q [2]p/q2

[2]p/q [2]p2/qξ

−[3]q [2]p/q2

[2]p/q [2]p2/qη

[2]p/q2

[2]pq [2]p2/qθ
−f23(p,−1/q)




,

where

f23(x, y) = y4 − x4y2 − x2y2 − 1

x3y4[2]xy[2]x2y

and

g23(x, y) = x4y6 − x4y2 + x2y6 − x2y4 + x2y2 + y6 + y2 − 1

xy4[2]x/y[2]x2y

.

The representationϕ25

ϕ25(T1) = diag(p,−p−1, p, p,−p−1, p,−p−1,−p−1,

p, p,−p−1, p,−p−1,−p−1, p,−p−1),

ϕ25(T2) = diag(M2(p,1), p,M2(p,1),M2(p,1),−p−1,

p,M2(p,1),M2(p,1),−p−1,M2(p,1)),

ϕ25(T3) = diag(q, q,M(2,1), q, q,M(12,1),

M(1,2),−q−1,−q−1,M(1,12),−q−1,−q−1),

ϕ25(T4)
[3,9] = M2(q, α/([2]q − 1)η),

ϕ25(T4)
[8,14] = M2(q, β/([2]q − 1)θ),

ϕ25(T4)
[1,4,6,10,12,15] = ϕ25(T4)

[2,5,7,11,13,16] = M25,

where
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M25 = 1

[2]q




f25(p, q)
−[2]p2/qξ

[2]pq [2]p/qα
−2[3]p[2]p2/q2α

[2]p[2]p/q [2]p2q [2]p2/qξ
g25(p, q)

−2[3]p[2]p2q2β

[2]p[2]pq [2]p2q [2]p2/qξ

[3]p[2]p2q2β

[2]p[2]pq [2]p2qα

−2[3]p[2]p2/q2[3]qη
[2]p[2]pq [2]p2q [2]p2/qξ

−([3]p − [3]q + 2)[3]qη
[2]p[2]pq [2]p2qα

−2[3]p[2]p2q2[3]qθ
[2]p[2]p/q [2]p2q [2]p2/qξ

[3]p[2]p2q2[3]qθ
[2]p[2]p/q [2]p2qα

[2]p2q2[2]p2/q2

[2]pq [2]p/q [2]p2q [2]p2/qξ

[2]p2q2

[2]pq [2]p/q [2]p2qα

−[2]p2qξ

[2]pq [2]p/qβ
−[2]p2qξ

[2]pq [2]p/qη
[3]p[2]p2/q2α

[2]p[2]p/q [2]p2/qβ

−([3]p − [3]q + 2)α

[2]p[2]p/q [2]p2/qη

g25(−1/p, q)
[3]p[2]p2q2β

[2]p[2]pq [2]p2/qη

[3]p[2]p2/q2[3]qη
[2]p[2]pq [2]p2/qβ

−g25(p,−1/q)

−([3]p − [3]q + 2)[3]qθ
[2]p[2]p/q [2]p2/qβ

−[3]p[2]p2q2θ

[2]p[2]p/q [2]p2/qη

[2]p2/q2

[2]pq [2]p/q [2]p2/qβ

−[2]p2q2

[2]pq [2]p/q [2]p2/q [3]qη

−[2]p2/qξ

[2]pq [2]p/qθ
[3]q [2]p2q [2]p2/qξ

[2]pq [2]p/q
[3]p[2]p2/q2α

[2]p[2]p/q [2]p2qθ

2[3]p[3]qα
[2]p[2]p/q

−([3]p − [3]q + 2)β

[2]p[2]pq [2]p2qθ

2[3]p[3]qβ
[2]p[2]pq

−[3]p[2]p2/q2η

[2]p[2]pq [2]p2qθ

−2[3]p[3]qη
[2]p[2]pq

−g25(−1/p,−1/q)
−2[3]p[3]qθ
[2]p[2]p/q

−[2]p2/q2

[2]pq [2]p/q [2]p2q [3]qθ −f25(p,−1/q)



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and where

f25(x, y) = −x
4y2 + x2 − x2y4 + y2

x2y4[2]xy[2]x/y , and

g25(x, y) = − N

x4y4[2]x[2]x/y[2]x2y

.

with

N = x6y4 − x4y6 − x4y2 + x4 + x4y4 + x2y2 + x2 − x2y6 + y2 − y6
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