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1. Introduction

When faced with a complex task, is it better to be systematic or to proceed by
making random adjustments? We study aspects of this problem in the context of
generating random elements of a finite group. For example, suppose we want to
fill » empty spaces with zeros and ones such that the probability of configuration
X = (X1, ..., x,) is0" (1 — 9", with |x| the number of ones in. A system-

atic scan approach works left to right, filling each successive place witboin

toss. A random scan approach picks places at random, and a given site may be hit
many times before all sites are hit. The systematic approach takesnostkgps

and the random approach takes oréletogn steps.

Realistic versions of this toy problem arise in image analysis and Ising-like sim-
ulations, where one must generate a random array by a Monte Carlo Markov chain.
Systematic updating and random updating are competing algorithms that are dis-
cussed in detail in Section 2. There are some successful analyses for random scan
algorithms, but the intuitively appealing systematic scan algorithms have resisted
analysis.

Our main results show that the binary problem just described is exceptional;
for the examples analyzed in this paper, systematic and random scans converge in
about the same number of steps.

Let W be a finite Coxeter group generated by simple reflectiens, ..., s,,
wheres? = id. For example W may be the permutation grouf,1 with s; =
(i, i +1). The length functior{(w) is the smallesk such thatw = s;;s;, - - - 53, .

Fix 0 < 6 <1 and define a probability distribution d# by

Q—Z(w)

T By

where Py (67Y = Z gt (1.1)
weW
is the normalizing constant. Thugw) is smallest whem = id and, a® — 1,
7 tends to the uniform distribution. These nonuniform distributions arise in sta-
tistical work as Mallows models. Background and references are in Section 2e.
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A standard Monte Carlo Markov chain algorithm for sampling frenis the
Metropolis algorithm with a systematic scan. This algorithm cycles through the
generators in order. If multiplying by the current generator increases length
then this multiplication is made. If the length decreases, then the multiplica-
tion is made with probability and omitted with probability + 6. One scan uses
S1, 82, « e vy Sn—1s Sn» Sns Su—1, - .., 51, in order. Define

K(w, w") = the chance that a systematic scan startad ahds inw’. (1.2)
Repeated scans of the algorithm are defined by

K'w,w) =Y K w w)Kw" w), £>2 (1.3)
"
In Section 2c and 4a we show that this Markov chainhass unique stationary
distribution.

The main results of this paper derive sharp results on rates of convergence for
these walks. As an example of what our methods give, we show that scans of
ordern are necessary and suffice to reach stationarity on the symmetric group
starting from the identity. More precisely, we prove the following.

THEOREM 1.4. LetS, be the permutation group onletters. Fixg, 0 < 6 < 1.
Let Kf(w) = K%(id, w) be the systematic scan chain Spdefined by1.2) and
(1.3). For £ = n/2 — (logn)/(logh) + ¢ with ¢ > 0,

1KY — 713y < (€7 — 1) + nl gn/8-ntlogm/logorinics/dy (1 5)
Conversely, if¢ < n/4then, for fixed, ||Kf — 7||7v tends tol asn — .

The total variation norm is defined in Section 2a. Note that the upper bound in
(1.5) tends to zero far large, so that about/2 scans suffice to reach stationarity.
The lower bound shows that this is of the right order for large

Each scan usesi2nultiplications. Thus, Theorem 1.4 implies that the system-
atic scan approach reaches stationarity3roperations up to lower-order terms.
We also conjecture that the random scan approach (see Section 2b) for this exam-
ple takes orden? operations. Further, in Section 7, we prove that the scan based
on the sequence

(51,82, e Sy Sy o v s 80), (81 ooy Spe1, Su—1s -5 1), -+, (51, 52, 52, 51), (51, S1)

converges in one pass. Thus, again, up to lower-order tefhogperations suffice
to reach stationarity. These results show that various different scanning strategies
take the same number of operations to reach stationarity.
One novel aspect of the present arguments is our use of the lwahori-Hecke al-
gebraH spanned by the symbo{%,,},,cw. This algebra is generated iy = T,
(1 < i < n) with the relations
T — { T if £(s;w) > £(w),
T gl + (@ = DT, i L(siw) < L(w).
We have succeeded in giving an algebraic interpretation of the Markov chain

K(w, w’) as multiplication in the lwahori—-Hecke algebta From there, knowl-
edge of the center aoff (via a result of Brieskorn—Saito and Deligne) allows us
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to diagonalizek (w, w") explicitly. Convergence bounds are given in terms of the
eigenvalues and the generic degrees of representation theory. Then calculus leads
to results like Theorem 1.4.

Section 2 collects together probabilistic background and tools. We explain
Markov chains, the Metropolis algorithm, and systematic scans, and we relate
the basic Metropolis chain to a natural walk on the chambers of a building. In
Section 2e we develop properties of the measureSome of these are new even
for reflection groups of type A (the symmetric group). These properties will be
applied to prove lower bounds for walks as in Theorem 1.4.

Section 3 collects together representation theoretic background and tools and
connects the representation theory to Markov chains. Section 4 connects Hecke
algebras to the Metropolis algorithm and specializes the results from Section 3. A
basic upper bound for convergence is derived by relating two inner products.

Sections 5 and 6 derive results for the hypercube and the dihedral groups. Here
we find that both the systematic and random scans converge in about the same
number of steps—the differences are only in the lead term constants (which are
functions of6).

Section 7 derives results for two different systematic scanning plans for the sym-
metric group. Though we do not have the space to treat further examples in this
paper, it should be remarked that the methods of Section 7 should also produce
analogous results for the Weyl groups of typeand the imprimitive complex re-
flection groupsG (r, 1, n). The long and short systematic scans can be defined in
a similar way and the representation theory goes through without problems (see
[AK; Hf; R]). The remaining necessary ingredient is an analog of Lemma 7.2.

AckNOWLEDGMENT. We are thankful to Ruth Lawrence for early efforts to help
understand deformed random walks.

2. Probabilistic Background

In this section we give background material for Markov chains, the Metropolis al-
gorithm, and systematic scans. In Section 2d we interpret the basic walk as a walk
on flags and the chambers of a building, and in Section 2e we derive basic prop-
erties of the stationary distributions.

2a. Markov Chains

Background for Markov chains may be found in any standard probability text (see
e.g. [F, Chap. XV]). For the quantitative theory developed here, see [S-C] and the
references therein.

Let X be a finite set. AMarkov chainon X is a matrixK = (K(x, y))x, yex
such that

K(x.,y)€[0.1] and Y K(x.y)=1
yeX

The setX is thestate spaceand K (x, y) gives the probability of moving from
to y in one step. Powers of the matr give the probability of moving from to
y in more steps. For example,
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K*(x,y) =) K(x,0K( y)
zeX

indicates that, in order to move fromto y in two steps, the chain must move to
z and then frony to y. The chain idrreducible and aperiodidf there is an¢ > 0
suchthatk “(x, y) > 0 for allx, y € X. The chaink is reversibleif there is asta-
tionary distributionz : X — [0,1], " ..y w(x) = 1, such that, for alk, y € X,
n(xX)K(x,y) =n(y)K(y, x).

For irreducible aperiodi&, reversibility implies that, for each € X, the real
numbersk ¢(x, y) converge tor(y) ast — oo.

The quantitative theory of Markov chains studies the speed of convergence. The
total variation distancef K(x, -) to  is defined by

Vi _ 4 _
||Kx—7T||TV—TgaX><42K(X,)’) n(y)’.
yeA
Using the setd = {y e X | K%(x, y) > ()}, itis easily shown that
1
K¢ — == K¢ — . 2.1
IKE = mllry ZyEZXI (x, ) — (Y (2.)

Let L2(r) be the space of functions: X — R with the norm
(f.8)2=)_ f()gx)m(x). (2.2)

xeX

The following lemma provides a relation between the total variation anttre)
norms. This bound is the primary tool for studying rates of convergence of Markov
chains.

LemMA 2.3. Let f € L2(). Then|| f1|2, < 3l f/7|2.

Proof. By the Cauchy—Schwartz inequality,

1 2
112y = Z(Z ) ¢n<x>)
xeX

VT (x)
1 f(x)? _Yff
. Z@X =0 )@”“9 =35 2). =

2b. Systematic Scan Algorithms

Let 7 be a probability distribution on a finite sét, and letK;,, K>, ..., K,, be
Markov chains onX each having stationary distribution Then any product

K, K;, ,--- K, has stationary distributiom, and a choice of an infinite sequence
{i¢}32, gives a scanning strategy. A random choice of indices gives a random
scanning stategy. If eadty is reversible fotr, thenkK; K, - - - K, 1K, K, K, _1- - -

K, K; isan example of areversible systematic scanning strategy (whéreask,

is not necessarily reversible).
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In routine applications of the Metropolis algorithm to image analysis and Ising-
like models, the state space has coordinates. Randomized strategies choose a co-
ordinate at random and attempt to change it. Systematic strategies cycle through
the coordinates in various orders. Fishman [Fi] reviews the literature on scanning
strategies and gives some practical comparison. The scheme underlying Theorem
1.4 is Fishman’s Plan 3.

There has been some rigorous work on rates of convergence for systematic scans
in arelated case: Gaussian distribution of coordinates with the stochastic updating
done by the heat bath algorithm (also known as Glauber dynamics or the Gibbs
sampler). One fascinating study by Goodman and Sokal [GS] relates scanning
strategies to standard approaches for solving large linear systems. They show that
the systematic scan heat bath algorithm is a stochastic analog of the Gauss—Seidel
algorithm. Moreover, they show how previous analyses of Gauss—Seidel give the
eigenvalues of its stochastic counterpart. Amit [Al; A2] and Amit and Grenan-
der [AG] have pushed forward and carried out these ideas to give some compar-
ison of systematic and randomized sweeps in the Gaussian case. Their approach
uses the fact that the heat bath algorithm is a projection operator. In the Gaussian
case, the problem reduces to the computation of angles between subspaces of a
Hilbert space; Baronne and Frigessi [BF] and Roberts and Sahu [RS] are related
references.

2c. The Metropolis Algorithm

The Metropolis algorithm gives a way of changing the stationary distribution of a
given Markov chain into any distribution; it was invented by Metropolis and col-
leagues [MRRTT]. A clear description is in Hammersley and Handscomb [HH],
and a recent survey appears in [DS].

Let X be a finite set. LePP(x, y) = P(y, x) be a symmetric Markov matrix
on X, and letr be a fixed probability distribution oK. Form a new chain by the
following recipe:

M(x,y)

P(x,y) if x#yandm(y)>nm(x),

P(x, y)™¥) if x %y andr(y) < 7(x),

= JT(.X)
@\
P(x’ X) " n(zkzﬂ(x) P(x’ Z)<l_ M) o= Y
‘ (2.4)

In words:

Form the Metropolis chain fromx by choosingy from P(x, y). If
w(y) > m(x) then move toc. If 7(y) < 7 (x), flip a coin with chance
of headst (y)/7(x). If the coin comes up heads then moveytdn all
other cases, stay at

As shown in the references just cited, the Metropolis chain is reversible with sta-
tionary distributionsz. It is of practical importance that the chali can be run
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knowingz only up to a normalizing constant. Irreducibility and aperiodicity of
M must be checked on a case-by-case basis.

An example of interest iX = W, whereW is a finite real reflection group gen-
erated by simple reflections, s», ..., s,. Let P(x, y) be the Markov chain given
by
1/n if y =s;x for somei,

P(x,y) = .
(x.7) { 0 otherwise.

Here P(x, y) is the usual random walk based on a generating set. It has uniform
stationary distribution. Fi®¥, 0 < 6 < 1, and letr be as in (1.1). Thdletropolis
construction then gives the Markov chain

1/n if y=sxande(y) > £(x),

o if y=s;xand¢ 2(x),
M =1 " Iy =six ande) < €., o

@/m) Yoo <0 @—0) i y=x,

0 otherwise

which has stationary distribution. In Section 4a we demonstrate that this is ex-
actly the chain given by left multiplication by a uniformly chosen gener&tim
the Iwahori—-Hecke algebrH with ¢ = 6~% Similarly, the systematic scan chain
of Theorem 1.4 can be interpreted via multiplicationdn

Despite its widespread use there has been very limited success in analyzing the
time to stationarity of the Metropolis algorithm. In the present paper we carry this
out for the random scan Metropolis algorithm (2.5) on the hypercube (Section 5)
and on the dihedral group (Section 6). Though we have not analyzed the random
scan Metropolis algorithm on the symmetric group, we conjecture that afder
steps are necessary and sufficient to achieve stationarity. A survey of what is rig-
orously known appears in [DS].

Diaconis and Hanlon [DH] studied the example givenWy= §,,, the sym-
metric group (s@(w) = n — [# of cycles inw]), with input chain

1/(5) if y = (i, j)x for some transpositiow, ),

2.6
0 otherwise, (2.6)

P(x,y)= {

and stationary distribution (w) = z6°™), wherez is a normalizing constant and
c(w) is the minimum number of transpositions needed to gorfThey showed
that all eigenvectors of the resulting Metropolis chain are given by the coefficients
of Jack’s symmetric functions (expanded in terms of power sum symmetric func-
tions), and they used the corresponding eigenvalues to give a complete analysis of
the running time.

Similar analyses were carried out by Belsley [B2] and Silver [Si]. They worked
in abelian groups witkr proportional t@‘’, wheret is the length function with
respect to a natural set of generators. In several cases they found that the eigen-
functions were natural deformations of classical orthogonal polynomials. Ross
and Xu [RX] studied the random scan Metropolis algorithm on the hypercube,
using its representation as a random walk on a hypergroup. It should be empha-
sized that, for other choices afor in nongroup cases, careful analysis of rates of
convergence for the Metropolis algorithm is completely open.
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2d. Some Other Interpretations of the Walks

We have presented Theorem 1.4 in an algorithmic context. Here we show how
the walk (2.5) arises geometrically on the space of flags and as the natural near-
est neighbor walk on the chambers of a building. The systematic scan walks have
similar interpretations.

Let F, be a finite field. Acomplete flagFF = 0= Fp C F1 S F, € --- C
F,_1C Fn = V)isanested increasing sequence of subspacesmotiimensional
vector space/ overF, with dim(F;) = i. A natural random walk on complete
flags may be performed as follows:

choose (1 <i <n — 1) uniformly;

replaceF; by a uniformly chosen subspaéewith F;_; € F; C Fj,1.

This walk is symmetric, irreducible, and aperiodic; it therefore has the uniform
distribution as its unique stationary measure. It is instructive to think of thel
case. Thenaflagisanestedincreasing ch@inc {iy, io} € --- C {i1, iz, ..., 10}

of elements of am set or, equivalently, a permutati@n, i, ..., i,). In this case

the walk is multiplication by random pairwise adjacent transpositions.

The space of flags may also be identified as the chambers of a building of type
A,_1, and in this formulation the walk is described as follows:

From a chambef of the building, choose one of the adjacent chambers
uniformly at random and move there.

In an elegant and readable treatment of buildings, Brown [Br] explains that flag
space may be represented@sB, with G = GL,(F,) and B the subgroup of
upper triangular matrices in GLF,). Then two flagg1B andg, B differ in the

ith step if and only ifg1P; = g P;, where P; is the parabolic subgroup; =

B U Bs;B (see [Br, pp. 102-103]). Thus, if flagsB andg, B arei-adjacent then

g2 = g1b or g, = g1bs;b’ with b, b’ € B, so the walk onG/B moves fromg B to

gg'B with g’ uniformly chosen inB or Bs;B. In this way, choosing an adjacent
chamber of the building at random produceB-&variant walk onG/B. Finally,

the walk on flags gives rise to a natural walk on the double coset $paG¢B
(described in more detail in Section 3b). The double coset space is identifiable
with the symmetric group,,, and the induced Markov chain is given by (2.5) with

6 = 1/q. A similar story holds for the natural walk on any spherical building.

2e. Properties of the Stationary Distribution

Suppose thatX, d) is a finite metric space. A simple way of building probability
models onX is to fix 0 < & <1 andxg € X and then define

d(x,x0)

0=

where g =67 and Px(q) = ) _¢q“** (2.7)
xeX
is a normalizing constant. When= 1, the distribution is uniform.
Models of the form (2.7) were introduced by Mallows [M] for the study of per-
mutations. He used the length function as a distafice; xg) = d(x, xo), and
estimated; andx to match data. Such Mallows models have had application and
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development for ranked and partially ranked data using a variety of metrics [CR;
D; FV; Ma]. They have also been used for phylogenetic trees [BHV], classifica-
tion trees [SB], and compositions HJLP].

One problem in studying Mallows models is that the normalizing congtatt)
is uncomputable in general. In such cases, propertigsaain be studied by sim-
ulation using the Metropolis algorithm given in Section 2c.

For the examples based on reflection groups, the normalizing constants are
known; moreover, there is a simple algorithm available for exact generation from
7. The properties of are collected together here. In each case the properties are
illustrated for the permutation group; some of our results are new for the original
Mallows model. Further, the propertiesof(particularly Property 4) are used in
proving the lower bounds in Theorem 1.4.

Throughout this section we work with the model whose underlying siaee
W is a finite Coxeter group generated by simple reflectispss the identity ele-
ment of W, and the length function is the distance Wh Thus the model is

£(w)

W) =@

whereg =671 and Py (g) = Z q‘™  (2.8)

weW

is thePoincaré polynomiabf the groupW. It is a classical theorem that the nor-
malizing constant has a simple form:

n qd’ _ 1
Py(q) = (2.9)
v =T1"=
for known integers!;, thedegreesof W (see [Hu, Thm. 3.15]). For the symmet-
ric groupS, 1, d; = i +1for1<i < n. The Poincaré polynomidary (¢) will be
used crucially in what follows.

PrROPERTY 1. 7(w) = w(w™), sincet(w) = L(w™D).

This invariance under inversion was first used by Mallows [M] to characterize
Mallows models in a larger class of measures as follows. Suppobgcts are to

be ranked by making pairwise comparisons. Suppose that the true rankirg is 1
2 < 3 < --- < n and that a subject ranks objectand j correctly with probabil-

ity p;;. Let Q(w) be the chance that the comparisons lead to the permutation
given that they are all consistent. Of cour@gw) depends on thé.;) parameters

pij. Mallows proved thaif Q(w) = Q(w™ then, for some real numbegsand

¢, Q(w) = zg*®@¢"™ with r(w) = Y iw(i) andz a normalizing constant. He
further showed that the two parameterand¢ were practically indistinguishable
for largen and suggested settigg= 1, leading to the distributiorr (w).

ProPERTY 2. LetJ C {1, 2,...,n}, and letW, be the subgroup o generated
by the generators; for i € J. The groupW, is a parabolicsubgroup of W. Each
coset of W; in W contains a unique coset representatiy@f minimal lengttfHu,

Prop.1.10],and the probability of any such coset is computable via
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Pw(q)’

As an example, suppose thétis the symmetric group,, generated bys, so, ...,
Sn—1, Wheres; = (i, i + 1. If J = {1 2,...,n — 2} thenW; is the subgroup of
permutations that leave fixed. The minimal length coset representativgsor
the cosets o, in W have in positionn and the rest of the entries in order.
Property 2 says that

7 (xWy) = g (2.10)

S 1-
r((weS, |wn) = j)) =" =D (2.41)
A—-qm
Similarly, if J = {2, 3, ..., n — 1} then Property 2 yields
(e S, | wd = j =g D (2.12)
d-q"

Similar formulas can be derived for the cases wheoensists of the firsj or last
j elementsofl, 2, ..., n}.

In combination with Property 1, (2.11) also provides a formula for the proba-
bility of the set of permutations with in the nth position and (2.12) gives the
probability of the set of permutations within the first position. More gener-
ally, one can give formulas for the probability of the set of permutations that have
1,2, ..., j inany given relative position.

ProPERTY 3. LetJy 2 Jo, D --- D Jy = ¥ be a sequence of subsets of
{1,2,...,n}. Then a sequential algorithm for generatingin W from = is to
choose, for eaci < i < k — 1, the minimal length coset representative of a
coset of W, in W;, (1 <i < k — 1) and multiply these together. if is a mini-
mal length coset representative of a coseldify Wy, ,, choosex; with probability
qZ(X[)PWji+l(q)/PWji (q).

As an example, suppo$gis the symmetric grouf, generated by, s, ..., s,_1.
f J12J,2--- D J,qisgivenbyJ; = {i,i +1,...,n — 1}, then the algo-
rithm can be realized as the following procedure. Place symbols down sequen-
tially, beginning with 1. If symbols,22, ..., i — 1 have been placed in some order,
then place first with probabilityg’~1(1 — ¢)/(1 — ¢'), second with probability
g2 —q)/(L—q"), ..., ith with probability(1 — ¢)/(1 — ¢*). Continuing until
all n elements are placed gives an efficient method of choosing #rom

An application of this is the following clever algorithm suggested by Pak [P] for
generating a uniformly chosen element of &F,). Choosew € S, with prob-
ability proportional tag ‘™. Then formbwb, with b, andb» uniformly chosen
in the lower triangular matrices in GKF,). This yields an efficient algorithm
for uniform choice in GL,(FF,). With obvious modifications, this procedure easily
adapts to the other finite groups with a BN pair.

PropPERTY 4. Consider a finite Coxeter group with probability distributianas
given in(2.8). Let Z be the random variable given B(w) = £(w) for w € W.
Then, withd; as in(2.9),



166 PERSI D1acoNIS & ARUN RaMm

nq " dig¥
Ex(Z)=——-Y) |
@)=, El_qd,,

(2.13)

n

nq d?qd
Var,(Z2) = ———— — —_—t
"D =G L a g

Proof. The moment generating function @fis

1 1 \E(w)
Pu(@) ,,;V(e D

n

_ Py (e'q) _ 1—[ A—('9?) 1—q)
Py(q) 5 (Q-eq) A—q%)
It follows that Z is the sum of independent random variabigs. .., Z,,, where
A—('p*) 1—q)

Mz(t) = Ex(e'’) =

My (1) = .

“0= "0 ey a-qn
Then .
d q diq“

E(Z)=—Mz(t = — =
w(Zi) = 2 Mz, ()], g =g 1-ga
and
2 q 2dl'qdi+1 2q2 d,»zqd"

d
EL(Z?) = — Mgzt = - - :
( ,) dr2 Z,()’;ZO 1_q (1_q)(1_qd;)+(1_q)2 1_qd[

It follows that

q d2q“
AL-q? @A—-q%?
We remark that, for Coxeter groups of type, B,,, D,, under the probability distri-
butionr, ¢£(w) has an approximately normal distribution with mean and variance

asin (2.13). This follows from its representation as a sum of independent variables
in the proof of Property 4. For details, see [D, Chap. 6C, Cor. 1-2].

O

Var, (Z;) =

3. Hecke Algebras

This section introduces Hecke algebras as bi-invariant functions on a group. We
develop the needed Fourier analysis and then specialize to the Iwahori-Hecke al-
gebras associated to finite Coxeter groups.

3a. Algebras and Fourier Analysis

Random walks are traditionally analyzed using Fourier analysis [D]. We find this
possible in our examples and explain the basic tools here.

An algebraH overC is (split) semisimpléf it is isomorphic to a direct sum
of matrix algebras. This means that there exist a finite indexisand positive
integersd; (A € W) such that
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H= @ M, (C),
rew
whereM,, (C) is the algebra of;, x d, matrices with entries i€. Fix an isomor-
phism
¢ H —> EB M,,(C)
A

and define .
e =0 NEs), AeW, 1<S.T <d,, (3.1)

WhereEgT is the matrix in(D, M,,(C) that has a 1in théS, T) entry of theath
block and 0 everywhere else. The elemefjse H are a set ofnatrix unitsfor H.
The matrix units{e}, } form a basis of, and we write

h=>"" 3" pihey (3.2)

reW 18, T<dy

for h € H. The homomorphismg*: H — M,,(C) and the linear functionals
x5 H — C given by

p*(h) = (pdr(W)i<s.r<a, and xp(h) = Tr(p*(h))

are theirreducible representationand theirreducible characterof H, respec-
tively. The homomorphismg* depend on the choice @f, but the irreducible
characterg}; do not.

A traceon H is a linear functional: H — C such that(h1hs) = 7(hahy) for
all 1, hp € H. Up to constant multiples, there is a unique traceMn(C); this
implies that, for any tracé H — C on H, there are unique, € C (> € W) such

that
i=Y tixh- (3.3)
reWw

The trace is nondegenerat# 1, = 0 for all » € W. Define a symmetric bilinear
form (., )y: H x H — ConH by

(h1, ho)y = t(hihp) for hy, hp e H.

The form(-, -5 is nondegenerate if and only7fis a nondegenerate trace.
Let{T,}.ew be a basis off. The Fourier transform of = ) h,T, atthe
representatiop is

weW

h(p) = hup(Ty). (3.4)
weW
The Fourier inversion theorems describe the change of basis matrix befiygen
and{eg,} and recoveh from {h(p")}, yi -

THeoREM 3.5 (Fourier inversion and Plancherel)Let H be a semisimple alge-
bra overC with a nondegenerate trage Let {7, }.,cw be a basis for the algebra
H. Let{T}},cw be the dual basis with respect(o-)y; thatis, (T, T,)y = Su..
Then, with notation as i3.1)—(3.4),
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esr = Z 05T T,

weW
and, for anyh, hq, hy € H,
hy =Y 6, Tr(h(p"p(T})) for he H (3.6)
rew
and
(h1, ho)u =Y _ 6, Tr(ha(p™)ha(p*)) for hi, ha€ H. (3.7)
reW

Proof. Sincer is nondegenerate, the equatieet,) = Y, .y fu X1 (edy) = 1857
implies that

A
{etﬂ} is the dual basis tdej,} with respectto(-, ).
A

By (3.2),pir(a) = (I/t:)(a, e})n. Thus

elr = ek T uTw =Y 04 (T)T,.

weW weW

Then equation (3.6) is

hy = (h, Ty = 1hT;) =Y tuxiy (W) =Y 6. Tr(h(pM)pM(T)),
reWw rew
and (3.7) is

(h1, o)y = [(haha) =) tixpi(haho) = Y 6, Tr(ha(p*)ha(p™). O
A A

3b. Coset Chains and Hecke Algebras

Let G be a finite group an® a subgroup oz, and letQ be a left B-invariant
probability distribution onG. Right multiplication by random picks fron® in-
duces a random walk o,

Xo = Xo, Xl = X081, X2 = X081825 ---» (38)

which, in turn, induces a process 8rcosetsyy, Y1, Yo, ..., wherey; is the coset
containingX;. The chain onG produced by right multiplication by random picks
from Q is K(x, y) = Q(x~1y). The chance that this chain winds up in an element
of yB is K(x, yB) = Q(x"YyB) and, sinceQ is left B-invariant, K (x, yB) =

K (xb, yB) for anyb € B. This invariance is a necessary and sufficient condition
for the induced coset process to be a Markov chain for any startingastate

G/B (see [KeS, Thm. 6.32]). If the support ¢f is not a coset of a subgroup of

G then the chain in (3.8) is irreducible and aperiodic with uniform stationary dis-
tribution. The resulting coset chain is

K(xB, yB) = Q(xflyB) with stationary distributiont (xB) = |B|/|G]|.
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If the probability Q is B bi-invariant, then the right process (3.8) Gninduces
a process o double cosets by simply reporting which double coset the element
X; isin. The chance that th@-chain moves fromx to an element oByB in one
step isQ(x~'ByB) and, since this depends only on the double coset tfe in-
duced process is a Markov chain on double cosets for any startingbstate
Letting W be a set of coset representatives for the double cosaisinfG, the
chain is given by

K(w,w’) = K(w™Bw’B) with stationary distributionr (w) = |BwB|/|G],

where we view the double coset chain as a Markov chain on th&.set
TheHecke algebraf the pair(G, B) is the subalgebra of the group algebra of
G consisting of theB bi-invariant functions orG,

H={f:G— C| f(g) = f(bighy) for ge G andby, b € B}.

Background on Hecke algebras may be found in Curtis and Reiner [CR, Sec.

11D]. If H is commutative therG, B) is called aGelfand pair,and there is a

well-developed probabilistic literature surveyed in [L1; L2] and [D, Chap. 3F].
Let W be a set of representatives of the double cosels\ii/B. The functions

Tw = %83103, w e W,
form a basis ofH, whereég, is the characteristic function of the double coset
BwB. The natural anti-involution orG given by ¢ +— g~* induces an anti-
involution x: H — H given by T, — T,-1. The trivial representation of;
restricts to théndexrepresentation off given by

| BwB)|
1Bl
An example to keep in mind i§ = GL,,(F,) with B the subgroup of upper trian-
gular matrices. The# is the set of permutation matrices and {ad = ¢*®.
LetL(G/B) ={f:G — C| f(g) = f(gb) for g € G andb € B}. The group
G acts on the left ofL (G/B) and H acts on the right of.(G/B) by convolu-

tion. The raison d’'étre for the Hecke algebra is tHat= Ends (L(G/B)) and, as
(G, H) bimodules,

p(T,) = ind(w), where indw) =

(3.9)

L(G/B)=)_ G"® H". (3.10)

reWw

Here runs over an index sé¥ of all the irreducible representationsif G* is an
irreducibleG-module, and4* is an irreducibled module (see [CR, (11.25)(ii)]).
Centralizers of the action of a finite group, in this c@sacting onL(G/B), are
semisimple (our base field i8) and hence the theory of Section 3a applies to
Hecke algebras. The trace of the actionbbn L(G/B) is given by

IGI/IB] if w=1

3.11
0 otherwise. ( )

;(Tw) = {

The decomposition (3.10) yields
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i=Y tixy. wherer, =dim(G"), (3.12)
reW

andy; are the irreducible characters Bt Define an inner product of by

(h1, o)y = t(h1ha), h1, hpe H.

The basis
T,- . .
ind(ul)) }wew is the dual basis td T, }wew (3.13)

with respect tq-, -)g; that is,((1/ind(v)) T,-1, Ty )y = 8y for all v, w € W (see
[CR, (121.30)(iii)]).

3c. lwahori-Hecke Algebras

The Hecke algebras associated to finite Chevalley gréupad their Borel sub-
groupsB have a remarkable structure theory for their double cosets—they are
indexed by the elements of a finite Coxeter graipFor example, in the case of

the groupG = GL,(T,) and its Borel subgrou@ of upper triangular matrices,

the groupW is the symmetric group. There are many wonderful references for
this material; see [Bo, Chap. IV, Sec. 2, Ex. 22-27; Br; C, Sec. 10.8-10.11; CR,
Sec. 67-68]. We develop what we need in this section and give the relation to
probability theory.

Let W be afinite Coxeter group generateddiyple reflectionsy, ..., s,. These
define a length function witli(id) = 0, £(s;) = 1, and{(s;w) = £(w) £ 1 for
eachw € W, 1 < i < n. Thelwahori-Hecke algebrad corresponding tdV is
the vector space with bagi,, | w € W} and multiplication given by

Ts,-w if e(siw) = E(U)) + 1s

(q — DTy +qTy, i L(s;w) = L(w) — 1, (3.14)

TiTw = {
whereT; = T, forl < i < n. Whenw = s; we haveT? = (¢ — )T; + q or,
equivalently(T; — ¢)(T; +1) = 0.

Let W be an index set for the irreducible representationdoFor each. € W,
let x4, be the corresponding irreducible characteroand letd; = xi;, (1) be the
dimension of this representation. The irreducible representations of the lwahori—
Hecke algebrd are in one-to-one correspondence with the irreducible represen-
tations of W in such a way that, ik, is the character of the irreducible represen-
tation of H indexed by € W, then

X (T ,_y = xiy(w)

for all w € W; see [CR, (68.21)]. In particular, the dimension of the irreducible
representation of/ indexed bya is d; .
Define a trace: H — C on H by

Pw(g) if w=1

where P = £w)
0 otherwise, w(@) Zq

weW

{(T,) = {
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is the Poincaré polynomial d¥. Thent is the trace orH given by (3.11) and the
generic degreeare the constants defined by

f=> txh (3.15)

reWw

wherey;; (A€ W) are the irreducible characters Bf (see (3.2)). Now, if-, )4
H x H — C is the inner product oif given by (h1, ho)y = f(h1hy) for all
h1, ho € H, then

(Te, Ty-1)y = 84yq"V'Pw(q) forall x,yew; (3.16)

see [CR, (68.29)].

The “trivial” representatiom? of the Iwahori-Hecke algebrA is the 1-dimen-
sional representation corresponding to the trivial representatién Bbrw € W,

1
1 _ 1 _ l(w) —
p~(Ty) = xy(Tw) =¢"", and 7 = Ty
f Pw(q) ZW
is the corresponding minimal central idempotenfb{cf. (3.9)). Since; =1,
f(hm) =tx*(h) and T,m =q¢"“x (3.17)

forallh e H andw € W; see [CR, (68.23) and (68.28)].

Let tr be the trace of the regular representatioffef-that is, ti(h) is the trace
of the linear transformation obtained from the actiorhain H by left multipli-
cation. Then

tr=">Y"dxp. (3.18)

reWw

whered, are the dimensions of the irreducible representationd dsee [CR,
(3.37)(iii)]). Both traces tr andare important in our analysis of Metropolis walks
(see e.g. the proof of Proposition 4.8).

4. Metropolis Walks and Systematic Scans

This section brings together previous results in the form needed to prove our main
theorems. We show that the various systematic scans are precisely represented as
multiplication in the lwahori—-Hecke algebra. Then representation theory yields
tractable expressions for the norms involved.

4a. Metropolis Walks ofi

Let W be a finite Coxeter group generated by simple reflectigns., s,, and, for
each 1< i < n, let P;(x, y) be the Markov chain of/ given by

1 if y=sx,

Pi(x,y) = _
(x.7) {0 otherwise.

Fix 6 (0 < 6 < 1) and letr be as in (1.1) Then the Metropolis construction pro-
duces the Markov chain



172 PERSI DiAcoNIS & ARUN Ram

1 if y=usxandl(y) > £(x),
Ki(x,y)=1 0 if y=s;xandeé(y) < £(x), 4.2)
1-0 if y=x.

The chaink; can be interpreted as follows.

Fromw, try to multiply by s;. If this increases the length, carry out the
multiplication. If it decreases the length then flig &oin. If the coin
comes out heads, carry out the multiplication; if it comes up tails then
the chain stays ab.

Of course, the chain based on a fixed valué sfnot irreducible. However, any
convex linear combination and any symmetric product of reversible Markov chains
with a fixed stationary distribution is reversible with the same stationary distribu-
tion. If W is the symmetric group then the following chains are reversible for

1 n
Z K; (random scan Metropolis),
i=1

KiK>---K,K,---K;K; (short systematic scan),
(K1K2-+-K,K, -+ K2K7) -+ - (K1K2K2K1)(K1 K1) (long systematic scan).

(4.2)

Note thatK1 K> - - - K,, is anirreducible Markov chain with stationary. However,
it is not reversible in general.

The following theorem (a direct consequence of our setup) shows that many
Markov chains oW can be obtained by left multiplication by elementsHfon
the basig7,,}. The remaining results in this subsection provide the necessary tools
for studying the convergence of these chains by using the representation theory
of the lwahori—-Hecke algebr&l. Though we have chosen to focus here on the
Iwahori-Hecke algebras related to finite reflection grodpshe results of this
section hold in a general Hecke algebra context.

n

THEOREM 4.3. LetW be a finite Coxeter group, and |&f be the Iwahori-Hecke
algebra with basig7,},cw as defined ir{3.14). Let
g=6"1Y T,=T/q, and T,=q ‘™T, forweW.
'[he Metropolis chairK; in ({.1)is the same as the matrix of left multiplication by
T; with respect to the basig,, },,ew of H:
{ Ty if £(siw) > £(w),
1—0)T, + 6T, if £(s;w) < L(w).

13

ifw = (44)

Identify functionsf: X — R in L?(rr) with elements of the lwahori-Hecke alge-
bra H via

f=Y fT.. (4.5)

xeWw
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The following proposition shows that we can use the inner produgly; on H
(defined in Section 3c) to compute normslif(). Coupled with Lemma 2.3, it
gives bounds on rates of convergence in total variation distance.

ProrosiTION 4.6. Let W be a finite Coxeter group, and letbe as in(1.1). With
the identification of.?(;r) and the lwahori-Hecke algebr# given by(4.5),

(f/m, ¢/m)2=(f.g"w forall f,gel?m),
wherex: H — H is the involutive anti-automorphism &f defined byls = T,-1.

Proof. Use the notation

f=) @ =) f0)g VT =) fiT,

xeW xeW xeW

Then, sinceé = ¢, (2.2) and(1.1) give

< > Z f(x)g(x)
xeWw 7T(X)
o(x) £(x)

J2q""8:q - .
=)= 0- 13(; Py =) fig:qd"Pw(@).

xeW xeW

Thus, by (3.16),

< > fongx»T H—fogy X v1>H—fg U

xeW x,yeW

The following lemma shows that the inner producLif(rr), reversibility, and the
involutionx: H — H are simply related.

LemMma 4.7. Let H be the lwahori—-Hecke algebra corresponding to a finite real
reflection group¥, and letr be as in(1.1). Let K be a reversible Markov chain on
W determined by left multiplication by an elementb{also denoted bx). The
chainK operates orL.2() by Kf (x) = > vew K(x, ) f(y). Then the following
are equivalernt

(a) K is reversible with respect to;

(b) K is self-adjoint with respect tg, -),; and

(c) K = K* in the lwahori-Hecke algebra/.

Here (-, ), is the norm ornL?(rr) defined in(2.2)andx: H — H is the involutive
anti-automorphism off defined byl' = 7,,-1.

Proof. If K is reversible, then

(Kf.g)2= Y K(x,y)f(y)g(x)m(x)

x,yeX

= Y FOMK(y, x)gx)m(y) = (f, Kg)a;

x,yeX
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conversely, ifK is self-adjoint then
T(X)K(x,y) = (0, Kdy) = (Kby, 8y) =m(y)K(y, x),

whereé, denotes the delta function agiven bys,(x) = §,, (Kronecker delta).
HenceKk is reversible if and only iK is self-adjoint.
If K is self-adjoint with respect t0, -), then, by Proposition 4.6,

(Kf, 8"\ = (Kf/m, g/m)2 = (f/m, Kg/m)2 = (f, (K&)")u = (f, §"K")u.

Thus, for allw € W,
(K, Tw)H = (l’ TwK*>H = (Twy K*>H = (K*a Tw>H~

Therefore K = K*. O
The following proposition is a primary tool for studying rates of convergence
of Markov chains on Iwahori-Hecke algebras, and it bound<.t&) norm of
Lemma 2.3 in terms of characters of that algebra. In contrast with the way that
random walks are often analyzed (see e.g. [DS]), the following proposition also

shows that the Markov chain given by can be analyzed without knowing the
eigenvalues oK —it is necessary only to compute traces.

ProrosiTION 4.8. Let H be the Iwahori-Hecke algebra corresponding to a finite
real reflection groupV. Let K be a reversible Markov chain d with stationary
distributionsr determined by left multiplication by an elementtb{also denoted
by K). Let K¢ denote the Markov chain started atfter ¢ steps. Then

@) 1K/ =15 =q 2D Y, Ly tix}y (T2 K*T,) and
(b) X ew TONKE/m =15 =3, 1 dax}y (K,

wherey; are the irreducible characters; the generic degreg8.15),andd; the
dimensions of the irreducible representationgbf

Proof. Equation (3.17) says thathr) = t1x% (h) and T,m =nforallhe H
andw € W. Thus, sincek ! is a probability, Proposition 4.6 gives
1= (K¥/m, 02 = (K¥T,, )y = (K* T, T,am)u
= (K> T, Tyam) = iy (K¥ T, T 1) = t1yjy (T, K*'T).
Then, by Proposition 4.6,
(K{/m, K{/m)2 = (K'Ty, (K'To)*)u = (K'Te, To1(K) ).
Thus, by (3.12) and Lemma 4.7(c),
(Ky/m, Ky/m)2 = (KT, T K Yy = (T2 K*T)

=g thxy(TK*Ty).
reW
Now (a) follows becausek /7 — 1, K!/m — 1), = (K!/7, K¢/ ), — 1. Part (b)
follows similarly from the following calculation. Using the definition (2.2) of the
norm onL2(x),
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K¢ K¢
S5 5
2

K x, )K" (x,y)
Z 7(x)

xeWw x,yeWw n'(y)
K (y, )K" (x, y)
= > 7 )
x,yeW Ty
=Y K*(y,y) =tr(K*) =" dixji(K*),
yew reWw
where tr is the trace of the regular representatiol d@jiven in (3.18). O

4b. Systematic Scans

One case of Proposition 4.8 that can be analyzed for all finite Coxeter giups
is the case when the Markov chakhis a (generalizedyystematic scanThis is
whenKk is given by left multiplication by the elemefdt2, in the Iwahori-Hecke
algebra. Interms of the geometry of the Coxeter group, this chain is the Metropo-
lis walk on the chambers that tries to move a chamber to its opposite chamber and
back again by successive reflections in the walls of chambers. Since each step is a
Metropolis step, the chance that the chamber returns to its original position after
one pass is not 1 but instead depends on the paratgh&térenW is the symmetric
group, this chain is the long systematic scan defined in (4.2).

Let z be the sum of all the reflections . Thenz is a central element (since it
is a conjugacy class sum) in the group algebr#&adnd thus, by Schur’s lemma,
acts by a constamf, on the irreducible representationflabeled byA € W. The
following well-known result shows that the elemehf,, wherewy is the long-
est element ofV, is an lwahori—Hecke algebra analog of the elemerirom the
point of view provided by Theorem 4.3, the following proposition determines the
eigenvalues (with their multiplicities) of the systematic scan Metropolis ckain
onw.

ProPOSITION 4.9. Letz be the sum of~aII the reflections Wi, and letwg be the
longest element d¥. Then the elemeﬂtjo is in the center of the Iwahori-Hecke
algebraH and

X (2)
)L 9

pM(T2,) =g~ |d, wherec, =

p* is the irreducible representation &f indexed by., x{, is the irreducible char-
acter of W labeled by, andd;, = x&,(l) is the dimension of this representation.

Proof. Thisresult is standard (see [R, (2.4) and (2.5)], so we only sketch the proof
here. A result of Brieskorn—Saito [BS] and Deligne [De] states Tifatis in the
center of the corresponding braid group. Since the Iwahori-Hecke algelsra
quotient of the group algebra of the braid group, it follows thtis in the center

of H. The constant by which it acts on the irreducible representation label&d by
can be checked as follows. The elem@&g — ¢“° is divisible by(¢ — 1) and
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T2, — g
- q — 1 q:l'
Since , ,
q (wo)+cn _ q (wo) .
q — 1 q=1 ~

andz acts by the constanf, the elemenf’;2, must act by the constagt @o)+<,
The result of the proposition now follows, sing, = ¢~2®9 T2 . An alterna-
tive way to obtain the constagt ™ +< by which T2, acts is to note that

det(,ok(T,-)) — (_1)(dA—X‘),.‘,(Si))/zq(dx-kx‘);,(sz'))/z
forall1 <i < n; this and [Bo, Chap. VI, Sec. 1, Cor. 2] imply that

det(T,Eo) = q25<w0>dx+zxa/<1>>/2 di(two)+cr) 0

=q
Combining Propositions 4.9 and 4.8 gives the following bounds on the convergence
of the systematic scan Metropolis walk on a finite Coxeter gidugxplicit analy-

ses of these bounds in examples are given in Sections 5, 6, and 7.

TueoreM 4.10. Let H be the lwahori—-Hecke algebra corresponding to a finite
real reflection grougV. LetK be the systematic scan Metropolis chain®r—that

is, the reversible Markov chain oW with stationary distributionr determined
by left multiplication by the elemeffi’(ﬁ0 of H, wherewy is the longest element of
W. Then

@) I1K{/m =15 =Y, 1rds 620~ and
(b) erW JT()C)”K){/JT _ 1”3 — Z)\#ldeZK(l(wo)—Cx)
wherel(wo) is the length ofv, ¢, are the generic degredsee(3.15)),d;, are the

dimensions of the irreducible representationsthf and the constants, are as
given in Proposition 4.9.

5. The Hypercube

We begin with a simple but instructive example where all details can be carried
out. We are able to analyze and compare both randomized and systematic scans.
We show that both kinds of scans take ordéygn operations to converge to sta-
tionarity. For small values df, the systematic scan converges fasterpfatose

to 1, the random scan converges faster.

5a. Preliminaries
The Coxeter groupV = (Z/27Z)" has generators, s, ..., s, and relations
s?=1 and s;5; =s;5; forall 1<i,j<n.

The setX = W = (Z/2Z)" is the space of binary-tuples,s; is the vector
with 1 in theith coordinate and 0 elsewhere, and the length function is given by
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£(x) = |x| = (# of ones inx). The longest element & is wg = s152- - - 5,,, and
2(wg) = n.

The irreducible representatiopd of the Iwahori-Hecke algebra ¢f/27)"
are all 1-dimensional and are indexed/byuplesi = (Ay, ..., 1,), A; € {0,1}.
Let|A| =A1+---+A,. Then

qg if A, =0,
MT) = =n—2l, t=qg", 5.1
p*(Ty) 1 oifa—t e =n—2[}| P =q (5.1)
wherec;, ands, are the constants defined in Proposition 4.9 and (3.15), respec-

tively.
Fix0 <6 <1landlet

£(x)
, whereg =671 and Py(q) = 1+ ¢)" (5.2)
q

is a normalizing constant. Thenis a product measure qZ./2%Z)", since

q £(x) 1 n—~L(x)
7(x) = [ —— —— .
1+g¢g l+g¢q

5b. Random Scan Metropolis

The random scan Metropolis algorithm proceeds by choosing a coordinate at ran-
dom and attempting to change to its opposite mod 2. If this results in a 1, the
change is made. If the change results in a 0, flip a coin with paramdfehe flip

comes up heads then change the chosen coordinate to O; if it comes up tails then
the coordinate stays at 1. The resulting chain is

/n) if £(y) =£(x)+1,
) @me if £(y) =£€(x)—1,
Ko =1 wwyma-e i y=x (®-3)
0 otherwise.

The following theorem shows that ordefogn steps are necessary and sufficient
to reach stationarity.

THEOREM 5.4. Let the random scan Metropolis algorithm ¢#/27)" be de-
fined by(5.3)with 0 < & < 1. Then, for any starting state and any¢,

2 i 2¢
_ Zezm—m (1_ a+ 9)) . (5.5)

2 #£0 n

KZ
Srg
T

For0 <6 <land¢ =n(logn —logd + ¢)/2(1+ 0) with¢ > O,
IKE =72y < (e = 1) +e 2 (5.6)

The bound in(5.6)is sharp in the sense that #f = n(logn — logé + ¢)/2(1+ 0)
then, for alle > 0, there exists @ < 0 such that| K{ — = |rv > 1 — ¢ for all
sufficiently largen.
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Proof. From the definitions of the irreducible representation&/of
~ ~ ~ 2[ ~
i (T () (Tt - + 1) 1)
— n—ZZq—ZZ(x)—ZZXIA{(Tl + .. + Tn)ZIX;_LI(Tx)Z
=n"2q 72 (n = |ADg — (M) g? g 72
= (L— (IAl/n) 1+ 0))* 0%+~

The first statement then follows from Theorem 4.10(a) with the valug, fgiven
in (5.1). For the second statement, we need to bound the sum on the right-hand
side of (5.5). Sincé < 1, it follows thato** < 6° and

2 n n ) . 2¢
< Z( .)9—1 (1— L+ 0)) :

2 j=1J

K
T

Break the sum at/2. For the first half, usé’j’.) <n//jland 1— x < e to give
an upper bound

n/2 i n/2 _;

5 :i n\' jarozem _ e Mg
ol - .I —_— .
Jjh\ @ J!

j=1 j=1

For the second half, changéon — k and use the same inequalities to get an upper
bound

nf2 n/2 1

Z ”_ek—ne—(n—k)(lw)ze/n _ Z - k(logn+10g6+2¢(1:+6)/n) ~nlogh—2¢n(1:+6)/n

I !
— k! =k

Using Y"1 o(A¥/k!) < A™ for A > 2, the bound for the second half becomes

e(n/2)(|0gn+|0g0+2£(1+9)/n)7n|09972€n(l+9)/n e('1/2)(lognflog(972£(1+(~))/n) — efnc/Z

To show that this upper bound is sharp, we use the second moment method. With
respect to the action &t on L?(r) defined in Lemma 4.7, the matri(x, y) of
(5.3) has an orthonormal basis of eigenfunctions
A
fi(y) = 07HM/2(—g)*Y  with eigenvalues u(1+ 0), re(Z/27)". (5.7)
n

Lete; € (Z/2Z)" be the vector with 1 in théth entry and 0 elsewhere. We shall
use the test function

T() =) fu(y)=0"Y2) (—0)"
i i=1

n

_ 1+0)
=0 Y2(n — Iy|1+0 :_<1_—|y|( ) 5.8
( Iy I( ) 7 ;. (5.8)
The expectation and the variancelofvith respect to the distribution are
E.(T)=0 and Vap(T)= E.(T? =n. (5.9)

Fori # j,
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> 1-6
feifej = feH—ej and fei = fo+ ern
where the second identity is verified by checking that both sides agree when eval-
uated at each of the two casgssuch thaty; = 1 andy such thaty; = 0. We can
compute the expectation and variancrafinder the distributiork § as follows:

1+6

Eo(T) =) KO NT() =) (K'fo)O) = —(1- T) (5.10)

and
Vare o(T) = E¢o(T?) — E¢o(T)?

20
— £ O(ngl + X hs ) - (1= 1)

i#]
¢
et nl—0) <1_ 1+9) + n(n—1) <1_ 2(1+9))

0 n

We want to use these formulas to show that (n/2(1+0))(logn —log6 + ¢)
steps are sharp. Fixirigand using logl—x) = —x —x%/2+ O(x3) ande /2 =
1— x%/2+ O(x*), it follows that

1 kA+0) . Gl—karoyn—tcatoyyan?  ((0€ 4z 1_ Ck?(14 6)2
n n 2n2
whenn is large. Thus, fof = (n/2(1+ 6))(logn — log6 + ¢) andn large,

Ego(T) ~ /ne™/?
and
n —L’/Z —c
Var, o(T) ~n+ [=(1—0)e /2 + (n —De (11—
’ 0 2n?

n?o . 201+ 6)?
e/ 77
0 n 2n?

41+ 9)2>

~n+ O0co(v/n)+ ”e_c(—

=n-+ Oc,G(ﬁ) + Oc,@(|09n)a

with the error terms depending erandé. By first choosing: to be a fixed (large)
negative number and then letting— oo, we see that, ib is large, the sett, =
{x | |IT(x)| < by/n} has probability - 1/b? underz and probabilityO(1/5?)
underk§. This completes the proof of the last statement. O

£2(1+6)? e
2n2 —e

5c. Systematic Scan Metropolis

We turn next to the systematic scan version. Ordegn steps are required here,
too. Lest the reader think this contradicts the example that began this paper, we
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note that the opening example (which actually corresponds to the heat bath up-
dating setup) replaces each coordinate with a freshly chosen pick. Thus a chosen
zero coordinate can remain zero with probabifityFor the Metropolis version
analyzed here, a chosen 0 must change to a 1.

With notation as in Section 5a, It be the chain ofZ/2Z with matrix (2 1_10) .
On(Z/27)" defineK; acting as\V on theith coordinate. Let

K =KiK» - K,K, - Ki. (5.11)

This is the systematic scan Metropolis algorithm with stationary distribution
The following theorem gives bounds on the distance to stationarity. The proof is
similar to the proof of Theorem 5.4; for further details see [DR].

THEOREM 5.12. Let the systematic scan Metropolis algorithm @fy/2Z)" be
defined by5.11)with 0 < 6 < 1. Then, for any starting state and any¢,

Kt |2
FX 4l = 29(4/5—1”/\#2)»%_ (5.13)
2 %0
For0 <0 <1land 171
ogn +c
b=\ 1o +1
4( log@/0) )

with ¢ > 0,

1K =3y < 3(e —1). (514)

The bound in5.14)is sharp in the sense that if

1/lo
(= — gn——i—c +1
4\ log(1/0)
then, for alle > O, there exists @ < 0 such that|K§ — 7|7y > 1 — ¢ for all
sufficiently largen.

After ¢ passes, the systematic scan algorithm makeshasic steps. Thus, the
results of Theorems 5.4 and 5.12 show that both scanning strategies converge in
ordern logn basic steps. The following table compares the lead term constants
for the two scanning strategies at various value& of

0 random systematic
general nlog(n/6) nlogn
2(1+0) 2log(1/6)
1 nlogn nlogn
1+e¢ 4 2logl+ ¢)
1 nlog2n nlogn
2 3 2log2
nlog(n/e) nlogn

2 2log(1/¢)
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We see that the lead term constants make the random scan faster dsvhereas
the systematic scan is fasteréas> 0.

6. The Dihedral Group

The hypercube of Section 5 is commutative. This section treats the simplest non-
commutative example—the dihedral groDp,. We completely analyze the con-
vergence of both the randomized and systematic scans. We find that both scanning
strategies take orderoperations to converge to stationarity.

The dihedral group of order2is the groupW given by generators,, s, and
relations

sl2 =1 s% =1 and 515281 =825152---.
N——’ S——
n factors n factors

This is the group of symmetries of a regular-gon, wheres; ands, act by re-
flection in axes through the center of the-gon that form an angle of/2/ 2n (see
Figure 1).

/

S1 id

8182 . S2

518251 §281

51528182 " /|- 838182

/

Figure 1

Fix 0 < 6 < 1 and consider the distribution d# given by

g™ _@=-)H@" =) L
PW(q)’ WherePW(q)_ (q—l) ﬂ andq—9 .

This measure is largest at the longest elemeWofvg = s15251 - -+ (n factors),
and¢(wg) = n. The walks to be analyzed will all start at the identity.

One may picture the walks described in this section on thelfambers of an
n-gon. Pick one chamber (labeled with identity) and identify the two internal sides

T(w) =
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with sy, 5. Reflecting the fundamental chamber around gives each edge and each
chamber a label. The distan¢@w) is the smallest number of chambers required
to walk from the chamber labeled hy to the identity. For example, i, pic-
tured in Figure 1£(s1s25152) = 4.

The random scan Metropolis walk proceeds frenby choosing one of, s
with probability 1/ 2. If £(s;w) > £(w), the move is accepted. #{(s;w) < £(w)
then the move is accepted with probabilityand rejected with probability £ 6.

One pass of the systematic scan Metropolis algorithm choogeserators in
the ordersy, s, 51, 52, .... Geometrically, starting from the identity, this amounts
to marching around the-gon. If no rejections are made then one complete scan
ends inwo.

Our bounds result in explicit expressions for the convergence of the two walks.
One of these has been carefully analyzed by Belsey [B1, Chap. VI, Thm. 2-10].
He showed the following.

ProrosiTiON 6.1. For the random scan Metropolis algorithm starting from the
identity,

K 2 1+o6 1 2t
21 < L(l——(l—dé)z) . 6.2)
b4 2 1-906 2
For 0 <6 <1, the right-hand side 0of6.2) is small fork of order
nlogé

2logl— (Y2)L—v8)?)’

Belsley [B1, Chap. VI, Thm. 4-12] further showed that the random scan Metrop-
olis algorithm has a total variation cutoff at
2
= 1_"9 + ca/n.
For the systematic scan algorithm, Theorem 4.10 and a computation of the rel-
evant constants from that theorem for the dihedral group shows that

£

2 n
I<_1Z _ :9(4éfl)n+9(2571)n 92_1 0 _1_1 _92(:1’
T 2 -1 6-1
Kt ) (6.3)
Zn(x) = 1 =06%" 4+ @2n-2)06%".
4 2

xeW
(For details of these calculations see [DR] or http://math.wisc:edm/pub/
persi3.21.00.ps.) Thus, for largeand fixed O< 6 < 1, a single scan suffices to
achieve stationarity for typical starting states under the systematic scan. For typi-
cal starting states, the random scan converges in orderdteps.

A comparison of the results in (6.2) and (6.3) shows a mild advantage for sys-
tematic scans. The effect is most pronounceé agproaches 1.

7. The Symmetric Group

This section proves Theorem 1.4 and a similar result for a different scanning strat-
egy. The results show that both scanning strategies reggiioperations up to
lead term constants.
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7a. Preliminaries

The symmetric groug,, is generated by the simple transpositions- (i, i + 1),
1<i <n -1, and the longest element §f is the reversal permutation

1 2 -« n—=1 n . n
w0:<n n—1 ... 2 1) with Z(wo)=<2>

The book of Fulton [Fu] provides a review of the representation theosy ,odind

we will adopt the conventions for tableaux used there. The irreducible represen-
tations of the Iwahori—Hecke algebfa are indexed by partitions with n boxes

(see Figure 2).

Figure 2

Number the rows and columns afas for matrices. If; and )L; denote the
length of theith row and,th column (respectively) of, then thecontentand the
hook lengthof a boxa in position(i, j) of A are

cby=j—i and hy=2x —i+¥ —j+1
respectively. Set
£(x)

nG) =) (i =D,
i=1

and let
g -1
[k]q: q—l and y(]q!:[k]q[k_l]q"'[z]q[l]q
for each positive integdr. Using this notation, the dimensiodsof the irreducible
representations d, the generic degrees defined in (3.15), and the constanjs

defined in Proposition 4.9 are given by

d;, = ! , I, = q”()\)—[n]q! s and C), = Zc(b) (71)
Iy l_[[hh]q bex

bex bexr
(see [Fu, Sec. 7.2, Prop. 2; Hf, 3.4.14; Mac, |, Sec. 7, Ex. 7; Mac, |, Sec. 1,
Ex. 3; Mac, 1V, (6.7)]). The dimensiodg, is also equal to the number of standard
tableaux of shape—that is, fillings of the boxes of with 1, 2, ..., n such that
the rows are increasing left to right and the columns are increasing top to bottom
(see [Fu, p. 53]).
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The next lemma provides bounds on the constantg.tbat will be useful for
proving bounds on the convergence times of the systematic scan Metropolis walks
that we analyze here. The boundsigiven in part (c) are essentially those given
by Diaconis and Shahshahani (see [D, 3D, Lemma 2].

LemMma 7.2, For each partitiond, letr;, ¢, andd, be as defined i7.1).
(2) Wherd = 1/g and0 <0 <1, 1, < 9()-(®g,.

(b) Y d? =n!and Z a2< foreach1<] <n.
J!

Abn
)\1711 J

()»21) + %(n —A)(n—2—3) if Ay>n/2,

© = { n2/4 —n if 1 <n/2

Proof. Setd = 1/¢ and use [Mac, I, Sec. 1, Ex. 2] and [Md¢l, Sec. 6, Ex. 2]
to obtain

L =6 n()—(g)—n+ (X hy) _LP1OF [n]e! — - (3)_Le: [n]6! —-(%) QV(Q)
[ Tt7ele H[hb]e XQ:
bei bei

where the sum is over all standard tableguxf shape. and where (Q) is the
sum ofi such that + 1is to the right ofi in Q. Thusrt; is a sum ofd; monomi-
als, where the lowest-degree term has degi@® — (3) > (%) — (). Part (a)
follows.

For (b), we can bound the number of standard tablgawt shape. with 1, =

n — j by noting that there aré}) ways of picking the elements not in the first

row of Q and at most/j! ways of arranging these to complete a standard tableau.
Thus

2j 2j

2 dff( Z.d*>2§<<’;>ﬁ)2— Gl =T

Ai=n—j

A=n—j

The inequalities in (c) are direct consequences of

o < { Crq,n—1) if A=n/2, 0
e = Cyanzy F A <n/2.
7b. Long Systematic Scan
As in Section 4a, we fix G # < 1 and consider the Markov chain
1 if y=s;xandf(y) > £(x),
Ki(x,y) l if y=s;xandl(y) < £(x), (7.3)
1-06 if y=nx,

which is produced by applying the Metropolis construction to the base chain
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Py | 1 if y=ysx,

Y =10 otherwise,
with the distributiont as given in (1.1)Recall that the chai; can be interpreted
as follows.

Fromw, try to multiply by ;. If this increases the number of inversions
of w, carry out the multiplication. If it decreases the the number of in-
versions then flip & coin and carry out the multiplication if the coin
comes up heads; otherwise stayat

The long systematic scan Metropolis chain is the chain given by
= (K1K2--- K, K, -+ - K2Ky) - - - (K1 K2 K2 K1) (K1K7).

The following theorem bounds the rate of convergence of this Markov chain. It
shows that a single scan suffices to be close to stationarity.

ProrosiTION 7.4, LetK be the long systematic scan Metropolis walk on the sym-
metric groups, defined by{4.2). Letd,, t;, andc; be the constants given (i.1),
and let0 < 6 < 1. Then the following statements hold.

@) I1K{/m =13 =Y, 62d:0? (D=4 and, withe = 1,
”K]il -7 ”%V < (enzﬁ”/2 _ 1) +nl 0”2/8+5n/4,

which, wherg < 1, approache® asn — oo.
(b) ¥ o (K — 13 = Z#(m d262(()~¢) and, with¢ = 1,

Zn(x)

xeW

which, wher9 < 1, approache® asn — oo.

< (enza" _ 1) + n 0n2/2+n’
TV

——1

Proof. By Theorem 4.3, this walk is equivalent to the walk on the Iwahori-Hecke
algebraH defined by multiplication by'2, with respect to the bas{g,, | w € S,,}.
Thus the equalities in (a) and (b) are consequences of Theorem 4.10.

Fix¢ =1 If Ay =n—jandj <n/2, thenthe bound og, from Lemma 7.2(c)
gives

o (H-G)+2(5) -2 < Qin=il2-YD=j(j=3) _ gi(n=3j/2+5/2) _ gi(n/4+5/2).

by using the bounds in Lemma 7.2(a) and (b), it follows that
n/2 j

Z Z t;\d;ﬂu((Z) C,) <Z_9j(n/4+5/2) < ;12911/4_1-

J=1 A#E(n)
A=n—j

When; < n/2, the bound in Lemma 7.2(c) gives
Z dfe(kzl)_(g)‘*z('zl)_ch\ <n! gn%/8+5n/4.

A
r<n/2
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The upper bound ofik} — 7|7y follows by combining these expressions. The
upper bound in (b) is proved similarly. O

7c. Short Systematic Scan

We now analyze the convergence of the short systematic scan and prove Theorem
1.4 of the introduction. The short systematic scan Metropolis chain on the sym-
metric group is given by

K = K]_KZ"'KnKn "'KZK]J

wherekK; is as in (7.3). The theorem shows that ordshort systematic scans are
necessary and suffice to reach stationarity when starting from the identity. In part
(b) itis shown that, for typical starting values, this chain converges in order log
scans.

THEOREM 7.5. Let K be the short systematic scan Metropolis algorithm on the
symmetric group defined I§4.2). Letd,, t,, andc,, be the constants given (i.1).
@) 1K1/ =15 = 35 1 25 021G where the sum is over stan-
dard tableaux of shapke and whereS(n) denotes the box ¢ containingn.
(@) For £ =n/2— (logn/log#) + ¢ with ¢ > 0,

”Kle N 77”?"\/ < (692‘“ . 1) +al 9n2/8—n(|ogn)/(|099)+11(c+1/4)'

Conversely, ift < n/4then, for fixed < 6 < 1, |K{ — 7|/7v tends tdl as
n — o0.

() X pew TOIKL/m = U5 = 3,5 dr 2o g 071D where the sum
is over standard tableaux of shapeand whereS(n) denotes the box of
containingn.

(b)) For0 <6 <land¢ = —(logn)/(log#) + ¢ withc > 0,

2 e\
E w(x) < (692[‘ -1+ (9—) Y2/ 2mn.
e
xeS,

L)
T

2

Proof. By Theorem 4.3, the Markov chaifi is the random walk o7, | w € S,,}
defined by multiplication byf;,_; - - - T,TZT> - - - T,,_1 in the lwahori-Hecke alge-
bra H corresponding to the symmetric grodp. Let H' be the Iwahori-Hecke
algebra corresponding to the symmetric grdfiyp;, and letH be the lwahori—
Hecke algebra correspondingdp. Let w( be the longest element 6f_, and let
wo be the longest element &f,. The inclusionS,_; C S, induces an inclusion
H' € H of the corresponding Iwahori-Hecke algebras.Hnthe generatorg;
are invertible with7, ™ = ¢*7; + (1— ¢™%. Then

'ﬁl}zo'waZZ Tn—l e Tz'flzfz e Tn—l

and so it follows from Proposition 4.9 that, in the representatibof H indexed
by the partition., the element

K=T, - -ToT#T>---T,_1 has eigenvalueg" 1<),
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where S runs over standard tableaux of shapand S(n) denotes the box of
containingz. This determines the eigenvaluesiof’ in the representatiop’ and

SO
X;\I(KZZ) — ZGZZ(n—l—C(S(n)))’
N

wherey, is the irreducible character of the Iwahori-Hecke algebra corresponding
to the partitionh. Parts (a) and (b) now follow from Proposition 4.8.
Usingg?2t(=1-c(8m) < g2tn=21) gnd the bound for, in Lemma 7.2, we have

4
ﬁ_ Z O(Al) (z)dxzw(” ) < Z YD (n—11)(n— A1+4e+1—2n)d2
T 2 Zm A (n)

sinced,, is the number of standard tableaux of shap&ix ¢ = n/2 — (logn)/
(log6) + c. Then, using the bound on the sumdgffrom Lemma 7.2,

n/2 /2 (1/2)j(A+46+1-2n+4(logn/10g6))
Z Z 9(1/2)j(j+4€+172n)d2<
I
=L A j=1 I
A=n—j

§@ctDj g2ctl

o0
=1
The function(n — A)(n — A1 + 4¢ + 1 — 2n) has a minimum air — A; =

(—1/2)(4¢ 4+ 1— 2n). At this minimum,i; = n — 2(logn)/(log0) + 2¢ +1/2 >
n/2 and so

Z 9(1/2)(n—Xl)(n—)»1+4l+1—2n)df < gV 2(n/2)(n/2+A4L+1-2n)

x
ha=n/2 — I 97%/8~(nlogn)/(loge)+n(c+1/4)

Combining these sums establishes the upper bound)in (a
To prove the lower bound in (plet

={wes, | l(w) > 2¢(n—1}

n
L(w) — (2)

Since each pass of the systematic scan can change the length of a permutation by
atmostZn — 1),

= {weS"

<2(n—1(n/4— z)}.

K{(A)=0. (7.6)
From equation (2.13),

(n-1) <
Er(t((w) = ———F+ + <

C on=1) & e n
_ L = 0
=715 +j2221_91 <2>+ (n)

n

j=2



188 PERSI D1acoNIS & ARUN RaMm

and '
Var, (¢(w)) = % ~ ; (1j_26911.)2 = ((’1’:91))2 +00).
Hence Chebychev’s inequality implies that, wheis large,
A <l_ <2<n\flr1><(ﬁ(/?i z))Z)
- <1_ a(n — 1><1—99>2<n/4 = e>2>' (7.7)

If £ < n/4then the right-hand side approaches & as co. Thus (7.5) and (7.6)
imply that || K{ — |lry — 1asn — oo, and this proves the second statement
of (a).

For (), use the boundz‘“"‘l‘“s("”) < §2tt—1) 1o obtain

Z n(x) Z 92[(}1 )Ll)dz

€S, 2 A#(n)

KL
_1

Fix £ = —(logn)/(logf) + c. Using the bound in Lemma 7.2(a) gives

n/2 n/2 i n/2 2j(¢+(logn/logé))
04 [¢] el 2¢
205 42 2¢j R - L
I I S Rl
=1 A#(n) j=1 ’
A=n—j

and, by using the bound in Lemma 7.2(b) and the bourd given in [F, (9.15)],

°\"

Z 926("7)‘1)(15 <0"nl =nln"0" < <—> Y2/ 27n.
e

)\15)\11/2

The result follows by combining the bounds for these two sums. O
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