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Representations of Rank Two
Affine Hecke Algebras

Arun Ram

Abstract. This paper gives a complete analysis of the irreducible rep-
resentations of affine Hecke algebras of rank two when the parameter
q is not a root of unity. The irreducible representations are classified
in terms of the Kazhdan-Lusztig classification and the relation to the
Springer correspondence is given in detail. Each irreducible represen-
tation is constructed explicitly. These results are used in a crucial way
in the classification of calibrated representations of general affine Hecke
algebras as done in [?] and [?]. Though the same methods can be used
to handle the very few root of unity cases (q2k = 1, k = 0, 1, 2, and also
k = 3 in type A2, k = 4 in type B2 and k = 3, 6 in type G2) which
have different representations, this extra analysis is not completed in
this paper.

This paper classifies and constructs explicitly all the irreducible repre-
sentations of affine Hecke algebras of rank two root systems. The methods
used to obtain this classification are primarily combinatorial and are, for the
most part, an application of the methods used in [?]. I have made special
effort to describe how the classification here relates to the classifications by
Langlands parameters (coming from p-adic group theory) and by indexing
triples (coming from a q-analogue of the Springer correspondence). There
are several reasons for doing the details of this classification:

(a) The proof of the one of the main results of [?] depends on this
classification of representations for rank two affine Hecke algebras.
Specifically, in the proof of Proposition 4.4 of [?], one needs to know
exactly which weights can occur in calibrated representations. The
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reason that this naturally depends on a rank two classification is
outlined in (d) below.

(b) The examples here illustrate (and clarify) results of [?], [?], [?], [?],
[?], [?], [?]–[?]. Much of the power of the combinatorial methods
which are now available is evident from the calculations in this
paper, especially when one compares with the effort needed in other
sources (for example [?], Chapt. 11).

(c) The explicit information here can be very useful for obtaining re-
sults on representations of p-adic groups (see, for example, [?]).

(d) One hopes that eventually there will be a combinatorial construc-
tion of all irreducible representations of all affine Hecke algebras.
I expect that such a construction will depend heavily on the rank
two cases. This idea is analogous to the way that the rank two
cases are the basic building blocks in the presentations of Coxeter
groups by “braid” relations and the presentations of Kac-Moody
Lie algebras (and quantum groups) by Serre relations.

The first section of this paper is a review of definitions and basic results
about affine Hecke algebras and their representations. A few additional lem-
mas are proved in order to aid the proofs and constructions in later sections.
The remainder of the sections detail the classification and construction of
the irreducible representations of affine Hecke algebras of types A1, A1×A1,
A2, C2 and G2. In each case I have indicated how the results here relate
to the “Langlands classification”, the classification of Kazhdan and Lusztig
[?], and the results in [?].

Acknowledgements. I thank Jacqui Ramagge for helpful conversa-
tions related to this paper, see [?]. A portion of this research was done
during a semester long stay at Mathematical Sciences Research Institute
with support from a Postdoctoral Fellowship. I thank MSRI and National
Science Foundation for this support.

1. Definitions and preliminary results

The Weyl group. Let R be a reduced irreducible root system in Rn,
fix a set of positive roots R+ and let {α1, . . . , αn} be the corresponding
simple roots in R. Let W be the Weyl group corresponding to R. Let si

denote the simple reflection in W corresponding to the simple root αi and
recall that W can be presented by generators s1, s2, . . . , sn and relations

s2
i = 1, for 1 ≤ i ≤ n,

sisjsi · · ·︸ ︷︷ ︸
mij factors

= sjsisj · · ·︸ ︷︷ ︸
mij factors

, for i 6= j,

where mij = 〈αi, α
∨
j 〉〈αj , α

∨
i 〉, and α∨

i = 2αi/〈αi, αi〉.
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The Iwahori-Hecke algebra. Fix q ∈ C∗ such that q is not a root of
unity. The Iwahori-Hecke algebra H is the associative algebra over C defined
by generators T1, T2, . . . , Tn and relations

(1.1)
T 2

i = (q − q−1)Ti + 1, for 1 ≤ i ≤ n,
TiTjTi · · ·︸ ︷︷ ︸
mij factors

= TjTiTj · · ·︸ ︷︷ ︸
mij factors

, for i 6= j,

where mij are the same as in the presentation of W . For w ∈ W define
Tw = Ti1 · · ·Tip where si1 · · · sip = w is a reduced expression for w. By [?],
Ch. IV §2 Ex. 23, the element Tw does not depend on the choice of the
reduced expression. The algebra H has dimension |W | and the set {Tw}w∈W

is a basis of H.

The group X. The fundamental weights are the elements ω1, . . . , ωn of
Rn given by 〈ωi, α

∨
j 〉 = δij . The weight lattice is the W -invariant lattice in

Rn given by

P =
n∑

i=1

Zωi.

Let X be the abelian group P except written multiplicatively. In other
words,

X = {Xλ | λ ∈ P}, and XλXµ = Xλ+µ = XµXλ, for λ, µ ∈ P .

Let C[X] denote the group algebra of X. There is a W -action on X given by
wXλ = Xwλ for w ∈ W , Xλ ∈ X, which we extend linearly to a W -action
on C[X].

The affine Hecke algebra. The affine Hecke algebra H̃ associated to
R and P is the algebra given by

H̃ = C-span{TwXλ | w ∈W,Xλ ∈ X}

where the multiplication of the Tw is as in the Iwahori-Hecke algebra H, the
multiplication of the Xλ is as in C[X] and we impose the relation
(1.2)

XλTi = TiX
siλ + (q − q−1)

Xλ −Xsiλ

1−X−αi
, for 1 ≤ i ≤ n and Xλ ∈ X.

This formulation of the definition of H̃ is due to Lusztig [?] following work
of Bernstein and Zelevinsky. The elements TwXλ, w ∈W , Xλ ∈ X, form a
basis of H̃.
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Weights. Let

T = {group homomorphisms t : X → C∗}.

The torus T is an abelian group with a W -action given by (wt)(Xλ) =
t(Xw−1λ). For any element t ∈ T define the polar decomposition

t = trtc, tr, tc ∈ T such that tr(Xλ) ∈ R>0, and |tc(Xλ)| = 1,

for all Xλ ∈ X. Let Q∨ =
∑

i Zα∨
i . There is a unique µ ∈ Rn and a unique

ν ∈ Rn/Q∨ such that

(1.3) tr(Xλ) = e〈µ,λ〉 and tc(Xλ) = e2πi〈ν,λ〉, for all λ ∈ P .

In this way we identify the sets Tr = {t ∈ T | t = tr} and Tc = {t ∈ T | t =
tc} with Rn and Rn/Q∨, respectively.

Central characters. Theorem 1.4. (Bernstein, Zelevinsky, Lusztig

[?], 8.1) The center of H̃ is C[X]W = {f ∈ C[X] | wf = f}.

Since H̃ has countable dimension, Dixmier’s version of Schur’s lemma
implies that Z(H̃) acts on an irreducible H̃-module M by scalars. Let t ∈ T
be such that

pM = t(p)M, for all p ∈ Z(H̃).

Since Z(H̃) = C[X(T )]W it follows that t(p(X)) = (wt)(p(X)) for all w ∈
W . The W -orbit Wt of t is the central character of M . We shall often abuse
notation and refer to any weight s ∈Wt as “the central character” of M .

Weight spaces. Let M be a finite dimensional H̃-module. For each
t ∈ T the t-weight space of M and the generalized t-weight space are the
subspaces

Mt = {m ∈M | Xλm = t(Xλ)m for all Xλ ∈ X} and

Mgen
t = {m ∈M | for each Xλ ∈ X, (Xλ − t(Xλ))km = 0 for some k ∈ Z>0},

respectively. If Mgen
t 6= 0 then Mt 6= 0. In general M 6=

⊕
t∈T Mt, but we

do have

M =
⊕
t∈T

Mgen
t .

This is a decomposition of M into Jordan blocks for the action of C[X]. The
set of weights of M is the set

(1.5) supp(M) = {t ∈ T | Mgen
t 6= 0}.
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The calibration graph. Let t ∈ T . Define a graph Γ(t) with

Vertices: Wt,
Edges: wt←→ siwt, if (wt)(Xαi) 6= q±2.

Proposition 1.6. ([?] Proposition 2.12) Let M be a finite dimensional

irreducible H̃-module with central character t. Then

dim(Mgen
s ) = dim(Mgen

s′ )

if s and s′ are in the same connected component of the calibration graph
Γ(t).

If t ∈ T define

(1.7) P (t) = {α > 0 | t(Xα) = q±2} and Z(t) = {α > 0 | t(Xα) = 1}.

For each subset J ⊆ P (t) define

(1.8) F (t,J) = {w ∈W | R(w) ∩ Z(t) = ∅, R(w) ∩ P (t) = J},

where R(w) = {α > 0 | wα < 0} is the inversion set of w. Define a placed
shape to be a pair (t, J) such that t ∈ T , J ⊆ P (t) and F (t,J) 6= ∅. The
elements of the set F (t,J) are called standard tableaux of shape (t, J).

Proposition 1.9. ([?] Theorem 2.14) Let t ∈ T . The connected components
of the calibration graph Γ(t) are the sets

{wt | w ∈ F (t,J)}, J ⊆ P (t), such that F (t,J) 6= ∅.

Calibrated representations. A finite dimensional H̃-module M is
calibrated if Mgen

t = Mt, for all t ∈ T .

Proposition 1.10. ([?] Proposition 4.2)

(a) An irreducible H̃-module M is calibrated if and only if dim(Mgen
t ) =

1 for all weights t of M .
(b) If M is an irreducible H̃-module with regular central character t

(i.e. Z(t) = ∅) then M is calibrated.

Let αi and αj be simple roots in R and let Rij be the rank two root
subsystem of R which is generated by αi and αj . Let Wij be the Weyl group
of Rij , the subgroup of W generated by the simple reflections si and sj . A
weight t ∈ T is calibratable for Rij if one of the following two conditions
holds:

(a) t(Xα) 6= 1 for all α ∈ Rij ,
(b) Rij is of type C2 or G2 (assume that αi is the long root and αj is

the short root), ut(Xαi) = q2 and ut(Xαj ) = 1 for some u ∈ Wij ,
and t(Xαi) 6= 1 and t(Xαj ) 6= 1.
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A placed skew shape is a placed shape (t, J) such that for all w ∈ F (t,J) and
all pairs αi, αj of simple roots in R the weight wt is calibratable for Rij .

Theorem 1.11. ([?] Theorem 3.1 and Proposition 4.1)

(a) Let (t, J) be a placed skew shape and let F (t,J) be the set of stan-
dard tableaux of shape (t, J). Define

H̃(t,J) = C-span{vw | w ∈ F (t,J)},
so that the symbols vw are a labeled basis of the vector space H̃(t,J).

Then the following formulas make H̃(t,J) into an irreducible H̃-
module: For each w ∈ F (t,J),

Xλvw = (wt)(Xλ)vw, for Xλ ∈ X, and

Tivw = (Ti)wwvw + (q−1 + (Ti)ww)vsiw, for 1 ≤ i ≤ n,

where (Ti)ww =
q − q−1

1− (wt)(X−αi)
, and we set vsiw = 0 if siw 6∈

F (t,J).
(b) If M is an irreducible calibrated representation such that supp(M) =
{wt | w ∈ F (t,J)} for some placed skew shape (t, J) then M is iso-

morphic to the module H̃(t,J) constructed in (a).

Remark 1.12. It follows from the results of Rodier [?] that if M is an
irreducible H̃-module with regular central character (i.e. Z(t) = ∅) then M
satisfies the hypothesis of the statement of Theorem 1.11 (b).

Langlands classification. The following discussion follows the work
of Evens [?] and [?], §8. For this subsection it is convenient to assume that
q ∈ R>0 and q 6= 1. For the general case see [?], §8. Let t ∈ T and let
t = trtc be the polar decomposition of t. Define

ν(t) ∈
n∑

i=1

Rα∨
i by requiring tr(Xλ) = q2〈λ,ν(t)〉, for all λ ∈ P .

A finite dimensional H̃-module M is tempered if for all weights t of M (as
defined in (1.5)) we have

〈ωi, ν(t)〉 ≤ 0, for all 1 ≤ i ≤ n.

The module M is square integrable if 〈ωi, ν(t)〉 < 0 for all 1 ≤ i ≤ n and all
weights t of M .

Let I be a subset of the simple roots and let H̃I be the subalgebra of
H̃ generated by Ti, i ∈ I, and all Xλ ∈ X. We shall say that a finite
dimensional H̃I -module is tempered if I is the maximal set such that for all
weights t of M ,

〈ωi, ν(t)〉 ≤ 0, for all i ∈ I.
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Theorem 1.13. (see [?]) Let I ⊆ {1, 2 . . . , n} and let T be an irreducible

tempered representation of H̃I .

(a) MT ,I = IndH̃
H̃I

(T ) has a unique irreducible quotient LT ,I .

(b) Every irreducible H̃-module is isomorphic to LT ,I for some pair
(T , I).

(c) If LT ,I
∼= LT ′,I′ then I = I ′ and T ∼= T ′ as H̃I -modules.

The Langlands parameters of an irreducible H̃-module M are given by the
pair (T , I) specified by Theorem 1.13 (b).

Classification by indexing triples. Kazhdan and Lusztig [?] (see
also the important work of Ginzburg [?]) gave a refinement of the Langlands
classification. Let G be the simple complex algebraic group with root system
R and weight lattice P . (Although there is a different affine Hecke algebra
associated to each simple complex group, in this paper we have considered
only the affine Hecke algebras corresponding to the simply connected groups
G. For a precise description of how the affine Hecke algebra corresponds to
the simple complex group G and the extension of the Langlands classification
to the other cases see the recent work of Ram-Ramagge [?] and Reeder [?].)

An indexing triple (s, u, ρ) consists of

a semisimple element s ∈ G,
a unipotent element u ∈ G, such that sus−1 = uq2

,

and an irreducible representation ρ of the component group A(s, u) = ZG(s, u)/
ZG(s, u)◦, where ZG(s, u) = ZG(s) ∩ ZG(u). Let K(Bs,u) be the K-theory
of the variety

Bs,u = {Borel subgroups of G containing both s and u}.

By a theorem of Lusztig [?] K(Bs,u) is an H̃-module. The group A(s, u)
also acts on K(Bs,u) and this action commutes with the action of H̃. The
standard modules Ms,u,ρ are the H̃-modules given by the decomposition

K(Bs,u) =
⊕

ρ

Ms,u,ρ ⊗ ρ,

where the sum is over all irreducible representations of A(s, u).

Theorem 1.14. [?]
(a) If Ms,u,ρ 6= 0 then it has a unique simple quotient Ls,u,ρ.

(b) Every simple H̃-module isomorphic to some Ls,u,ρ.
(c) If Ls,u,ρ

∼= Ls′,u′,ρ′ then there is a g ∈ G such that s′ = gsg−1,
u′ = gug−1, and ρ′ = ρ (identifying A(s′, u′) and A(s, u)).

In this way each irreducible H̃-module corresponds to a unique (up to
conjugation) indexing triple. One can replace u by n = lnu in the Lie
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algebra g = Lie(G) (see [?], Ch. 8) so that an indexing triple is

a semisimple element s ∈ G,
a nilpotent element n ∈ g, such that Ad(s)n = q2n,

and an irreducible representation ρ of the component group A(s, n) = ZG(s, n)/
ZG(s, n)◦, where ZG(s, n) = ZG(s)∩ZG(n) and ZG(n) is taken with respect
to the adjoint action of G on g. Since the part of A(s, u) coming from the
center of G acts trivially on Bs,u the only representations ρ of A(s, u) that
appear in K(Bs,u) are representations of A′(n) = ZGs(n)/ZGs(n)0 where Gs

is the simple adjoint group corresponding to the reductive group ZG(s). We
will use this form of the indexing triples in the examples in later sections.

Principal series modules. Let t ∈ T and let Cvt be the one dimen-
sional C[X]-module corresponding to the character t : X → C∗. Specifically,
Cvt is the one dimensional vector space with basis {vt} and C[X]-action
given by

Xλvt = t(Xλ)vt, for all Xλ ∈ X.

The principal series module corresponding to t is the H̃-module

M(t) = IndH̃
CX(Cvt).

Theorem 1.15. [?]

(a) Every irreducible H̃-module M with central character t is a com-
position factor of the principal series module M(t).

(b) If w ∈ W and t ∈ T then M(t) and M(wt) have the same compo-
sition factors.

Theorem 1.16. (Kato’s irreducibility criterion [?]) Let t ∈ T and let P (t) =
{α > 0 | t(Xα) = q±2}. The principal series module M(t) is irreducible if
and only if P (t) = ∅.

Remark. Kato actually proves a more general result and thus needs a
further condition for irreducibility. We have simplified matters by specifying
the weight lattice P in our construction of the affine Hecke algebra. One
can use any W -invariant lattice in Rn and Kato works in this more general
situation. When the one uses the weight lattice P , a result of Steinberg [?],
4.2, 5.3 says that the stabilizer Wt of a point t ∈ T under the action of W
is always a reflection group. Because of this Kato’s criterion takes a simpler
form.
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Weights of induced modules. If I ⊆ {1, . . . , n} define H̃I to be the
subalgebra of H̃ generated by Ti, i ∈ I, and all Xλ ∈ X.

Lemma 1.17. Let t ∈ T such that t(Xαi) = q2 for all i ∈ I and let Cvt be

the one dimensional H̃I -module with basis {vt} and H̃I -action given by

Tivt = qvt, for i ∈ I,

and

Xλvt = t(Xλ)vt, for all Xλ ∈ X.

Let W/WI be the set of minimal length coset representatives of cosets of

WI in W . Then the weights of the H̃-module M = IndH̃
H̃I

(Cvt) are wt,

w ∈W/WI , and

dim(Mgen
wt ) = (# of u ∈W/WI such that ut = wt).

Proof. The module M has basis {Tw ⊗ vt | w ∈ W/WI}. By writing
Tw = Ti1 · · ·Tip for a reduced word w = si1 . . . sip and inductively using
the defining relation (1.2) we get

Xλ(Tw ⊗ vt) = t(Xw−1λ)(Tw ⊗ vt) +
∑
v<w

av(t)(Tv ⊗ vt)

= (wt)(Xλ)(Tw ⊗ vt) +
∑
v<w

av(t)(Tv ⊗ vt),

where the sum is over v ∈ W which are less than w in Bruhat order and
av(t) ∈ C. This shows that the eigenvalues of Xλ on M are (wt)(Xλ). The
result follows by counting the multiplicity of each eigenvalue.

The τ operators. The maps τi : Mgen
t →Mgen

sit
defined below are local

operators on M in the sense that they act on each weight space Mgen
t of M

separately. The operator τi is only defined on weight spaces Mgen
t such that

t(Xαi) 6= 1.

Proposition 1.18. ([?] Proposition 2.7) Let t ∈ T such that t(Xαi) 6= 1
and let M be a finite dimensional H̃-module. Define

τi : Mgen
t −→ Mgen

sit

m 7−→
(

Ti −
q − q−1

1−X−αi

)
m.

(a) The map τi : Mgen
t −→Mgen

sit
is well defined.

(b) As operators on Mgen
t , Xλτi = τiX

siλ, for all Xλ ∈ X.

(c) As operators on Mgen
t , τiτi =

(q − q−1Xαi)(q − q−1X−αi)
(1−Xαi)(1−X−αi)

.
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(d) Let 1 ≤ i 6= j ≤ n and let mij be as in (1.1). Then

τiτjτi · · ·︸ ︷︷ ︸
mij factors

= τjτiτi · · ·︸ ︷︷ ︸
mij factors

,

whenever both sides are well defined operators on Mgen
t .

Lemma 1.19. Let t ∈ T such that t(Xαi) = 1 and suppose that M is

an H̃-module such that Mgen
t 6= 0. Let Wt be the stabilizer of t under the

action of W on T . Assume that w̄ ∈ W/Wt is such that t and w̄t are in
the same connected component of Γ(t). Let w be a minimal length coset
representative of w̄. Then

(a) dim(Mgen
wt ) ≥ 2, and

(b) If Mgen
sjwt = 0 then (w̄t)(Xαj ) = q±2 and 〈w−1αj , α

∨
i 〉 = 0.

Proof. Let M(t) be the two dimensional principal series module for the
affine Hecke algebra H̃A1 of type A1 (see §2 central character to). Then
M(t) = M(t)gen

t and has basis {vt, T1vt}. Let nt be a nonzero weight vector
in Mt. There is a unique H̃A1-module homomorphism

M(t) −→ M
vt 7−→ nt

where we view M as an H̃A1-module by restriction to the parabolic subal-
gebra H̃{i} ⊆ H̃. This homomorphism must be an injection since M(t) is
irreducible. Thus the vectors nt, Tint span a two dimensional subspace of
Mgen

t and Xλ ∈ X acts on this subspace by the matrix

φt(Xλ) = t(Xλ)
(

1 (q − q−1)〈λ, α∨
i 〉

0 1

)
.

Let w = si1 · · · sip be a reduced expression of w. Since t and wt are in
the same connected component of Γ(t) we can use Proposition 1.18 (c) to
show that the map

τw = τi1 · · · τip : Mgen
t −→Mgen

wt

is well defined and bijective. Thus the vectors τwnt, τwTint span a two
dimensional subspace of Mgen

wt and, by Proposition 1.18 (b) Xλ ∈ X acts on
this subspace by the matrix

φwt(Xλ) = t(Xw−1λ)
(

1 (q − q−1)〈w−1λ, α∨
i 〉

0 1

)
.

This proves (a). Then

φwt(1−X−αj ) = (1−t(X−w−1αj ))

 1
(q − q−1)t(X−w−1αj )

1− t(X−w−1αj )
〈−w−1αj , α

∨
i 〉

0 1

 .
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Since Mgen
sjwt = 0, τj : Mgen

wt →Mgen
sjwt is the zero map and so

φwt(Tj) = φwt

(
q − q−1

1−X−αj

)

=
q − q−1

1− t(X−w−1αj )

 1
(q − q−1)t(X−w−1αj )

1− t(X−w−1αj )
〈w−1αj , α

∨
i 〉

0 1

 .

The relation T 2
j = (q − q−1)Tj + 1 is the same as (Tj − q)(Tj + q−1) = 0.

This relation forces φwt(Tj) to have Jordan blocks of size 1 and eigenvalues
±q±1. It follows that t(Xw−1αj ) = q±2 and 〈w−1αj , α

∨
i 〉 = 0.

2. Classification for A1

The root system R for A1 has one simple root α1 and fundamental weight
ω1 = 1

2α1.

Irreducible representations. Table 2.1 lists the irreducible H̃-modules
by their central characters. The sets P (t) and Z(t) are as given in (1.7)
and correspond to the choice of representative for the central character dis-
played in Figure 2.1. The Langlands parameters usually consist of a pair
(T , I) where I is a subset of {1} and T is a tempered representation for
the parabolic subalgebra H̃I . In our cases the tempered representation T
of H̃I is completely determined by a character t ∈ T . Specifically, T is the
only tempered representation of H̃I which has t as a weight. In the labeling
in Table 2.1 we have replaced the representation T by the weight t. The
nilpotent element eα1 is a representative of the root space gα1 for the Lie
algebra g = sl2. For each calibrated module with central character t we have
listed the subset J ⊆ P (t) such that (t, J) is the corresponding placed skew
shape (see Theorem 1.11). The abbreviation ‘nc’ indicates modules that are
not calibrated.

Central P (t) Z(t) Dimension Langlands Indexing Calibration
character parameters triple set J

ta {α1} ∅ 1 (ta, ∅) (ta, 0, 1) ∅
1 tempered (ta, eα1 , 1) {α1}

tb ∅ ∅ 2 (tb, ∅) (tb, 0, 1) ∅

to ∅ {α1} 2 tempered (to, 0, 1) nc

Table 2.1. Irreducible representations
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Figure 2.1 displays the real parts of the central characters in Table 2.1.
If t ∈ T then the polar decomposition t = trtc determines an element µ ∈ Rn

such that tr(Xλ) = e〈λ,µ〉 (see (1.3)). For each central character tp the point
labeled by p in Figure 2.1 is the graph of the corresponding µp ∈ Rn. Assume
(for pictorial convenience) that q is a positive real number and let

Hα1 = {x ∈ R | 〈α1, x〉 = 0},

and

Hα1±δ = {x ∈ R | 〈α1, x〉 = ln(q±2)}.

The | marks indicate the (affine) hyperplanes Hα1±δ.

++ •
ta •

tb•
to

Hα1 Hα1+δHα1−δ

Figure 2.1. Real parts of central characters in Table 2.1

Tempered and square integrable representations. The tempered
(resp. square integrable) H̃-modules are the ones which have all their weight
spaces in the closure (resp. interior) of the dotted region of Figure 2.2.

••| |
tos1ta ..................

Figure 2.2. Real parts of weights of tempered representations

The irreducible tempered representations with real central character can
be indexed by the irreducible representations of the symmetric group S2 (see
[?]). These representations are indexed by the partitions (2), (12) of 2. Let
eα1 be an element of the root space gα1 for the Lie algebra g = sl2. The two
nilpotent orbits in g and the corresponding tempered representations of H̃
are as in Table 2.2.

Nilpotent orbit Indexing triple Square integrable W representation
regular (ta, eα1 , 1) yes (12)

0 (to, 0, 1) no (2)

Table 2.2. Tempered representations and the Springer correspondence

•
ta•

s1ta •
tb•

s1tb •
to

Figure 2.3. Calibration graphs for central characters in Table 2.1
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The analysis. Central character ta: There are two one-dimensional
representations Cva and Cvs1a with central character ta. These representa-
tions are given explicitly by

Xλva = ta(Xλ)va,

T1va = qva,

and

Xλvs1a = (s1ta)(Xλ)vs1a,

T1vs1a = −q−1vs1a,

respectively. One uses Theorem 1.15 and the fact that the principal series
module M(ta) is two dimensional to conclude that Cva and Cvs1a are the
only irreducible representations of H̃ with central character ta.

Central character tb: By Theorem 1.15 and Kato’s irreducibility criterion,
Theorem 1.16, the only irreducible representation with central character
tb is the principal series module M(tb). Alternatively, this module can be
constructed by applying Theorem 1.11 to the placed skew shape (tb, ∅).
Central character to: The weights given by to(Xω1) = ±1 are the two central
characters to ∈ T which satisfy P (t) = ∅, Z(t) = {α1}. In either case Kato’s
irreducibility criterion (Theorem 1.16) tells us that the principal series mod-
ule M(to) is irreducible. This module has basis {vt, T1vt} and action given
by

φ(Xλ) = t(Xλ)
(

1 (q − q−1)〈λ, α∨
1 〉

0 1

)
and

φ(T1) =
(

0 1
1 q − q−1

)
.

3. Classification for A1 ×A1

The affine Hecke algebra of A1 × A1 is naturally isomorphic to H̃A1 ⊗
H̃A1. The finite dimensional irreducible representations of H̃A1 ⊗ H̃A1 are
all of the form M ⊗ N where M and N are finite dimensional irreducible
representations of H̃A1.

4. Classification for A2

The root system R for A2 has simple roots α1 and α2, fundamental
weights ω1 and ω2, and

〈α1, α
∨
2 〉 = −1 ω1 = 1

3(2α1 + α2)
〈α2, α

∨
1 〉 = −1, ω2 = 1

3(α1 + 2α2),
and α1 = 2ω1 − ω2

α2 = −ω1 + 2ω2.
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Irreducible representations. Table 4.1 lists the irreducible H̃-modules
by their central characters. The sets P (t) and Z(t) are as given in (1.7)
and correspond to the choice of representative for the central character dis-
played in Figure 4.1. The Langlands parameters usually consist of a pair
(T , I) where I is a subset of {1, 2} and T is a tempered representation for
the parabolic subalgebra H̃I . In our cases the tempered representation T
of H̃I is completely determined by a character t ∈ T . Specifically, T is the
only tempered representation of H̃I which has t as a weight. In the labeling
in Table 4.1 we have replaced the representation T by the weight t. The
nilpotent elements eα1 and eα2 are representatives of the root spaces gα1

and gα2 , respectively, where g is the Lie algebra g = sl3. For each calibrated
module with central character t we have listed the subset J ⊆ P (t) such
that (t, J) is the corresponding placed skew shape (see Theorem 1.11). The
abbreviation ‘nc’ indicates modules that are not calibrated.

Figure 4.1 displays the real parts of the central characters in Table 4.1.
If t ∈ T then the polar decomposition t = trtc determines an element ν ∈ Rn

such that tr(Xλ) = e〈λ,ν〉 (see (1.3)).

Hα1

Hα2

Hα1+α2

•a•b•c

• d

•e

•
f

•g

•o

..................................................................................................................................................................................................................................................................................................................................................................................

......................................
......................................

......................................
......................................

......................................
......................................

......................................
......................................

......................................
......................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................

.........................

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.1. Real parts of central characters in Table 4.1

For each central character tp the point labeled by p in Figure 4.1 is the
graph of the corresponding νp ∈ Rn. Assume (for pictorial convenience) that
q is a positive real number and let

Hβ = {x ∈ Rn | 〈β, x〉 = 0}, and Hβ±δ = {x ∈ Rn | 〈β, x〉 = ln(q±2)},

for each positive root β. The dotted lines display the (affine) hyperplanes
Hβ±δ.
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Central P (t) Dim. Langlands Indexing Calibration
character Z(t) parameters triple set J

ta {α1, α2} 1 (ta, ∅) (ta, 0, 1) ∅
∅ 2 (s1ta, {2}) (ta, eα2 , 1) {α2}

2 (s2ta, {1}) (ta, eα1 , 1) {α1}
1 tempered (ta, eα1 + eα2 , 1) {α1, α2}

tb {α2} 3 (tb, ∅) (tb, 0, 1) ∅
∅ 3 (s2tb, {2})† (tb, eα2 , 1) {α2}

tc {α2, α1 + α2} 3 (tc, {1}) (tc, 0, 1) nc
{α1} 3 (s2tc, {2}) (tc, eα2 , 1) nc

td {α1, α1 + α2} 3 (td, {2}) (td, 0, 1) nc
{α2} 3 (s1td, {1}) (td, eα1 , 1) nc

te ∅ 6 (te, {1}) (te, 0, 1) nc
{α1}

tf ∅ 6 (tf , {2}) (tf , 0, 1) nc
{α2}

tg ∅ 6 (tg, ∅) (tg, 0, 1) ∅
∅

to ∅ 6 tempered (to, 0, 1) nc
{α1, α2}

Table 4.1. Irreducible representations 1

Tempered and square integrable representations. The tempered
(resp. square integrable) H̃-modules are the ones which have the real parts
of all their weights in the closure (resp. interior) of the shaded region of
Figure 4.2. Let t ∈ T be given by t(X−α1) = ±q, t(X−α2) = ±q. This is
a special case of the central character tb in Table 4.1. For this particular

1There is one case when this representation is tempered, see Table 4.2.
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special case there is one tempered representation with central character t.

Hα1

Hα2

Hα1+α2
•s2s1s2ta

•
t

• s1t

•s2t •
to
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Figure 4.2. Real parts of weights of tempered representations

The irreducible tempered representations with real central character are
in one-to-one correspondence with the irreducible representations of the sym-
metric group S3 (see [?]). These representations are indexed by the parti-
tions (3), (21), (13) of 3. Equivalently, they can be indexed by the pairs
(n, ρ) which appear in the Springer correspondence. The n and ρ will also
be elements of the indexing triple for the corresponding tempered represen-
tation of H̃. Here n is a nilpotent element of the Lie algebra g = sl3 and ρ
is an irreducible representation of the component group ZG(n)/ZG(n)◦. In
type A the component group is always trivial. For each root β ∈ R let eβ

be an element of the root space gβ. The three nilpotent orbits in g and the
corresponding tempered representations of H̃ are as in Table 4.2.

Nilpotent orbit ZG(n)/ZG(n)◦ Indexing triple Sq. int. W rep.
regular 1 (ta, eα1 + eα2 , 1) yes (3)

subregular 1 (s2s1t, eα2 , 1) no (21)
0 1 (to, 0, 1) no (13)

Table 4.2. Tempered representations and the Springer correspondence

•ta•s1ta

•s2s1ta •s2ta

•
s1s2ta

•
s2s1s2ta

....................................................... .......................................................

•tb•s1tb

•s2s1tb •s2tb

•
s1s2tb

•
s2s1s2tb

..................................................................................................................... .....................................................................................................................

•tc

•s2tc

•
s1s2tc
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•td•s1td

•s2s1td

•te

•s2te

•
s1s2te

..............................................................................................................

•
tf•

s1tf

•s2s1tf

.....................................................................................................................

•
tg•

s1tg

•s2s1tg •s2tg

•
s1s2tg

•
s2s1s2tg

............................................................................................................................................................................

............................................................................................................................................................................

•to

Figure 4.3. Calibration graphs for central characters in Table 4.1

The analysis. Central characters ta, tb, tg: Since Z(t) = ∅ these
weights are regular. Thus the representations corresponding to these central
characters are in one to one correspondence with the connected components
of the calibration graph Γ(t) and can be constructed explicitly with the use
of Theorem 1.11. Up to isomorphism the principal series module M(tg) is
the only irreducible H̃-module with central character tg. The Langlands pa-
rameters for each module can be determined from its weight structure and
the indexing triple is then determined from the Langlands data by using
the induction theorem of Kazhdan and Lusztig (see the discusssion in [?],
p. 34).

There is one special case of the central character tb when the irreducible
module constructed by applying Theorem 1.11 to the placed skew shape
(tb, ∅) is tempered. This happens when tb = s2s1t for the weight t ∈ T given
by t(X−α1) = ±q, t(X−α2) = ±q. The indexing triple and the calibration
set for this case are still given by (tb, eα2 , 1) and J = {α2}, respectively.
Central characters tc and td: One can use the defining relations of H̃ to
check that the only 1-dimensional representations of H̃ are the ones with
central character ta. Construct two 3-dimensional representations of H̃ by

IndH̃
H̃{2}

(Cvc) and IndH̃
H̃{2}

(Cvs2c),

where Cvc and Cvs2c are the two one-dimensional representations of H̃{2}
given by

T2vc = qvc, Xα1vc = vc, Xα2vc = q2vc,

T2vs2c = −q−1vs2c, Xα1vs2c = q2vs2c, Xα2vs2c = q−2vs2c.

These representations must be irreducible since, if not, they would either
have a 1-dimensional submodule or a one dimensional quotient. But there
are no 1-dimensional modules with central character tc.
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The central characters tc and td are taken into each other under the
automorphism of the Dynkin diagram of A2 which switches the two nodes
and thus these two central characters will produce modules which have the
same structure (up to twisting by the automorphism which switches α1 and
α2). Thus the representations with central character td can be obtained from
the ones with central character tc by switching all 1’s and 2’s and changing
all c’s to d’s.
Central characters te and tf : Since P (te) = ∅, Kato’s irreducibility criterion
(Theorem 1.16) implies that the principal series module M(te) is irreducible.
By Theorem 1.15 this is the only irreducible with central character te. As
for the case of tc and td, the central characters te and tf are taken into
each other under the automorphism of the Dynkin diagram of A2. Thus the
irreducible representations with central character tf can be obtained from
the one with central character te by switching all 1’s and 2’s and changing
all e’s to f ’s.
Central character to: Since P (to) = ∅, Kato’s irreducibility criterion (Theo-
rem 1.16) implies that the principal series module M(to) is irreducible. By
Theorem 1.15 this is the only irreducible with central character to.

5. Classification for C2

The root system R for C2 has simple roots α1 and α2, fundamental
weights ω1 and ω2, and

〈α1, α
∨
2 〉 = −2 ω1 = α1 + α2

〈α2, α
∨
1 〉 = −1, ω2 = 1

2α1 + α2,
and α1 = 2ω1 − 2ω2

α2 = −ω1 + 2ω2.

Irreducible representations. Table 5.1 lists the irreducible H̃-modules
by their central characters. We have listed only those central characters t
for which the principal series module M(t) is not irreducible (see Theorem
1.16). The sets P (t) and Z(t) are as given in (1.7) and correspond to the
choice of representative for the central character displayed in Figure 5.1. The
Langlands parameters usually consist of a pair (T , I) where I is a subset of
{1, 2} and T is a tempered representation for the parabolic subalgebra H̃I .
In our cases the tempered representation T of H̃I is completely determined
by a character t ∈ T . Specifically, T is the only tempered representation of
H̃I which has t as a weight. In the labeling in Table 5.1 we have replaced the
representation T by the weight t. The notation for the nilpotent elements
in the indexing triples is as in Table 5.2. For each calibrated module with
central character t we have listed the subset J ⊆ P (t) such that (t, J) is the
corresponding placed skew shape (see Theorem 1.11). The abbreviation ‘nc’
indicates modules that are not calibrated.

Figure 5.1 displays the real parts of the central characters in Table 5.1.
If t ∈ T then the polar decomposition t = trtc determines an element µ ∈ Rn

such that tr(Xλ) = e〈λ,µ〉 (see (1.3)). For each central character tp the point
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labeled by p in Figure 5.1 is the graph of the corresponding µp ∈ Rn. Assume
(for pictorial convenience) that q is a positive real number and let

Hβ = {x ∈ Rn | 〈β, x〉 = 0}, and Hβ±δ = {x ∈ Rn | 〈β, x〉 = ln(q±2)},

for each positive root β. The dotted lines display the (affine) hyperplanes
Hβ±δ.

Hα1 Hα2Hα1+α2

Hα1+2α2

•a

• b, c

•d

•e

•f
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Figure 5.1. Real parts of central characters in Table 5.1

Tempered and square integrable representations. The tempered
(resp. square integrable) H̃-modules are the ones which have the real parts
of all their weights in the closure (resp. interior) of the shaded region of
Figure 5.2.

The irreducible tempered representations with real central character can
be indexed by the irreducible representations of the Weyl group W of type
C2 (see [?], p. 34). Equivalently, these representations can be indexed by
the pairs (n, ρ) which appear in the Springer correspondence. The n and
ρ will also be elements of the indexing triple for the corresponding tem-
pered representation of H̃. Here n is a nilpotent element of the Lie algebra
g = Lie(G), G is the complex simple group over C of type C2 and ρ is an
irreducible representation of the component group ZG(n)/ZG(n)◦ (see [Ca]).
For each root β ∈ R let eβ be an element of the root space gβ. The four
nilpotent orbits in g and the corresponding tempered representations of H̃
are as in Table 5.2. We have used the notation of Carter [?], p. 424 to label
the irreducible representations of the Weyl group.
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Central P (t) Dim. Langlands Indexing Cal.
char. Z(t) parameters triple set J

ta {α1, α2} 1 (s1s2s1s2ta, ∅) (ta, 0, 1) ∅
∅ 3 (s1ta, {1}) (ta, eα1 , 1) {α1}

3 (s2ta, {2}) (ta, eα2 , 1) {α2}
1 tempered (ta, eα1 + eα2 , 1) {α1, α2}

tb
{
α1, α1 + α2, 3 (tb, {2}) (tb, 0, 1) nc

α1 + 2α2

}
1 (s1tb, {1}) (tb, eα1 , 1) {α1}

{α2} 1 tempered (tb, eα1+α2 ,−1)
{
α1, α1

+α2

}
3 tempered (tb, eα1+α2 , 1) nc

tc {α1, α1 + 2α2} 2 (tc, {2}) (tc, 0, 1) ∅
∅ 2 (s1tc, {1}) (tc, eα1 , 1) {α1}

2 (s1s2tc, {1}) (tc, eα1+2α2 , 1) {α1 + 2α2}
2 tempered (tc, eα1 + eα1+2α2 , 1)

{
α1, α1

+2α2

}
td {α2, α1 + α2} 4 (td, {1}) (td, 0, 1) nc

{α1} 4 (s2td, {2}) (td, eα2 , 1) nc

te {α1} 4 (s2te, {1}) (te, 0, 1) nc
{α1 + 2α2} 4 tempered (te, eα1 , 1) nc

tf {α1} 4 (tf , ∅) (tf , 0, 1) ∅
∅ 4 (s1tf , {1}) (tf , eα1 , 1) {α1}

tg {α2} 4 (tg, ∅) (tg, 0, 1) ∅
∅ 4 (s2tg, {2}) (tg, eα2 , 1) {α2}

Table 5.1. Irreducible (non principal series) representations

Nilpotent orbit ZG(n)/ZG(n)◦ Indexing triple Sq. int. W rep.
regular 1 (ta, eα1 + eα2 , 1) yes (∅, 11)

subregular Z/2Z (tb, eα1+α2 , 1) yes (1, 1)
(tb, eα1+α2 ,−1) yes (∅, 2)

minimal 1 (te, eα1 , 1) no (11, ∅)
0 1 (to, 0, 1) no (2, ∅)

Table 5.2. Tempered representations and the Springer correspondence
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Hα1 Hα2Hα1+α2

Hα1+2α2
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Figure 5.2. Real parts of weights of tempered representations

The only other tempered representation is the square integrable represen-
tation (tc, eα1 + eα1+2α2 , 1). This representation does not have real central
character. It is the representation constructed in [Lu3, 4.14, 4.23]. (In
Lusztig’s notation it is the star of the representation corresponding to the
graph G′ ⊕ G′′.)

The analysis. A general calculation with the defining relations of H̃
shows that there are only four one dimensional H̃-modules Cv1, Cv2, Cv3,
and Cv4 which have weights ta, s2s1tb, s1tb and s1s2s1s2ta, respectively.
These modules are given explicitly by

T1v1 = qv1, T2v1 = qv1, Xα1v1 = q2v1, Xα2v1 = q2v1,
T1v2 = qv2, T2v2 = −q−1v2, Xα1v2 = q2v2, Xα2v2 = q−2v2,

T1v3 = −q−1v3, T2v3 = qv3, Xα1v3 = q−2v3, Xα2v3 = q2v3,
T1v4 = −q−1v4, T2v4 = −q−1v4, Xα1v4 = q−2v4, Xα2v4 = q−2v4.

•
ta

•
s1ta

•
s2s1s2ta

•
s1s2s1s2ta

• s2ta•s2s1ta

• s1s2ta•s1s2s1ta

...........................................................................................................................

...........................................................................................................................

•
tb

•
s1tb

•s2s1tb

•s1s2s1tb
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•
tc

•
s1tc

•s2s1tc

•s1s2s1tc

• s2tc

• s1s2tc
•
s2s1s2tc

•
s1s2s1s2tc

...................................................

...................................................

...................................................

...................................................

•
td

• s2td

• s1s2td
•
s2s1s2td

........................................................................

•
te

•
s1te

•s2s1te • s2te

...................................................
...................................................

•
tf

•
s1tf

•s2s1tf

•s1s2s1tf

• s2tf

• s1s2tf
•
s2s1s2tf

•
s1s2s1s2tf

..............................................................................................................................................................................
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Figure 5.3. Calibration graphs for central characters in Table 5.1

Central character ta: Since Z(ta) = ∅, ta is regular and thus all irreducible
representations with central character ta are calibrated. They are in one
to one correspondence with the connected components of the calibration
graph and can be constructed with the use of Theorem 1.11. The Langlands
parameters for each module can be determined from its weight structure and
the indexing triple is then determined from the Langlands data by using the
induction theorem of Kazhdan-Lusztig (see the discussion in [?], p.34).
Central character tb: We already know from our general computation above,
that there are two one-dimensional H̃-modules with central character tb.
One has weight s1tb and the other has weight s2s1tb. Let Cvb and Cvs1b be
the one dimensional representations of H̃{1} given by

T1vb = qvb, Xα1vb = q2vb, Xα2vb = vb,
T1vs1b = −q−1vs1b, Xα1vs1b = q−2vs1b, Xα2vs1b = q2vs1b.
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Let
M1 = IndH̃

H̃{1}
(Cvb) and M2 = IndH̃

H̃{1}
(Cvs1b).

By Lemma 1.17 these modules have weights supp(M1) = {tb, s1tb, s2s1tb}
and supp(M2) = {s1tb, s2s1tb, s1s2s1tb}, respectively. Both M1 and M2 are 4
dimensional. By Proposition 1.18 (c) one of the two operators τ2 : (M1)s2s1tb →
(M1)s1tb or τ2 : (M1)s1tb → (M1)s2s1tb must have nonzero kernel. This im-
plies that M1 has either a 3 dimensional submodule or a 3 dimensional
quotient, call it N1, with weights {tb, s1tb}. By Lemma 1.19, any module
P with weights {tb, s1tb} must have dim(P gen

tb
) ≥ 2 and dim(P gen

s1tb
) ≥ 1. It

follows that N1 is irreducible. A similar argument can be used to show that
M2 has either a 3 dimensional submodule or a 3-dimensional quotient which
must be irreducible.

The representation N1 constructed in the previous paragraph and the 1
dimensional representation with weight s1tb are both tempered. One obtains
the corresponding indexing triples by comparing the Langlands parameters
for these modules with the labelings of the corresponding representations of
W in the Springer correspondence. See [?], p. 424, [?], p. 34 and Table 5.2.

Central character tc: Since Z(tc) = ∅, tc is regular and thus all irreducible
representations with central character tc are calibrated. They are in one to
one correspondence with the connected components of the calibration graph
and can be constructed with the use of Theorem 1.11. The Langlands pa-
rameters for each module can be determined from its weight structure. The
only representation for which the indexing triple cannot be determined from
the Langlands parameters and the [?] induction theorem (see the discussion
in [BM, p. 34]) is the tempered representation. This representation is con-
structed in [?], 4.14 and 4.23. In Lusztig’s notation, it is the star (see [?],
4.23) of the representation corresponding to the graph G′⊕G′′. The indexing
triple for this representation is given in the discussion for B2 in [?], 2.10.

Central character td: Let Cvd and Cvs2d be the one dimensional representa-
tions of H̃{2} given by

T2vd = qvd, Xα1vd = vd, Xα2vd = q2vd,
T2vs2d = −q−1vs2d, Xα1vs2d = q4vs2d, Xα2vs2d = q−2vs2d.

Let
M1 = IndH̃

H̃{2}
(Cvd) and M2 = IndH̃

H̃{2}
(Cvs2d).

By Lemma 1.17 these modules have weights supp(M1) = {td, s2td, s1s2td}
and supp(M2) = {s2td, s1s2td, s2s1s2td}, respectively. Both M1 and M2 are
4 dimensional.

Let M be any H̃-module such that Mtd 6= 0. By Lemma 1.19 (a),
dim(Mgen

td
) ≥ 2. Since 〈α2, α

∨
1 〉 6= 0 it follows from Lemma 1.19 (b) that

dim(Mgen
s2td

) ≥ 1. Then, by Proposition 1.6, dim(Mgen
s1s2td

) ≥ 1. Adding these
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numbers up we see that dim(M) ≥ 4. It follows that M1 is irreducible. An
analogous argument can be applied to conclude that M2 is irreducible.
Central character te: Let Cve and Cvs1e be the one dimensional representa-
tions of H̃{1} given by

T1ve = qve, Xα1ve = q2ve, Xα2ve = q−1ve,
T1vs1e = −q−1vs1e, Xα1vs1e = q−2vs1e, Xα2vs1e = qvs1e.

Let
M1 = IndH̃

H̃{1}
(Cve) and M2 = IndH̃

H̃{1}
(Cvs1e).

By Lemma 1.17 these modules have weights supp(M1) = {te, s2te} and
supp(M2) = {s1te, s2s1te} respectively. Both M1 and M2 are 4 dimensional.

Let M be any H̃-module such that Mte 6= 0. By Lemma 1.19 (a) and
Proposition 1.6, dim(Mgen

te ) = dim(Mgen
s2te) ≥ 2. Thus dim(M) ≥ 4. It

follows that M1 is irreducible. An analogous argument can be applied to
conclude that M2 is irreducible.
Central character tf and tg: These cases are handled in the same way as for
the central character ta.

6. Classification for G2

The root system R for G2 has simple roots α1 and α2, fundamental
weights ω1 and ω2, and

〈α1, α
∨
2 〉 = −3 ω1 = 2α1 + 3α2

〈α2, α
∨
1 〉 = −1, ω2 = α1 + 2α2,

and
α1 = −ω1 + 2ω2

α2 = 2ω1 − 3ω2.

Irreducible representations. Table 6.1 lists the irreducible H̃-modules
by their central characters. We have listed only those central characters t
for which the principal series module M(t) is not irreducible (see Theorem
1.16). The sets P (t) and Z(t) are as given in (1.7) and correspond to the
choice of representative for the central character displayed in Figure 6.1. The
Langlands parameters usually consist of a pair (T , I) where I is a subset of
{1, 2} and T is a tempered representation for the parabolic subalgebra H̃I .
In our cases the tempered representation T of H̃I is completely determined
by a character t ∈ T . Specifically, T is the only tempered representation of
H̃I which has t as a weight. In the labeling in Table 6.1 we have replaced the
representation T by the weight t. The notation for the nilpotent elements
in the indexing triples is as in Table 6.3.

Table 6.2 lists the irreducible calibrated H̃-modules. For each module
with central character t we have listed the subset J ⊆ P (t) such that (t, J)
is the corresponding placed skew shape (see Theorem 1.11). We have listed
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only those central characters t for which the principal series module M(t) is
not irreducible (see Theorem 1.16).

Central P (t) Dim. Langlands Indexing
character Z(t) parameters triple

ta {α1, α2} 1 (ta, ∅) (ta, 0, 1)
∅ 5 (s1ta, {1}) (ta, eα1 , 1)

5 (s2ta, {2}) (ta, eα2 , 1)
1 tempered (ta, eα1 + eα2 , 1)

tb {α1} 6 (tb, ∅) (tb, 0, 1)
∅ 6 (s1tb, {1}) (tb, eα1 , 1)

tc {α1, α1 + 3α2} 2 (tc, {2}) (tc, 0, 1)
∅ 4 (s1tc, {1}) (tc, eα1 , 1)

4 (s1s2tc, {1}) (tc, eα1+3α2 , 1)
2 tempered (tc, eα1 + eα1+3α2 , 1)

td {α1, α1 + 2α2} 3 (td, {2}) (td, 0, 1)
∅ 3 (s1td, {1}) (td, eα1 , 1)

3 (s2s1s2td, {2}) (td, eα1+2α2 , 1)
3 tempered (td, eα1 + eα1+2α2 , 1)

te {α1, α1 + 2α2, 3 (te, {2}) (te, 0, 1)
α1 + α2, α1 + 3α2} 1 (s1te, {1}) (te, eα1 , 1)

{α2} 2 (s2s1te, {2}) (te, eα1+α2 , 1)
1 tempered (te, eα1 + eα1+2α2 , (21))
3 tempered (te, eα1 + eα1+2α2 , (3))

tf {α1, 2α1 + 3α2} 6 (tf , {1}) (tf , 0, 1)
{α1 + 3α2} 6 (s1tf , {1}) (tf , eα1 , 1)

tg {α1} 6 (tg, {2}) (tg, 0, 1)
{α1 + 2α2} 6 tempered (tg, eα1 , 1)

th {α2} 6 (th, ∅) (th, 0, 1)
∅ 6 (s2th, {2}) (th, eα2 , 1)

ti {α2, α1 + α2} 6 (ti, {1}) (ti, 0, 1)
{α1} 6 (s2ti, {2}) (ti, eα2 , 1)

tj {α2} 6 (tj , {1}) (tj , 0, 1)
{2α1 + 3α2} 6 tempered (tj , eα2 , 1)

Table 6.1. Irreducible (non principal series) representations
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Figure 6.1 displays the real parts of the central characters in Table 6.1.
If t ∈ T then the polar decomposition t = trtc determines an element ν ∈ Rn

such that tr(Xλ) = e〈ν,λ〉 (see (1.3)). For each central character tp the point
labeled by p in Figure 6.1 is the graph of the corresponding νp ∈ Rn. Assume
(for pictorial convenience) that q is a positive real number and let

Hβ = {x ∈ Rn | 〈β, x〉 = 0}, and Hβ±δ = {x ∈ Rn | 〈β, x〉 = ln(q±2)},
for each positive root β. The dotted lines display the (affine) hyperplanes
Hβ±δ.

Central P (t) Dim. Indexing Calibration
character Z(t) triple set J

ta {α1, α2} 1 (ta, 0, 1) ∅
∅ 5 (ta, eα1 , 1) {α1}

5 (ta, eα2 , 1) {α2}
1 (ta, eα1 + eα2 , 1) {α1, α2}

tb {α1} 6 (tb, 0, 1) ∅
∅ 6 (tb, eα1 , 1) {α1}

tc {α1, α1 + 3α2} 2 (tc, 0, 1) ∅
∅ 4 (tc, eα1 , 1) {α1}

4 (tc, eα1+3α2 , 1) {α1 + 3α2}
2 (tc, eα1 + eα1+3α2 , 1) {α1, α1 + 3α2}

td {α1, α1 + 2α2} 3 (td, 0, 1) ∅
∅ 3 (td, eα1 , 1) {α1}

3 (td, eα1+2α2 , 1) {α1 + 2α2}
3 (td, eα1 + eα1+2α2 , 1) {α1, α1 + 2α2}

te {α1, α1 + 2α2, 1 (te, eα1 , 1) {α1}
α1 + α2, α1 + 3α2} 2 (te, eα1+α2 , 1) {α1, α1 + α2}

{α2} 1 (te, eα1 + eα1+2α2 , (21)) P (te) \ {α1 + 3α2}

th {α2} 6 (th, 0, 1) ∅
∅ 6 (th, eα2 , 1) {α2}

Table 6.2. Calibrated irreducible (non principal series) representations

Tempered and square integrable representations. The irreducible
tempered representations with real central character can be indexed by the
irreducible representations of the Weyl group W of type G2 (see [?], p. 34).
Equivalently, these representations can be indexed by the pairs (n, ρ) which
appear in the Springer correspondence. The n and ρ will also be elements
of the indexing triple for the corresponding tempered representation of H̃.
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Here n is a nilpotent element of the Lie algebra g = Lie(G), G is the complex
simple group over C of type G2 and ρ is an irreducible representation of the
component group ZG(n)/ZG(n)◦ (see [Ca]). For each root β ∈ R let eβ be
an element of the root space gβ . The five nilpotent orbits in g and the cor-
responding tempered representations of H̃ are as in Table 6.3. The notation
S3 denotes the symmetric group on three elements, which has irreducible
representations indexed by the partitions (3), (21), (13) of 3. We have used
the notation of Carter [?], p. 427 to label the irreducible representations
of the Weyl group W of type G2. The only other tempered representa-
tions are the representations labeled by the triples (tc, eα1 + eα1+3α2 , 1) and
(td, eα1 +eα1+2α2 , 1). These representations are square integrable but do not
have real central character.
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Figure 6.1. Real parts of central characters in Table 6.1

The modules labeled by (tc, eα1+eα1+3α2 , 1), (td, eα1+eα1+2α2 , 1), (te, eα1+
eα1+2α2 , (3)), (te, eα1 + eα1+2α2 , (21)) are the ones constructed by Lusztig in
[?] 4.20, 4.19, 4.7 and 4.22 respectively. In Lusztig’s notation these are the
stars (see [?], 4.23) of the modules labeled by the graphs G′′, G′, G and G′′′,
respectively.
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Nilpotent orbit ZG(n)/ZG(n)o Indexing triple Sq. int. W rep.
regular 1 (ta, eα1 + eα2 , 1) yes φ1,0

subregular S3 (te, eα1 + eα1+2α2 , (3)) yes φ2,1

(te, eα1 + eα1+2α2 , (21)) yes φ1,3
′

subminimal 1 (tj , eα2 , 1) no φ2,2

minimal 1 (tg, eα1 , 1) no φ1,3
′′

0 1 (to, 0, 1) no φ1,6

Table 6.3. Tempered representations and the Springer correspondence
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Figure 6.2. Calibration graphs for central characters in Table 6.1

The analysis. Central characters ta, tb, tc, td, th: The central charac-
ters te, tf , tg, ti and tj are the only ones which have both Z(t) and P (t)
nonempty. The other cases are handled by Theorem 1.16 and Theorem 1.11
as in the cases of central characters ta, tb, tg and to for type A2.

The Langlands parameters for each module can be determined from its
weight structure. The indexing triple is determined from the Langlands data
by using the induction theorem of Kazhdan and Lusztig (see the discussion
in [?], p. 34). Let us give an example to illustrate the procedure. The
Langlands parameters (s1s2tc, {1}) for the 4 dimensional representation with
central character tc correspond to the indexing triple (s2tc, eα1 , 1) which is
conjugate to the triple (tc, s2eα1 , 1) = (tc, eα1+3α2 , 1).

The indexing triples for the tempered representations cannot be deter-
mined with the use of the Kazhdan-Lusztig induction theorem. The indexing
triples for the tempered representations with real central character are de-
termined from the Springer correspondence, see Table 6.3 and [?], p. 34. The
two tempered representations with central characters tc and td do not have
real central character. By the last two sentences of [?], 2.10 we know that the
indexing triples for these representations contain the subregular nilpotent
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and that the component groups are isomorphic to Z/3Z and Z/2Z respec-
tively. In both cases the component group acts trivially on K(Bs,u) and so
ρ = 1. The fact that the elements eα1 +eα1+3α2 and eα1 +eα1+2α2 are repre-
sentatives of the subregular nilpotent orbit can be derived from the analysis
in [?], Theorem 4.40 or [?]. This determines the triples (tc, eα1 + eα1+3α2 , 1)
and (td, eα1 + eα1+2α2 , 1).

Central character te: Theorem 1.11 applied to the placed skew shapes
(te,

{
α1, α1 +α2

}
), (te, {α1}) and (te, {α1, α1 + α2, α1 + 2α2}) produces,

respectively, a two dimensional irreducible module M with supp(M) =
{s2s1te, s1s2s1te}, a one dimensional irreducible module N with supp(N) =
{s1te} and a one dimensional irreducible module N∗ with supp(N∗) =
{s2s1s2s1te}. Lusztig [?] Theorem 4.7 constructs a 3-dimensional irreducible
H̃-module P with dim(P gen

te ) = 2 and dim(P gen
s1te) = 1. In Lusztig’s notation

this is the module labeled by the graph G for G̃2.
As described in [?], 4.23 we can twist the module P by an involutive

automorphism of H̃ to obtain another 3-dimensional irreducible module P ∗

which has dim((P ∗)gen
s2s1s2s1te) = 2 and dim((P ∗)gens1s2s1s2s1te) = 1.

All of the modules M , N , P , N∗, P ∗ must appear as composition factors
of the principal series module M(te). By comparing dimensions of weight
spaces, any other module Q which appears in a composition series of M(te)
must have supp(Q) ⊆ {s2s1te, s1s2s1te}. Theorem 1.11(b) then implies that
Q must be isomorphic to M . Thus Theorem 1.15 implies that M , N , P ,
N∗, and P ∗ are (up to isomorphism) all the irreducible modules with central
character te.

The Langlands parameters for each module are determined from its
weight structure. The Kazhdan-Lusztig induction theorem allows us to use
the Langlands parameters to determine the indexing triples for the modules
which are not tempered. Since te is a real central character the index-
ing triples for the tempered representations can be determined from the
Springer correspondence, see Table 6.3. Alternatively, one can get these
triples from [?], 2.10 where it is explained that the nilpotent in the index-
ing triple is subregular, the variety Bs,u (where s = te and u is subregular)
consists of three disjoint points and a projective line, and the component
group is isomorphic to the symmetric group S3. The symmetric group S3

acts trivially on the line and permutes the three points, which implies that
the line corresponds to ρ = (3) (trivial representation of S3) and the three
points are split between the isotypic components ρ = (3) and ρ = (21). In
this case the standard module Ms,u,(13) = 0. The projective line in Bs,u

corresponds to the two dimensional weight space (P ∗)gente in the module P ∗.
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Central character tf : Let Cvf and Cvs1f be the one dimensional represen-
tations of H̃{1} given by

T1vf = qvf , Xα1vf = q2vf , X3α2vf = q−2vf ,
T1vs1f = −q−1vs1f , Xα1vs1f = q−2vs1f , X3α2vs1f = q4vs1f .

Let
M1 = IndH̃

H̃{1}
(Cvf ) and M2 = IndH̃

H̃{1}
(Cvs1f ).

By Lemma 1.17 these modules have weights supp(M1) = {s2tf , tf , s1tf , s2s1tf}
and supp(M2) = {s1tf , s2s1tf , s1s2s1tf , s2s1s2s1tf} respectively. Both M1

and M2 are 6 dimensional.
Let M be any H̃-module such that Ms2tf 6= 0. By Lemma 1.19 and

Proposition 1.6, dim(Mgen
tf

) = dim(Mgen
s2tf

) ≥ 2. Since 〈s2α1, α
∨
1 〉 = 〈α1 +

3α2, α
∨
1 〉 6= 0 it follows from Lemma 1.19 (b) that dim(Mgen

s1tf
) ≥ 1. Then,

by Proposition 1.6, dim(Mgen
s2s1tf

) ≥ 1. Adding these numbers up we see that
dim(M) ≥ 6. It follows that M1 is irreducible. An analogous argument can
be applied to conclude that M2 is irreducible.

Central character tg: Let Cvg and Cvs1g be the one dimensional representa-
tions of H̃{1} given by

T1vg = qvg, Xα1vg = q2vg, X2α2vg = q−2vg,
T1vs1g = −q−1vs1g, Xα1vs1g = q−2vs1g, X2α2vs1g = q2vs1g.

Let
M1 = IndH̃

H̃{1}
(Cvg) and M2 = IndH̃

H̃{1}
(Cvs1g).

By Lemma 1.17 these modules have weights supp(M1) = {s1s2tg, s2tg, tg}
and supp(M2) = {s1tg, s2s1tg, s1s2s1tg} respectively. Both M1 and M2 are
6 dimensional.

Let M be any H̃-module such that Ms1s2tg 6= 0. By Lemma 1.19 and
Proposition 1.6, dim(Mgen

tg ) = dim(Mgen
s2tg) = dim(Mgen

s1s2tg) ≥ 2. Thus
dim(M) ≥ 6. It follows that M1 is irreducible. An analogous argument
can be applied to conclude that M2 is irreducible.

Central character ti: Let Cvi and Cvs2i be the one dimensional representa-
tions of H̃{2} given by

T2vi = qvi, Xα1vi = vi, Xα2vi = q2vi,
T2vs2i = −q−1vs2i, Xα1vs2i = q6vs2i, Xα2vs2i = q−2vs2i.

Let
M1 = IndH̃

H̃{2}
(Cvi) and M2 = IndH̃

H̃{2}
(Cvs2i).

An argument similar to that for the central character tf shows that M1 and
M2 are irreducible.
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Central character tj: Let Cvj and Cvs2j be the one dimensional representa-
tions of H̃{2} given by

T2vj = qvj , X2α1vj = q−6vj , Xα2vj = q2vj ,
T2vs2j = −q−1vs2j , X2α1vs2j = q6vs2j , Xα2vs2j = q−2vs2j .

Let
M1 = IndH̃

H̃{2}
(Cvj) and M2 = IndH̃

H̃{2}
(Cvs2j).

An argument similar to that for the central character tg shows that M1 and
M2 are irreducible.
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Birkhäuser, 1997.

[Ev] S. Evens, The Langlands classification for graded Hecke algebras, Proc. Amer.
Math. Soc. 124 (1996), 1285–1290.

[HO1] G. J. Heckman and E. M. Opdam, Yang’s system of particles and Hecke algebras,
Ann. of Math. (2) 145 (1997), 139–173.

[HO2] G. J. Heckman and E. M. Opdam, Harmonic analysis for affine Hecke algebras,
in Current Developments in Mathematics, Intern. Press, Boston, 1996.

[Ja] D. Jackson, On nilpotent orbits of type G2, Ph. D. Thesis, University of Sydney,
1997.

[Ka] S-I. Kato, Irreducibility of principal series representations for Hecke algebras of
affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 929–943.

[KL] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke
algebras, Invent. Math. 87 (1987), 153–215.

[Kr] C. Kriloff, Some interesting nonspherical tempered representations of graded
Hecke algebras, Trans. Amer. Math. Soc. 351 (1999), 4411–4428.

[Lu1] G. Lusztig, Singularities, character formulas, and a q-analog of weight multiplic-
ities, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque
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