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Abstract. We show that the Young tableaux theory and constructions of the ir-
reducible representations of the Weyl groups of type A, B and D, Iwahori-Hecke
algebras of types A, B, and D, the complex reflection graps p, n) and the
corresponding cyclotomic Hecke algebis ;, .., can be obtained, in all cases,
from the affine Hecke algebra of type A. The Young tableaux theory was ex-
tended to affine Hecke algebras (of general Lie type) in recent work of A. Ram.
We also show how (in general Lie type) the representations of general affine
Hecke algebras can be constructed from the representations of simply connected
affine Hecke algebras by using an extended form of Clifford theory. This exten-
sion of Clifford theory is given in the Appendix.

0. Introduction

Recent work of A. Ram [Ra2,5] gives a straightforward combinatorial construction
of the simple calibrated modules of affine Hecke algebras (of general Lie type as
well as type A). The first aim of this paper is to show that Young’s seminormal
construction and all of its previously known generalizations are special cases of
the construction in [Ra5]. In particular, the representation theory of

(&) Weyl groups of types A, B, and D,
(b) lwahori-Hecke algebras of types A, B, and D,
(c) the complex reflection grougs(r, p, n), and

(d) the cyclotomic Hecke algebrds. ,, ,,,
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can be derived entirely from the representation theorgftihe Hecke algebras

of type A.Furthermore, the relationship between the affine Hecke algebra and the

objects in (a)-(d) always produces a natural set of Jucys-Murphy type elements

and can be used to prove the standard Jucys-Murphy type theorems. In particular,
we are able to use Bernstein’s results about the center of the affine Hecke algebra
to show that, in the semisimple case, the center of the cyclotomic Hecke algebra

H, 1 is the set of symmetric polynomials in the Jucys-Murphy elements.

A. Young's seminormal construction of the irreducible representations of the
symmetric group dates from 1931 [Yg1]. Young himself generalized his tableaux
to treat the representation theory of Weyl groups of types B and D [Yg2]. In 1974
P.N. Hoefsmit [Hf] generalized the seminormal construction to lwahori-Hecke al-
gebras of types A, B, and D. Hoefsmit's work has never been published and, in
1985, Dipper and James [DJ], Theorem 4.9 and H. Wenzl [Wz] independently
treated the seminormal construction for irreducible representations for Iwahori-
Hecke algebras of type A. In 1994 Ariki and Koike [AK] introduced (some of)
the cyclotomic Hecke algebras and generalized Hoefsmit’'s construction to these
algebras. The construction was generalized to a larger class of cyclotomic Hecke
algebras in [Ar2]. For a summary of this work see [Ral] and [HR].

General affine Hecke algebras are naturally associated to a reductive algebraic
group and the size of the commutative part of the affine Hecke algebra depends
on the structure of the corresponding algebraic group (simply connected, adjoint,
etc.). The second aim of this paper is to show that it is sufficient to understand the
representation theory of the affine Hecke algebra in the simply connected case. We
describe explicitly how the representation theory of the other cases is derived from
the simply connected case.

The machine which allows us to accomplish this reduction is a form of Clifford
theory. Precisely, iz is an algebra an@ is a finite group acting o by automor-
phisms then the representation theory of the fgof fixed points of theG-action
can be derived from the representation theorjz@nd subgroups af. This is an
extension of the approach to Clifford theory given by Macdonald [Mac2].

Let us state precisely what is new in this paper. The main result has three parts:

(1) The Hecke algebraH,.,,,, of the complex reflection groups(r, p,n)
can be obtained as fixed point subalgebras of the Hecke aldébra
associated to the complex reflection graiip, ,, via

Hr,p,n = (Hr,l,n)z/pz .

(2) The Hecke algebrad;, of nonadjointp-adic groups can be obtained as
fixed point subalgebras of the Hecke algeBfa associated to the corre-
sponding adjoinp-adic group, via

Hy, = (Hp)P/L.

(3) There is a form of Clifford theory (to our knowledge new) that allows
one to completely determine the representation theory of a fixed point
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subalgebrak® in terms of the representation theory of the algeBrand
the groupG.
We use this method to work out the representation theory of the algébrasin
detail. Additional results include,

(4) The discovery of the “right” affine braid group,, ,, , and affine Hecke
algebrasH ., ,, to associate to the cyclotomic Hecke algebfas, ,,.
The representation theory of these new groups and algebras is completely
determined from the representation theory of the classical affine braid
groupsB«. 1., and the classical affine Hecke algebfas ; ,, of type A
as a consequence of the results in (3).

Finally,

(5) We show how the classical trick (due to Cherednik) for determining the
representation theory of the algebtds; ,, from that of H, ;, arises
from a map from the affine Hecke algebra of typeo the finite Hecke
algebra of type” which corresponds to a folding of the Dynkin diagram.
This explanation is new. We show that such maps from the affine Hecke
algebra to the finite Hecke algebra cannot exist in general type, and we
work out the details of the cases where such homomorphisms do arise
from foldings.

In a recent paper Reeder [Re] has used our results to prove the Langlands clas-
sification of irreducible representations for general affine Hecke algebras. (Previ-
ously, this was known only in the simply connected case, see Kazhdan and Lusztig
[KL].) This also provides a classification of the irreducible constituents of unram-
ified principal series representations of general split redugtigdic groups. (The
Kazhdan-Lusztig result provides this classification for groups with connected cen-
ter.)

Acknowledgements A. Ram thanks P. Deligne for his encouragement, stimulating
guestions and helpful comments on the results in this paper. We thank D. Passman
for providing some useful references about Clifford theory. We are grateful for the
generous support of this research by the National Science Foundation, the National
Security Agency and the Australian Research Council.

1. Algebras with Young tableaux theories

A. Young invented the theory of standard Young tableaux in order to describe the
representation theory of the symmetric graiyp the group ofn x n matrices such
that

(a) the entries are eithéror 1,

(b) there is exactly one nonzero entry in each row and each column.

Young himself began to generalize the theory and in [Yg1] he provided a theory for
the Weyl groups of type B, i.e. the hyperoctahedral grdapB,, = (Z/27) S,
of n x n matrices such that
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(a) the entries are eithéror +1,

(b) there is exactly one nonzero entry in each row and each column.
In the same paper Young also treated the Weyl giéup,, of n x n matrices such
that

(a) the entries are eithéror +1,

(b) there is exactly one nonzero entry in each row and each column,

(c) the product of the nonzero entrieslis
W. Specht [Sp] generalized the theory to cover the complex reflection groups
G(r,1,n) = (Z/rZ) S, consisting ofn x n matrices such that

(a) the entries are eithéror rth roots of unity,

(b) there is exactly one nonzero entry in each row and each column.

In the classification [ST] of finite groups generated by complex reflections
there is a single infinite family of group&(r,p,n) and exactly 34 others, the
“exceptional” complex reflection groups. The groupé-, p, n) are the groups of
n X n matrices such that

(a) the entries are eithéror rth roots of unity,
(b) there is exactly one nonzero entry in each row and each column,
(c) the(r/p)th power of the product of the nonzero entries.is
Though we do not know of an early reference which generalizes the theory of
Young tableaux to these groups, it is not difficult to see that the method that Young
uses for the Weyl groupd’ D,, extends easily to handle the groug@ér, p, n).
Special cases of the groupgr, p, n) are

(@) G(1,1,n) = S,, the symmetric group,
(b) G(2,1,n) = W B,, the hyperoctahedral group (i.e. the Weyl group of
type By),
(c) G(2,2,n) = W D,, the Weyl group of typeD,,,
d) G(r,1,n) =2 (Z/rZ) 1 Sy, = (Z/TZ)™ x Sy.
The order ofG(r,1,n) is r"n!. Let E;; be then x n matrix with 1 in the (i, 5)
position and all other entrigs ThenG(r, 1,n) can be presented by generators

s1=CEn +ZE1‘¢, and s; =FE; i1+ Eip1, + Z Ejj, 2<i<n,

j#1 i1
where( is a primitiverth root of unity, and relations
(B1) s;sj = sjs;, if |¢ —j|>1,
(BZ) 8;8i+1S8i = Si4+15iSi+1, for2<i:<n-1,
(BB) 51525182 = 52515251,
(C) s1 =1,
(R) s? =1, for2 <i<n.

The groupG(r, p, n) is the subgroup of indexin G(r, 1,n) generated by

aozs]f, a; = $15251, a; =8;, 2<i1<n.
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(1.1) Cyclotomic Hecke algebradd, ; ,,

More recently there has been an interest in lwahori-Hecke algebras associated to
reflection groups and there has been significant work generalizing the construc-
tions of A. Young to these algebras. Iwahori-Hecke algebras of types A, B and
D were handled by Hoefsmit [Ho] and other aspects of the theory for these alge-
bras were developed by Dipper, James and Murphy [DJ], [DIM], Gyoja [Gy] and
Wenzl [Wz]. In 1994, Ariki and Koike [AK] introduced cyclotomic Hecke alge-
brasH, ; ,, for the complex reflection groupS(r, 1,n) and they generalized the
Young tableau theory to these algebras. Theorem 3.18 below shows that the theory
of [AK] is a special case of an even more general theory for affine Hecke algebras.

Letuy,...,u,,q € C, ¢ # 0. The cyclotomic Hecke algebra is the algebra
H,1n(ui,...,ur;q), overC, given by generator;, . .., T, and relations

(B1) TT; = TyT,, it i —j| > 1,

(B2) i1 T; = Ty 1 TiTi 1, for2 <i <m — 1,

(BB) TWToTh 1o = Ty I Th,

@C) (Tr — w)(Th — u2) -+ (T1 — uy) =0,

(aR) (T; — ¢)(T; + ¢~ 1) =0, for2 <i<n.

The algebra, 1 ,,(u1, ..., ur; q) is of dimension"n! (see [AK]).

(@) H1,1,0(1;q) is the Iwahori-Hecke algebra of typé, ;.

(b) H21n(q,—q1;q) is the Iwahori-Hecke algebra of tygs,.

(c) If ¢ is a primitiverth root of 1 thenH,.1 ,,(1,¢,...,¢"1; 1) is the group
algebraCG(r, 1,n).

Fact (c) says that the representation theory of the grél{psl, n) is a special case
of the representation theory of the algebfs; ,,.

(1.2) Cyclotomic Hecke algebradi, , ,,

The work of Brow, Malle and Michel [BMM] demonstrated that there are cy-
clotomic Hecke algebras associated to most complex reflection groups (even ex-
ceptional complex reflection groups). In particular, there are cyclotomic Hecke
algebradi, , ,, corresponding to all the grougs(r, p, n) and Ariki [Ar2] has gen-
eralized the Young tableau mechanism to these groups (see also [HR]). Theorems
3.15 and the mechanism of Theorem 2.8 show that the theory of Ariki is a special
case of a general construction for affine Hecke algebras.

Letr,p,n € Z~( be such thap dividesr and letd = r/p. Letzy,...,xq-1 €
C and let¢ be a primitivepth root of 1. For1 < j < r, define

uj = E*xy, if j—1=40p+F, 0<k<p—1,0<t<d-1)
i.e.,u,...,u, € Carechosen so that

(Ty —ur)(Th —ug) -+ (11 —up) = (T = ap) (T} — ) - (T} — =) _y).
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The algebrdd, , ,(xo, . .., zq—1; q) is the subalgebra df, 1 ,, (u1, . .., u,; ¢) gen-
erated by the elements

ap =17, ay =T Ty, a; =T, for2<i<n.
Then

(@) Ha2,n(1;q) is the Iwahori-Hecke algebra of tyge,,,
(b) If n is a primitive dth root of unity thenH,. ,, ,(1,7,--- ,n?71;1) is the
group algebr&G(r,p,n).

(1.3) Affine braid groups of type A

There are three common ways of depicting affine braids [Cr], [GL], [Jo]:

(a) As braids in a (slightly thickened) cylinder,
(b) As braids in a (slightly thickened) annulus,
(c) As braids with a flagpole.

See Figure 1. The multiplication is by placing one cylinder on top of another,
placing one annulus inside another, or placing one flagpole braid on top of another.
These are equivalent formulations: an annulus can be made into a cylinder by
turning up the edges, and a cylindrical braid can be made into a flagpole braid by
putting a flagpole down the middle of the cylinder and pushing the pole over to the
left so that the strings begin and end to its right.

The group formed by the affine braids withstrands is the affine braid group
of type A. The affine braid grouf 1, is presented by generatdfs, . . ., 7;, and
X°¢1 (see Figure 2) with relations

(Bl) T,T; = T;T;, if |i — j| > 1,
(B2) T;T; 1T = T 1 Ti T4 1, for2<i<n-—1,
(BB) X1 TL X1 Ty = Th X1 THXe!,
(B1) X°'T; = T; X1, for3 <i <n.
Inductively defineX® € By 1., by
X% =T, X51T;, 2<i<n. (1.4)

By drawing pictures of the corresponding affine braids one can check thatthe
all commute with each other. View the symbejsas a basis odR"™ so that

R"=> Re;, andlet L=) Zs. (1.5)
i=1 i=1

The affine braid grou 1, contains a large abelian subgroup
X ={X*xeL} (1.6)

where X* = (Xe)M ... (X&) for A = A\jey + -+ + M\en € L. Thepole
winding numberof an affine braich € B 14, is x(b) Wherex: Bo 1, — ZiS
the group homomorphism defined byX<!) = 1 andx(7;) =0, 2 <i < n.
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The affine braid groufB.. ,, ,, is the subgroup 0B 1, of affine braids with pole
winding number equal t6 (modp),

Boopm = {b € Boo1.n | #(b) = 0 (mod p)}. (1.7)

Define

Q=> Z(e;i—=i1) and  L,=Q+) pZs, (1.8)
=2

i=1

for each nonnegative integer The latticeL,, is a lattice of index in L. Then
BOO,PJL = <X/\7Ti | A E Lp,2 < 7 < n>

and the groupX £» = (X* | A € L,) is an abelian subgroup &%, , ...

(1.9) Affine Hecke algebras of type A

The affine Hecke algebid 1 ,, (resp.H p.») is the quotient of the group algebra
CBoo,1,n (resp.CB p,») by the relations

TP=(q—q W +1, 2<i<n.
Let L and X * be as in (1.5) and (1.6). The subalgebra
C[X] =span{X* | A € L} (resp.C[X%?] =span{X* |\ € L,}) (1.10)

is a commutative subalgebra éf. 1, (resp. Hxpn). The symmetric group
S, acts on the latticd, by permuting thes; and the latticed.,, are S, -invariant
sublattices of.. Lets; = (i, — 1) € S,, ando; = &; — ;1. For2 <i <nand
A€ L (resp.X € L),

X>‘ o XSM

A _ i)\. —1
X =X""T,+(q—q )m7

(1.11)

as elements ofl 1., (resp.Heo p.n)-

For each element € S, defineT, = T;, -+ T;, if w = s;,---5;, IS an
expression ofv as a product of simple reflections such thaip is minimal. The
elementT’,, does not depend on the choice of the reduced expressionBbu,
Ch. IV §2 Ex. 23]. The sets

{(X*, | eLwesS,} and {X*T,|\€Ly,weS,}
are bases of . 1 , and Ho, ,, ., respectively [Lu]. The center df . 1 ,, is
Z(Hoo1 ) = X, X = C[X], (1.12)

andC[X F»]% is the center off,, ,, (See Theorem 4.12 below).
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2. Representation theory transfer

In this section we provide the mechanism for obtaining the representation theory
of Hy pn from H, 1, and for obtaining the representation theory of cyclotomic
Hecke algebras from affine Hecke algebras. In order to obtain the representation
theory ofH , ,, from H 1 , we identify H, ,, , as the set of fixed points of a cer-

tain groupG acting onf 1 ,, by automorphisms. Once this is done, the extended
version of Clifford theory given in the Appendix allows one to construct the rep-
resentations off ,,, from those ofH, 1 ,. The same technique can be applied

to obtain the representations of the braid grotigs,, ,, from those of3 1 ,,, of

the complex reflection grougs(r, p, n) from those ofG(r, 1,n), and of the Weyl
groupsW D,, from those of the Weyl groupd’ B,,.

(2.1) Obtaining Hw, , ,-modules from H, 1 ,-modules

The following result is what is needed to apply the Clifford theory developed in the
Appendix to derive the representation theory of the algebfas, ,, from that of
Hoo,l,n-

Theorem 2.2 Let ¢ be a primitive pth root of unity. The algebra automorphism

9: Hoo1,n — Hoo1,n defined by

g(X) =X and g(T;)=T;,, 2<i<n,

gives rise to an action of the group Z./pZ = {1,g,...,g?~} on H 1, by algebra
automorphisms and
- Z/pZL
Hoo7p7n - (Hoo717n)

is the set of fixed points of the 7/ pZ-action.

Proof. Inmediate from the definitions d¥ 1 »,, H p,n @and (1.6).1

The action ofZ/pZ on Hu 1, Which is given in Theorem 2.2 induces an action
of Z/pZ on the simple . 1 ,-modules, see (A.1) in the Appendix. The stabilizer
K of the action ofZ/pZ on a simpleH, ; ,,-moduleM is theinertia group K~ of
M. The action ofK commutes with the action o/, ,,, on M and we have a
decomposition

|K|—1
M= P MY oKD, (2.3)
j=0

whereK), 1 < j < |K| — 1, are the simplé<-modules and/ ) are H, , .-
modules. Theorem A.13 of the Appendix shows thatMig) are simpleH. , .-
modules and that all simplH, ,,,-modules are constructed in this way. In The-
orem 3.15 we show that this method gives a combinatorial construction of the
module /%) in any case when the Young tableau theory is available. This is a
generalization of the method used in [Ar2] and [HR].
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(2.4) The surjective algebra homomorphismsp and ¢,

The homomorphism& and®,, described below are the primary tools for transfer-
ring results from the affine Hecke algebras to cyclotomic Hecke algebras. Many
results are easier to prove for affine Hecke algebras because of the large commu-
tative subalgebr&[X] which is available in the affine Hecke algebra. The homo-
morphism® has also been used by Cherednik [Ch2], Ariki [Ar3] and many others.

Proposition 2.5 Let Hy, 1 ,, be the affine Hecke algebra of type A defined in (1.9)
and let Hy 1 n(u1, . .., ur; q) denote the cyclotomic Hecke algebra of (1.1).

(a) Fix uy,...,u, € C, ¢ € C*. There is a surjective algebra homomorphism
given by
o Hoo,l,n B r,l,n(ulv' . -,UT;Q)
i T; 2<i<mn,
X¢ét — ;.

(b) Restricting the homomorphism ® to H,  , yields a surjective homomorphism
defined by

(I)p: Hoo,p,n > Hr,p,n(an sy Xd—1; Q)
ﬂ — Qj, 2<i < n,
X ao.
X2 8 — a1as.

Proof. The result follows directly from the definitions of the affine Hecke alge-
brasH. 1, andH , », (see (1.9)) and the cyclotomic Hecke algebfas ,, and
H,,, (see(1.1)and (1.2)n

Let L, be the lattice defined in (1.8) and defifle = {A = > | \ig; | 0 <
i < r}. Ariki and Koike [AK] and Ariki [Ar2] have shown that the sets

{®(XATy) | A€ Cryw € Sy} and
{®,(X ) | A€ Cr N Ly, w € Sy}

are bases off, ; , andH,., ,, respectively.

(2.6)

(2.7) Relating H 1 ,-modules andH,. ; ,-modules

The representation theory of the affine Hecke algdlsa, ,, is equivalent to the
representation theory of the cyclotomic Hecke algelfas,, (considering all pos-
sible uq,...,u, € C). The elementary constructions in the following theorem
allow us to make 1, ,-modules intaH,. ; ,,-modulesand vice versa

Theorem 2.8 Let Hy 1, be the affine Hecke algebra of type A defined in (1.9)
andlet Hy 1 »(u1,...,ur; q) be the cyclotomic Hecke algebra of (1.1).
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(@) Fix uy,...,u, € C, g € C*, and let ® be the surjective homomorphism
of Proposition 2.5. If M is a simple H, 1 ,(u1,...,u,;q)-module then
defining

hm = ®(h)m, forallh € Hy1,, and allm € M,

makes M into a simple H, 1 ,-module.

(b) Let M be a simple Hy1,,-module and let p: Ho 1, — End(M) be
the corresponding representation. Let u1,...,u, € C be such that the
minimal polynomial p(t) of the matrix p(X¢') divides the polynomial
(t —uq)---(t — u). Define an action of H, 1 ,(u1,...,ur;q) on M by

Tim=X"m and Tom=Tym, 2<i<n,

for allm € M. Then M is a simple H, 1 ,,(u1, ..., ur; q)-module.

Proof. The Theorem follows directly from the definitions &, 1 ,, (w1, ..., u; q)
andH 1,,, and the construction of the surjective homomorphisng

Remark 2.9. The same translations work for arbitrary finite dimensional modules;
in particular, they work for indecomposable modules @nelserve composition
series

3. Standard Young tableaux, representations and Jucys-Murphy ele-
ments

In this section we review the generalization of standard Young tableaux in [Ra5]
which is used to construct representations of the affine Hecke algébgas, .

Then we show how this theory can be transported to provide combinatorial con-
structions of simple modules for the cyclotomic Hecke algebfas,, (u1, . .., u,; q)

and H, p, »(zo,...,z4-1;¢). This approach shows that Jucys-Murphy type ele-
ments in the cyclotomic Hecke algebras arise naturally as images of the elements
X% in the affine Hecke algebra. The standard Jucys-Murphy type theorems then
follow almost immediately from standard affine Hecke algebra facts.

(3.1) Skew shapes and standard tableaux

A partition X is a collection ofn boxes in a corner. We shall conform to the con-
ventions in [Mac] and assume that gravity goes up and to the left.
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Any partition A can be identified with the sequenge= (\; > A9 > ...) where

A; is the number of boxes in rowof A\. The rows and columns are numbered in
the same way as for matrices. In the example above we havg553311). If A
andp are partitions such that; < ); for all i we write x € \. Theskew shape
A/ consists of all boxes ok which are not inu. Any skew shape is a union of
connected components. Number the boxes of each skew shiapalong major
diagonals from southwest to northeast and

write box; to indicate the box numbered

Let \/u be a skew shape with boxes. Astandard tableau of shape/p is a
filling of the boxes in the skew shapée . with the numberd, ... n such that the
numbers increase from left to right in each row and from top to bottom down each
column.

(3.2) Placed skew shapes

LetR +4[0,27/In(¢?)) = {a +bi |a € R,0 < b < 27/In(¢?)} CC. Ifgisa
positive real number then the function

R +i[0,27/In(¢?)) — C*

T q2:c — eln(q2):r:

is a bijection. The elements ¢, 1) + i[0, 27/ In(¢?)) index theZ-cosets inR +
i[0,27/In(g?)).

A placed skew shapie a pair(c, \/u) consisting of a skew shape/i and a
content function

c: {boxes ofA/u} — R +i[0, 27/ In(¢?)) such that (3.3)

c(box;) — c(box;) > 0, if i < jandc(box;) — c(box;) € Z,

c(box;) = c(box;) + 1, if box; andbox; are on adjacent diagonals, and

c(box;) = ¢(box;), if box; andbox; are on the same diagonal.
This is a generalization of the usual notion of the content of a box in a partition
(see [Mac] 151 Ex. 3).

Suppose thaic, A/p) is a placed skew shape such th#akes values itZ. One
can visualizgc, A/ 1) by placing\/u on a piece of infinite graph paper where the
diagonals of the graph paper are indexed consecutively (with elemeA)sfraim
southeast to northwest. Thententof a boxb is the indexc(b) of the diagonal
thatb is on. In the general case, whertakes values iR + i[0, 27/ In(¢?)),
one imagines a book where each page is a sheet of infinite graph paper with the
diagonals indexed consecutively (with element&pfrom southeast to northwest.
The pages are numbered by valges [0, 1) +1[0, 27/ In(¢?)) and there is a skew
shape\(® /(%) placed on page. The skew shapg/y. is a union of the disjoint
skew shapes on each page,

Mu=] | (A(ﬂ)/ﬂ(ﬁ)) . Bel0,1) 410,21/ In(¢g?)), (3.4)
3
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and the content function is given by

¢(b) = (page number of the page containit)g
+(index of the diagonal containirig.

for a boxb € \/p.

(3.6) Example

The following diagrams illustrate standard tableaux and the numbering of boxes in
a skew shape/ .

10/12|13]14| 3|4|9/12
6]8]11 1]5]10
5/7]9 7[1314
@ 2
2|3 6| 8]
1 1]

_/\/ 1 with boxes numbered A standard tabldaof shape\/u

The following picture shows the contents of the boxes in the placed skew shape
(¢, A/u) such that the sequence
(c(boxy),...,c(boxy))is (—=7,—6,—5,-2,0,1,1,2,2,3,3,4,5,6).

3|4|5]6|
1/2]3
0[1]2
-2
-6/-5|
7]

Contents of the boxes ¢¢, /)
The following picture shows the contents of the boxes in the placed skew shape
(¢, \/p) such that
(c(boxi),...,c(boxy)) = (=7,-6,-5,52,4,3,3 5 5 7 7 5 4 13

|

I TTITOE]
68

| 11212

-7 | 21212
3

|
0 ' 1

| 2

This “book” has two pages, with page numb@rand%. |
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(3.7) Calibrated Ho 1 ,-modules

A finite dimensionalﬁoo’l,n-moduleM is calibratedif it has a basidv; } such that
for each)\ € L and eachy, in the basis

XMy =t(X v,  forsomet(X?) e C.

This is the class of representations of the affine Hecke algebra for which there is a
good theory of Young tableaux [Ra2].

The following theorem classifies and constructs all irreducible calibrated rep-
resentations of the affine Hecke algeléfa, 1 ,. The construction is a direct gen-
eralization of A. Young’s classical “seminormal construction” of the irreducible
representations of the symmetric group [Yg2]. Young’s construction was gener-
alized to lwahori-Hecke algebras of type A by Hoefsmit [Hf] and Wenzl [Wz]
independently, to Iwahori-Hecke algebras of types B and D by Hoefsmit [Hf] and
to cyclotomic Hecke algebras by Ariki and Koike [AK]. In (3.7) and (3.11) below
we show how all of these earlier generalizations of Young's construction can be
obtained from Theorem 3.8. Some parts of Theorem 3.8 are originally due to I.
Cherednik, and are stated in [CI§B].

Theorem 3.8 ([Ra, Theorem 4.1]L et (¢, \/u) be a placed skew shape with n
boxes. Define an action of H, 1., on the vector space

H@M1) — C—span{vy, | L is a standard tableau of shape A/}
by the formulas
XEiUL _ QQC(L(’L')),UL,
T, = (Ti)reve + (¢ + (1) oL)vs,z,

where s; L is the same as L except that the entries ¢ — 1 and i are interchanged,

q—q!
1— q2(C(L(Z’*1))*C(L(i))) ’

v, = 0, if s; L is not a standard tableau,

and L(i) denotes the box of L containing the entry i.

@) H(M 1 s a calibrated irreducible Ho 1 n-module.

(b) The modules H (") are non-isomorphic.

(c) Every irreducible calibrated H 1 ,,-module is isomorphic to HEMB for
some placed skew shape (¢, A/ ).

Remark 3.9. All of the irreducible modules for the affine Hecke algebra have been
classified and constructed by Kazhdan and Lusztig [KL]. The construction in [KL]
is geometric and noncombinatorial. It is nontrivial (but not very difficult) to relate
the construction of Theorem 3.8 and the classification in [KL].
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(3.10) Calibrated H 5 ,-modules

Afinite dimensionall . ;, , module)M is calibratedif it has a basigv; } such that
for each\ € L, and eachy, in the basis

XMy =t(XMw,  for somet(X*) e C.

Let us show how Theorem 3.8, Theorem 2.2 and Theorem A.13 provide explicit
constructions of simple calibrated. , ,-modules. The resulting construction is
a generalization of the construction &, ,, ,,(zo, . . ., z4—1; ¢)-modules given by
Ariki [Ar2] (as amplified and applied in [HR]). Comparing the following machina-
tions with those in [HR§3] (where more pictures are given) will be helpful.
The(Z/pZ)-action onH 1, induces an action &t /pZ on the simpleH 1 -
modules, as in (A.1) of the Appendix, and this action takes calibrated modules to
calibrated modules since thé/pZ)-action onH, 1 ,, preserves the subalgebra
C[X]. TheZ/pZ action on simple calibrated modules can be described combina-
torially as follows.
If (¢, \/u) is a placed skew shape withboxes angy € Z/pZ define

gle,\/p) = (¢ —ia/p, N/ ), wherea = 27/ In(q?), (3.11)
andc —ia/p denotes the content function defined(by-ia/p)(b) = c(b) —iar/p,
for all boxesh € A/u. To make this definition we are identifying the §&tw) with
R/aZ. One can imagine the placed skew shape as a book with pages numbered by
valuess € [0,1) +i(R/aZ) and a skew shap&? /(%) on each page. The action
of

g cyclically permutes the pages numbered i(k/p)a, 0<k <p.

If L is a standard tableau of shape\/u) let gL denote the same filling of/u
asL but viewed as a standard tableaux of shefe\/u).

Let 9 H(¢/1) be theH . 1 ,-module H (1) except twisted by the automor-
phismg, see (A.1) in the Appendix. It follows from the formulas in Theorem 3.8
that the map

¢ 9HENW . feer/n)

L — VgL

(3.12)

is anHx 1 ,-module isomorphism. Indeed, singel(Tj) =T; and(T})gr,91 =
(Tj)rr,
¢(Tjovr) = Tj¢(vr), and
(X ovr) = ¢lg” (X¥)ur) = ¢(6 ' Xup)
— q2(C(L(j))—ia/p)ng = X%uv,, = X ¢(vy),
whereo denotes the, 1 ,-action ond {1 as in (A.1). Identifyd H (/1)
with H9(¢/1) via the isomorphism in (3.12).

Let (c,A\/u) be a placed skew shape withboxes and letK . ., be the
stabilizer of(c, A\/u) under the action of/pZ. The cyclic groupK. /) is a
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realization of the inertia group df (¢*/#) and
Koy = (™) HENW — qEMNW10 <0 < K\ — 1},

wherex is the smallest integer betweérandp such thaty(c, \/u) = (¢, A\/p)
and|K /| is the order ofK. /). The elements of. /) are all H -
module isomorphisms. Sind€ (.. 5/, is a cyclic group the irreduciblé’. -
modules are all one-dimensional and the characters of these modules are given
explicitly by
mic Ky — €
g" — &R,

0<j<|Kexnml—1

since¢” is a primitive| K .. 5 /,,)|-th root of unity. The element

[K(ea/ml—1
pi= Y, &g (3.13)
=0
is the minimal idempotent of the group algeltr&’ .. » /.,y corresponding to the irre-
ducible charactes;. It follows (from a standard double centralizer result, [Bou2])
that, as artH e p.n, K (/) )-bimodule,
K (e, /)| —1
A1) o~ @ FeMwi) g g0), where H (A mwi) — pjg(cA/u),
j=0
(3.14)
and KV is the irreduciblei,. , ,,-module with charactey;. The following the-
orem now follows from Theorem A.13 of the Appendix.

Theorem 3.15 Let (¢, \/ 1) be a placed skew shape with n boxes and let H(©A/ 1)
be the simple calibrated H, 1 ,-module constructed in Theorem 3.8. Let K (M)

be the inertia group of H(“*") corresponding to the action of Z/pZ on Hug 1 p,
defined by (A.1). If p; is the minimal idempotent of K .. » /., given by (3.13) then
HleMmwi) — pjg(cw\/u)

is a simple calibrated H, ;, ,-module.

Theorem 3.15 provides a generalization of the construction dffthg,-modules
which was given by Ariki [Ar2] and extended and applied in [HR].

(3.16) SimpleH, 1 ,(u1, ..., u,; g)-modules

Many (usually all) of the simplé,. 1 ,(u1, ..., u,; ¢)-modules can be constructed
with Theorems 2.8 and 3.8.
If A/ is a skew shape define

NW (A/p) = {northwest corner boxes of/ .},

so thatNW (A\/pu) is the set of boxes € A/u such that there is no box of/u
immediately above or immediately to the leftiof
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Theorem 3.17 Fix uy,...,u, € C* and let (¢, \/ ) be a placed skew shape with
n boxes. If

{@® | be NW/u)} C {ur,...,u}
then the H 1 n-module HEMB) g a simple Hy 1 (1, ..., u;;q)-module (via
Theorem 2.8).

Proof. Let (¢, \/y) be a placed skew shape withboxes and lef (“*/#) be the
simple Hy, 1 ,-module of Theorem 3.8. Let>»®: H, 1, — End(H( M)
be the representation corresponding#t-*/#). By the formulas in Theorem 3.8
the matrixp(X<!) is diagonal with eigenvalueg<(“M), for L ¢ F(eA 1 where
FeM) is the set of standard tableaux of shage.

The boxesL(1), L € F(/1) are exactly the northwest corner boxes\gfi
and so the minimal polynomial @f{ X°*) is

p(t) _ H (t o q2c(b)).

bENW (M)

Thus the conditio{q®*® [ b € NW(A/p)} C {u1,...,u,} is exactly what is
needed for7(“*/*) to be anH,. 1 , (uz, . . . , u,; ¢)-module via Theorem 2.8

Theorem 3.18 If the cyclotomic Hecke algebra Hy. 1 (u1, ua, . . ., uy; q) is semisim-
ple, then its simple modules are the modules H() constructed in Theorem 3.17,
where A = (A, ..., X(")) is an r-tuple of partitions with a total of n boxes and c
is the content function determined by

2¢(b)

q — w;, ifb is the northwest corner box of \(?).

Proof. The equationg®®) = v;, forb € NW (\(?)), determine the valuegb) for
all boxesb € A and thus the paifc, \) defines a placed skew shape. By a Theorem
of Ariki [Arl], H, 1 (u1,...,u,;q)is semisimple if and only if

[n]g! #0 and uiuj_l Z {1, a“, ... 7612”}7

where[n],! = [n]y[n —1],---[2]4[1], and[k], = (¢* — ¢7%)/(¢ — ¢~"). These
conditions guarantee thét, \) is a placed skew shape and thatfﬁ%,lyn-module
H(*) defined in Theorem 3.8 is well defined and irreducible. The reduction in
Theorem 2.8 makeH (> into a simpleH,.; ,,(u1, . . . , u,; ¢)-module and a count

of standard tableaux (using binomial coefficients and the classical identity for the
symmetric group case) shows that

Z dilrn(lfl(c”\))2 =r"n! =dim(H,1,),
A=(AD,.A0)

where the sum is over alttuplesA = (A(),...,A(")) with a total ofn boxes.
Thus theH (Y are a complete set of Simpl&, 1 ,, (u1, . . ., u,; ¢)-modules.a
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Theorem 3.18 demonstrates that the construction of simple modulés for
by Ariki and Koike [AK, Theorem 3.7], foiH2 1 ,,(p, —p~*; q) by Hoefsmit [Hf],
for Hy 1.,(1; ¢) by Hoefsmit [Hf] and Wenzl [Wz] (independently), and f05,, =
Hi1,(1;1) andCW B,, = H21,(1,1;1) by Young [Yg1-2], are all special cases
of Theorem 3.8.

(3.19) Jucys-Murphy elements in cyclotomic Hecke algebras

The following result is well known, but we give a new proof which shows that the
cyclotomic Hecke algebra analogues of the Jucys-Murphy elements which have
appeared in the literature (see [BMM], [Ral], [DJM] and the references there)
come naturally from the affine Hecke algel#fa, 1 ,,.

Corollary 3.20. Let Hy 1 n(u1,-..,ur;q) and Hyp (20, ..., 24-1;q) be the cy-
clotomic Hecke algebras defined in (1.1) and (1.2).

(a) The elements

M; =T;---ToThT---Tj, 1<i<n,
generate a commutative subalgebra of Hy 1 ,,(u1, ..., uy;q).
(b) If Hy 1 (w1, . .., ur; q) is semisimple then every simple H, 1 p(u1, ..., ur;q)-

module has a basis of simultaneous eigenvectors of the elements M;.

(c) The elements
M?P =ag, and M;M;'=a;-- azagaraz---a;, 2<i<n,

generate a commutative subalgebra of H,.;, ,(xo, ..., Z4-1;q).

(IfH, pn(xo,...,2T4-1;q) is semisimple then every simple H,., ,(xo, . .., Zq—1; q)-
module has a basis of simultaneous eigenvectors of the elements M} and M; M ",
2<1<n.

Proof. (a) The elementX“, 1 < i < n, generate the subalgebtaX| C Hu 1 5.
Inductive use of the relation (1.4) shows thid} = ®(X**), where®: Hy 1, —

H, 1 n(ui,. .., ur;q) is the homomorphism in Proposition 2.5. Thus the subalge-
bra of H, 1 n(u1,...,u,;q) generated by the element; is the image ofC[X]
under the homomorphisi.

(b) is an immediate consequence of Theorem 3.18, the construction described in
Theorem 3.8, and the fact thaf; = ®(X).

(c) The elements(?s and X&i—¢1, 2 < i < n, generate the subalgeltdX »] C
Hy . and the images of these elements under the homomorghisml . ;, , —

H, pn(xo,...,24-1; ) are the elementd/? and M; M, L.

The proof of part (d) uses the construction described in Theorem 3.15 and is anal-
ogous to the proof of part (b
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(8.21) The center ofH, 1 (u1, ..., ur; q)

It is an immediate consequence of (1.12) and the proof of Corollary 3.20 that
(C[Mla o 7Mn]sn g Z(H’I‘,l,n(ula ey Uy Q))7

whereM; = T;T; 1 ---ToT1Ts - - - T; _1T;. The following proposition shows that
this inclusion is an equality.

Proposition 3.22 If the cyclotomic Hecke algebra Hy. 1 ,,(u1, . . ., uy; q) is semisim-
ple then its center

Z(Hr,l,n(u17 ey Upg Q)) — C[Mla e 7Mn]sna

where M; = TyT;_y---TyT\Ty---T;_1T; and C[My, ..., M,]>" is the ring of
symmetric polynomials in My, ..., M,.

Proof. By (1.12) Z(Hux1,) = C[X]. Thus, sinceM; = ®(X*), where
®: Hoo1n — Hpain(ui,...,up;q) is the surjective homomorphism of Propo-
sition 2.5, it follows that

C[My, ..., M,])%" = ®(C[X]%") = ®(Z(Hoo 1)) € Z(Hy1n(us, ... urq)).

For the reverse inclusion we need to show that the action of the elements
C[My, ..., M,])°" distinguishes the Simpl&.. 1 (u1, ..., u,; g)-modules.

Let A = (A, ... X)) be anr-tuple of partitions with a total of. boxes
and letH () be the corresponding simpké, ; ,,(u1, ..., u,; ¢)-module as con-
structed by Theorem 3.18 (and Theorem 3.8)L [§ a standard tableau of shape
M thenM;, ..., M, act onv;, by the multiset of valuegg(L(1) . g2c(L(m)),
The elementary symmetric functioag M, ..., M,,) act onH () by the values
a; = e;(¢>LMW) . ¢>(L()) Note thata; does not depend on the choice of the
standard tableali (sincee; (M, ..., M,) € Z(H,1,)). We show that the simple
module (=Y is determined by the values, . . ., a,,. This shows that the simple
modules are distinguished by the element€p¥/y, . .., M, ]%".

Let us explain how the values,...,a, determine the placed skew shape
(¢, \). There is a unique (unordered) multiset of valbes . ., b, such that; =
ei(by,...,b,) forall 1 < i <n. Theb; are determined by the equation

(t—=Db1)---(t—Dby) =t" —art" ' + agt"? —azt" 3 +--- £ a,.

From the previous paragraph, the multigét, ..., b,} must be the same as the
multiset{q?(L(M) . 2L} In this way the values, . . ., a, determine the
multisetS = {¢(L(1)),...,c(L(n))}.

The multisetS is a disjoint unionS = S; LI- - - U S, of multisets such that each
S; is in a singleZ-coset ofR + i[0, 27/ In(q?))i (see (3.4)). Thesg& cosets are
determined by the values, . .., u, and thus there is a one-to-one correspondence
between thes; and the multisets;. Then|\(®)| = Card(S;), the nonempty diag-
onals of\() are determined by the values $, and the lengths of the diagonals
of A() are the multiplicities of the values of the elementsSaf This information
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completely determinea(®) for eachi. Thus(c, \) is determined by the values
at,...,an. 1

Remark 3.23 In the language of affine Hecke algebra representations (see [Ra2])
the proof of Proposition 3.22 shows that (WhBR; ,,(u1, ..., u,; ¢) is semisim-

ple) the simple,. ; , (u1, . .., uy; q)-modulesFI(C’A) all have different central char-
acters (ag,1,, modules).

Remark 3.24 The elementd/” andM; M, * from Corollary 3.20 cannot be used
to obtain a direct analogue of Proposition 3.22 91, ,,(xo, . . ., £4—1; q). Thisis
because all of thél, ,, ,-modulesV; appearing in the decomposition (3.14) will
have the same central character. Howewdrenn is odd the natural analogue of
Proposition 3.22 does hold for Iwahori-Hecke algebras of t¥he H D, (q) =
Hj 1, (1;q). Inthat case, every simpls ; ,-module has trivial inertia group and
the decomposition in (3.14) has only one summand.

4. Affine Hecke algebras of general type

Let R be a reduced root system and#t be the root system formed by the coroots
aV = 2a/{a,a), fora € R. Let W be the Weyl group of? and fix a system of
positive rootskR™ in R. Let{a1, ..., a,} be the corresponding simple roots and let
s1,-- -, Sy be the corresponding simple reflectiondlih The fundamental weights
are defined by the equatiofis;, a]V> = ¢;; and the lattices

P = iZwi and Q = iZai,
i=1 =1

are the weight lattice and the root lattice, respectively. The Dynkin diagrams
and the corresponding extended Dynkin diagrams are given in FigureI3islf
a Dynkin diagram or extended Dynkin diagram define

92, if o 0, 4, if —

mi; = ) and mi; =

3, if oo | 6, if =— .

)

(4.1) Affine Weyl groups
The extended affine Weyl group is the group
W=WxP={wty|weW, Ae P}, where wty = ty,yw,

forw € W andX € P wheret, corresponds to translation by € P. Define
so € W by the equation

505¢v = tg, where¢" is the highest root oR", (4.2)
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see [Bou Ch. IV§1 no. 2.1]. The subgrou,s = W x Q of I is presented by
generatorsg, s1, . .., s, and relations

s2=1, 0<i<n, and 8i8j =88, 1F£ 7,

where them,; are determined from the extended Dynkin diagram of the root sys-
temR. Define

Q = {gi | w; is minusculé, where g;wowo; = tu,, (4.3)

wo is the longest element df’ and wy; is the longest element of the group
(511 < j < n,j# 1), see [Bou Ch. IV52 Prop. 6]. Therf2 = P/Q and
each elemery € Q corresponds to an automorphism of the extended Dynkin dia-
gram of RV, in the sense that

if g Q then gs;jg~!' = So(i)s (4.4)

whereo is the permutation of the nodes determined by the automorphism. Equa-
tion (4.4) means thalt’ = W, x . The usual length function on the Coxeter
groupW.,g is extended to the grouly by

lwg) = L(w), for w € Wog andg € Q.

Let L be a lattice such th& C L C P. View L/Q as a subgroup ¢® = P/Q
and let

Wi =W x L=Wag x(L/Q).
ThenW,g = Wo, W = Wp, andW7, is a subgroup ofV.

(4.5) Affine braid groups

Let L be a lattice such tha) C L C P. The affine braid groups;, is the group
given by generatorg,,, w € W, and relations

TwTw = Twus if {(ww') = L(w) + L(w').

Let B.g = Bg. View L/Q as a subgroup d = P/Q. ThenB, = B.g x L/Q is
presented by generatdfs = T,, 0 < ¢ < n, and relations

T.T; - =T;T; -, and  gTig ' =T, forgeq, (4.6)
N—— N——

whereo is as in (4.4), and they;; are specified by the extended Dynkin diagram
of RV.

Let PT = > | Z>ow; be the dominant weights if?. Define elements(?,
A€ Phby

X* =1,,ifAxe Pt and
(4.7)
X* = XMXY)TL if A = p— v with y,v € P,
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By [Mac3, 3.4] and [Lu], theX* are well defined and do not depend on the choice
A=pu—v,and
XAXH = XFXN = XMH for A\, pu e P. (4.8)
ThenX* € By ifand only if \ € L.

(4.9) Affine Hecke algebras

Fix ¢ € C*. The affine Hecke aIgebrEIL is the quotient of the group algeb&5;,
by the relations

(Ti=a)(Ti+q) =0, foro<i<n. (4.10)
In Hy, (see [Mac, 4.2)),
XA xsid
The Iwahori-Hecke algebrH is the subalgebra off generated by, ..., T,.

XM, = T X5 4 (g — g7 ) forAeL,1<i<n. (411)

To our knowledge, the following theorem is due to Bernstein and Zelevinsky
in type A, and to Bernstein in general type (unpublished). Lusztig has given an
exposition in [Lu]. We give a new proof which we believe is more elementary and
more direct.

Theorem 4.12 (Bernstein, Zelevinsky, Lusztig [Lull.et L be a lattice such that
Q C L C P, where @ is the root lattice and P is the weight lattice of the root
system R. Let H = Hj, be the affine Hecke algebra corresponding to L and let
C[X] = span{X* | A € L}. Let W be the Weyl group of R. Then the center of
H is

Z(H)=C[X]W ={f e C[X] | wf = f foreveryw € W}.

Proof. Assume
2= Y awXTy, € Z(H).
AeL,weW
Letm € W be maximal in Bruhat order subject tg,, # 0 for somey ¢ L.
If m # 1 there exists a dominant € L such thatc,,_,,,m = 0 (otherwise
Cytu—mpu,m 7 0 for every dominanj: € L, which is impossible since is a finite
linear combination oX*T;,). Sincez € Z(H) we have
p=XMaXt = Y oW XX

AeLweW

Repeated use of the relation (4.11) yields
Ty XH = Z dy o X" T,
veLveW
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whered, , are constants such thét,, , = 1, d,,, = 0 for v # wy, andd, , = 0
unlessy < w. So

2= Y WX y= ) > oy XA,

AeLweWw AeL,weW veLveW

and comparing the coefficients &7, giveScy . = cyipu—mp,m@mpy,m- Since
Cytpu—mu,m = 0 it follows thatc, ,, = 0, which is a contradiction. Hence =
Z/\EL C)\X)‘ S (C[X}

The relation (4.11) gives

2Ty =Tiz = (si2)Ti+ (g — ¢ )2’

wherez’ € C[X]. Comparing coefficients ak* on both sides yields’ = 0.
Hence:zT; = (s;z)T;, and therefore = s,z for 1 <i < n. Soz € C[X]|". i

(4.13) Deducing theH, representation theory from Hp

Although we have not taken this point of view in our presentation, the affine Hecke
algebras defined above are naturally associated to a reductive algebraicCgroup
overC [KL] or a p-adic Chevalley group [IM]. In this formulation, the lattideis
determined by the group of characters of the maximal torus.oft is often con-
venient to work only with the adjoint version or only with the simply connected
version of the groug> and therefore it seems desirable to be able to derive the
representation theory of the affine Hecke algetifasrom the representation the-
ory of the affine Hecke algebtd ». The following theorem shows that this can be
done in a simple way by using the extension of Clifford theory in the Appendix. In
particular, Theorem A.13, can be used to construct all of the sitplenodules
from the simpleH p-modules.

Theorem 4.14 Let L be a lattice such that ) C L C 1:7, Whgre Q is the root lattice
and P is the weight lattice of the root system R. Let H = H, be the affine Hecke
algebra corresponding to L. Then there is an action of a finite group K on Hp,
acting by automorphisms, such that

Hy, = (Hp)*,
is the subalgebra of fixed points under the action of the group K.

Proof. There are two cases to consider, depending on whether the greup/Q
is cyclic or not.

Type An—l Bn Cn D2n—1 D2n
QO Z/nZ /27 /27 TZJAZ 7)27 x Z.)2Z

Type Eg E; Es Fy Go
Q 7Z/3Z 7/2Z 1 1 1
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In each case we construct the grofipand its action onHp explicitly. This is
necessary for the effective application of Theorem A.13 on examples.

Case 1.If Q is a cyclic groupf2 then the subgroug./Q is a cyclic subgroup.
Suppose

Q:{l,g,.."grfl} and L/Q:{l’gd"”’gd(pfl)}v
wherepd = r. Let ¢ be a primitivepth root of unity and define an automorphism
(02N F[P — I;[P

g r (g,
T — T, 0<i<n.

The mapo is an algebra isomorphism since it preserves the relations in (4.6) and
(4.10). Furthermorer gives rise to & /pZ action onHp and

Hy, = (Hp)%/v". (4.15)

Case 2.f the root systemR" is of type D,,, n even, the) = 7Z /27 x 7./27 and
the subgroups df correspond to the intermediate latticgsC L C P. Suppose

Q={1,01.92,9192 | 91 = 95 = 1, 9192 = 9291}

and define automorphisms &fp by

o1 : pr — ]:Ip o9 : lpr — Hp
g1 = —91, and g1 == g1,
g2 — 92, 92 — —g2,

Then
Hy, = (Hp)°t, H;, = (Hp)°?, and  Hq = (Hp)9172  (4.16)

whereL; and L, are the two intermediate lattices strictly betwe&gand P. 1

5. Where does the homomorphisn® come from?

The homomorphisn®: Hy, 1, — H, 1, Of Proposition 2.5 is a powerful tool

for transporting results about the affine Hecke algebra of #/pe the cyclotomic
Hecke algebras. In this section we show how this homomorphism arises naturally,
from a folding of the Dynkin diagram aB,,, and we give some generalizations of
the homomorphisn® to other types.

Example 1. TypeC,. The root systenk of type C,, can be realized by
R={+2e;,+(c; — &) | 1 <i,5 <n},
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whereg; are an orthonormal basis &"*. The simple roots and the fundamental
weights are given by

o) = 2eq, o =€ — €i—1, 2<i<n,

wi =¢épntepn1+---+e¢, 1< <n.

If ¢V is the highest root oV then¢ = ¢, + ¢,_1, and
Spv = (Sp—1--- 525152+ Sp—1)5p(Sp—1 - 825152 Sp—1). (5.1)
Thenw,, = ¢, is the only miniscule weight,

wo = (1,-1)(2,-2)---(n, —n),
won =(1,-1)(2,-2)---(n—1,—(n—1)), and (5.2)
wowo,, = (N, —n) =58y -525152+ " Sp.

Thus, from (4.2), (4.3) and (4.6)) = {1, g9, } = Z/27Z,
gn = XE"Tgl .. .T2—1T1—1T2—1 .. .Tnfl,

Ty = Xenteny(T70 Ty oo iyt T (5.3)
(Tt T T Ty T,
and
gnng;1 =Ty, and gnTng;1 =Tp. (5.4)

The braid groug3»(C,,) is generated by, 71, . . ., T,, andg, which satisfy
relations in (4.6), where the:;; are given by the extended Dynkin diagrasy,
see Figure 3. The braid grouf(C,,) is the subgroup generated @y, ..., 7).
These elements satisfy the relations in (4.6), wherertheare given by the Dynkin
diagramC,,. A straightforward check verifies that the map defined by

n
1 2 3 n—2 n—1 1 2 3 n—1 n
__—4—<> — —t—0— — — — —0——0

0

Gn — 1
T, — T (5.5)
T; — T; 1 <2< n.
extends to a well defined surjective group homomorphism. From the identity (4.3),
ao(X7) = Do (X

= cI)C’C(QnTnTn—l Ty - Tn—lTn)

By inductively applying the relatioX ¢ = T; X¢i-1T; we get
(I)éc(Xal) =T;T;1--- T Ts---T; 1T;, foralll <i<n. [ |
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Example 2. TypeA,,_1. Since the weight lattic& for the root system of typ€,
is the same as the lattidedefined in (1.5) we have an injective homomorphism

®4ie0 Booim — Bp(Ch)
T; — 1i, 2<i<n,
X5 —  X&

The composition ofb ; ~ and the mag ~, from (5.5) is the surjective homomor-
phism defined by

D Boo,l,n I B(Cn)
T, — T 2<i<n,
X% v Ty TN T; 1T, 1<i<n.

In fact, it follows from the defining relations & 1, andB(C,,) that the mapp
is an isomorphism!

The cyclotomic Hecke algebrd$, ; ,,(u1, ..., u,; q) are quotients o€ 5(C,,)
and in this way the group homomorphigeris the source of the algebra homomor-
phism

d: Hoo,l,n B T,l,n(u17-~~7u7";Q)
which was used extensively in Section 3 to relate the representation theory of the
cyclotomic Hecke algebra#, i ,(u1,...,u,;q) to the affine Hecke algebra of
type A. 1

Example 3. TypeD,. Let R be the root system of typ®),,. ThenR" is also
of type D,, and inspection of the Dynkin diagrams of typPg and D,, yields a
surjective algebra homomorphism defined by

2 n 2

3 4 n—2 n—1 3 4 n—1 n
>—of———w—<> — >—o—————o—o
1 0 1

Qrp: Bo(Dn) — B(Dy)
dn | 1,
TO — Tn7
T; — T 1<i<n. |

Examples 1, 2, and 3 show that, for typ&sB andD, there exist surjective ho-
momorphisms from the affine Hecke algebra to the corresponding Iwahori-Hecke
subalgebra. The following example shows that this is not a general phenomenon:
there doesot exist a surjective algebra homomorphism from the affine Hecke al-
gebra of typeis to the corresponding Iwahori-Hecke subalgebra of t#pe

Example 4. TypeGs. If Ris the root system of typ@, thenP = @ and2 = {1}.

1 2 0 1 2
—————->0 — o=
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Proposition 5.6 Let H(G) be the affine Hecke algebra of type G as given by
(4.6) and (4.10) and let H(G3) be the Iwahori-Hecke subalgebra of type QQ gener-

ated by T} and T5. There does not exist an algebra homomorphism ®: H(G2) —
H(G2) such that ®(T;) = T;, for 1 <1i < 2.

Proof. There is an irreducible representationfiS(GQ) given by
g O 1 2-q? q2—1+q‘2>
Ty) = _ ,and p(T3) = ,
p( 1) ( 0 q 1 > p( 2) q q_1 < 3 q2 9

(see [Ral, Theorem 6.11]). We show that there does not egist & matrix N
which satisfies

N?=(q—q " )N+1, Np(To)N = p(T2)Np(T>) and Np(Ty) = p(T1)N.

If N exists thenV must be diagonal sinc commutes withp(77) andp(T}) is
a diagonal matrix with distinct eigenvalues. The first equation shows/Nhast
invertible and the second equation shows tNais conjugate tg(7%). It follows
that N must have one eigenvalgeand one eigenvalueq!. Thus, either

_(a O (-0
N_<O _q_1> or N_( 0 q).

However, neither of these matrices satisfies the reldtip(ilz) N = p(T2)Np(13).
This contradiction shows that the representafi@annot be extended to be a rep-
resentation off (Gs). 1

In spite of the fact, demonstrated by the previous example, that there does
not always exist a surjective algebra homomorphism from the affine Hecke alge-
bra onto its Iwahori-Hecke subalgebra, thare interesting surjective homomor-
phisms from affine Hecke algebras of exceptional type.

Example 5. Type Es. For the root system of typ€s, P/Q = Z/37Z. LetQ =
{1, g, 9%} whereg is as given by (4.3) for the minuscule weight (see [Bou, p.
261]). There are surjective algebra homomorphisms

1 2 3 4 5
e, O

N é 2 3 4 g
6
0
0] Bo(Es) — B(As)
Ty — 15,
Ts — Ty,
T; — T, 1<i<5,

and
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— —s 3
0
' Bp(Es) — B(As)
g A
TQ [ — Tl,
T6 [ — TQ,
T5 [ — Tl,
T4 [ — TQ,
T; — T, 1<i<3

Example 6. TypeFy.

For the root systenR® of type F; we haveP = @ andQ2 = {1}. Thereis a
surjective homomorphism

1 2 3 4 0 1 2 3 4 0

Appendix: Clifford theory

Let R be an algebra ovef and letG be a finite group acting by automorphisms
on R. Theskew group rings

RxG= ngg
geG

rg € R

with multiplication given by the distributive law and the relation
gr =g(r)g, for g € G andr € R.

Let N be a (finite dimensional) lefR-module. For each € G define ankR-module
9 N, which has the same underlying vector spAtbut such that
9N hasR-action given by  7on =g 1(r)n, (A1)

forr € R,n € N. If W is anR-submodule ofV then9W is an R-submodule of
9N and s&N is simple if and only ifN is simple. Thus there is an action@fon
the set of simplek-modules.

Let R* be a simpleR-module. The inertia group d&* is

H={hecG|R"= "R} (A.2)



28 ARUN RAM AND JACQUI RAMAGGE

If h € H then Schur’s lemma implies that the isomorphi&h = *R* is unique
up to constant multiples (since boitt* and”R* are simple). For each € H fix
an isomorphisngy, : R* — "' R*. Then, as operators d&",

onr = h(r)én, and ¢gdn = alg, h)dgn, (A.3)
wherea(g,h) € C* are determined by the choice of the isomorphisfps The
resulting functiorn: H x H — C* is called afactor se{CR, 8.32].

Let (CH),-1 be the algebra with basig;, | h € H} and multiplication given
by
cgch = (g, h) tegn, forg,h € H. (A.4)
Let H* be a simpl§ CH),-1-module. Then putting
rh(m ® n) = répm & cpn, forr € R,h€ Hyme RN ne HY, (A5)

defines an action ak x H on R* @ H".

Theorem A.6. (Clifford theory) Let R* be a simple R-module and let H be the
inertia group of R*. Let H* be a simple (CH),,-1-module where o: H x H — C*
is the factor set determined by a choice of isomorphisms ¢y, : R* — "R*. Define
an action of R x H on R* @ H* as in (A.5) and define

RGM = Tnd2C (R @ H") = (R x G) @pwn (R © HY).
Then
(@) RGMH is a simple R x G-module.
(b) Every simple R x G-module is obtained by this construction.

(c) If RGM* = RGY" then R* and RY are in the same G-orbit of simple
R-modules and H* = H" as (CH),-1-modules.

Proof. The proof of this theorem is as in [Mac2] except that the consideration of
the factor setv: H x H — C* is necessary to correct an error there. We thank P.
Deligne for pointing this out to us. A sketch of the proof is as follows.

Let M be a simpleR x G-module and leR* be a simpleR-submodule of\/.
ThengR* = 9R* asR-modules and/ = Y~ . gR* since the right hand side is
an R x G-submodule of\/. Then

M= Y gN=Indi%(N), where N=> hR"
9:€G/H heHd

and the first sum is over a sf; } of coset representatives of the cose&H .
The R-moduleN is semisimple and by [BouZ2]

N = R*® H*, (A7)

where H#* = Hompg(R*, N). It can be checked that the vector spdéé has a
(CH),-1-action given by

(cnth)(m) = a(h, k) hp(p-1(m)), forh € H, 4 € Homp(R*N),
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wherec, is as in (A.4). Then, withR x H-action onR* @ H* given by (A.5),
the isomorphism in (A.7) is an isomorphism Bf x H-modules (see [CR, Thm.
(11.27) (ii)]).

If Pisan(CH),-1-submodule offf* thenR* ® P is anR x H-submodule
of R* ® H* andInd X% (R* @ P) is anR x G-submodule of\/. Thus H* must
be a simplg CH),-1-module.

This argument shows that every simgtex G-module is of the formRGM.
The uniqueness follows as in [Mac2, Appa].

Remark A.8. A different choiceyy,: R — "R* of the isomorphisms in (A.3)
may Yield a factor sef: H x H — C* which is different from the factor set.
However, the algebra& H)z-1 and(CH), -1 are always isomorphic (a diagonal
change of basis suffices).

Lemma A.9. Define RY = {r € R| g(r) = r forall g € G} and let
e=(1/|G))) ge RxG.
geG
(&) The map
0: RY — e(RxG)e
s — se
is a ring isomorphism.
(b) Left multiplication by elements of R and the action of G by automor-
phisms make R into a left R x G-module. Right multiplication makes R

aright R®-module. The rings R x G and e(R x G)e act on (R x G)e by
left and right multiplication, respectively. The map

v: R =2 (RxG)e

A e d re

is an isomorphism of (R x G, R®)-bimodules.
Proof. (a) If r € R then
1 1
ere = —- Zg(r)ge = — Zre = re.
Gl =2 |Gl 4=

Thus the mag is well defined and ifr, s € R thenrese = rse, s0f is a
homomorphism. li-e = se thenr = s sinceR x G is a freeR-module with basis
G. Thusd is injective. If Y0 r4g is a general element dt x G then

e ngg e= Z h(rg)hge = Z h(rg) | e,

9€G g,heqG g,heq

and, for eacly € G, 3" ,,c h(ry) € RE. Sod is surjective.
The proof of (b) is straightforward
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Let (CH), be the algebra with bas{$;, | h € H} and multiplication given by
bybp, = g, h)bgp, forg,h € H,

and let(CH),-1 be asiin (A.4). LetM be a(CH ),-module. The dual ol is the
(CH),-1-module given by the vector spadé* = Hom(M, C) with action

(cnp)(m) = a(h, k") Lep(by—1m),  forh e H, € M*.

Thisis a(CH),-1 action since, for aly, h € H, ¢ € M*,
(cgeny)(m) = a(h,h™") " a(g,g7") " (by-1by-1m)

= a(h,h™) talg.g7 ) ra(h™h g7 ) (bigny-1m)

= a(h,h™) talg.g7) (™ g algh, A g™ (cqny) (m)

= alg,h) " (cgntp)(m),
where the last equality follows from the associativity of the prodybi by, -1b,-1
in (CH)y. If p: (CH), — End(M) is the representation corresponding/tb
then the representatiqri: (CH),-1 — End(M*) corresponding td/* is

p*(en) = alh, ™) " p(by-1) = (p(bn) 1) (A.11)

If M is a(CH),-module andN is a (CH),-1-module thenM ® N is an
CH-module with action defined by

h(m ®n) = bym ® cpn, forh € H,m € M andn € N. (A.12)

The following lemma is a version of Schur’s lemma which will be used in the proof
of Theorem A.13.

Lemma A.12 Suppose that M and N are simple (CH ),-modules and let N* be

the (CH),-1-module which is the dual of N. Letery = (1/|H|) Y, c iy h. Then

1, ifM =N,

dim(eq (M @ N*)) = { 0, otherwise.

Proof. Identify M @ N* with Hom (N, M). Then, by (A.10) and (A.11), the action
of CH onHom(N, M) is given by,

hA = p(bp)Ap(by)™t,  forh € HandA € Hom(N, M),

wherep: (CH), — End(M) is the representation correspondingb If A €
Hom(N, M) andg € H then

egA=gegA = Q(GHA) = P(bg)(eHA)P(bg)ila

and sop(by)(egA) = (exA)p(by) for all g € H. Then, by Schur's lemma,
egA=0if M 22 N andeyAisaconstantif\/ = N. g
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Theorem A.13 Let R* be a simple R-module and let H be the inertia group of
R>. The ring R acts on R* (by restriction) and (CH),, acts on R* (by the R-
module isomorphisms ¢y, : R» = "R of (A.3)) and these two actions commute.
Thus there is a decomposition

R)\ ~ @ R)\,V ® (HV)*,
Veﬁa
where H, is an index set for the simple (CH ), -modules, (H”)* is the dual of the
simple (CH),—1-module H", and R™" is an R®-module.

(@) If RM* £ 0 then it is a simple RS -module.
(b) Every simple R®-module is isomorphic to some RM".
(C) The nonzero RM* are pairwise nonisomorphic.

Proof. The setup of Lemma A.9(b) puts us in the situation of [§Br2]. If e is the
idempotent used in Lemma A.9 then the functor

R x G-modules — R%-modules
M — eM

is an exact functor such that M is a simpleR x G-module thereM is either0
or a simpleR“-module. Furthermore, every simpR-module arises asM for
some simpleR x G-modulelM.

Let RGM* be a simpleR x G-module as given by Theorem A.6. From the
definition of RGM* we obtain

ERGA’M = E(R X G) QRxH (RA & H“)
e® (R* ® H") = eey @ (R* ® H)
= 6®€H(R)\®HM),

whereey = (1/|H|) Y <y h. Using the decomposition in the statement of the
Theorem, we conclude that, & -modules,

eRGM = ew@ey | P RM ® (H) @ H
veH

= e@en | PR @en((H") © H")
VEI:I
>~ RM

The last isomorphism is a consequence of Lemma A.12. The statement of the

Theorem now follows from the results of J.A. Green quoted above.

Remark A.14. It follows from Theorem A.13 thaR? is semisimple as aR®-
module and the action ¢CH),, on R* generate®nd pc (R*).
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