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Abstract

Using a combinatorial approach that avoids geometry, this paper studies the structure of
KT (G/B), theT-equivariantK -theory of the generalized flag varietyG/B. This ring has a natural
basis{[OXw

] | w ∈ W} (the double Grothendieck polynomials), whereOXw
is the structure sheaf of

the Schubert varietyXw. For rank two cases we compute the corresponding structure constants of the
ring KT (G/B) and, based on this data, make a positivity conjecture for generalG which generalizes
the theorems of M. Brion (forK (G/B)) and W. Graham (forH∗

T (G/B)). Let [Xλ] ∈ KT (G/B) be
the class of the homogeneous line bundle onG/B corresponding to the character ofT indexed byλ.
For generalG we prove “Pieri–Chevalley formulas” for the products[Xλ][OXw

], [X−λ][OXw
],

[Xw0λ][OXw
], and [OXw0si

][OXw
], where λ is dominant. By using the Chern character and

comparing lowest degree terms the products which are computed in this paper also give results for
the Grothendieck polynomials, double Schubert polynomials, and ordinary Schubert polynomials in,
respectivelyK (G/B), H∗

T (G/B) andH∗(G/B).
© 2003 Elsevier Ltd. All rights reserved.
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0. Introduction

Using a combinatorial approach which avoids geometry, this paper studies the ring
structure ofKT (G/B), theT-equivariantK -theory of the (generalized) flag varietyG/B.
Here, the dataG ⊇ B ⊇ T is a complex reductive algebraic group (or symmetrizable
Kac–Moody group)G, a Borel subgroupB, and a maximal torusT , and KT (G/B)
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is the Grothendieck group ofT-equivariant coherent sheaves onG/B. Because of the
T-equivariance the ringKT (G/B) is an R-algebra, whereR is the representation ring
of T . As explained by Grothendieck [6] (in the non-Kac–Moody case) and Kostant and
Kumar [9] (in the general Kac–Moody case), the ringKT (G/B) has a naturalR-basis
{[OXw ] | w ∈ W}, whereW is the Weyl group andOXw is the structure sheaf of the
Schubert varietyXw ⊆ G/B. One of the main problems in the field is to understand the
structure constants of the ringKT (G/B) with this basis, that is, the coefficientscz

wv in the
equations

[OXw ][OXv ] =
∑
z∈W

cz
wv[OXz]. (0.1)

Our approach is to work completely combinatorially and defineKT (G/B) as a quotient of
the affine nil-Hecke algebra. The fact that the combinatorial approach coincides with the
geometric one is a consequence of the results of Kostant and Kumar [9] and Demazure [4].
In the combinatorial literature the elements[OXw ] are often called (double) Grothendieck
polynomials.

Let P be the weight lattice ofG and, forλ ∈ P, let [Xλ] be the homogeneous line bundle
on G/B corresponding to the character ofT indexed byλ. The theorem of Pittie [19] says
that the ringKT (G/B) is generated by the[Xλ], λ ∈ P. Steinberg [23] strengthened this
result by displaying specific[X−λw ], w ∈ W, which form anR-basis ofKT (G/B). These
results are often collectively known as the “Pittie–Steinberg theorem”.

The theorems which we prove inSection 2are simply different points of view on the
Pittie–Steinberg theorem. Though we are not aware of any reference which states these
theorems in the generality which we consider, these theorems should be considered well
known.

Let s1, . . . , sn be the simple reflections inW (determined by the data(G ⊇ B ⊇ T)),
let w0 be the longest element ofW and letP+ be the set of dominant weights inP. The
Schubert varietiesXw0si are the codimension one Schubert varieties inG/B. In Section 3
we prove “Pieri–Chevalley” formulas for the products

[Xλ][OXw ], [X−λ][OXw ], [Xw0λ][OXw ], and [OXw0si
][OXw ], (0.2)

for λ ∈ P+, w ∈ W and 1≤ i ≤ n. All of these Pieri–Chevalley formulas are given in
terms of the combinatorics of the Littelmann path model [12–14]. The formula which we
give for the first product in (0.2) is due to Pittie and Ram [20]. In this paper we provide more
details of proof than appeared in [20]. The other formulas for the products in (0.2) follow
by applying the duality theorem of Brion [1, Theorem 4] to the first formula. However, here
we give an independent, combinatorial, proof and deduce Brion’s result as a consequence.
The last formula is a consequence of the nice formula

[OXw0si
] = 1 − ew0ωi [X−ωi ], (0.3)

which is an easy consequence of the first two Pieri–Chevalley rules.
It is not difficult to “specialize” product formulas forKT (G/B) to corresponding

product formulas forK (G/B), H ∗
T(G/B), and H ∗(G/B) (by using the Chern character

and comparing lowest degree terms, and ignoring theT-action). Thus the products which
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are computed in this paper also give results for ordinary Grothendieck polynomials,
double Schubert polynomials, and ordinary Schubert polynomials. InSection 4we explain
how to do these conversions. For most of these cases the specialized versions of our
Pieri–Chevalley rules are already very well known (see, for example, [3]).

In Section 5we give explicitly

(a) two different kinds of formulas for[OXw ] in terms ofXλ, and
(b) complete computations of the products in (0.1)

for the rank two root systems. This data allows us to make a “positivity conjecture” for
the coefficientscz

wv in (0.1). This conjecture generalizes the theorems of Brion [1, formula
before Theorem 1] and Graham [7, Corollary 4.1], which treat the casesK (G/B) and
H ∗

T (G/B), respectively.

1. Preliminaries

Fix the following data and notation:

h∗ is a real vector space of dimensionn,
R is a reduced irreducible root system inh∗,
R+ is a set of positive roots inR,
W is the Weyl group ofR,
s1, . . . , sn are the simple reflections inW,
mij is the order ofsi sj in W, i �= j ,
R(w) = {α ∈ R+ | wα /∈ R+} is the inversion set ofw ∈ W,
�(w) = Card(R(w)) is the length ofw ∈ W,
≤ is the Bruhat–Chevalley order onW,
α1, . . . , αn are the simple roots inR+,
ω1, . . . , ωn are the fundamental weights,
P = ∑n

i=1 Zωi is the weight lattice,
P+ = ∑n

i=1 Z≥0ωi is the set of dominant integral weights.

For a brief, easy, introduction to root systems with lots of pictures for visualization see [18].
By [2, VI Section 1 no. 6 Corollary 2 to Proposition 17], ifw = si1 · · · si p is a reduced word
for w, then

R(w) = {αi p , si pαi p−1, . . . , si p · · · si2αi1}. (1.1)

Theaffine nil-Hecke algebrais the algebraH̃ given by generatorsT1, . . . , Tn andXλ,
λ ∈ P, with relations

T2
i = Ti , Ti Tj Ti · · ·︸ ︷︷ ︸

mij factors

= Tj Ti Tj · · ·︸ ︷︷ ︸
mij factors

, XλXµ = Xλ+µ, (1.2)

and

XλTi = Ti X
si λ + Xλ − Xsi λ

1 − X−αi
. (1.3)
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Let Tw = Ti1 · · · Ti p for a reduced wordw = si1 · · · si p . Then

{XλTw | w ∈ W, λ ∈ P} and {Tw Xλ | w ∈ W, λ ∈ P} (1.4)

are bases of̃H .
Both thenil-Hecke algebra,

H = Z-span{Tw | w ∈ W}, and Z[X] = Z-span{Xλ | λ ∈ P} (1.5)

are subalgebras of̃H . The action ofW onZ[X] is given by defining

wXλ = Xwλ, for w ∈ W, λ ∈ P, (1.6)

and extending linearly. The proof of the following theorem is given in [22, Theorem 1.13
and Theorem 1.17]. The first statement of the theorem is due to Bernstein, Zelevinsky, and
Lusztig [16, 8.1] and the second statement is due to Steinberg [23] and is known as the
Pittie–Steinberg theorem.

Theorem 1.7. Define

λw = w−1
∑

si w<w

ωi , for w ∈ W. (1.8)

The center ofH̃ is Z(H̃ ) = Z[X]W and each element f∈ Z[X] has a unique expansion

f =
∑
w∈W

fw X−λw , with fw ∈ Z[X]W. (1.9)

Let εi = 1 − Ti and letεw = εi1 · · · εi p for a reduced wordw = si1 · · · si p . Thenεw is
well defined and independent of the reduced word forw since

ε2
i = εi , and εi ε j εi · · ·︸ ︷︷ ︸

mij factors

= ε j εi ε j · · ·︸ ︷︷ ︸
mij factors

. (1.10)

The second equality is a consequence of the formulas

εw =
∑
v≤w

(−1)�(v)Tv and Tw =
∑
v≤w

(−1)�(v)εv (1.11)

which are straightforward to verify by induction on the length ofw.

2. The ring KT (G/B)

Let H and Z[X] be as in (1.5). The trivial representationof H is defined by the
homomorphism1 : H → Z given by1(Ti ) = 1. The first of the maps

Z[X] ∼
H̃Tw0

∼
H̃ ⊗H 1

f f Tw0 f ⊗ 1

is anH̃ -module isomorphism if the action of̃H onZ[X] is given by

Ti · f = Xαi f − si f

Xαi − 1
, for f ∈ Z[X]. (2.1)
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The group algebra ofP is

R = Z-span{eλ | λ ∈ P} with eλeµ = eλ+µ, (2.2)

for λ,µ ∈ P. Extend coefficients toR so thatH̃R = R⊗Z H̃ andR[X] = R⊗Z Z[X] are
R-algebras. DefineKT (G/B) to be theH̃R-module

KT (G/B) = R-span{[OXw ] | w ∈ W}, (2.3)

so that the[OXw ], w ∈ W, are anR-basis ofKT (G/B), with H̃R-action given by

Xλ[OX1] = eλ[OX1], and Ti [OXw ] =
{[OXwsi

], if wsi > w,

[OXw ], if wsi < w.
(2.4)

If R is anR[X]-module via theR-algebra homomorphism given by

e : R[X] R
Xλ eλ (2.5)

then, asH̃R-modules,KT (G/B) ∼= H̃R ⊗R[X] Re, whereRe is theR-rank 1R[X]-module
determined by the homomorphisme.

Let Q be the field of fractions ofR and letQ be the algebraic closure ofQ. Forw ∈ W
let

bw in Q ⊗R KT (G/B) be determined by Xλbw = ewλbw, for λ ∈ P. (2.6)

If the bw exist, then they are aQ-basis ofQ⊗R KT (G/B) since they are eigenvectors with
distinct eigenvalues. Ifτi , 1 ≤ i ≤ n, are the operators onQ ⊗R KT (G/B) given by

τi = Ti − 1

1 − X−αi
, thenb1 = [OX1] andτi bw = bwsi , for wsi > w, (2.7)

because, a direct computation with relation (1.3) gives thatXλτi bw = τi Xsi λbw =
τi ewsi λbw = ewsi λbwsi . Thus thebw, w ∈ W, exist and the form of theτ -operators shows
that, in fact, they form aQ-basis ofQ ⊗R KT (G/B) (it was not really necessary to extend
coefficients all the way toQ). Eqs. (2.6) and (2.7) force

τi τ j τi · · ·︸ ︷︷ ︸
mij factors

= τ j τi τ j · · ·︸ ︷︷ ︸
mij factors

, and the equality τ2
i = 1

(Xαi − 1)(X−αi − 1)

is checked by direct computation using (1.3). Let τw = τi1 · · · τi p for a reduced word
w = si1 · · · si p . Then, forw ∈ W,

bw = τw−1b1, [OXw ] = Tw−1[OX1] and we define [IXw ] = εw−1[OX1], (2.8)

where εw is as in (1.11). In terms of geometry,[OXw ] is the class of the structure
sheaf of the Schubert varietyXw in G/B and, up to a sign,[IXw ] is class of the sheaf
IXw determined by the exact sequence 0→ IXw → OXw → O∂ Xw → 0, where
∂ Xw = ⊔

v<w BvB (see [17, Theorem 2.1(ii)] and [15, Eq. (4)]). We are not aware of
a good geometric characterization of the basis{[X−λw ] | w ∈ W} of KT (G/B) which
appears in the following theorem.
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Theorem 2.9. Letλw, w ∈ W, be as defined inTheorem1.7and let[Xλ] = Xλ[OXw0
] =

XλTw0[OX1] for λ ∈ P. Then the[X−λw ], w ∈ W, form an R-basis of KT (G/B).

Proof. Up to constant multiples,[OXw0
] = Tw0[OX1] is determined by the property

Ti [OXw0
] = [OXw0

], for all 1 ≤ i ≤ n. (2.10)

If constantscw ∈ Q are given by

[OXw0
] =

∑
w∈W

cwbw,

then comparing coefficients ofbwsi , for wsi > w, on each side of (2.10) yields a recurrence
relation for thecw,

cw = cwsi

(
1

1 − e−wαi

)
for wsi > w,

which impliescw0v
−1 =

∏
α∈R(v)

1

1 − ew0α
, (2.11)

via (1.1) and the fact thatcw0 = 1. Thus,

[X−λv ] = X−λv [OXw0
] =

∑
w∈W

cwe−wλv bw,

and if C, M andA are the|W| × |W| matrices given by

C = diag(cw), M = (e−wλv ), and A = (azw), wherebw =
∑
z∈W

azw[OXz],

then the transition matrix between theX−λv and the[OXz] is the productAC M. By (2.8)
and the definition of theτi , the matrixA has determinant 1. Using the method of Steinberg
[23] and subtracting row e−sαwλv from row e−wλv in the matrixM allows one to conclude
that det(M) is divisible by

∏
α∈R+

(1 − e−α)|W|/2 and identifying
∏

w∈W

e−wλw =
n∏

i=1

∏
si w<w

e−ωi = (e−ρ)|W|/2

as the lowest degree term determines det(M) exactly. Thus,

det(AC M) = 1 ·

 ∏

w∈W

∏
α∈R(w)

1

1 − e−α





eρ

∏
α∈R+

(1 − e−α)


|W|/2

= (eρ)|W|/2.

Since this is a unit inR, the transition matrix between the[OXw ] and the X−λv is
invertible. �

Theorem 2.12. The composite map

Φ : R[X] H̃RTw0 ↪→ H̃R KT (G/B)

f f Tw0 h h[OX1]
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is surjective with kernel

kerΦ = 〈 f − e( f ) | f ∈ R[X]W〉,
the ideal of the ring R[X] generated by the elements f− e( f ) for f ∈ R[X]W. Hence

KT (G/B) ∼= R[X]
〈 f − e( f ) | f ∈ R[X]W〉

has the structure of a ring.

Proof. SinceΦ(Xλ) = XλTw0[OX1] = Xλ[OXw0
], it follows from Theorem2.9 thatΦ

is surjective. ThusKT (G/B) ∼= R[X]/ kerΦ. Let I = 〈 f − e( f ) | f ∈ R[X]W〉. If
f ∈ R[X]W then, for allλ ∈ P,

Φ(Xλ( f − e( f ))) = Xλ( f − e( f ))Tw0[OX1] = XλTw0( f − e( f ))[OX1]
= XλTw0(e( f ) − e( f ))[OX1] = 0,

since f − e( f ) ∈ Z(H̃R). Thus I ⊆ kerΦ. The ringKT (G/B) = R[X]/ kerΦ is a free
R-module of rank|W| and, byTheorem1.7, so isR[X]/I . Thus kerΦ = I . �

3. Pieri–Chevalley formulas

Recall that both

{XλTw−1 | λ ∈ P, w ∈ W} and {Tz−1 Xµ | µ ∈ P, z ∈ W} are bases of̃H .

If cµ,z
w,λ ∈ Z are the entries of the transition matrix between these two bases,

XλTw−1 =
∑

z∈W,µ∈P

cµ,z
w,λTz−1 Xµ, (3.1)

then applying each side of (3.1) to [OX1] gives that

[Xλ][OXw ] =
∑

z∈W,µ∈P

cµ,z
w,λeµ[OXz], in KT (G/B).

This is the most general form of “Pieri–Chevalley rule”. The problem is to determine the
coefficientscµ,z

w,λ.

3.1. The path model

A path in h∗ is a piecewise linear mapp : [0, 1] → h∗ such thatp(0) = 0. For each
1 ≤ i ≤ n there areroot operators ei and fi (see [14] Definitions 2.1 and 2.2) which act
on the paths. Ifλ ∈ P+ thepath modelfor λ is

T λ = { fi1 fi2 · · · fil pλ},
the set of all paths obtained by applying the root operators topλ, wherepλ is the straight
path from 0 toλ, that is,pλ(t) = tλ, 0 ≤ t ≤ 1. Each pathp in T λ is a concatenation of
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segments

p = pa1
w1λ

⊗ pa2
w2λ

⊗ · · · ⊗ par
wr λ

with w1 ≥ w2 ≥ · · · ≥ wr

and a1 + a2 + · · · + ar = 1, (3.2)

where, forv ∈ W anda ∈ (0, 1], pa
vλ is a piece of lengtha from the straight line path

pvλ = vpλ. If Wλ = Stab(λ) then thew j should be viewed as cosets inW/Wλ and
≥ denotes the order onW/Wλ inherited from the Bruhat–Chevalley order onW. The total
length of p is the same as the total length ofpλ which is assumed (or normalized) to be 1.
For p ∈ T λ let

p(1) =
r∑

i=1

ai wi λ be the endpoint ofp,

ι(p) = w1, the initial direction ofp, and

φ(p) = wr , the final direction ofp.

If h ∈ T λ is such thatei (h) = 0 thenh is theheadof its i -string

Sλ
i (h) = {h, fi h, . . . , f m

i h},
wherem is the smallest positive integer such thatf m

i h �= 0 and f m+1
i h = 0. The full path

modelT λ is the union of itsi -strings. The endpoints and the inital and final directions of
the paths in thei -stringSλ

i (h) have the following properties:

( f k
i h)(1) = h(1) − kαi , for 0 ≤ k ≤ m,

either ι(h) = ι( fi h) = · · · = ι( f m
i h) < si ι(h)

or ι(h) < ι( fi h) = · · · = ι( f m
i h) = si ι(h), and

either si φ( f m
i h) < φ(h) = · · · = φ( f m−1

i h) = φ( f m
i h)

or si φ( f m
i h) = φ(h) = · · · = φ( f m−1

i h) < φ( f m
i h).

(3.3)

The first property is [13, Lemma 2.1a], the second is [12, Lemma 5.3], and the last is
a result of applying [13, Lemma 2.1e] to [12, Lemma 5.3]. All of these facts are really
coming from the explicit form of the action of the root operators on the paths inT λ which
is given in [12, Proposition 4.2].

Let λ ∈ P+, w ∈ W andz ∈ W/Wλ, and letp ∈ T λ be such thatι(p) ≤ wWλ and
φ(p) ≥ z. Write p in the form (3.2) and letw̃1, . . . , w̃r , z̃ be the maximal (in Bruhat order)
coset representatives of the cosetsw1, . . . , wr , z such that

w ≥ w̃1 ≥ w̃2 ≥ · · · ≥ w̃r ≥ z̃. (3.4)

Theorem 3.5. Recall the notationεv from (1.11). Letλ ∈ P+ and let Wλ = Stab(λ). Let
w ∈ W. Then, in the affine nil-Hecke algebrãH,

XλTw−1 =
∑
p∈T λ

ι(p)≤wWλ

Tφ(p)−1 X p(1) and
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Xλεw−1 =
∑
p∈T λ

ι(p)=w

∑
z∈W/Wλ
z≤φ(p)

(−1)�(w)+�(z)εz̃−1 X p(1),

where, if Wλ �= {1} then Tφ(p)−1 = T
w̃−1

r
andεz−1 = εz̃−1 with w̃r andz̃ as in(3.4).

Proof. (a) The proof is by induction on�(w). Let w = si v wheresi v > v. Define

T λ≤w = {p ∈ T λ | ι(p) ≤ wWλ}.
Assumew = si v > v. Then the facts in (3.3) imply that

(1) T λ≤w is a union of the stringsSi (h) such thath ∈ T λ≤v, and
(2) If h ∈ T λ≤v then eitherSi (h) ⊆ T λ≤v or Si (h) ∩ T λ≤v = {h}.

Using the facts in (3.3), a direct computation with the relation (1.3) establishes that, if
h ∈ T λ≤v then∑

p∈Si (h)

Tφ(p)−1 Xη(1) = Tφ(h)−1 Xh(1)Ti , and

∑
p∈Si (h)

Tφ(p)−1 Xη(1) =
{

Tφ(h)−1 Xh(1)Ti , if Si (h) ⊆ T λ≤v,

Tφ(h)−1 Xh(1)Ti , if Si (h) ∩ T λ≤v = {h}.
Thus

XλTw−1 = XλTv−1Ti =

 ∑

p∈T λ≤v

Tφ(p)−1 X p(1)


 Ti (by induction)

=
∑

h∈T λ≤v
ei (h)=0


 ∑

Si (h)⊆T λ≤v

∑
p∈Si (h)

Tφ(p)−1 X p(1) +
∑

Si (h)∩T λ≤v={h}
Tφ(h)−1 Xh(1)


 Ti

=
∑

h∈T λ≤w
ei (h)=0


 ∑

Si (h)⊆T λ≤v

Tφ(h)−1 Xh(1)Ti +
∑

Si (h)∩T λ≤v={h}
Tφ(h)−1 Xh(1)


 Ti

=
∑

h∈T λ≤w
ei (h)=0


 ∑

Si (h)⊆T λ≤v

Tφ(h)−1 Xh(1)Ti +
∑

Si (h)∩T λ≤v={h}

∑
p∈Si (h)

Tφ(p)−1 X p(1)




=
∑

p∈T λ≤w

Tφ(p)−1 X p(1).

(b) The proof is similar to case (a). Forw ∈ W let

T λ=w = {p ∈ T λ | ι(p) = wWλ}.
Assumew = si v > v. Then the facts in (3.3) imply that
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(1) T λ=w is a union of the stringsSi (h) such thath ∈ T λ=h, and

(2) If h ∈ T λ=v then eitherSi (h) ⊆ T λ=v or Si (h) ∩ T λ=v = {h}.
Let

Eφ(p) =
∑

z∈W/Wλ
z≤φ(p)

(−1)�(z)εz̃−1. (3.6)

Using (3.3), a direct computation with the relation (1.3) establishes that, ifh ∈ T λ=v with
ei h = 0 then∑

p∈Si (h)

Eφ(p)X
p(1)Ti = 0, and Eφ(h)X

h(1)Ti = −
∑

p∈Si (h)−{h}
Eφ(p)X

p(1).

Thus

Xλεw−1 = Xλεv−1εi = (−1)�(v)


 ∑

p∈T λ=v

Eφ(p)X
p(1)


 Ti

= (−1)�(v)


 ∑

Si (h)⊆T λ=v

∑
p∈Si (h)

Eφ(p)X
p(1) +

∑
Si (h)∩T λ=v={h}

Eφ(h)X
h(1)


 Ti

= (−1)�(v)


0 −

∑
Si (h)∩T λ=v={h}

∑
p∈Si (h)−{h}

Eφ(p)X
p(1)




= (−1)�(w)


 ∑

p∈T λ=w

Eφ(p)X
p(1)


 . �

Corollary 3.7. Letλ,µ ∈ P+ and letw ∈ W. Then, in the affine nil-Hecke algebrãH,

X−λTw−1 =
∑

p∈T −w0λ

φ(p)=ww0

∑
z∈W/W−w0λ

zw0≥ι(p)

(−1)�(w)+�(z)Tz̃−1 X p(1) and

Xw0µTw−1 =
∑
p∈T µ

φ(p)=ww0

∑
z∈W/Wµ
zw0≤φ(p)

(−1)�(w)+�(z)Tz̃−1 X p(1).

Proof. The second identity is a restatement of the first with a change of variableµ =
−w0λ. The first identity is obtained by applying the algebra involution

H̃ H̃
Tw εw

Xλ X−λ

and the bijection
T λ T −w0λ

p p∗

where p∗ is the same path asp except translated so that its endpoint is at the origin.
Representation theoretically, this bijection corresponds to the fact thatL(λ)∗ ∼= L(−w0λ),
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if L(λ) is the simpleG-module of highest weightλ. Note thatp∗(1) = −p(1), ι(p∗) =
φ(p)w0, andφ(p∗) = ι(p)w0. �

Applying the identities fromTheorem3.5 and Corollary 3.7 to [OX1] yields the
following product formulas inKT (G/B). In particular, this gives a combinatorial proof of
the (T-equivariant extension) of the duality theorem of Brion [1, Theorem 4]. Forλ ∈ P
andw ∈ W let [Xλ] = Xλ[OXw0

] = XλTw0[OX1] and letcz
λ,w be given by

[Xλ][OXw ] =
∑
z∈W

cz
λ,w[OXz]. (3.8)

Corollary 3.9. Letλ ∈ P+, w ∈ W and Wλ = Stab(λ). Then, with notation as in(3.8),

cz
λ,w =

∑
p∈T λ

wWλ≥ι(p)≥φ(p)=zWλ

ep(1),

cz
w0λ,w = (−1)�(w)+�(z)cww0

λ,zw0
, and cz−λ,w = (−1)�(w)+�(z)cww0−w0λ,zw0

.

Proposition 3.10. For 1 ≤ i ≤ n, [OXw0si
] = 1 − ew0ωi [X−ωi ].

Proof. We shall show that

X−ωi [OXw0
] = e−w0ωi ([OXw0

] − [OXw0si
]), (3.11)

and the result will follow by solving for[OXsi w0
]. Let ω j = −w0ωi . By Corollary3.9,

cz−ωi ,w0
= (−1)�(w0)+�(z)c1

ω j ,zw0
= (−1)�(w0)+�(z)

∑
p∈T ω j

zw0≥ι(p)≥φ(p)=1

ep(1).

The straight line path toω j , pω j , hasιzw0(pω j ) = φzw0(ω j ) and is the unique path in
T ω j which may have final direction 1. Supposeφzw0(pω j ) = 1. Then, sincesj is the only
simple reflection which is not in Stab(ω j ), it must be thatzw0 � sk for all k �= j . Thus
zw0 = 1 or zw0 = sj and socz−ωi ,w0

�= 0 only if z = w0 or z = sj w0 = w0si . Now (3.11)
follows sincepω j has endpointω j = −w0ωi . �

Corollary 3.12. Let cz
wv be as in(3.8). Then, for

cλ
w0si ,w

= −(e−(wωi −w0ωi ) − 1)

and

cz
w0si ,w

= (−1)�(w)+�(z)+1
∑

p∈T −w0ωi
zw0≥ι(p)≥φ(p)=ww0

ew0ωi +p(1), for z �= w.

Proof. This follows fromProposition3.10andCorollary3.9and the fact that, in the case
whenz = w, there is a unique pathp with ww0 = ι(p) = φ(p) = ww0 and endpoint
p(1) = ww0(−w0ωi ) = −wωi . �
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4. Converting to H ∗
T
(G/B)

Thegraded nil-Hecke algebrais the algebraHgr given by generatorst1, . . . , tn andxλ,
λ ∈ P, with relations

t2
i = 0, ti t j ti · · ·︸ ︷︷ ︸

mij factors

= t j ti t j · · ·︸ ︷︷ ︸
mij factors

, xλ+µ = xλ + xµ, andxλti = ti xsi λ + 〈λ, α∨
i 〉. (4.1)

The subalgebra ofHgr generated by thexλ is the polynomial ringZ[x1, . . . , xn], where
xi = xωi , andW acts onZ[x1, . . . , xn] by

wxλ = xwλ andw( f g) = (w f )(wg), for w ∈ W, λ ∈ P, f, g ∈ Z[x1, . . . , xn].
Then the last formula in (4.1) generalizes to

f ti = ti (si f ) + f − si f

αi
, for f ∈ Z[x1, . . . , xn].

Let tw = ti1 · · · ti p for a reduced wordw = si1 · · · si p and letZWgr be the subalgebra of
Hgr spanned by thetw, w ∈ W. Then

{xm1
1 · · · xmn

n tw | w ∈ W, mi ∈ Z≥0} and {twxm1
1 · · · xmn

n | w ∈ W, mi ∈ Z≥0}
are bases ofHgr.

Let S = Z[y1, . . . , yn] and extend coefficients toS so thatHgr,S = S ⊗Z Hgr and
S[x1, . . . , xn] = S ⊗Z Z[x1, . . . , xn] are S-algebras. DefineH ∗

T(G/B) to be theHgr,S

module

H ∗
T(G/B) = S-span{[Xw] | w ∈ W}, (4.2)

so that the[Xw], w ∈ W, are anS-basis ofKT (G/B), with Hgr,S-action given by

xi [X1] = yi [X1], and ti [Xw] =
{[Xwsi ], if wsi > w,

0, if wsi < w.
(4.3)

Let y be theS-algebra homomorphism given by

y : S[x1, . . . , xn] S
xi yi

so thatH ∗
T(G/B) ∼= Hgr,S⊗S[x1,...,xn] y asHgr,S-modules. Then, using analogous methods

to the KT (G/B) case proves the following theorem, which gives the ring structure of
H ∗

T (G/B) (see also the proof of [10, Prop. 2.9] for the same argument with (non-nil)
graded Hecke algebras).

Theorem 4.4. The composite map

Φ : S[x1, . . . , xn] Hgr,Stw0 ↪→ Hgr,S H ∗
T (G/B)

f f tw0 h h[X1]
is surjective with kernel

kerΦ = 〈 f − y( f ) | f ∈ S[x1, . . . , xn]W〉,
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the ideal of the ring S[x1, . . . , xn] generated by the elements f− y( f ) for f ∈
S[x1, . . . , xn]W. Hence

H ∗
T (G/B) ∼= Z[y1, . . . , yn, x1, . . . , xn]

〈 f − y( f ) | f ∈ S[x1, . . . , xn]W〉
has the structure of a ring.

As a vector spaceHgr = Z[x1, . . . , xn] ⊗ ZWgr. Let Ĥgr = Q[[x1, . . . , xn]] ⊗ QWgr

with multiplication determined by the relations in (4.1). Then Ĥgr is a completion ofHgr

(this simply allows us to write infinite sums) and the elements ofĤgr given by

ch(Xλ) =
∑
r≥0

1

r !x
r
λ and ch(Ti ) = ti · xαi

1 − ch(Xαi )
(4.5)

satisfy the relations of̃H and thus ch extends to a ring homomorphism ch: H̃ Ĥgr. It
is this fact that really makes possible the transfer fromK -theory to cohomology possible.
Though it is not difficult to check that the elements in (3.5) satisfy the defining relations of
H̃ it is helpful to realize that these formulas come from geometry. As explained in [21], the
action ofTi on KT (G/B) and the action ofti on H ∗

T(G/B) are, respectively, the push-pull
operatorsπ∗

i (πi )! andπ∗
i (πi )∗, where if Pi is a minimal parabolic subgroup ofG then

πi : G/Pi → G/B is the natural surjection. Then the first formula in (3.5) is the definition
of the Chern character, and the second formula is the Grothedieck–Riemann–Roch theorem
applied to the mapπi . The factorXαi /(1 − ch(Xαi )) is the Todd class of the bundle of
tangents along the fibers ofπi (see [8, p. 91]).

Then Ĥ ∗
T (G/B)Q = Q[[y1, . . . , yn]] ⊗Z[y1,...,yn] H ∗

T(G/B) is the appropriate
completion ofH ∗

T (G/B) to use to transfer the ring homomorphism ch: H̃R → Ĥgr to
a ring homomorphism

ch: KT (G/B) Ĥ ∗
T (G/B)Q by setting ch(h[OX1]) = ch(h)[X1], (4.6)

for h ∈ H̃R. The ringĤ ∗
T (G/B)Q is a graded ring with

deg(yi ) = 1 and deg([Xw]) = �(w0) − �(w), (4.7)

and, for w ∈ W, ch([OXw ]) = [Xw] + higher degree terms. (4.8)

In summary, ifei = eωi , Xi = Xωi , yi = yωi , xi = xωi ,

R[X] = Z[e±1
1 , . . . , e±1

n , X±1
1 , . . . , X±1

n ], Z[X] = Z[X±1
1 , . . . , X±1

n ],
and Ŝ[x1, . . . , xn] = Q[[y1, . . . , yn]][x1, . . . , xn],

then there is a commutative diagram of ring homomorphisms

KT (G/B) = R[X]
〈 f −e( f )| f ∈R[X]W〉

ch
H ∗

T (G/B)Q = Ŝ[x1,...,xn]
〈 f −y( f )| f ∈Ŝ[x1,...,xn]W〉

↓ei =1 ↓yi =0

K (G/B) = Z[X]
〈 f − f (1)| f ∈Z[X]W〉

ch
H ∗(G/B)Q = Q[x1,...,xn]

〈 f − f (0)| f ∈Q[x1,...,xn]W〉 .
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5. Rank two and a positivity conjecture

In this section we will give explicit formulas for the rank two root systems. The
data supports the following positivity conjecture which generalizes the theorems of Brion
[1, formula before Theorem 1] and Graham [7, Corollary 4.1].

Conjecture 5.9. For β ∈ R+ let yβ = e−β andαβ = e−β−1and let d(w) = �(w0)−�(w)

for w ∈ W. Let czwv be the structure constants of KT (G/B) with respect to the basis
{[OXw ] | w ∈ W} as defined in(0.1). Then

cz
wv = (−1)d(w)+d(v)−d(z) f (α, y), where f(α, y) ∈ Z≥0[αβ, yβ | β ∈ R+],

that is, f(α, y) is a polynomial in the variablesαβ and yβ , β ∈ R+, which has non-
negative integral coefficients.

In the following, for brevity, use the following notations:

in KT (G/B), [w] = [OXw ], αrs = e−(rα1+sα2) − 1, and yrs = e−(rα1+sα2),

in K (G/B), [w] = [OXw ], αrs = 0, and yrs = 1,

in H ∗
T (G/B), [w] = [Xw], αrs = r α1 + sα2, and yrs = 1,

in H ∗(G/B), [w] = [Xw], αrs = 0, and yrs = 1,

and inH ∗
T (G/B) and inH ∗(G/B) the terms in{ } brackets do not appear.

Type A2. For the root systemR of type A2

α1 = −ω1 + 2ω2, λ1 = ρ, λs1 = ω2 = 1
3α1 + 2

3α2,

λs2s1 = s2ω2 = 1
3α1 − 1

3α2,

α2 = 2ω1 − ω2, λw0 = 0, λs2 = ω1 = 2
3α1 + 1

3α2,

λs1s2 = s1ω1 = −1
3α1 + 1

3α2.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s2s1] = 1, [1] = (1 − es1ω1 X−ω1)[s1] = (1 − es2ω2 X−ω2)[s2],
[s2s1] = 1 − e−ω1 X−ω2, [s1s2] = 1 − e−ω2 X−ω1

[s1] = (1 − es2ω2 X−ω2)[s2s1], [s2] = (1 − es1ω1 X−ω1)[s1s2],
and

[s1s2s1] = 1, [s1s2] = 1 − e−ω2 X−ω1, [s2s1] = 1 − e−ω1 X−ω2,

[s1] = 1 − e−ω2 X−s1ω1 − e−ω2 X−ω1 + e−2ω2 X−ω2,

[s2] = 1 − e−ω1 X−s2ω2 − e−ω1 X−ω2 + e−2ω1 X−ω1,

[1] = 1 − e−ω2 X−s1ω1 − e−ω1 X−s2ω2 + e−2ω1 X−ω1 + e−2ω2 X−ω2 − e−ρ X−ρ .

The multiplication of the Schubert classes is given by

[1]2 = −α10α01α11[1], [s1]2 = α01α11[s1], [s2]2 = α10α11[s2],
[1][s1] = α01α11[1], [s1][s2] = −α11[1], [s2][s1s2] = −α11[s2],
[1][s2] = α10α11[1], [s1][s1s2] = y01[1] − α01[s1],

[s2][s2s1] = y10[1] − α10[s2],
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[1][s1s2] = −α11[1], [s1][s2s1] = −α11[s1],
[1][s2s1] = −α11[1], [s1s2]2 = y01[s2] − α01[s1s2],

[s2s1]2 = y10[s1] − α10[s2s1].
[s1s2][s2s1] = {−[1]} + [s1] + [s2],

Type B2. For the root systemR of type B2

α1 = 2ω1 − ω2, λ1 = ρ = 2α1 + 3
2α2, λs1 = ω2 = α1 + α2,

α2 = −2ω1 + 2ω2, λw0 = 0, λs2 = ω1 = α1 + 1
2α2,

λs2s1 = s2ω2 = α1, λs1s2s1 = s1s2ω2 = −α1,

λs1s2 = s1ω1 = 1
2α2, λs2s1s2 = s2s1ω1 = −1

2α2.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s2s1s2] = 1, [1] = (1 − es1ω1 X−ω1)[s1] = (1 − es2ω2 X−ω2)[s2],
[s1s2s1] = 1 − e−ω2 X−ω2, [s2s1s2] = 1 − e−ω1 X−ω1,

[s2s1] = (1 − e−ω1 X−s1ω1)[s2s1s2], [s1s2] = (1 − es2s1ω1 X−ω1)[s2s1s2],
[s1] = (1 − es2ω2 X−ω2)[s2s1], [s2] = (1 − es1ω1 X−ω1)[s1s2],

and

[s1s2s1s2] = 1, [s1s2s1] = 1 − e−ω2 X−ω2, [s2s1s2] = 1 − e−ω1 X−ω1,

[s1s2] = (1 − e−ω2) − e−ω2 X−ω2 − e−ω2 X−s2ω2 + (e−ρ + e−s1ρ)X−ω1,

[s2s1] = 1 − e−ω1 X−ω1 − e−ω1 X−s1ω1 + e−2ω1 X−ω2,

[s1] = (1 − e−ω2) + (e−ρ + e−s1ρ)X−s1ω1 + (e−ρ + e−s1ρ)X−ω1

− e−ω2 X−s1s2ω2 − e−ω2 X−s2ω2 − (e−2ω2 + e−ω2)X−ω2,

[s2] = (1 + e−2ω1) + e−2ω1 X−s2ω2 + e−2ω1 X−ω2

− e−ω1 X−s2s1ω1 − e−ω1 X−s1ω1 − (e−3ω1 + e−ω1)X−ω1,

[1] = (1 + e−2ω1) − e−ω1 X−s2s1ω1 + (e−ρ + e−s1ρ)X−s1ω1 − (e−3ω1 + e−ω1)X−ω1

− e−ω2 X−s1s2ω2 + e−2ω1 X−s2ω2 − (e−2ω2 + e−ω2)X−ω2 + e−ρ X−ρ .

The multiplication of the Schubert classes is given by

[1]2 = α10α01α11α21[1], [s1s2s1]2 = {−y11[s1]} + (y01 + y11)[s2s1] − α01[s1s2s1],
[s1s2s1][s2s1s2] = {[1] − [s1] − [s2]} + [s1s2] + [s2s1],[1][s1] = −α01α11α21[1],

[1][s2] = −α10α11α21[1],
[1][s1s2] = α11α21[1], [s2s1s2]2 = y10[s1s2] − α10[s2s1s2],

[s2s1]2 = −α21y10[s1] + α10α21[s2s1],[1][s2s1] = α11α21[1],
[1][s1s2s1] = −α11(1 + y11)[1],
[1][s2s1s2] = −α21[1], [s2s1][s1s2s1] = y21[s1] − α21[s2s1],

[s2s1][s2s1s2] = {−y10[1]} + y10[s1] + y10[s2] − α10[s2s1],
[s1]2 = −α01α11α21[s1], [s2]2 = −α10α11α21[s2],
[s1][s2] = α11α21[1],
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[s1][s1s2] = −α11(y01 + y11)[1] + α01α11[s1], [s2][s1s2] = α11α21[s2],
[s2][s2s1] = −α21y10[1] + α10α21[s2],[s1][s2s1] = α11α21[s1],

[s1][s1s2s1] = −α11(1 + y11)[s1], [s2][s1s2s1] = y21[1] − α21[s2],
[s2][s2s1s2] = −α21[s2],[s1][s2s1s2] = y11[1] − α11[s1],

[s1s2]2 = −α11(y01 + y11)[s2] + α01α11[s1s2],
[s1s2][s2s1] = ({α11} + y21)[1] − α11[s1] − α21[s2],
[s1s2][s1s2s1] = {−(y01 + y11)[1]} + y01[s1] + (y11 + y12)[s2] − α01[s1s2],
[s1s2][s2s1s2] = y11[s2] − α11[s1s2],

[s2s1]2 = −α21y10[s1] + α10α21[s2s1],
[s2s1][s1s2s1] = y21[s1] − α21[s2s1],
[s2s1][s2s1s2] = {−y10[1]} + y10[s1] + y10[s2] − α10[s2s1],

Type G2. For the root systemR of typeG2
λ1 = ρ = 5α + 3α2, λs1s2s1 = s1s2ω2 = α2,

λs1 = ω2 = 3α1 + 2α2, λs2s1s2s1 = s2s1s2ω2 = −α2,

λs2 = ω1 = 2α1 + α2, λs1s2s1s2 = s1s2s1ω1 = −α1,

λs2s1 = s2ω2 = 3α1 + α2, λs1s2s1s2s1 = s1s2s1s2ω2 = −3α1 − α2,

λs1s2 = s1ω1 = α1 + α2, λs2s1s2s1s2 = s2s1s2s1ω1 = −α1 − α2,

λs2s1s2 = s2s1ω1 = α1, λw0 = 0.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

[s1s2s1s2s1s2] = 1, [1] = (1 − es1ω1 X−ω1)[s1] = (1 − es2ω2 X−ω2)[s2],
[s1s2s1s2s1] = 1 − e−ω2 X−ω2, [s2s1s2s1s2] = 1 − e−ω1 X−ω1,

[s2s1s2s1] = (1 − e−ω1 X−s1ω1)[s2s1s2s1s2],
[s1s2s1s2] = (1 − e−s1ω1 X−ω1)[s2s1s2s1s2],
[s1s2s1] = see below, [s2s1s2] = 1 − e−s2s2ω1 X−ω1

1 + X−ω1
[s1s2s1s2],

[s2s1] = (1 − e−ω1 X−s1s2s1ω1)[s2s1s2], [s1s2] = (1 − es2s1ω1 X−ω1)[s1s2],
[s1] = (1 − es2ω2 X−ω2)[s2s1], [s2] = (1 − es1ω1 X−ω1)[s1s2],
[s1s2s1] = (1 − e−α2 X−ω2)[s2s1s2s1] + e−α2(1 + eω1 X−ω2)[s2s1]

1 + e−α2
,

and

[w0] = 1, [s2s1s2s1s2] = 1 − y21X−ω1, [s1s2s1s2s1] = 1 − y32X−ω2,

[s2s1s2s1] = 1 − y21X−ω1 − y21X−s1ω1 + y42X−ω2,

[s1s2s1s2] = (1 − y32) + (y22 + y42 + y43 + y53)X−ω1 − y32X−s1ω1

− y32X−s2s1ω1 − y32X−ω2 − y32X−s2ω2,
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[s2s1s2] = (1 − y21 + y42) + (y42 − y21 − y52 − y53 − y63)X−ω1

+ (y42 − y21)X−s1ω1 + (y42 − y21)X−s2s1ω1 + y42X−ω2 + y42X−s2ω2,

[s1s2s1] = (1 − 2y32) + (y22 + y42 + y43 + y53)X−ω1

+ (y22 + y42 + y43 + y53)X−s1ω1 − y32X−s2s1ω1 − y32X−s1s2s1ω1

− (y32 + y43 + y53)X−ω2 − y32X−s2ω2 − y32X−s1s2ω2,

[s2s1] = (1 − y21 + 2y42) + (y42 − y21 − y52 − y53 − y63)X−ω1

+ (y42 − y21 − y32 − y53 − y63)X−s1ω1 + (y42 − y21)X−s2s1ω1

+ (y42 − y21)X−s1s2s1ω1 + (y42 + y63)X−ω2 + y42X−s2ω2 + y42X−s1s2ω2,

[s1s2] = 1 − y11 − y21 − y32 − y43 − y53 + (y22 + y32)(1 + y10 + y20)X−ω1

+ (y22 + y32 + y42)X−s1ω1 + (y22 + y32 + y42)X−s2s1ω1

− (y32 + y43 + y53)X−ω2 − (y32 + y43 + y53)X−s2ω2 − y32X−s1s2ω2

− y32X−s2s1s2ω2,

[s2] = (1 + y31 + y32 + 2y42 + y63) − (y21 + y52 + y53 + y84)X−ω1

− (y21 + y52 + y53)X−s1ω1 − (y21 + y52 + y53)X−s2s1ω1 − y21X−s1s2s1ω1

− y21X−s2s1s2s1ω1 + (y42 + y63)X−ω2 + (y42 + y63)X−s2ω2

+ y42X−s1s2ω2 + y42X−s2s1s2ω2,

[s1] = 1 − (y11 + y21 + y32 + 2y43 + 2y53) + (y22 + y54)(1 + y10 + y20)X−ω1

+ (y22 + y54)(1 + y10 + y20)X−s1ω1 + (y22 + y32 + y42)X−s2s1ω1

+ (y22 + y32 + y42)X−s1s2s1ω1 − (y32 + y43 + y53 + y64)X−ω2

− (y32 + y43 + y53)X−s2ω2 − (y32 + y43 + y53)X−s1s2ω2 − y32X−s2s1s2ω2

− y32X−s1s2s1s2ω2,

[1] = (1 + y31 + y42 + y63 − y53 − y43) − y21(1 + y32)
2X−ω1

+ y22(1 + y10 + y20)(1 + y21 + y31)X−s1ω1 − (y21 + y52 + y53)X−s2s1ω1

+ y22X−s1s2s1ω1 − y21X−s2s1s2s1ω1 − y32(1 + y11)(1 + y21)X−ω2

+ (y42 + y63)X−s2ω2 − (y32 + y43 + y53)X−s1s2ω2 + y42X−s2s1s2ω2

− y32X−s1s2s1s2ω2 + y53X−ρ .

The multiplication of the Schubert classes is given by

[1]2 = α10α01α11α21α31α32[1], [1][s2s1s2] = −α21α31α32[1],
[1][s1] = −α01α11α21α31α32[1], [1][s1s2s1s2] = α21α32(1 + y21)[1],
[1][s2] = −α10α11α21α31α32[1], [1][s2s1s2s1] = α21α32(1 + y21)[1],
[1][s1s2] = α11α21α31α32[1], [1][s1s2s1s2s1] = −α32(1 + y32)[1],
[1][s2s1] = α11α21α31α32[1], [1][s2s1s2s1s2] = −α21(1 + y21)[1],
[1][s1s2s1] = −α11α21α32(1 + y11 + y21)[1],

[s1]2 = −α01α11α21α31α32[s1]
[s1][s2] = α11α21α31α32[1]
[s1][s1s2] = −α11α21α32(y01 + y11 + y21)[1] + α01α11α21α32[s1]
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[s1][s2s1] = α11α21α31α32[s1]
[s1][s1s2s1] = −α11α21α32(1 + y11 + y21)[s1]
[s1][s2s1s2] = α21α32(y11 + y21)[1] − α11α21α32[s1]
[s1][s1s2s1s2] = −α32(y22 + y32)[1] + α11α32(1 + y11)[s1]
[s1][s2s1s2s1] = α21α32(1 + y21)[s1]
[s1][s1s2s1s2s1] = −α32(1 + y32)[s1]
[s1][s2s1s2s1s2] = y32[1] − α32[s1]

[s2]2 = −α10α11α21α31α32[s2]
[s2][s1s2] = α11α21α31α32[s2]
[s2][s2s1] = −α21α31α32y10[1] + α10α21α31α32[s2]
[s2][s1s2s1] = α21α32(y21 + y31)[1] − α21α31α32[s2]
[s2][s2s1s2] = −α21α31α32[s2]
[s2][s1s2s1s2] = α21α32(1 + y21)[s2]
[s2][s2s1s2s1] = −α21(y31 + y52)[1] + α21α31(1 + y21)[s2]
[s2][s1s2s1s2s1] = y63[1] − α21(1 + y21 + y42)[s2]
[s2][s2s1s2s1s2] = −α21(1 + y21)[s2]

[s1s2]2 = −α11α21α32(y01 + y11 + y21)[s2] + α01α11α21α32[s1s2]
[s1s2][s2s1] = α21α32(y11 + y21 + α31)[1] − α11α21α32[s1] − α21α31α32[s2]
[s1s2][s1s2s1] = −α32(y32 + y42{+α11(y01 + 2y11 + y21)})[1]

+ α11α32(y01 + y11)[s1] + (α31α32y11
+ α11α32(y01 + y11 + y21))[s2] − α01α11α32[s1s2]

[s1s2][s2s1s2] = α21α32(y11 + y21)[s2] − α11α21α32[s1s2]
[s1s2][s1s2s1s2] = −α32(y22 + y32)[s2] + α11α32(1 + y11)[s1s2]
[s1s2][s2s1s2s1] = (y63{+α32(y11 + y21)})[1] − α32y11[s1] − (α32(y11 + y21)

+ α31y32)[s2] + α11α32[s1s2]
[s1s2][s1s2s1s2s1] = {−(y33 + y43 + y53)[1]} + y33[s1] + (y33 + y43 + y53)[s2]

− α11(1 + y11 + y22)[s1s2]
[s1s2][s2s1s2s1s2] = y32[s2] − α32[s1s2]

[s2s1]2 = −α21α31α32y10[s1] + α10α21α31α32[s2s1]
[s2s1][s1s2s1] = α21α31(y21 + y31)[s1] − α21α31α32[s2s1]
[s2s1][s2s1s2] = −α21(y51 + y52{+α31y10})[1] + α21(α10y31 + α32y10)[s1]

+ α21α31(y10 + y21)[s2] − α10α21α31[s2s1]
[s2s1][s1s2s1s2] = (y62{+α31(y21 + y31)})[1] − (α31y21 + α10(y31 + y41))[s1]

− (α31y21 + α32y31)[s2] + α21α31[s2s1]
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[s2s1][s2s1s2s1] = −α21(y31 + y52)[s1] + α21α31(1 + y21)[s2s1]
[s2s1][s1s2s1s2s1] = y63[s1] − α21(1 + y21 + y42)[s2s1]
[s2s1][s2s1s2s1s2] = {−y31[1]} + y31[s1] + y31[s2] − α31[s2s1]
[s1s2s1]2 = −α32(y32 + y42{+α11(y11 + y21)})[s1]

+ (α11α32(y01 + y11 + y21) + α31α32y11)[s2s1] − α01α11α32[s1s2s1]
[s1s2s1][s2s1s2] = (1{+α11(y11 + y22 + y33 + y31 + y42) + α31(y21 + y32)

+ α32y21})[1] − (α11(y21 + α32) + α10(y31 + y41 + y32
+ y42))[s1] − (α31(y21 + y32) + α11(y21 + y32 + y31 + α42)[s2]
+ α11α32[s1s2] + α21α31[s2s1]

[s1s2s1][s1s2s1s2] = {−(y33 + 2y43 + y53 + α11(y01 + y11) + α21(y11 + y21))[1]}
+ (y33 + y43{+α11(y01 + y11) + α21(y11 + y21)})[s1]
((y33 + y43 + y53){+α11(y01 + y11) + α21(y11 + y21)})[s2]
− α11(y01 + y11 + y22)[s1s2] − (α11(y01 + y11) + α21(y11
+ y21))[s2s1] + α01α11[s1s2s1]

[s1s2s1][s2s1s2s1] = (y62{+α32y21})[s1] − (α31y32 + α32(y11 + y21))[s2s1]
+ α11α32[s1s2s1]

[s1s2s1][s1s2s1s2s1] = {−(y43 + y53)[s1]} + (y33 + y43 + y53)[s2s1]
− α11(1 + y11 + y22)[s1s2s1]

[s1s2s1][s2s1s2s1s2] = {(y11 + y21)[1] − (y11 + y21)[s1] − (y11 + y21)[s2]}
+ y11[s1s2] + (y11 + y21)[s2s1] − α11[s1s2s1]

[s2s1s2]2 = −α21(y21 + y42)[s2] + (α11α21y31 + α21α31y10)[s1s2]
− α10α21α31[s2s1s2]

[s2s1s2][s1s2s1s2] = y53[s2] − (α21y31 + α11α21α32y21)[s1s2] + α21α31[s2s1s2]
[s2s1s2][s2s1s2s1] = {−(y51 + y52 + α31y10)[1]} + (y41{+α31y10})[s1]

+ (y42 + y52{+α31y10})[s2] − (α11y31 + α31y10)[s1s2]
− α31y10[s2s1] + α10α31[s2s1s2]

[s2s1s2][s1s2s1s2s1] = {(y31 + y32 + y42)[1] − (y31 + y32)[s1]
− (y31 + y32 + y42)[s2]} + (y31 + y32)[s1s2]
+ y31[s2s1] − α31[s2s1s2]

[s2s1s2][s2s1s2s1s2] = y31[s1s2] − α31[s2s1s2]
[s1s2s1s2]2 = {−y43[s2]} + (y32 + y42{+α01y21 + α32y11})[s1s2]

− (α01(y11 + y21) + α31(y01 + y11))[s2s1s2] + α01α11[s1s2s1s2]
[s1s2s1s2][s2s1s2s1] = {(y21 + y31 + y32 + y42 + α11)[1] − (y21 + y31

+ y32 + α11)[s1] − (y21 + y31 + y32 + y42 + α11)[s2]}
+ (y31 + y42{,+α11})[s1s2] + (y21 + y31{+α11})[s2s1]
− α11[s1s2s1] − α31[s2s1s2]

[s1s2s1s2][s1s2s1s2s1] = {−(y01 + y11 + y21 + y22 + y32)[1] + (y01 + y11
+ y21 + y22)[s1] + (y01 + y11 + y21 + y22 + y32)[s2]
− (y01+ y11+ y21+ y22)[s1s2] − (y01+ y11+ y21)[s2s1]}
+ y01[s1s2s1] + (y01 + y11 + y21)[s2s1s2] − α01[s1s2s1s2]
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[s1s2s1s2][s2s1s2s1s2] = {−y21[s1s2]} + (y11 + y21)[s2s1s2] − α11[s1s2s1s2]
[s2s1s2s1]2 = {−y52[s1] + (y42 + y52)[s2s1]} − (α11y31 + α31y10)[s1s2s1]

+ α10α31[s2s1s2s1]
[s2s1s2s1][s1s2s1s2s1] = {y42[s1] − (y31 + y41)[s2s1]} + (y31 + y32)[s1s2s1]

− α31[s2s1s2s1]
[s2s1s2s1][s2s1s2s1s2] = {−y10[1] + y10[s1] + y10[s2] − y10[s1s2] − y10[s2s1]}

+ y10[s1s2s1] + y10[s2s1s2] − α10[s2s1s2s1]
[s1s2s1s2s1]2 = {−y32[s1] + (y22 + y32)[s2s1] − (y11 + y21 + y22)[s1s2s1]}

+ (y01 + y11 + y21)[s2s1s2s1] − α01[s1s2s1s2s1]
[s1s2s1s2s1][s2s1s2s1s2] = {[1] − [s1] − [s2] + [s1s2] + [s2s1]

− [s1s2s1] − [s2s1s2]} + [s1s2s1s2] + [s2s1s2s1]
[s2s1s2s1s2]2 = y10[s1s2s1s2] − α10[s2s1s2s1s2]
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