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Abstract

Using a combinatorial approach that avoids geometry, this paper studies the structure of
KT(G/B), the T-equivariantK -theory of the generalized flag varie®/ B. This ring has a natural
basis{[Ox, ]| w € W} (the double Grothendieck polynomials), whéPg  is the structure sheaf of
the Schubert variet¥y,. For rank two cases we compute the corresponding structure constants of the
ring K1(G/B) and, based on this data, make a positivity conjecture for ge@endiich generalizes
the theorems of M. Brion (foK (G/B)) and W. Graham (foH7 (G/B)). Let[X*] € KT(G/B) be
the class of the homogeneous line bundlgxB corresponding to the characterbfindexed bya.

For generalG we prove “Pieri-Chevalley formulas” for the produqm*][(ﬁxw], [X_*][Oxw],
[X®0*][Ox, 1, and [OX,05 110x,,1, where 4 is dominant. By using the Chern character and
comparing lowest degree terms the products which are computed in this paper also give results for
the Grothendieck polynomials, double Schubert polynomials, and ordinary Schubert polynomials in,
respectivelyK (G/B), Hf (G/B) andH*(G/B).

© 2003 Elsevier Ltd. All rights reserved.
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0. Introduction

Using a combinatorial approach which avoids geometry, this paper studies the ring
structure ofkKt (G/B), the T-equivariantk -theory of the (generalized) flag varie®y B.
Here, the dat&G 2 B 2 T is a complex reductive algebraic group (or symmetrizable
Kac—Moody group)G, a Borel subgroumB, and a maximal torug, and Ky (G/B)
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is the Grothendieck group of -equivariant coherent sheaves G B. Because of the
T-equivariance the rindt(G/B) is an R-algebra, whereR is the representation ring
of T. As explained by Grothendiecl][ (in the non-Kac—Moody case) and Kostant and
Kumar [9] (in the general Kac—Moody case), the riikgr (G/B) has a naturaR-basis
{[Ox,] | w € W}, whereW is the Weyl group an®x,, is the structure sheaf of the
Schubert varietyX,, € G/B. One of the main problems in the field is to understand the
structure constants of the ringr (G/B) with this basis, that is, the coefficient§,, in the
equations

[0x,1[0x,]1 =Y ¢, [0x,]. (0.1)
zeW

Our approach is to work completely combinatorially and deKr€G/B) as a quotient of

the affine nil-Hecke algebra. The fact that the combinatorial approach coincides with the
geometric one is a consequence of the results of Kostant and K@heerd Demazured].

In the combinatorial literature the elemeid3x,, ] are often called (double) Grothendieck
polynomials.

Let P be the weight lattice of and, fors € P, let[ X*] be the homogeneous line bundle
on G/B corresponding to the characterbfindexed byi. The theorem of Pittiel[9] says
that the ringk (G/B) is generated by thex*], » € P. Steinberg 23] strengthened this
result by displaying specificX —*»], w € W, which form anR-basis ofK 1 (G/B). These
results are often collectively known as the “Pittie—Steinberg theorem”.

The theorems which we prove Bection 2are simply different points of view on the
Pittie—Steinberg theorem. Though we are not aware of any reference which states these
theorems in the generality which we consider, these theorems should be considered well
known.

Lets, ..., s be the simple reflections W (determined by the datgs © B D T)),
let wo be the longest element &% and letP* be the set of dominant weights . The
Schubert varietieX,,,s are the codimension one Schubert varietie§jiB. In Section 3
we prove “Pieri—Chevalley” formulas for the products

[X*[0x, ], [X7*1[O0x,], [X"][Ox,], and [Ox,1Ox,], (0.2)

forn € PT,w € Wand 1< i < n. All of these Pieri—Chevalley formulas are given in
terms of the combinatorics of the Littelmann path mod&HL4]. The formula which we

give for the first productind.2) is due to Pittie and Ran2[). In this paper we provide more
details of proof than appeared ia(]. The other formulas for the products i@.p) follow

by applying the duality theorem of Briod,[Theorem 4] to the first formula. However, here

we give an independent, combinatorial, proof and deduce Brion’s result as a consequence.
The last formula is a consequence of the nice formula

[Ox, . ]1=1— e [X ], (0.3)

oS
which is an easy consequence of the first two Pieri—-Chevalley rules.

It is not difficult to “specialize” product formulas foKt(G/B) to corresponding
product formulas folK (G/B), H{(G/B), andH*(G/B) (by using the Chern character
and comparing lowest degree terms, and ignoringrtrection). Thus the products which
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are computed in this paper also give results for ordinary Grothendieck polynomials,
double Schubert polynomials, and ordinary Schubert polynomia&ettion 4ve explain
how to do these conversions. For most of these cases the specialized versions of our
Pieri—-Chevalley rules are already very well known (see, for exam@jle, [

In Section 5we give explicitly

(@) two different kinds of formulas fdiOx,, ] in terms ofX*, and
(b) complete computations of the products@nlj

for the rank two root systems. This data allows us to make a “positivity conjecture” for
the coefficientgZ | in (0.1). This conjecture generalizes the theorems of Bripridrmula
before Theorem 1] and Grahar, [Corollary 4.1], which treat the casés(G/B) and
H{(G/B), respectively.

1. Preliminaries

Fix the following data and notation:

h* is a real vector space of dimension

R is a reduced irreducible root systemijif
R* is a set of positive roots iR,

W is the Weyl group oR,

St, ..., % are the simple reflections W,

mij is the order ofysj in W, i # j,

R(w) = {@ € R* | wa ¢ RT} s the inversion setob ¢ W,

£(w) = Card R(w)) is the length ofw € W,

< is the Bruhat—Chevalley order oN,

o1, ..., 00 are the simple roots iR™,

@1, ..., wn are the fundamental weights,
P=>0,Zw is the weight lattice,

Pt =31, Z-owi is the set of dominant integral weights.

For a brief, easy, introduction to root systems with lots of pictures for visualizatiod 8ge [
By [2, VI Section 1 no. 6 Corollary 2 to Proposition 17]uf= s, - - - s, is areduced word
for w, then

R(U)) :{Olip, Spaip_lv---sSp"'Szail}- (11)
Theaffine nil-Hecke algebris the algebrad given by generator3y, ..., T, and X*,
A € P, with relations
T2=T. TTT--=TTiTj---, XXt =X~ (1.2)
— —
mjj factors m;jj factors
and
XA _ XSA

XT = TXH 4 T (1.3)
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LetT, =T ---Ti, forareduced wordy = s, - --§,. Then

{(X*Ty |weW, e P} and {T,X*|weW,1eP) (1.4)
are bases offl.
Both thenil-Hecke algebra
H = Z-span{T, | w € W}, and Z[X] = Z-span{X* | 1 € P} (1.5)

are subalgebras ¢i. The action oW onZ[X] is given by defining
wXt = XW*, forw e W, 1 € P, (1.6)

and extending linearly. The proof of the following theorem is giver2ig Theorem 1.13

and Theorem 1.17]. The first statement of the theorem is due to Bernstein, Zelevinsky, and
Lusztig [16, 8.1] and the second statement is due to Steinkig3pggnd is known as the
Pittie—Steinberg theorem.

Theorem 1.7. Define

Aw = w L Z i, forw e W. (1.8)

Sw<w
The center of is Z(H) = Z[X]W and each element & Z[X] has a unique expansion
f=>" f,X7,  with f, e Z[X]". (1.9)
weW

Letei = 1 — T and lete,, = &j, - - - &j, forareduced wordy = §, - --5,. Thengy, is
well defined and independent of the reduced worddf@ince
2

& =g, and EiEjE - = EjEE] . (1.10)
e’ e e’
mjj factors mjj factors

The second equality is a consequence of the formulas
Ew = Z(_l)Z(U)TU and Tw = Z(—l)z(v)é“u (111)
v<w v<w

which are straightforward to verify by induction on the lengthwof

2. Thering Kr(G/B)

Let H andZ[X] be as in {.5. The trivial representationof H is defined by the
homomorphisnl : H — Z given by1(T;) = 1. The first of the maps
ZIX] — HT,, — H®ul
f — Ty, — Q1

is anH-module isomorphism if the action &f onZ[X] is given by

_X“if—sf

T-f= X 1 for f € Z[X]. (2.2)
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The group algebra dP is
R=Z-span(e’ | A € P}  withe'e* = e+, (2.2)

for 1, u € P. Extend coefficients t® so thatHr = R®z H andR[X] = R®y Z[X] are
R-algebras. Defin& 1 (G/B) to be theHr-module

Kt(G/B) = R-span{[Ox,, 1| w € W}, (2.3)
so that thdOx, 1, w € W, are anR-basis ofKt (G/B), with Hgr-action given by

2 _ , _ [(’)st], if ws > w,
XMOx1=€10x].  and  Ti[Ox,]= {[Oxw]’ fus <w @Y
If Ris anR[X]-module via theR-algebra homomorphism given by
e: RIX] — R 2.5)

X* o e

then, aS:IR-moduIes,KT(G/B) =~ Hg ®Rrx] Re, WhereRe is the R-rank 1 R[ X]-module
determined by the homomorphisn

Let Q be the field of fractions oR and letQ be the algebraic closure ¢f. Forw € W
let

b, in Q®Rr KT(G/B) be determined by X*b,, = e”*b,,, fori e P. (2.6)
If the b,, exist, then they are @-basis ofQ @r K1 (G/ B) since they are eigenvectors with
distinct eigenvalues. Ifj, 1 < i < n, are the operators 0 ®r K1(G/B) given by

i =T , thenb; = [Ox,] andzb, = by,s, forws > w, (2.7)

1
1-— X—oi
because, a direct computation with relatian3 gives thatX*zib, = 7, X5*b, =
1ie¥S*h, = e“S*b,q. Thus theb,, w € W, exist and the form of the-operators shows
that, in fact, they form &-basis ofQ ® r K1 (G/B) (it was not really necessary to extend
coefficients all the way t®). Egs. @.6) and @.7) force

1
LTt =TiTiTj- -, and the equalit 72 =
[ ]y q y I (X“i —1)(X_°‘i _1)
mjj factors mjj factors

is checked by direct computation using.). Letr,, = 7, --- 7, for a reduced word
w=§,---S,. Then, forw e W,

by = t,-1b1, [Ox,]1=T,-1[0Ox,] and we define [Zx,]=¢,-1[Ox,], (2.8)

whereg,, is as in (.11). In terms of geometry[Ox,] is the class of the structure
sheaf of the Schubert variety,, in G/B and, up to a sign[Zx,] is class of the sheaf
Ix, determined by the exact sequence® Zx, — Ox, — Oyx, — 0, where
Xy = |l,-,, BvB (see L7, Theorem 2.1(ii)] and15, Eq. (4)]). We are not aware of
a good geometric characterization of the bggé ] | w € W} of K1(G/B) which
appears in the following theorem.
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Theorem 2.9. Leti,, w € W, be as defined iftheoreml.7and let[ X*] = X”[Oxwo] =
X*TyolOx,1for A € P. Thenthd X*»], w € W, form an R-basis of K(G/B).

Proof. Up to constant multiples{Oxwo] = Tyw[Ox, 1 is determined by the property
Ti[Ox,,] = [Ox,,l.  forall1<i <n. (2.10)
If constants,, € Q are given by
[O%,y] = Y Cubu,

weW

then comparing coefficients bf,s , for ws > w, on each side of1.10 yields a recurrence
relation for thec,,,

1

1
w1 = || T oo (2.12)

which impliesc
— ewox
aeR)

via (1.1 and the fact that,,, = 1. Thus,
[X_AU] = XM OX ]— Z Cy€ —why bw,
weW
and if C, M and A are theW| x |W| matrices given by

C =diagc,), M= ("), and A= (ax), Whereb, = Z azwlOx, 1,
zeW

then the transition matrix between te** and the[Ox, ] is the productAC M. By (2.8)

and the definition of the;, the matrixA has determinant 1. Using the method of Steinberg
[23] and subtracting row&>**» from row e **» in the matrixM allows one to conclude
that detM) is divisible by

n
[] @—e"V? andidentifying []e ™ =[] [] e =e"H™"?

aeRt weW i=lSw<w

as the lowest degree term determinegMigtexactly. Thus,

IWi/2
detACM) =1. (l_[ 1—[ ) (ep l_[ 1- e—“)) = (e")WI/2,

weW(xeR(w) acRt

Since this is a unit inR, the transition matrix between th®x, ] and the X% s
invertible. O
Theorem 2.12. The composite map

¢: RX] — HgrT, < Hr — K1(G/B)
f — Ty, h —  h[Ox]
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is surjective with kernel
kerd = (f —e(f)| f e RIX]W),
the ideal of the ring IRX] generated by the elements—fe( f) for f € RIX]W. Hence

R[X]
(f —e(f)| f e RIX]W)
has the structure of a ring.

Kt(G/B) =

Proof. Since #(X*) = X*T,,[Ox,] = X”[Oxwo], it follows from Theorem2.9 that &
is surjective. ThuKt(G/B) = R[X]/kerd. Let| = (f —e(f) | f € RIXIW). If
f € RIX]W then, for allx € P,
d(XH(f —e(f)) = X*(f —e(f)Tuo[Ox,] = X* Tuo(f —e(f)[Ox,]
= X Tyo(e(f) — e(f)[0x,] =0,

sincef —e(f) € Z(HR). Thus!l C ker®. The ringKt(G/B) = R[X]/kerd is a free
R-module of rankW| and, byTheoreml.7, so isR[X]/Il. Thuskerd = |. O

3. Pieri—Chevalley formulas

Recall that both
(X*T, 1| reP,weW) and {T,.1X*|ueP,ze W)} arebasesofi.
If i’} e Z are the entries of the transition matrix between these two bases,
XT,i= Y chiT,aXe, (3.1)
zeW,ueP
then applying each side 08 (1) to [Ox, ] gives that
[XM[Ox, 1= Y  cie0x,].  inKr(G/B).
zeW,ueP
This is the most general form of “Pieri-Chevalley rule”. The problem is to determine the
coefficientsc) 7.
3.1. The path model
A pathin h* is a piecewise linear map : [0, 1] — b* such thatp(0) = 0. For each

1 < i < nthere argoot operators eand f; (see [L4] Definitions 2.1 and 2.2) which act
on the paths. If € P* thepath modefor A is

Th = {fi, fi, -~ fiy pa),

the set of all paths obtained by applying the root operators tavherep, is the straight
path from O tox, that is, p, (t) = tA, 0 < t < 1. Each pathp in 7% is a concatenation of



1270 S. Griffeth, A. Ram / European Journal of Combinatorics 25 (2004) 1263-1283

segments

P=p, ®P2, ® - @py, Withwi>wp > >w
and a+a+---+a =1 (3.2)
where, forv € W anda € (0, 1], p?, is a piece of lengtfa from the straight line path
pur = vpy. If W, = Stal(r) then thew; should be viewed as cosets W/ W, and
> denotes the order oW/ W, inherited from the Bruhat—Chevalley order'dh The total

length of p is the same as the total length f which is assumed (or normalized) to be 1.
Forp e 7" let

r
p() =) awir  be the endpoint op,
i=1
t(p) = wy, the initial direction ofp, and
o (p) = wr, the final direction ofp.
If h e 7" is such thag (h) = 0 thenh is theheadof its i -string
§'(h) = {h, fih,..., fThy,

wherem is the smallest positive integer such tHgath + 0 and fim“h = 0. The full path

model7* is the union of itd -strings. The endpoints and the inital and final directions of
the paths in thé-string S\(h) have the following properties:

(f*h)(@) =h@) —kei, forO<k<m,

either  «(h) = u(fih)y =--- = «(f"h) < sc(h)

or t(h) < u(fih)y = =«(f™h) = su(h), and (3.3)
either  s¢(f™) <p(h) =--- = o (f™th) = ¢(f™h)

or  so(f™) =¢h) = =p(f"th) < ¢(fMh).

The first property is I3, Lemma 2.1a], the second i43, Lemma 5.3], and the last is
a result of applying 13, Lemma 2.1e] to 12, Lemma 5.3]. All of these facts are really
coming from the explicit form of the action of the root operators on the pati#2 iwhich
is given in [L2, Proposition 4.2].

Letr € PT, w € Wandz e W/W,, and letp € 77 be such that(p) < wW, and
¢(p) > z. Write pinthe form @3.2) and letws, . . ., Wy, Z be the maximal (in Bruhat order)
coset representatives of the cosets. . ., wr, z such that

w>wW > Wy > > W > 2. (3.4)

Theorem 3.5. Recall the notatiom, from (1.11). Leti € P* and let W = Stalir). Let
w € W. Then, in the affine nil-Hecke algebirh

X)LTU)—l == Z T¢(p)71Xp(1) and

peT)‘
(P =wWy
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Xreya= 30 3 (mpytrt@g,  xp),

eTh ZEW/ Wy
(p)=w Z=0(p)

where, if W # {1} then T, ;-1 = Tﬁ)r—l ande,-1 = e;-1 With w, andz as in(3.4).

Proof. (a) The proofis by induction of(w). Letw = 5v wheresv > v. Define
T2, ={peT" | up) = wWy).

Assumew = sv > v. Then the facts in3.3) imply that

(1) 72, is a union of the string§ (h) such thah € 72, and
(2) If h e 72, then either§ (h) € T2, or §(h) N 72, = {hy.

Using the facts in 3.3), a direct computation with the relatiod.@) establishes that, if
h e 72, then
1 h)T
peS (h)

T, X"OT, if Sch) < 72
n() _ ¢ (h) I = “=w
> Top X _{T¢(h)_1xh(1)Ti, it S(hyN72, = h).

peS (h)
Thus
XoTya =X TaTi= | Y Ty XPP | T (byinduction)
peT?,
1 h(
=21 X 2 T XY+ Y Tum XM
het?, \ §(hc72, PeS(H) S (MNT2,=(h}
g (=0 - -
_ h T h | T
= > | X TnX"PT+ Y TymoX T
he72, \ S(NCST2, S (hNT2,={h}
g (h)=0
— h(D)T p(D)
=> Yo T X"+ Y Y TypiX
he72, \ S(NCTZ, S (MNTZ,=(h} PeS ()
g (h)=0
= D TppXPY.
peTéw

(b) The proofis similar to case (a). Fere W let
T2, ={peT" | up) = wWa}.

Assumew = Sv > v. Then the facts in3.3) imply that
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(1) 72, is a union of the string§ (h) such thah € 7%, , and
(2) If h e T2, then eitherS (h) € T2, or S (h) N 72, = {h}.

Let
Epip= D (=D Pey. (3.6)

ZeW/ W),
z=¢(p)

Using @.3), a direct computation with the relatiofi.) establishes that, i € 7, with
eh = 0then
Y LXPPTi=0  and  EmX"VTi=— ) EpXPP.
PeS pes (m—(h}
Thus

X*e, 1= Xte 18 = (=)W Z EsmXPY | T

peT2,
=D Y Y &EeXPP Y &mX" T
S (h)c72, PeS (h) SMN72,=(h)
= Do 3 D &exPY

S (MNT2,={h} peS(h—{h}

=(_1)K(w) Z €¢(p)Xp(l) . g
pe72

=w

Corollary 3.7. Leti, u € P* and letw € W. Then, in the affine nil-Hecke algehih,

X T = Y Y (=i @, XxPO and

peT ™ wohr ZeW/W_ woh

$(py=wwg  2wo>t(p)

XPrT, 1= 3 Y ()t IH@T,  XPD),
peTH zeW/ Wy,
¢(P)=wwg Zwe<¢(p)
Proof. The second identity is a restatement of the first with a change of variabie
—woA. The first identity is obtained by applying the algebra involution

H — A ,
Ty +—  €u and the bijection
X* e X*
where p* is the same path ap except translated so that its endpoint is at the origin.
Representation theoretically, this bijection corresponds to the fact that = L (—woA),

T—wo)\

_ p*
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if L(A) is the simpleG-module of highest weight. Note thatp*(1) = —p(1), «(p*) =
¢ (P)wo, andg (p*) = t(Pwo. [

Applying the identities fromTheorem3.5 and Corollary 3.7 to [Ox,] yields the
following product formulas irkKt (G/B). In particular, this gives a combinatorial proof of
the (T -equivariant extension) of the duality theorem of Bridn Theorem 4]. Fon € P
andw € W let[X*] = XA[Owa] = X*Tu,[Ox,] and letc; , be given by

[XM[Ox, 1= Y ¢ ,[0x,]. (3.8)
zeW

Corollary 3.9. Letr € P, w ¢ W and W = Stali)). Then, with notation as i(8.9),

z p(D)
C)»,w_ Z e ’

eTH
wW >1(p)=¢(p)=zW,

Ci)o)\.,u) = (_1)K(w)+fé(z) ;UI;S)O and (’Z—A,w = (_1)K(w)+z(2)cf$gk,zwo’
Proposition 3.10. For1 <i <n, [Oxwos] =1-— W@ X,
Proof. We shall show that

X7 O, 1 = €0 ([Ox,,,] = [Ox, 5 Ds (3.11)
and the result will follow by solving fofOx, 1. Letwj = —wowi. By Corollary3.9,

C gy = (~DIOHDCL o (pytoti@ N b,

ZwoZL(p)Zdi(p)=l
The straight line path t@j, pw;, hastzu,(Pw;) = ¢zu(wj) and is the unique path in
71 which may have final direction 1. Suppasg,,(P»;) = 1. Then, since; is the only
simple reflection which is not in Stébj), it must be thazwo # s for all k # j. Thus
zwo = 1 orzwg = sj and sac” 0 only if z= wo Or Z = sjwo = wos . Now (3.1)
follows sincep,,; has endpomrbj = —wowj. O

Corollary 3.12. Let c,, be as in(3.8). Then, for

Cz);)os,w — _(e—(wwi —wowj) __ 1)
and
Cios’w — (_1)K(w)+@(2)+1 Z el,l)()a)i-‘rp(l)7 for z 7& w.
pET*wolt)i

zwp=(P)=¢(P)=wwq
Proof. This follows fromProposition3.10andCorollary 3.9 and the fact that, in the case
whenz = w, there is a unique path with wwg = «(p) = ¢(p) = wwp and endpoint
P(1) = wwo(~wowi) = —wwi. O
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4. Convertingto H7.(G/B)

Thegraded nil-Hecke algebris the algebraHgy given by generators, ... ., ty andx;,
A € P, with relations

2 =0, Gtjti--- =ttt -, Xogpu = X0 + Xu» ANAXG = X + (A, ). (4.1)
N e’ N e’
mjj factors mjj factors
The subalgebra oHgy generated by the; is the polynomial ringZ[Xa, .. ., Xnl, where
Xi = X, andW acts orzZ[xy, ..., Xn] by

WX, = Xy andw(fg) = (wf)(wg), forweW,re P, f,geZ[xy,..., Xl
Then the last formula ird(1) generalizes to

f_gf
fi=ti(s )+ —2"  forf eZix,..., %l
o

|
Lett, =t ---tj, for a reduced wordv = s, ---s, and letZW be the subalgebra of
Hgr spanned by thg,, w € W. Then
XX, fw e W, mi € Zso) and {tyX] - X" | w e W, mi € Zxo)

are bases dfly.

Let S = Z[y1, ..., yn] and extend coefficients t8 so thatHy, s = S ®z Hg and
SX1,....Xn] = S®z Z[X, ..., Xn] are S-algebras. Defindd7(G/B) to be theHy, s
module

H{(G/B) = Sspan{[Xy] | w € W}, (4.2)
so that thg X, ], w € W, are anS-basis ofKt (G/B), with Hg; s-action given by

[Xusl, ifws > w,

0, if wsg < w. (4.3)

Xi[X1] = yi[Xal, and  t[Xy,]= {

Lety be theS-algebra homomorphism given by
y: SX3,....,X] — S
Xi > Y

so thatH{(G/B) = Hg, s ®six,.....x,1 Y @8SHgr s-modules. Then, using analogous methods
to the K1 (G/B) case proves the following theorem, which gives the ring structure of
H{(G/B) (see also the proof oflD, Prop. 2.9] for the same argument with (non-nil)
graded Hecke algebras).

Theorem 4.4. The composite map

$: YX1,....%] — Hgsty, — Hgs — Hf(G/B)
f — ftw, h — h[X1]

is surjective with kernel

kerd = (f —y(f)| f € Sixq, ..., xn W),
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the ideal of the ring §au, ..., Xxn] generated by the elements §f y(f) for f ¢
x4, ..., xa]W. Hence

Z[ylv"'vynsxls-'-sxn]
(f —y(f) | feSx,...,xaIW)
has the structure of a ring.

H#(G/B) =

As a vector spactly = Z[Xq, ..., Xn] ® ZWy. Let Hy = = QI[X1. - Xn]] ® QWgr
with multiplication determined by the relations iA.{). Then ng is a compleuon ofHg,
(this simply allows us to write infinite sums) and the elementlslg;fgwen by

A 1 r N 4 Xa;

ch(X*) = ;0 %, and o) =t - — ) (4.5)
satisfy the relations ofi and thus ch extends to a ring homomorphism d:iw—>ﬁg\r It
is this fact that really makes possible the transfer figatheory to cohomology possible.
Though it is not difficult to check that the elements 5 satisfy the defining relations of
H itis helpful to realize that these formulas come from geometry. As explain@djirthe
action of T; on K1 (G/B) and the action ofi on H{(G/B) are, respectively, the push-pull
operatorsr;*(rrj); and zr*(mrj)«, Where if B is a minimal parabolic subgroup @ then
mi : G/P — G/B is the natural surjection. Then the first formula®45) is the definition
of the Chern character, and the second formula is the Grothedieck—Riemann—Roch theorem
applied to the magr;. The factorXe; /(1 — ch(X*)) is the Todd class of the bundle of
tangents along the fibers of (see B, p. 91]).

Then H{(G/B)g = QIly1,....¥nll ®zy,....ya1 HT(G/B) is the appropriate
completion ofH{(G/B) to use to transfer the ring homomorphism chir — /H; to
a ring homomorphism

ch:K1(G/B) — IT;‘(G/B)Q by setting clih[Ox, 1) = ch(h)[X1], (4.6)
forh € Hg. The ringl—T}*(G/B)Q is a graded ring with

degyi) =1 and de@ Xy, 1) = £(wo) — £(w), 4.7)
and forw e W, ch([Ox, ) = [Xy] + higher degree terms (4.8)

In summary, ifg = €, Xj = X, yi = Yo, Xi = Xo;»

RIX1=zeft, ... e, xFh o X3, zixi=zixd, .. XE,
and  Sixt,..., %] = Qllys, .-, YolllXe, - ., Xal,

then there is a commutative diagram of ring homomorphisms

_ RI[X] ch s _ SX1,....Xn]
KT(G/B) = remireram — M1 (G/B= 1)1 ed. o™
¢Q=1 iM
_ Z[X] ch * _ QIXq, .. Xn]
KG/B) = trrairezxmy  — H(G/Ble = r=rw) fetia, ™)
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5. Rank two and a positivity conjecture

In this section we will give explicit formulas for the rank two root systems. The
data supports the following positivity conjecture which generalizes the theorems of Brion
[1, formula before Theorem 1] and Grahai Corollary 4.1].

Conjecture5.9. For 8 € Rt letys = e # andag = e #—1andletdw) = £(wo)—£(w)
forw € W. Let ¢, be the structure constants offKG/B) with respect to the basis
{[Ox,]| w € W} as defined ir{0.1). Then

2, = (—)IWHW-d@ £y y)  where f(a,y) € Zsolag. Vs | B € R,

that is, f(a,y) is a polynomial in the variablesg and y, 8 € R*, which has non-
negative integral coefficients.

In the following, for brevity, use the following notations:
in Kt(G/B), [w]=1[0x,], ars =€ "2 1 and ys=e @1+,
inK(G/B), [w]l=[0x,]l, as=0, and ys=1,
in H{(G/B), [w]l=I[Xyl, ors=ra1+saz, and y;s=1,
inH*(G/B), [w]l=[Xyl, as=0, and ys=1,
and inH{(G/B) and inH*(G/B) the terms in{ } brackets do not appear.
Type A». For the root systerR of type Az

01 =—w1+2w2, A =p, Ay =wp= 301+ 502,
hes = Sow2 = Fa — 302,

2 = 2w1 — w2, Ay, = 0, Ag, = w1 = %al + %az,
hss, = S1w1 = —301 + a2,

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by
[siesil =1, [l =1 - e*1X“)[s] = (1 - e22X7?)[g],
[2s1] =1—e “1X7%2, [s1p]=1— € “2X™“2
[s1] = (1 - e22X7?)[s51],  [S2] = (1 — LX) [s1%],

and

sisps1] = 1, [s192] = 1 — € 2 X1, [2:1] = 1— € “2X7*2,

Sl =1— e @2X "SI0 _ g @21 4 g 202Xz,

] =1—e @1X 202 _ g @1X" 92 4 g 201 X1,

1 =1— e @2X 591 _ @ @1 X202 | @ 201X ~¥1 | @ 202X~ @2 _ @ P X P,

The multiplication of the Schubert classes is given by

[
[
[
[

[112 = —ajo001011[1], [s1]? = ao1e11ls1], [s2]° = a10011S2],
[1][s1] = aoacr1a[1l, [sil[s2] = —a1a[1l], [sl[s192] = —a11[s2],

[1][s2] = azoer1a[1l, [si[s192] = Yoald] — aoilSst],
[s2][s281] = Y10l1] — az0[S2],

1]
1]
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[L[s182] = —a11[1], [sil[ses1] = —aaalsi],
[Uiss1] = —emal1],  [s12)° = Youls2] — cror[s1%2],
[s2511° = y1ols1] — aao[Sos1].
[sisllsest] = {—[11} + [s1] + [s2],
Type B,. For the root systenR of type B,

o1 =2w1— w2,  M=p =201+ 302, Ay =wp=o01+ap,
ap = —2w1 + 2w2, Ay = 0, As = 01 = a1+ 302,

hsps = S0z = a1, A8 = S1Sw2 = —a1,

Ags, = S1w1 = %012, Asysis, = 101 = %az

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by
[siesi2] =1, [1]=(1-e**1X)[s] = (1 - 22X “?)[g],
[s1Sps1] = 1 — €2 X7 %2, [s192]=1— e “1X7“1,

[s2s1] = (1 — € XTI [gs18],  [s152] = (1 - €2909LX 7Y [819],
[s1] = (1 — €2“2X™“?)[s51], [s2] = (1 — 11X™“Y)[s157],

and

S19519] =1, [S151] =1 — e 2 X792, [Sos152] = 1 — @1 X™L,

[
[s192] = (1 — €792) — @ “2X 72 — @ 22X 7292 4 (&7 + e M) X741,
[
[

SZS].] _ 1 —wl X—wl —wl X—Slwl + e—2w1 X—wz
S] (1 e—wz) + (e 14 + e Slp)x S1w1 + (e 4 +e—510)x—w1
g2 TSSw2 _ g w2 X —Sw2 — (e g=2w2 + e 92X T2,

[82] — (1 _I_ e—2w1) + e—2w1 X—Sza)z _I_ e—2w1 X—a)z
@O T9R801 _ g w1 —S101 (€ e—3w1 + e O XL,
[1]=(1+e 2601) g @1 928101 4 e’ + e—Slp)X S1w1 — (e g 301 + e e X
_g2 S0z g 201y —Sw2 _ (€ e 202 + e “2)X"2 4 e PX P,
The multiplication of the Schubert classes is given by

[s192911% = {—y1als1]} + (Yo1 + Y10)[S281] — cor[S19281],

2 _
(11" = asoworenscaalll, = g o o sps18p] = (11 — [S1] — [S2]) + [S152] + [S2Sa),

[1][s1] = —apro11021[1],
[1l[sz] = —a10a110021[1],
[1][s182] = aq10001[1],
[1][szs1] = ag10001[1],
[1][sises1] = —a12(1 + y10)[1],

[1l[szs182] = —a21[1],

(251920 = Yro[s192] — c10[S25152]
[$251]% = —a21y10[S1] + @10021[%251],

[ses1l[s1281] = Yauls1] — a2i[S2s1],
[s2s1][s28182] = {—Y10[1]} + Yiols1] + YiolS2l — @1olS2s1],
[s1)? = —ao1e11021[S1], [2)? = —a10011021[S2],

[sil[s2] = er1021[1],
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[s2][s182] = a11021[S2],

[s1l[s182] = —a11(Yo1 + Y10 (1] + aoro11[s1], [2][8:51] = —az1ya0ld] + w10021[S2],

[s1][s281] = a11021[S1],
[sil[s19281] = —a11(1 + y1D)[s1],
[sil[s2s182] = Y11[1] — aaalsi],

[s2l[s15281] = Y21[1] — a21[s2],
[s2][s2s192] = —a21[s2],

[s121% = —11(Yo1 + Y11)[2] + ao1011[S152],

[sisollsesi] = ({11} + Yo0[1] — a1a[s1] — a2ils2],

[si2llsis2s1] = {—(Yo1 + YiD[1]} + Youlsil + (Y11 + Y12)[S2] — o1[S1S2],
[si2]ls2s182] = Yails2] — ara[sis2],

[s2511% = —a21y10[S1] + @10021[S281],
[s2s1][s19281] = Yzi[s1] — azi[s2s1],
[sesillsesis2] = {—VY10[1]} + Yiols1] + YiolS2] — @1ols2s1],

Type Gy. For the root systenR of type G2

A1 = p =50 + 3y, Asjsps = S1S2w2 = 02,

Ag; = w2 = 31 + 202, Agsiss = S1w2 = —a2,

ry = w1 = 201 + a2, Aasss, = S1S2S101 = —a,

rsysy = Spw2 = 3a1 + a2, Asississ = 191902 = —301 — a2,
Ay, = S1w1 = a1 + @2, Apsioss = SIS 101 = —o1 — a2,
Agss = S101 =01, Ay = 0.

Formulas for the Schubert classes in terms of homogeneous line bundles can be given by

and

S91951%2] = 1, [1] = (1 — 11X “Y)[s1] = (1 — e22X72)[sp],
1981981 ] =1 — e “2X7“2, [S2S15p5152] = 1 — €L XT%L,
991951] = (1 — e “1X 1) [551551 5],

s19s1%2] = (1 — € LX) 5198151,
1 — e SSw1 X w1
[s1551] = seebelow  [991%] = ———— —I[a%9%],
[s2s1] = (1 — €1 X929 [ 5551 5], [s192] = (1 — €291 X71)[515p],
[s1] = (1 — €2“2X7“?)[sp51], [s2] = (1 — 11X “Y)[s157],
(1— e 2X~2)[51581] + €792(1 + €1 X ~2)[551]
1+e @ ’

[
[
[
[

[s1:281] =

[wo] = 1, [SS19819] = 1 — Y21 X798, [s192815281] = 1 — y32X ™2,
[S2515081] = 1 — Y21 X ™1 — o X739t  yuo X2,

[s1925192] = (1 — Y32) + (Y22 + Ya2 + Yaz + Y53) X~ — ygoX 511
— Y3 X TIIACL _ yay X T2 — Yy X TR02)
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[s28152] = (1 — Y21+ Ya2) + (Y42 — Y21 — Y52 — Y53 — Ye3) X~ “*
+ (Va2 — Yo1) X790 4 (Ya — Yo1) XTIOL o X792 4y X ~202,
[s19281] = (1 — 2Y32) + (Y22 + Ya2 + Yaz + Ys3) X~ “*
+ (Y22 + Va2 + Yaz + Y53) X5t — ygpX T — ygpX TSIRAOL
— (Y324 Y43+ Y53) X 7“2 — y3pX "2 — yzpX 202,
[s281] = (1 — Y21+ 2y42) + (Y42 — Y21 — Y52 — Y53 — Ye3) X~ “*
+ (Ya2 — Y21 — Y32 — Y53 — Y63) X1 + (Yaz — Yp1) X~ 21
+ (Va2 — Y21) XTIV 4 (g0 + Yp3) X ™92 4 Yo X ™22 4 ygp X ~5192¢2,
[s192] = 1 — y11 — Y21 — Y32 — Y43 — Y53+ (Y22 + ¥32) (1 + Y10+ Y200 X%
+ (Y22 4 Y32+ Ya2) X591 + (Yoo + Y32 + Yap) X 2511
— (Y324 Y43+ Y53) X 7“2 — (Y324 Y43+ Y53) X292 — yzp X 519202
— y32X‘525152“’2,
[S2] = (14 Y31+ Y32+ 2Ya2 + Y63) — (Y21 + Y52 + Y53+ Yga) X2
— (Y21 + Y52+ Y53) X510 — (Y21 4 Y52 + Y53) X720 — ypq X251
— Y21 XTI 4 (g5 + Y63) X2 + (Va2 + Ye3) X242
+ YapXTSRO2 4y X TRAR02,
[s1] = 1 — (Y11 + Y21+ Y32 + 2Ya3 + 2Y53) + (Y22 + Y54) (1 + Y10+ Y20) X%
+ (Y224 Y54) (1 4 Y10 + Y20) X~ + (Y22 + Y32 + Ya2) X 2511
+ (Y22 + Y32+ Ya2) XI299L — (y35 + ya3+ Y53+ Ye4) X 2
— (Y32 + Ya3 + Y53) X292 — (Y32 + Yaz + Y53) X292 — ygpX ~ 2518202
_ y32)(—51525152w27
[1] = (1+ Y31+ Ya2 + Y63 — Y53 — Ya3) — Y21(1 + y32)° X%
+ y22(1 4 y10 + Y20) (1 4 Y21 + Y31) X ™51 — (y21 + Y52 4 Y53) X251
+ Yoo X TIIIOL  yog X TRIIRNCL _ yao(1 + y11) (1 + Y1) X2
+ (Va2 + Y63) X ™22 — (Y32 + Y43+ Y53) X ™29 4 yp X~ 251922
_ szx—51525152w2 + y53x—p'

The multiplication of the Schubert classes is given by

[11% = a1000101102100310032( 1], [Ll[sos182] = —az1a310032[ 1],

[1l[s1] = —ao1@1102100310032[ 1], [l[s1:281%2] = @210032(1 + Y20)[1],
[1l[s2] = —o101102100310032[ 1], [Ll[s2s18281] = @21032(1 + Yo1)[1],
[L[s182] = @110210310032[ 1], [L[s12818281] = —az2(1 + y32)[1],
[Ll[ses1] = ar10210310032[ 1], [Ll[ses1828182] = —a21(1 + Yo [1],
[L[s18281] = —on1@21032(1 + Y11 + Y20[1],

[s1]2 = —ap10110210031032[S1]
[sil[s2] = @r1e2100310032( 1]
[sil[s182] = —a11021032(Yo1 + Y11 + Y20)[1] + aore11021032[S1]
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[s1][s2s1] = @r1e210031032[S1]

[sil[s1se81] = —a11021032(1 + Y11+ Y21)[81]

[sil[s28182] = 210032(Y11 + Y1) [1] — an1021032[S1]
[sil[s1281%2] = —az2(Y22 + Y32)[1] + a11e32(1 + Y1) [s1]
[s1l[ses18281] = @z1032(1 + Y21)[S1]

[sil[si2s18281] = —az2(1 + ya2)[s1]

[sil[s2s1528182] = Y32l 1] — erz2lsi]

1% = —a10m11021031032(S2]

@

[

[2][s182] = a11e2100310032[S2]

[s2l[ses1] = —az1a31032Y10[1] + @100210310032[ 2]
[s2l[s18281] = 210032(Y21 + Y31 [1] — a210031032[S2]
[2l[s2s182] = —@210310032[S2]

[2][s128182] = @z1032(1 + Y21)[$2]

[2lls2s19281] = —a21(Y31 + Y52)[1] + a21031(1 + Y21)[S2]
[s2llsis2s19281] = Ye3l1] — e21(1 + Y21+ Ya2)[S2]
[sl[ses1928182] = —a21(1 + Y1) [S2]

[s12]% = —a11021032(Yo1 + Y11+ Y21)[S2] + aore11021032[S150]
[s182][S251] = r210032(Y11 + Yo1 + @31)[1] — @r1e21032[S1] — a2100310032[ 2]

[s12][s19281] = —a32(Y32 + Yaz{+a11(Yo1 + 2y11 + Y2 DI[1]
+ a11a32(Yo1 + YiD[si] + (az132y11
+ a11e32(Yo1 + Y11 + Y21)[S2] — ao1011032[S192]

[s12][28182] = azia32(Y11 + Yo [S2] — ar1021032[S192]
[s1][s1928192] = —a32(Y22 + Y32)[S2] + 11032(1 + Y11)[S192]
[si2][s2519281] = (Yea{+az2(Y11 + Y20 DI — az2yiilsi] — (az2(Y11 + Y21)
+ a31Y32)[S2] + @11032[S12]
[si][s1s19281] = {— (Y33 + Va3 + Y53)[1]} + Y33[S1] + (Y33 + Ya3 + Ys3)[S2]
—a11(1+ y11 + Y22)[S192]
[sixl[2s195192] = Y32[S2] — az2[s19]
[s251]° = —az1031032y10[81] + @100210310032( 521 ]
[S2s1][s19281] = azia31(Y21 + Y3D[S1] — a21031032[S2S1]
[ses1][$25182] = —a21(Ys1 + Yso{+a31y10D)[1] + 21(a10y31 + a32y10)[S1]
+ a2131(Y10 + Y21 [S2] — a100210031[$281]

[ss1l[s1928192] = (Yool +o31(Y21 + Y3 DI — (a31Y21 + a10(Y31 + Ya1))[S1]
— (a31Y21 + a32y31)[S2] + a210031[S2S1 ]
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S1[S1951] = —a21(Y31 + Ys2)[S1] + a21e31(1 + Yo1)[S281]
s1l[s19291951] = Yealst] — @21(1 + Y21 + Ya2)[$2S1]
s l[2a192999] = {—y31[1]} + yail[s1] + Yailse] — az1[$s1]

198117 = —asa(ys2 + Yaol+a11(y11 + Y1) DIs1]
+ (a11032(Yo1 + Y11 + Y21) + a3132¥11) [S2S1] — p10r110032[S15281

[sis1l[s25192] = (H{+a11(Y11 + Yoo + Y33+ Y31 + Va2) + a31(Y21 + Y32)
+ o32Y21D[1] — (@11(Y21 + @32) + a10(Y31 + Ya1 + Y32
+ Ya2)[s1] — (a31(Y21 + Y32) + a@11(Y21 + Y32 + Y31 + a42)[S2]
+ a11032[S192] + a21031[$251]

[sisil[s1928192] = {— (Y33 + 2Yaz3 + Y53+ a11(Yo1 + Y1) + @21(Y11 + Y21))[1]}
+ (Y33 + Yas{+a11(Yo1 + Y11) + @21(Y11 + Y21 D[s1]
((y33 + Yaz + Ys3){+a11(Yo1 + Y11) + @21(Y11 + Y21 D[S2]
—a11(Yo1 + Y11 + Y22) [s192] — (@11(Yo1 + Y11) + a21(Y11
+ yo1) [S251] + ap1011[S15251]

[si2s1][2s19281] = (Ye2{+az2y21))[S1] — (@31Y32 + a32(Y11 + Y21)) [S281]
+a11032[S1991]

[sis1][s1219281] = {—(Yaz + Ys3)[S1]} + (Y33 + Va3 + Y53)[S2S1]
—a11(14+ Y11+ Y22) [S15251]

[siss1][sesi2s192] = {(Yi1 + Y20 [1] — (Y11 + Yoo [S1] — (Y11 + Yoo [S2]}
+yils192] + (Y11 + Y20 [$281] — a11[s19951]

[S25192]° = —a21(y21 + Ya2)[S2] + (@11021Y31 + @21031Y10) [S152]
— a10021031[$S192]

[2s12][S125182] = Y53[S2] — (@21Y31 + a11021032Y21) [S12] + a21031[S$28192]
[es192][2s19251] = {— (Y51 + Y52 + a31Y10) [ 1]} + (Yar{+a31y10})[SL]

+ (Yaz + Ys2{+az1y10)[S2] — (@11Y31 + @31y10)[S152]
—az1y10(s1] + a10031[$25192]

[esi]lsises1281] = {(Y31 + Y32 + Ya2)[1] — (Y31 + Y32)[s1]
— (Y31 + Y32+ Yao)[S2]} + (Y31 + Y32)[S192]
+ y31s1] — azi[s19]

[eas]llesisis] = ysi1[s192] — azi[s19]

[s1595152]° = {—Ya3[S2]} + (Y32 + Yaz{+o1y21 + @32y11}) [S152]
— (@o1(Y11 + Y21) + @31(Yo1 + Y11) [S29192] + a010011[$15251 5]

[s1s192][S2815251] = {(Y21+ Y31 + Y32 + Va2 + a1)[1] — (Y21 + Y31
+ Y32+ a1D)[S1] — (Vo1 + Y31 + Y32 + Yaz + c11)[S2]}
+ (Y31 + Yaoi, +a11)[s192] + (Vo1 + yai{+aa1)) [S2s1]
—a11[s181] — az1[Ses192]

[sis122][s192919281] = {—(Yo1 + Y11+ Yo1 + Vo2 + y32)[1] + (Yo + Y11
+ Y21+ Y22)[S1] + (Yo1 + Y11 + Y21 + Yoo + Y32)[S2]
— (Yo1+ Y11+ Y21+ Y22) [S192] — (Vo1 + Y11+ Y2 [S251])
+ Yoiusi281] + (Yo1 + Y11 + Y21 [S25192] — ao1[s1925152]

[
[
[
[
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[sipsi][es1929192] = {—Yals192]} + (Y11 + Y1) [Ss192] — c11[S1929197]
(251928112 = {—Ys2ls1] + (Yaz + Ys2)[S281]) — (@11Y31 + @31y10)[S15251]

+ a10031[S2S1981 ]
[esies1][si219281] = {Yazlst] — (Y31 + YaD[S2S1]} + (Y31 + Y32) [s19281]
— a31[$951981]

[Sos19281][S$25152812] = {—Y10[1] + Yio[S1] + Yio[S2] — YiolS1S2] — Yio[Se2sul}
+ Yiols1$281] + Y1o[S2S192] — a10[S2815281]

[s195192511% = {—Ya2lSt] + (Vo2 + Y32) [$51] — (Y11 + Y21 + Yo2) [S192511)
+ (Yo1 + Y11+ Y21 [S2819281] — «01[S192819251]

[siesisil[s2siesis] = {[1] — [s1] — [s2] + [s182] + [Sesi]
— [s15281] — [$25192]} + [S1928192] + [S2S15281 ]

[S251925192)° = YiolS1925192] — @10[$251528152]
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