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Abstract: The main part of this paper is a survey on crystal bases, the
Littelmann path model, the affine Weyl group and the affine Hecke algebra.
The new results of this paper are in sections 3 and 4, where a tight connection
affine Hecke algebra and path models is established. The key new idea is due
to C. Schwer [Sc], who noticed that the periodic Hecke module defined by
G. Lusztig encodes the combinatorics of the positively folded galleries used
by Gaussent and Littelmann [GL]|. H. Pittie and A. Ram [PR] discovered
the ¢! = 0 version of this connection when they established a relation
between the Littelmann path model and the K-theory of flag varieties. The
generalised path model studied in this paper provides a g¢-version of the
theory of crystals which is a combinatorics for the spherical functions for a
p-adic group. This combinatorics specialises, at ¢~! = 0, to the path model
combinatorics for working with Weyl characters.

1. INTRODUCTION

Together, Sections 2 and 5 of this paper form a self contained treatment of
the theory of crystals and the path model. It is my hope that this will be useful
to the many people who, over the years, have told me that they wished they
understood crystals but have found the existing literature too daunting. One
goal of the presentation here is to clarify the relationship between the general
path model and the crystal operators of Lascoux and Schiitzenberger used in the
type A case [LS]. More specifically, Section 2 is a basic pictorial exposition of Weyl
groups and affine Weyl groups and Section 5 is an exposition of the theory of (a)
symmetric functions, (b) crystals and (c) the path model which is designed for
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readers whose only background is the material in Section 2. These two sections
can be read independently of Sections 3 and 4.

Sections 3 and 4 give an exposition of the affine Hecke algebra and recent
results regarding the combinatorics of spherical functions on p-adic groups (Hall-
Littlewood polynomials) using only the material in Section 2 as background.
The g-analogue of the theory of crystals developed in Section 4 specializes to
the path model version [Lil-3] of the “classical” crystal theory at ¢~' = 0. This
specialization property is “to be expected” since Macdonald’s formula for the
spherical function specializes to the Weyl character formula at ¢=! = 0. It is
my hope that the presentation of the results will illustrate the close connection
between the affine Hecke algebra, the path model, and the theory of crystals.

The motivation for this paper is the following. The classical path model is
a combinatorial tool for working with crystal bases of integrable representations
of symmetrizable Kac-Moody algebras, a generalization of column strict Young
tableaux. The same combinatorics can be used to study the equivariant K-theory
of the flag variety [PR] and this point provides a translation between the path
model and the structure of the nil-affine Hecke algebra. Thus, conceptually,

crystal bases = the path model
= the nil affine Hecke algebra
= the T-equivariant K-theory of G/B.

The paper of Gaussent-Littelmann [GL] (see also the work of Kapovich-Millson
in [KM]) indicated that there is a refined model which removes the ‘nil’ in this
chain of equalities and models the geometry of Kac-Moody groups over a local
field. The result is the conceptual chain of equalities

positively folded alcove walks = geodesics in the affine building
= the affine Hecke algebra

= MYV cycles in the loop Grassmanian.

The connection to the affine Hecke algebra and the approach to spherical functions
for a p-adic group in [NR] was made concrete by C. Schwer [Sc] who told me that
“the periodic Hecke module encodes the positively folded galleries”.

The main results of this paper are obtained by viewing the affine Hecke algebra
in terms of a new construct, the alcove walk algebra. This combinatorics provides

(a) a change of basis formula in the affine Hecke algebra which is an analogue
of the change of basis formula for the nil affine Hecke algebra given in
[GR],

(b) a derivation of the combinatorial formula for the Hall-Littlewood polyno-
mials in terms of monomials given by Schwer [Sc],



Alcove Walks, Hecke Algebras, Spherical Functions... 965

(c) a derivation of the product formula for Hall-Littlewood polynomials given
by Kapovich-Millson [KM] and Schwer [Sc|,
(d) a description of the restriction rule for Hall-Littlewood polynomials

in the same way that the theory of crystal bases gives expansions for Weyl charac-
ters (Schur functions) in terms of monomials and produces general “Littlewood-
Richardson rules” for Weyl characters. The result in (a) is a generalization of a
result given in Schwer in the same spirit as the ¢! = 0 result given in the paper
of Lenart-Postnikov [LP]. Thus (a) generalizes both the result in [Sc] and the
result in [LP]. Results (b) and (c) are all either explicit or implicit in [GL], [KM]
and [Sc]. The result in (d) has not appeared in the literature before but it is an
easy consequence of the combination of the techniques of [Sc|] and the “crystal
structure” on positively folded galleries implicit in [GL]. The g-crystal structure
gives easy proofs of the results in (c¢) and (d).

Unfortunately, the limitations of time and space have not allowed me to provide
an exposition of the connection between the alcove walk combinatorics and the
geometry of the loop group (which is implicit in the affine Hecke algebra and
explicit in [Mac], [BD], [GL], [KM] and [Sc]). Hopefully this will be done soon in
a future paper.

Acknowledgments. I thank P. Littelmann for useful conversations and C.
Schwer for teaching me the right way to think about positively folded galleries. 1
thank the National Science Foundation (grants DMS-0353038 and DMS-0097977),
the Vilas Foundation and the Max-Planck-Institut fiir Mathematik for support
of this work. I thank my hosts in Rome, C. DeConcini, C. Procesi and E. Strick-
land, for their hospitality during a sabbatical when the writing of this paper was
completed. It is a pleasure to dedicate this paper to R. MacPherson. He is an
inspiration and a role model.

2. THE AFFINE WEYL GROUP

This section is a summary of the main facts and notations that are needed for
working with the affine Weyl group W. The main point is that the elements of
the affine Weyl group can be identified with alcoves via the bijection in (2.11).

Let by be a finite dimensional vector space over R. A reflection is a diago-
nalizable element of GL(bhg) which has exactly one eigenvalue not equal to 1. A
lattice is a free Z-module. A Weyl group is a finite subgroup W of GL(by) which
is

generated by reflections and acts on a lattice L in by
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such that b = L @z R. Let R* be an index set for the reflections in W so that,
fora € RT,

Sq 1s the reflection in the hyperplane H, = (hg)**,

the fixed point space of the transformation s,. The chambers are the connected
components of the complement

b\ ( U Ha)

a€R*

of these hyperplanes in h. These are fundamental regions for the action of W.

Let (,) be a nondegenerate W-invariant bilinear form on h. Fix a chamber C
and choose vectors a” € hj such that

(2.1) C={reby|{(r,a¥)>0} and PDOLDQ,
) 20V

Where, with o = W,

(2.2) P={xebp|(Na")eZ} and Q= ) Za

a€Rt

Pictorially,

(\,aV) s the distance from X to the hyperplane H,.

The alcoves are the connected components of the complement

bﬁ%\( U Ha,j) of the (affine) hyperplanes H, ; = {z € by | (z,a") = j}

a€RT
JEL

in hg. The fundamental alcove is the alcove

(2.3) ACC such that 0€ A,
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where A is the closure of A. An example is the case of type Cy, where the picture
is

HAO = Ha1+a2 Heq, Ha%o = f[a2
: Ha1+2a2,3
Ha1+a2,—1 N /
; Ha1+2a2,2
2,5
Ha1+a27—2

/
. __/_1/___\_ Ha1—|—2a2,1
Heyya

Hal+a27*3

\ I/
7O Ha1+2a2,0 = Ha1+2a2

O £ 1
/ N \
Hoys 1 N 710,710 2NN
Hoytan—a (17 N1 72 N L2 N1/ N,
K- =¥ —— - = Yo - < Hoyvo0,,-1
H / 77\ 7N N\ 1 2
az,2 | \\/ \// |
Ha1+a2,*5 1,7 7 AN
N 3 EH,
N N\~ T R T T CK T A Hoy+200,-2

7 | N
| Ha1+a2,1 = H%l = Hq,

<~ T ) Hay 12053

The translation in X is the operator ty: by — by given by
(2.4) ta(z) = XA+ x, for X\ € P, x € b.
The reflection s, in the hyperplane H, j is given by
(2.5) Sak = thaSa = Sal—ka-
The extended affine Weyl group is
(2.6) W=PxW={tw| e PwecW} with wty=rtyw.
Denote the walls of C' by H,,, ..., H,, and extend this indexing so that
H,,,...,H,, are the walls of A,
the fundamental alcove. Then the affine Weyl group,
(2.7) Wag = Q x W is generated by s, ..., Sn,

the reflections in the hyperplanes H,,, . .., H,, . Furthermore, A is a fundamental
region for the action of W,g on by and so there is a bijection

Wag — {alcoves in by}
wo o wlA.

The length of w € W is
(2.8) ¢(w) = number of hyperplanes between A and wA.
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The difference between Wog and W is the group
(2.9) Q=W/Wu = P/Q.

The group €2 is the set of elements of W of length 0. An element of € acts
on the fundamental alcove A by an automorphism. Its action on A induces a
permutation of the walls of A, and hence a permutation of 0,1,...,n. If g € Q
and g # 1 let w; be the image of the origin under the action of g on A. If s;
denotes the reflection in the jth wall of A and w; denotes the longest element of
the stabilizer W,,, of w; in W, then

(2.10) gsig~ ! = Sg(i) and guow; = ty,.

The group W acts freely on € x b (|2| copies of R™ tiled by alcoves) so that
g 1A is in the same spot as A except on the gth “sheet” of  x br- It is helpful
to think of the elements of ) as the deck transformations which transfer between
the sheets in Q x hp. Then

w— {alcoves in © x b}

(2.11) S A

is a bijection. In type Cs, the two sheets in Q2 x bp look like

Ha1+a2 HO‘I Haz
0
2.2 1_4
Ny IN2 N
10872 N0y
/\ 7\
NUESIAN. lro N1,
A o TR
| N4 | N, |
[IYREN IPPANL
)y N
\I/ 2\J L/l \I/H
7P 1/ I\ 7N 1,1\ N~ Har+2a:
NN N LN 7
|0\,2|1\< 7010872117, 01
[ S B4 SN 2N
N,/ 0\)’/0 0\, 70 \*/
] TN P}
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and
Ha1+a2 Hal HO[Q

271 \2

s

N1lo7 N

oN| 71

- - —

1,1~0

s0 |1

N

\ | 2

232 o

271N\ 2

7 N 01X
|2/\1|0/ IQ//\ 1|0/ 2'

(2.12) N 0N RS BNy =2
N U BN T, N Hait2az
12,711 ¢ 72122, 7011Y 21
[ N 4 SON 1 7N
Nz 2Ny/2 2N 72 \*/
[IRN 7\ \ ]
H,,

where the numbering on the walls of the alcoves is w equivariant so that, for

w € W, the numbering on the walls of wA is the w image of the numbering on
the walls of A.

The 0-polygon is the W-orbit of A in Q x b and for A € P, the

A+s152A A+s2A
the A-polygon is A+ WA,

Ats15281A A+s251A

AwpA A+s28182A

the translate of the W orbit of A by A. The space {2 x by, is tiled by the polygons
and, via (2.11), we make identifications between W, W, P and their geometric
counterparts in {2 X bg:

W = {alcoves}, W = {alcoves in the O-polygon},
(2.13)

P = {centers of polygons}.
Define

(2.14) Pt=PNnC and PTt=PnC
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so that P is a set of representatives of the orbits of the action of W on P. The
fundamental weights are the generators wy, ..., wy, of the Z>p-module P* so that

n n n
(215) C=> Reow;, Pt =" Zsow;, and P =)"7Z.qw;.
=1 =1 =1

The lattice P has Z-basis w1, ...,w, and the map
Pt — ptt

(2.16) At A where p=wj +...4+ wp,
is a bijection. The simple coroots are o, ..., a,, the dual basis to the fundamental
weights,
(2.17) <wi, a;/) = (5”
Define

L n n
(2.18) CcV = ZRSO%\'/ and CY = ZR<0042\-/.

i=1 i=1

The dominance order is the partial order on by given by

(2.19) p<A if  peX+COV.

In type Cy the lattice P = Ze; + Zeo with {e1,e2} an orthonormal basis of
b = R2 and W = {1, s1, 89, 5152, 5251, 515251, 525152, 51525152} is the dihedral
group of order 8 generated by the reflections s; and sy in the hyperplanes H,,
and H,,, respectively, where

Hy,, ={zx€by | (z,e1) =0} and Hy, ={x €by | (x,e0 —e1) = 0}.

Hayta, s51C C He,
[ [ J
5189C 52C
[ [}
. . Ha1+2&2
[ ] [}
515251C 5951C

515251520 8251520
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H, H, c
a1 c H,, ‘g o 0 o o ,Ha
e o o o e o o .o'.
s1C e o o ® o _o'.
o o ¢ o
5152C b s52C $182C ’
E2RW?2 W1
1
€1
s18981C s951C s518251C .+ s951C
s$1528152C s95182C 51828182C s95159C
The set Pt The set PT+
In this case
%
w1 = €1 + €9, o1 = 2¢q, oy = €1,
vV
Wy = €2, Qg = &9 — €1, Oy = (2,

and
R = {:l:Oq, +aso, :|:(Oé1 + 062), :i:(al + 2042)}.

3. THE AFFINE HECKE ALGEBRA

3.1. The alcove walk algebra. Fix notations for the Weyl group W, the ex-
tended affine Weyl group W, and their action on 2 x by as in Section 2. Label the
walls of the alcoves so that the fundamental alcove has walls labeled 0,1,...,n
and the labeling is W-equivariant (see the picture in (2.12)).

The periodic orientation is the orientation of the walls of the alcoves given by
(3.1) setting the positive side of H, ; to be {x by | (x,aY) > j}.

This is an orientation of the walls of the alcoves such that if A is an alcove and
A € P then

the walls of A + A have the same orientation as the walls of A.

Let K be a field. Use the notations for elements of €2 as in (2.10). The alcove
walk algebra is the algebra over K given by generators g € €2 and

i i i i

_’_t ‘_‘: e ;=.l+ (1<i<n)

positive negative positive negative
i-crossing i-crossing i-fold i-fold
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with relations (straightening laws)

i i i ) i i [ .
- | + - | + - - | + - | + B
and ) .
i g(7) i g(7)
- |+ - |+ - |+ - |+
gl —d—- | = ——= |9 9| —— | = | «<— |9
i g(7) i g(7)
- |+ - |+ - |+ - |+
g < = < g, g —=> = —=> g.

Viewing the product as concatenation each word in the generators can be repre-
sented as a sequence of arrows, with the first arrow having its head or its tail in
the fundamental alcove. An alcove walk is a word in the generators such that,

(a) the tail of the first step is in the fundamental alcove A,
(b) at every step, the head of each arrow is in the same alcove as the tail of
the next arrow.

The type of a walk p is the sequence of labels on the arrows. Note that, if w € w
then

(3.3) ¢(w) = length of a minimal length walk from A to wA.

For example, in type Cs,

Hal-i—az

Ha1 4202
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is an alcove walk p of type (1,2,0,1,0,2,1,2,1,0,1,2) with two folds. Using the
notation

cj for a positive i-crossing, fi+ for a positive i-fold,

(3.4) c; for a negative i-crossing, f;~ for a negative i-fold,

the walk in the picture is cfcgcgcf fgrc;cfc;ffcgcfc;

The proof of the following lemma is straightforward following the scheme in-
dicated by the example which follows.

Lemma 3.1. The set of alcove walks is a basis of the alcove walk algebra.

For example, in type Cs, a product of the generators which is not a walk is

S S SR By S R
creacger foeacrcy fregefcy,

HOél—‘raQ HOél HOCQ
0,
/ N/
N1l 27N
2N 17
1,12
7211 N7z
N\ ~N
N | zg N
L0770 2
/
29 2,70
A A X
Po, " it 2, NAPEANE
\l/ Q\J/ 1 Q\Lll \l/H
4N 171 1,1\, /’|\ a1+2ag
10,7211 8,7 10N 7211¥,01
| Nl 2. N7 |
Nz O0NLO 0N 70 \*/
. [IAN /l\ o .
H,,

but, by first applying relations f;F = — fii and then working left to right applying
the relations ¢ = ¢f + £, gives
cresegerfoeseres fregeley =

= —(eregeger foeseres fregeley)

= —(er (g + Reger foger e fregeles)

= —(er (g + f)eger fo'ez (ef + fr)es fregeley)

= —(er(eg + f)eger foes (el + fr)es fregel (e3 + 1))

and every term in the expansion of this expression is an alcove walk.
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3.2. The affine Hecke algebra. Fix an invertible element ¢ € K. The affine
Hecke algebra H is the quotient of the alcove walk algebra by the relations

i i -1 s z

() -

and

(3.5) p=7p if p and p’ are nonfolded walks with end(p) = end(p’),

where end(p) is the final alcove of p. Conceptually, the affine Hecke algebra only
remembers the ending alcove of a walk (and some information about the folds)
and forgets how it got to its destination.

For w € W and X € P define elements
TJ_Il — (image in H of a minimal length alcove walk from A to wA),

X* = (image in H of a minimal length alcove walk from A to tyA).

A+WA

WA

The following proposition shows that the alcove walk definition of the affine Hecke
algebra coincides with the standard definition by generators and relations (see
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[IM] and [Lu]). A consequence of the proposition is that

the finite Hecke algebra, H= span{T;}1 | we W}, and

(3.6) the Laurent polynomial ring, K[P] = span{X* | A € P},

are subalgebras of H.

Proposition 3.2. Let g € Q, \,p € P, we W and 1 < i < n. Let ¢ be the
element of R such that Hy, = Hy 1 is the wall of A which is not a wall of C' and
let s, be the reflection in H,. Let wg be the longest element of W. The following
identities hold in H.

(a) X AXH = X MH = XrXA,

Ts,w, if £(s;w) > L(w),
Tojw + (@ = ¢ )T, if L(siw) < L(w).
(c) If (N, @) = 0 then Ts, X = X ,.

(d) If (N, @) = 1 then Ty, X5 Ty, = X2

X)\ _ Xsi)\

1— X’

(b) Ty, T = {

(e) TsiX’\ = XS"’\TSZ. + (g — q_l)

(f) Ts,Ts, = X%,

(g) X% = gTwow,, where the action of g on A sends the origin to w; and w; is the
longest element of the stabilizer W, of w; in W.

Proof. Use notations for alcove walks as in (3.4).

(a) If py is a minimal length walk from A to t\A and p,, is a minimal length walk
from from A to ¢, A then

PPy and p,py are both nonfolded walks from A to ty;,A.
Thus the images of pyp, and p,p) are equal in H.
(b) If £(ws;) > £(w) and p,, is a minimal length walk from A to wA then
Pws; = PwC; is a minimal length walk from A to ws; A.

and so T;i)_l = T,L;'Sl,—l = T;_llTsjl = (Ts,Ty-1)" ! in H. Taking inverses gives
the first result, and the second follows by switching w and ws; and using the
relation T+ = Ty, — (¢ — ¢~ ') which follows from (3.2) and (3.5).

(c) Let p) be a minimal length alcove walk from A to ty\A. If (\,a)) = 0 then
H,, is a wall of tyA and s;\ = A and

c; p,\c;;|r is a nonfolded walk from A to ¢y A.
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Thus T, ' X 7T, = X* = X** in H.

Ha1+a2 Hal

7 7N 1,8 . Ha,y 424,
10,7211 N /0|0\>/2|1‘\,0|
PN AN h U AN |
Nz 0N,/ 0 0NL70 N7
. [IRN 7\ PR R
N
H,,

(d) Let p) be a minimal length walk from A to ty\A. If (\,a)) = 1 then there

is a minimal length walk from A to ¢ty A of the form py = pi,s,c; where py, s, is
minimal length walk from A to t)s;A. Then

C; Dtys; is a minimal length walk from A to ¢, A.

Thus T ' (X*T,-1) = X** in H.

Ha1+a2 Hal

o,T~0 ,T< 0,T\0

/ N7 | N7 | N
N1l27N0707N 112

oN| 7, N7 s
2 * — 37
L, 2 L
72 \/Ol
\ S

\ N
SN 257
/ \

\l/ 2 \Lll \l/H
7 N JN_ 1,V N Hat2ae
10,7211 X /0|0\>/2|1\\,o|
L 27N 0 v 1,7 1 72\ |
NIAANTA 200 ys
. I\ 7\ N P

He,

(e) Note that (c) and (d) are special cases of (e). If the statement of (e) holds for
X then, by multiplying on the left by X% and on the right by X\, it holds
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for —\, If the statement (e) holds for A and u then it holds for A + pu since

. B X)\ o Xsi)\
TsiX)\XM = (XSZ/\T&' + (q —4q 1)1_){—%) XH
XH — Xsim XA — XA
— Xsi)\ XSl -1 -1 XH
. B XA xsi(A+w)
= st(/\Jr,u)TSi +(q—gq 1) -

Thus, to prove (e) it is sufficient to verify (c) and (d), which has already been
done.

(f) Let ps, be a minimal length walk from s, A to A, then
Py = carp% is a minimal length walk from A to t,A.
Thus TyTs, = X¥ in H.
(g) If puyw, is a minimal length walk from w;wpA to A then
Dw; = GPwow; 15 a minimal length walk from A to ¢, A.

Thus X% = gTow, in H. For example, in type Cs, wy = s2515281 and there
is one element g in ) such that g # 1 for which gws = 0 and wo = s; so that
WoWwy = §985152. O

The sets
(3.7) (T,L XY lweW, e P} and {X'T)Y |pePveW}

are bases of H. If p is an alcove walk then the weight of p and the final direction
of p are

wt(p) € P and ¢(p) € W such that

(3.8) p ends in the alcove wt(p) + ¢(p)A.

Let

f~(p) = (number of negative folds of p),
(3.9) /1 (p) = (number of positive folds of p), and
f(p) = (total number of folds of p).

The following theorem provides a combinatorial formulation of the transition
matrix between the bases in (3.7). It is a g-version of the main result of [LP] and
an extension of Corollary 6.1 of [Sc].

Theorem 3.3. Use notations as in (3.4). Let X\ € P and w € W. Fir a

minimal length walk py, = c; c;, -+~ c; from A to wA and a minimal length walk
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pxr=cjy ¢ from A to tyA. Then, with notations as in (5.8) and (3.9),

T;}lXA = Z(—l)fﬁ(p)(q — g Hf )th(p)T(p(;) .
)

where the sum 1is over all alcove walks p = ¢; ---¢; pj, -~ pj, such that p;, is

—€g €k
either cj ¢ tor fiE

Proof. The product pypx = c; ¢, - ¢; cﬁ cj: may not necessarily be walk,
but its straightening produces a sum of walks, and this decomposition gives the
formula in the statement. O

Remark 3.4. The initial direction ((p) and the final direction ¢(p) of an alcove
walk p appear naturally in Theorem 3.3. These statistics also appear in the Pieri-
Chevalley formula in the K-theory of the flag variety (see [PR], [GR], [Br| and
[LP]).

Remark 3.5. In Theorem 3.3, for certain A the walk p) may be chosen so that
all the terms in the expansion of Tq;_llX A have the same sign. For example, if \
is dominant, then py can be taken with all e, = +, in which case all folds which
appear in the straightening of p,,py will be positive folds and so all terms in the
expansion will be positive. If A is antidominant then py can be taken with all
€ = — and all terms in the expansion will be negative. This fact gives positivity
results for products in the cohomology and the K-theory of the flag variety (see
[PR], [B]).

Remark 3.6. The affine Hecke algebra H has basis {x T L IxePweWlin

bijection with the alcoves in €2 x b, where X /\Tw 1 is the image in H of a minimal
length alcove walk from A to the alcove A + wA. Changing the orientation of
the walls of the alcoves changes the resulting basis in the affine Hecke algebra H.
The orientation in (3.1) is the one such that

(3.10) the most negative point is —oop, deep in the chamber wyC'.
Another standard orientation is where
(3.11)  the most negative point is the center of the fundamental alcove A.

Using the orientation of the walls given by (3.11) produces the basis commonly
denoted {T,, | w € W} by taking T, to be the image in H of a minimal length
alcove walk from A to w™'A. Since T, ' = T; — (¢ — ¢~') the transition matrix

between the basis {X)‘T 1| X e Pwe W} and the basis {T,, | w € W} is
triangular.
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4. POLYNOMIALS AND SYMMETRIC FUNCTIONS

Recall, from (3.6), that the finite Hecke algebra is the subalgebra of the affine

Hecke algebra H given by
H = spam{Tyj_l1 | we Wh.
Let 19 be the element of H given by
(4.1) 12=1 and T,119=¢q "1,
for w € W. Two explicit formulas for 1y are

1 1
o= > T = e 3 T,
Wol(q 2)% 1 Wo(qQ)u;V

where Wy(t) = Z /() is the Poincaré polynomial of W.
weW
As observed in (3.6), K[P] = Sgan{X/\ | A € P} is a subalgebra of H. The

vector space K[P] also sits inside H in a different way. Since {X*Mo | A€ P}is
a basis of H1g there is

. . K[P] — H1,

(4.2) a vector space isomorphism P f1o,
The ring of symmetric functions is

(4.3) K[P|V = {f € K[P] | wf = f for all w € W}.

By a theorem of Bernstein (see [NR, Theorem 1.4]) this subalgebra of H is the
center of H,

(4.4) K[P)Y = Z(H).

The spherical Hecke algebra is the ring 10X*1o and the restriction of the map

(4.2) to Z(H) is the Satake isomorphism of the following theorem.
Theorem 4.1. Let 19 and K[P)W be as in ({.1) and (4.3), respectively. Then

K[P)W = Z(H) — 19H1,

is a K-algebra isomorphism.
f — flg g P

Proof. The map is a well defined homomorphism since, if f, f1, fo € Z(H), then
flo = f1§ = 10f10 and f1folo = f1f215 = filof21o.
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Suppose that (A, a)) > 0 so that X is on the positive side of H,,. Then, by
Proposition 3.2e,

10X %M = ¢ 19T, X M

=q "X Ty 10 — ¢ (g — ¢~ HLo(X¥M¥ 4 4 X274 4 X1,
= 10X — (1 — ¢ ) 1p(X¥AY 4 4 XA7% 4 XM)1,.

so that

(4.5) LoX* g = ¢ *10X g — (1 — ¢ %) 1p(X* M 4.+ XA 7)1,

or, equivalently,

(4.6) 1o(X5A 4o 4 XA 1 = ¢ 21o(X MY 4 X1,

From the relation in (4.5),

10X M) — 10X M1y = ¢ 210X g — (1 — ¢ D) L(X5M .4 X )1

— 210X M % 4 (1 — ¢ D) L(XFAM2 L XA
so that
(4.7) 10X = ¢ 210X 1o + ¢ 21 X5 ™1 — 10X %1,

It follows from these relations that any element of 19H1y can, inductively, be
written as a linear combination of the elements 10X*1g, A € P*. Using Theorem
3.3 to expand 19 X” in terms of the basis {X“Tv_}1 | p € P,v € W} produces
X XTI Y 4, T,
p>wo

and, since these leading terms are all different (as A runs over P1), it follows that

(4.8) 10H1, has basis {10X*1y | A € PT}.

The orbit sums

(4.9) my= Y X7, e Pt

form a basis of K[P]". The relation in Proposition 3.2e implies that, if f € K[P]"
then T\yf = fT,, for all w € W, and so the my1y = 1gmy1y are in 19H1,.
Viewing these in terms of the basis {X “Tvill | u € P,v e W} of H one sees that
the my1gp, A € P, are linearly independent and so

(4.10) 10H1y has basis {my1g | A € P*}.

The point is that the transition matrix between the basis in (4.8) and the basis
in (4.10) is triangular. O
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4.1. Hall-Littlewood polynomials. For ;1 € P let W, = Stab(u) be the sta-
bilizer of u. The Poincaré polynomial of W, is

(4.11) W)= >
weW,,

For p € P, the Hall-Littlewood polynomial or Macdonald spherical function
P,(X;t) is the element of K[P]" defined by

(4.12) Pu(X:q7 )10 = ( 3 T _1>X“10,
weWr

where W* is a set of minimal length coset representatives for the cosets in W/W,,.
Since every element w € W has a unique expression w = uv with u € W*# and
veW,,

> T X, = ( > Ty ) > T ) 1,

weW# ueWH veW,
_ _ _ Wo(q™?
Z g T T - Z q Z(U)vall XH1p = W( 2) 19X 1y,
,u(q )
ueW# veW,,
and hence
PN(X,q_z)lo is exactly 19X*"1g except normalized
so that the coefficient of X#1g is 1.

Macdonald’s formula for the spherical functions on a p-adic group [Macl, The-
orem 4.1.2] is

1—qg2X@
(4.13) Pu(X;q7%) = Z wlx* ]] 1 _xa
weW a€Rt

See [NR, Theorem 2.9a] for a proof in this context.
The following theorem gives additional formulas for Py(X;q™2).
(4.14) A positively folded alcove walk is an alcove walk with no negative folds.

In the following theorem we shall consider alcove walks which do not necessarily
begin at A. This is the natural way to account for the sum over W?* which
appears in the definition of Py in (4.12). The type of p is the sequence of labels
of the folds and the wall crossings of p.

Theorem 4.2. For A\ € PT let t) € W be the translation in \ and let ny be the
mazximal length element in the double coset Wit \W .
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(a) [Sc, Theorem 1.1] Let A € PT and fix a minimal length walk px = ¢ ---¢;
from A to A+ A. Let

| positively folded alcove walks of N
By(pa) = {type (i1, ...,1g) which begin at wA wew

Then

P\(X;q7?) = Z gD+ =F ) (1 — ¢=2)F () xwt(p)

PEBq(pA)

where 1(p) is the alcove where p begins, wt(p) + ¢(p)A is the alcove where p ends,
and f(p) is the number of folds in p.

(b) Let A € P*. Then

qf(WO)WO(q*Q)p)\loz Z qf(x)*f(nA)Tx.
zeWt\W

Proof. (a) The proof is accomplished by using Theorem 3.3 to expand the sum
in (4.12). Since all crossings in the walk p) are positive crossings Theorem 3.3
gives

Z q*f(w)Tz;_l1 XA = Z q*f(w) Z (q_qfl)f(p)th(P)Tcp—(;)'

weEW weEWX PG(B)q(PA)
(p)=w

Hence

Palp= Y g ) (g g )W e et
PEBq(X)

(b) Let A € PT. Let W) = Stab()) and let wy and w) be the maximal length
elements in W and W), respectively. Let m) and n) be the minimal and maximal
length elements respectively in the double coset Wi W. If A = 2wy in type Co,
then Wy = {1, s1}, wy = s1, wo = s1825182, £(t)) = 6, £(m)) = 3, and ¢(ny) = 10.
Labeling the alcove wA by the element w, the 32 alcoves wA with w € W, W
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make up the four shaded diamonds.

Hal+a2

/
Ha1+2a2

Then

qé(wO)WO(q_z)P)\lo — qf(WO)Wo(q—Q)q_%(wO)‘f‘%(wk) Z qz(u)Tu XAI()
ueWw?

= g/ (0) D (q2) g2 240 | N7 T, ) Ty, T, Lo

u€WAx
— q—3€(w0+2€(U’A) Z q T TmAq (wo) (Z q )
ueW weW
:q—%(wo)—&—l(w)\) Z q +€(w um>\w
ueWA
wew

—20(wo)+L(wy) Z qf(m)ff(mA)Tm
zeWt W

=49

and the result follows from the identity £(n)) = ¢(wgy) + £(ty) = £(wg) + £(wp) —
E(w)\) + K(m)\) Il
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Remark 4.3. The set B,(py) appearing in Theorem 4.2a is heavily dependent
on the choice of p). One way to make this seem less dependent on this choice is
as follows. For convenience assume that A is regular (not on any wall). Similar
definitions can be made in the general case. Consider the region

A ={z= Zwiwi | 0 <z < \i} where A= Z)\Zwi.

This region is a union of alcoves and any minimal length walk p) from A to
A + woA lies in [A]. Foldings of the walk py are then produced by folding the
region [A] along the “creases” formed by the hyperplanes. This process produces
a bijection between the paths in By(py) and the set By([\]) of “positively folded
foldings” of the region [A], and the set B,([\]) does not depend the choice of an
initial path. The moral is that the best way to forget the choice of the initial
path p) is to remember all the possible initial paths all at once. This translation
of foldings was explained to me by J. Ramagge in Fall 2000.

Remark 4.4. Let By(py) be as in Theorem 4.2a and let p € B,(py). Suppose

that p has f folds. For 0 < i < f, let p( be the positively folded walk in By(py)

which coincides with p up to the ith fold and is nonfolded thereafter. Then
0, ..., p) is a sequence of positively folded walks such that

P,
P =p, ™) =up), () =ulp), and e(PY) = sap(pV)
if the ith fold is on the hyperplane H, ;. Since ¢(p(~1) > ¢(p®) and
(1)) = (—1)fsed (—1)p@" ™) = (—1)(—1)e¢" ),
(p(pi=1)) — £(p(p™)) — 1 is an even integer > 0. Tt follows that
((u(p))+L(p(p)) — f(p)
= f(b( ) — L)) -
(™M) = Lp(p® )) -1
+ () = p(p™)) — 1
+ o+ Lp(pUD)) = e ) = 1+ 2£(0(p))
is an even integer > 0. This proves that f(p) < 4(c(p)) — £(p(p)) and that
Py\(X;q2) really is a polynomial in the variable ¢—2.
4.2. Demazure operators. The group W acts on K[P] = span{X* | A\ € P}
by
(4.15) wX* = X", forweW,\eP.
For each 1 < i < n, define Demazure operators

A;: K[P] — K][P] and A;: K[P] — K][P]
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by

(416) Af= —— (1—s)f and Af = — (X% —s))f
‘ Yl X ’ X —1 b

respectively.

Via the isomorphism in (4.2), the vector space K[P] is an H-module. Let

(4.17) Ci=q 2 4+q ' Ty, =1+¢'T; ' = (1+¢ )1,

985

where 1; is the element of H such that 1? =1, and Tsjlli = ¢~ '1;. The element

1; is the rank 1 version of the element 1¢ in (4.1).

The following proposition shows that, at ¢~2 = 0, the action of C; on K[P] is
the Demazure operator A;. In geometry, the Demazure operators arise naturally
as push-pull operators on the K-theory of the flag variety (see [PR, Proposition]).

Proposition 4.5. Let p =wq + -+ +wy, as in (2.16). As operators on K[P],

(a) Ay = X PAXP = A + s,

g2
(b) C; =(1— q*2)Ai + (s; + q,2) = (1+s;) (1 ¢ X ) ,

1— X

Proof. (a) Let A € P. Since s;p = p — {p,a) )y = p — «;,

X)\—i—p o Xs,-A-‘,—p—ai X)\ o Xsik—oc,- _
“PACXPY (XN = X P = = A (X
(XPAXP)(XM) = X — — Ad(XN),

and, as operators,

1
AZ'—I—Sizi(l—Si)—l-Si:

1— X~ 1— X~

(b) Using Proposition 3.2e,

- X
X/\ _ Xsi)\

XA — 1

(S

(X Xsl)\ @i 4 X)\ Xsi)‘ _ q—2(X)\ _ Xsi)\)> 10

. X)\ _ Xsi/\
q_lTSiXAlg = <q_1XS”\Tsi +(1- q_2)> 1p

- X
) _QA) X)\)]-Oa

(1 — 8 +8; — X—Oéisi) = A;.
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and the first formula in (b) now follows from the second formula in (a). Then

Ci=(q2+A; —q2A))

1 P e e

=T (X T L= X s — g g )
l—q_QX_ai q—2_Xai 1_q—2X—ai

= o xa TS xe - UFe\ G )

0

Remark 4.6. Slightly renormalizing the generators of the affine Hecke algebra
by setting T; = q 1Ty, allows one to let ¢~! = 0 so that T; acts on K[P] by A,
This is the action of the nil affine Hecke algebra on K[P]. Since the Tj satisfy
the braid relations so do the A;. The first formula in Proposition 4.1 shows that
A; is a conjugate of Ai and so the A; also satisfy the braid relations. Although
C; equals A; at ¢~2 = 0, the operators C; do not satisfy the braid relations.
Furthermore, if wg = s;, - - - s5;, is a reduced word for the longest element then

Ci, -+ Ci, = Wo(q?)10 + ¢ *(extra terms).

In contrast to the case for Weyl characters (when ¢=2 = 0), because of the

¢ %(extra terms) the Hall-Littlewood polynomial cannot be generated by apply-
ing the product Cj, ---C}, unless one somehow knows how to throw away the
extra terms.

Remark 4.7. As operators on K[P],

q—Ts, = (%) (1—s;) and

_ 1 1—g—2X~«
Lo = s 2 wew W (Ha€R+ I-X—@ ) :

The second formula is equivalent to Macdonald’s spherical function formula (4.13).

4.3. Root operators. The idea of root operators is to give an alcove walk inter-
pretation of the action of the operator C; on K[P] by considering the projections
of the alcove walks onto the line perpendicular to H,,. The main point is the
identity (4.22) which gives a combinatorial description of the action of C; on
K[P]. The appropriate combinatorics is more or less forced by the Leibnitz rule
or tensor product rule for the operator C; given in (4.28).
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Let p be a positively folded alcove walk.

Ha1+042

(4.18)

Let 1 <7 <n. The projection of p onto a line perpendicular to H,, is a positively
folded alcove walk p “with respect to «;” (the only important information in the
projection is the relative position of the walk to each of the hyperplanes parallel
to Hy, ).

(4.19) ———

Because p is positively folded it is a concatenation of negative-positive sections
of the form ¢ ¢™---¢™ feTeT--- ¢, where ¢ denotes a positive crossing, ¢~ a
negative crossing, and f a (positive) fold. The outer edge (bottom most negative
traveling portion and topmost positive traveling portion) of the walk is a single
negative-positive walk

(4.20) c ¢ e fetetetet. e e e e

d—(p) factors dt(p) factors
If p is the walk in (4.18), the outer edge is the darkened portion of the path,
dt(p) =7 and d~(p) = 3.

The root operators é and f change the outer edge of the path p and leave all
other parts of the walk unchanged. Define ép and fp to be the positively folded
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alcove walks which are the same as p except that

fp has outer edge ¢ ¢ ---c ¢ ¢ f ¢t ---ctet , and

d—(p)+1 factors d*(p)—1 factors

ep has outer edge c ¢ ¢ fetetet-cte®

d=(p)—1 factors dt(p)+1 factors

If p is the walk in (4.18) then

S~

— > e

p = Ll - <
| e afe
i S S,
and
- - St
5 — = > > >
€ |_>A_>E_>E

>

The precise rules for the limiting cases, when d*(p) or d~(p) = 0, are illustrated
by the following example, where the dashed arrows indicate the action of € and

7.

W
[y
}

TN

with f(-<—<—<—) =0 and é(p—>—>—>) = 0.

With notations for d*(p) and d~(p) as in (4.19) and (4.20), define
(4.21) df(p)=d*(p) and  di (p)=d (p),

where p is the projection of p onto the line perpendicular to ;. The walks é;p
and f;p are the walks obtained from p by changing the corresponding edges p (so
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that the projections of €;p and fip are ep and fﬁ, respectively).

The i-string of p Si(p) is the set of paths generated from p by applying the

root operators é; and f;. The head of the i-string is the path h in S;(p) which
has d; (h) = 0. If wt(h) = A and A is on the positive side of H,, then

(422) CZXA — q_lXSiATS:1 + (1 _ q—Q)(Xsi)\ +X8i)\+04i 4. +X/\—ai) +X>\,
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and the terms in this sum correspond to the paths in the i-string S;(h).

4.4. ¢-Crystals. The g-crystals provide a combinatorial model for the spherical
Hecke algebra 1gH1g in the basis of Hall-Littlewood polynomials. Three struc-
tural properties motivate the definition of g-crystals:

(a) The Hall-Littlewood polynomials are normalized versions of the basis
10X 1.

(b) The element 1 is characterized by the property that C;1g = (1 +¢ 2)1g
foralll <i<n. B

(¢) The action of C; on H1lg = K[P] is captured in the combinatorics of
1-strings.

These properties indicate that the combinatorics of Hall-Littlewood polynomials
can be captured with the root operators.

Let

Buniv be the set of positively folded alcove walks
which begin in the 0-polygon W A.

If B is a finite subset of By the character of B is

(4.24) char(B) = Z g~ UPIHe@)=f ) (1 — ¢=2)/(P)=elp) x wilp)
peEB

(4.23)

where p has f(p) folds, «(p)A is the alcove where p begins, wt(p) + ¢(p)A is the
alcove where p ends and

¢(p) the number of folds of p

(4.25) touching one of the hyperplanes Hq,, ..., Ha,.

A qg-crystal is a finite subset B of Byniy which is closed under the action of the
root operators.

A positively folded alcove walk is i-dominant if it never touches the hyperplane
H,, —1. The head h of an i-string S;(p) is i-dominant and S;j(h) = S;(p). A
positively folded alcove walk
(4.26) p is dominant if p C C — p,
where

C—p={pebhy | (ga)>—-1forl<i<n}
In other words, a positively folded alcove walk p is dominant if it is -~dominant
forall i, 1 <17 <n.
Theorem 4.8. Let B be a q-crystal. Then, with notations as in (4.24-4.26),

char(B) = Z g~ UP+ee)=fP) (1 — q—2)f(p)—6(p)pwt(p)'

pEB
pCC—p
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Proof. If p is a dominant walk let
By(p) be the g-crystal generated by p

under the action of the root operators & and f;. The point is that the set of all
positively folded alcove walks is partitioned into “equivalence classes” given by
the sets By (p) such that p € Bypiy is dominant and p is the unique dominant walk
in By(p). Because 1 is characterized by the property that C;1p = (1 + ¢ 2)1g
and the action of C; is modeled by the combinatorics of i-strings (4.25), this
equivalence relation is generated by the relations p ~ fip and p ~ ép. O

4.5. Products and restrictions. The results in this section are generalizations
of the Littlewood-Richardson rules. These are obtained as corollaries of Theorem
4.8.

The combinatorial definition of the root operators given above is essentially a
consequence of the Leibnitz rule for the Demazure operator,

(4.27) Ai(fg) = Ai(f)g + (sif)(Aig), for f,g € K[P].

The corresponding rule for the operators C; is

(428)  Ci(fg) = (Cif)g+ (sif)(Ci = (L +47%))g),  for f,g € K[P].

This identity is implicit in the additivity in A of the relation in Proposition 3.2¢
(the product Ty, X*T# = (T, X*) X* can be expanded in two different ways using
Proposition 3.2e).

In order to define the product of p; ® po of walks p1,p2 € Buniv the final
direction ¢(p1) of p; and the initial direction ¢(p2) of p2 need to be taken into
account. (To properly model the multiplication of Hall-Littlewood polynomials
we must account for the effect of 1¢ in the product P,1¢FP, 1o and we cannot just
concatenate walks as in the alcove walk algebra). Define p; ® pa, recursively, by

If p(p1) =t(p2) then p; ® pa = pipe, the concatenation of p; and pg, and
if (p1) # ¢(p2) then p1® ps = pj @ po,

Er
i

be a minimal length walk from ¢(p1) to t(p2). If &1 = — let pj = pic;. 1If

where p] is the alcove walk constructed by the following procedure. Let cfll ceec

€1 = + let H, ; be the hyperplane crossed by the last step of plc;; and change
the last negative crossing of H, ; in p; to a fold to obtain a new path p| with

e(ph) = w(pic)).
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In terms of root operators, the Leibnitz rule (4.28) translates to the property
(4.29)
(@ip1) @ pa, if df (p1) > d (p2),

€i(p1 ®p2)= - . - and
" 2){m®@m%ﬁ@@D<%m%

(fip) @pa, it df(p1) > di (p2) (P1Op2 = == ),

filp1 ® p2) = .
MU e e, i) <d(@) (hEq- =),

for p1,p2 € Buniv. It follows from this version of the Leibnitz rule that if B; and
By are g-crystals then the product

(4.30) By ® By ={p1 ®p2 | p1 € B1,p2 € Ba} is also a g-crystal,
and
(4.31) char(B; ® Bg) = char(Bj)char(Ba).

This last property is not completely trivial. The general case follows from the
rank one case (projecting onto the line perpendicular to H,). More importantly,
the definition of the product ® is forced by (4.29-4.31).

The following theorem is a version of [Sc, Theorem 1.2] and results in [KM]
and [Ha).

Theorem 4.9. Recall the notations from Theorem 4.2. If X\ € PT let By(py) be
the q-crystal generated by py, where py s a fived minimal length alcove walk from
A to AN+ A. For p,v € PT,

PP = Y qEOHEO-IO) (1 _ gD -cp,

pEBq(pv)
pu®pCC—p
Proof. Using (4.30) and (4.31) and applying Theorem 4.8 to the g-crystal By(p,,)®
By(py) gives
PuP, 1y = char(By(py))char(By(py)) 1o = char((Bq(pu) @ Bq(pv))lo
— Z g~ @)@ =1 W) (1 — g=2)f )=l p

= ji+wi(p2) 10

p=p1®@p2E€Bq(pp)®Bq(pv)
P1®p2CC—p

since every path in p; € By(p,) which is contained in C'— p has weight  (so that
wt(p1 ® p2) = p + wt(p2).) O

Fix J € {1,2,...,n}. The subgroup of W generated by the reflections in the
hyperplanes H,, j € J,

Wy =(sj|j€J), actsonbg, with C;={uebi]| (n,af)>0forjecJ}
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as a fundamental chamber. Let H; = span{Tuj_l1 | we Wy} and let 1; € Hy be
given by

12 =1, and Tuj_lllj = qié(w)lt}, for w € Wj.

For p € P let Wﬁ] be the stabilizer of 1 under the W action on P and

define  P/(X;¢7?) e K[P]"7 by
(4.32)

PH(X;q7)10 = (Zwewy q_e(w)TJ_ll)Xﬁ‘lo,
where Wff is a set of minimal length coset representatives for the cosets in
Wy/ W/l] . Then
(4.33) up to normalization Py (X,q"%)1g equals 1;X*1o,
and
(4.34) 1;H1, has basis {P{1o| X € P}, where P7 = PN Cj.
with Cy = {p € by | (n, o) > 0 for j € J}.
Theorem 4.10. Recall the notations from Theorem 4.2. If u € PT let By(py)

be the g-crystal generated by p,, where p,, is a fivzed minimal length alcove walk
from A tou+ A. Let \ € Pt and let J C {1,2,...,n}. Then

Py = Z g~ AP+ =f ) (1 — q*Q)f(P)*CJ(p)P‘;{t

pEB(X)
pCCy—py

(p)’

where Cy — py = {p € by | (p,af) > —1 for j € J} and c;(p) is the number of
folds of p which touch a hyperplane H,; with j € J.

Proof. A J-crystal is a set of positively folded alcove walks B which is closed
under the operators €;, f;, for j € J. Since Py\1¢ = char(Bg(py))1o, the statement
follows by applying Theorem 4.8 to By(py) viewed as a J-crystal. O

5. WEYL CHARACTERS AND CRYSTALS

Section 5.1 is an exposition of the theory of Weyl characters analogous to the
theory of Schur functions in [Mac2, Ch. 1]. The element a, in Theorem 5.1 is the
Weyl denominator, Lemma 5.2 is a generalization of the Jacobi-Trudi formula
and the formulas in Proposition 5.3 are the quantum dimension formula and
the Weyl dimension formula, respectively. The results in Proposition 5.4b and
5.4c are the Kostant partition function formula and the Brauer-Klimyk formula,
respectively. Sections 5.2-5.6 give an elementary exposition of the theory of
crystals and the path model and Section 5.7 explains the relationship between
crystals and column strict tableaux. The presentation here is designed to make



994 Arun Ram

clear the relationship between the general path model and the crystal operators
of Lascoux and Schiitzenberger used in the type A case [LS] (see [Ki] for a nice
presentation).

The relationship between the path model used in this section and the alcove
walks used in Sections 3 and 4 is as follows. Let r € Ryy. The dilation which
replaces the fundamental alcove A by %A induces important maps between the
corresponding affine Hecke algebras,

Hp— Hi, and  Hi, — Hay,
corresponding to stretching the walks by a factor of r. As r gets large the alcove
gets small and alcove walks become continuous paths in the limit. At ¢~! = 0 the
formula for the Hall-Littlewood polynomial in Theorem 4.2a becomes the path

model for Weyl characters discovered by P. Littelmann [Lil-3]. In other words,
the g-crystals become “classical” crystals in the limit.

5.1. Schur functions. Use notations for the Weyl group W and the lattice P
as in Section 2. The group algebra of P is the ring

Z[P] with basis {X* | A€ P}  andproduct X XH = X~
for A\, u € P. The group W acts on Z[P] by
wX* = XA, for w e W, X € P.
The ring of symmetric functions and Fock space are

ZIPIW = {f € Z|P] | wf = f forallw € W}  and
Z[P]4t = {f € Z|P] | wf = det(w)f for all w € W},

respectively. For A € P define

(5.2) my = Z X7 and ay = Z det(w) XA,
YEWA weW

(5.1)

The straightening laws for these elements are
(5.3) M) = M), and aypy = det(w)ay, for w e W and A € P.

The second relation implies that ay = 0 if there exists w € W) with det(w) # 1,
and it follows from the straightening laws that

Z[P]"  has basis {my | A € P*}, and

(5-4) Z[P)%  has basis {ax;, | A € PT},
where PT and p are as in (2.14) and (2.16), respectively.

The Weyl characters or Schur functions are defined by

(5.5) Sy = M7 for A € P.
Qp
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The following theorem shows that the sy are elements of Z[P] and that
(5.6) 7P\ has basis {sx | Ae Pt}
Theorem 5.1. Fock space Z[P]%" is a free Z[P]"' module with generator

Z[P)WV — Z[P]%t
a, =z’ H (1—279%) and the map [ — a,f
aERT Sy Qxgp

is a Z[P)" module isomorphism.

Proof. Let f € Z[P]% and let o € RT. If £, is the coefficient of 27 in f then

Z a7 =f=—saf = Z — fya®e, and so f= Z fy (a7 — x®7),

yeEP yEP yeP

(v,aV)>0
since fs,4 = —f,. Since each term x7 — x%7 is divisible 1 — 2™, f is divisible
by 1 — =%, and thus
(5.7) each f € Z[P]%" is divisible by 2 H (1—279)
aERT

since the polynomials 1 — ™%, a € RT are coprime in Z[P] and z” is a unit in
Z[P). Comparing coefficients of the maximal terms in a, and z” [[ ,cp+ (1 —27%)

shows that
a, =z’ H (1 —a™9%).
a€R™*

Thus each f € Z[P]* is divisible by a, and so the inverse of multiplication by

a, is well defined. g
The dot action of S, on P is given by

(5.8) wopu=w(u+p)—p, for w € Sy, u € P.

The straightening law

(5.9) Swop = det(w)s,, forpe P,weW.

for the Schur functions follows from the straightening law for the a, in (5.3).

Lemma 5.2. Let f € Z[P]W and write f = Z fya7 so that f. is the coefficient

v
of 7 in f. Then

f= Z fumy, = Z sy, where = Z det(w) frtp—wp-

pepP+ AePT weW
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Proof. The first equality is immediate from the definition of m,,. Since f € Z[P]W
and the sy, A € PT, are a basis of Z[P]", the element f can be written as a
linear combination of sy. Then, since e*** is the unique dominant term in a A

N = (coefficient of sy in f) = (coefficient of a)y, in fa,)

= [ coefficient of e’* in Z Z det(w) f et TP

pneEP wew
([

Proposition 5.3. Ifv € by and f = Z fue! € Z[P] define f(e Z fue ()

neP nepP
Let \€ PT,t € Ry, g=¢! and p" = 2206R+a.Then

v [(A+p, )] (A+p,0¥)
sx(¢? ) = H AT and sx(1) = H —
werne  Lpsa¥)] werme  pa¥)
where [k] = (¢" —1)/(q — 1) for an integer k # 0.
Proof.
a)\er Z det(w w(A+p)tp") Z det(w)e<wﬂvvt(/\+P)>
weW weWw
= a,v (etOHP)) = elp" t ) H (1 — elma"t0+n)y,
aERT
Thus
tp¥ (¥ t(A+p)) 1 — el—a’ st +p))
v axt,(e e e
sx(€7) = +€(tpv)) T V) H 1 (—aV,tp)
ay(e elr’s ot —e ,
(Ao, _
o q +p0x 1
er+ 4 el

and

v <)‘ +p, >

sx(1) = lim s\ (¢” ) = H
qa— OLER+ <p7 av>
[l

The weight multiplicities are the integers Ky, A € P, v € P, defined by the
equations

(5.10) Sy = Z Kyyx" = Z Ky, my,.

YyeP nepPt+
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The tensor product multiplicities are the integers cl’\w, i, v, A € PT, defined by
the equations

(5.11) SuSy = ci‘ws,\
AeP+
The partition function is the function p: P — Z>( defined by the equation

—=> p(y)a”

aERT - ~yEP

(5.12)

Proposition 5.4. Let \, ju,v € PT.
(a) Koy =1, Kyuwu=Ky, forweW, and Ky, =0 unless pp <\

b) Ky, = Y det(w)p(w(A+ p) — (n+ p)).
weW

Z det(vw)p(v(p+ p) + wv + p) — (A + p) — p).

Proof. (a) The equality K ,, = K), follows from the definition and the fact
that sy € Z[P]". If w # 1 then w(X + p) < A+ p so that w(A + p) — p < A and

S\ = (Z det(w wd+p)= ”) : H 7 _lx_a

weW a€Rt

= 2 + (lower terms in dominance order).

Thus Ky =1 and K, = 0 unless px < A.
(b) The coefficient of z* in

Sy = (Z det(w)xw()‘”)p) H 1_133_& = Z det(w)p(y)aAFA=P=7,

weW aeR+ wew
yeQt

has a contribution det(w)p(y) when w(A+ p) —p—~ = p so that v = w(A+p) —
(1+p).

(c) Let e = >, ey det(w)w. Since ¢, is the coefficient of 2z in

SpSvlp = (e )ela™) = Z det(vw)z (e twte)—p H

Qp
v,weW a€ERT

1

l1—ax @

= Z det(,Uw)p(,.)/)xv(ll«+p)+w(l/+p)*’}/*p’

v,weW
yeQt
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there is a contribution det(vw)p(y) to the coefficient cfw when A +p =v(p+p)+
w(v + p) —7 — pso that v = v(u+ p) + w(p +p) — (A +p) — p. O

Fix J C {1,2,...,n}. The subgroup of W generated by the reflections in the
hyperplanes H,;, j € J,

Wy = (sj|jeJ), acts on b, with
Cy = {neby | (maY) > 0for j €.J)

as a fundamental chamber. The group W acts on P and
(5.14) ZIP\V7 = {f € Z|P] | wf = f for w € Wy}
is a subalgebra of Z[P] which contains Z[P]". If

(5.13)

Cr={nebi | (naf)>0forjeJ}

(5.15) Py =PnCy, pr=Y wj
jeJ

ai = > wew, det(w)wXH,  for u € P, and

(5.16) o)
5y = /\J;p‘], for A € P,
by
then

{s{ | A € P} is a basis of Z[P]"".
The restriction multiplicities are the integers cj}y given by
(5.17) Sy = Z ciysl{.
VEPj_
5.2. Paths. Let A € P. The straight line path to X\ is the map
(5.18) pa: [0,1] — br  given by pa(t) = At

Let ¢1,02 € R>g. The concatenation of maps py: [0,£1] — bi and pa: [0, 2] — bi
is the map p1 @ pa: (0,41 + l2] — by given by

p1(l1) +pa(t —41), fort e [by,01 + {a].

Let 7, ¢ € R>g. The r-stretch of a map p: [0,¢] — b is the map rp: [0,7¢] — by
given by

(5.20) (rp)(t) =1 - p(t/r).
The reverse of a map p: [0, 4] — by is the map p*: [0, 4] — b given by

(5.21) p*(t) = p(t —t) — p(0).

(519) (pl ®p2)(t) _ {pl(t)7 fort € [0,61],
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The weight of a map p: [0, 4] — by is the endpoint of p,
(5.22) wt(p) = p(€).




1000 Arun Ram

Let

Buniv  be the set of maps generated by the straight line paths
by operations of concatenation, reversing and stretching.

(5.23)

A path is an element p: [0, ¢] — b in Byniv. Let B be a set of paths (a subset of
Buniv). The character of B is the element of Z[P] given by

(5.24) char(B) =~ X "),
peEB

A crystal is a set of paths B that is closed under the action of the root operators

€;: Buniv — Buniv U {O}
(5.25) ~ 1< <n,
fi: Buniv — Buniv U {0}7

which are defined and constructed below, in Proposition 5.7 and Theorem 5.8.
The crystal graph of B is the graph with

(5.26) vertices B and labeled edges pelp ifp = fip.

5.3. i-strings. Let B be a crystal. Let p € B and fix i (1 < ¢ < n). The i-string
of p is the set of paths S;(p) generated from p by applications of the operators é;

and f;.

The head of S;(p) is h € S;(p) such that éh = 0.
The tail of S;(p) is t € S;(p) such that f;t = 0.

The weights of the paths in S;(p) are
wt(t) = s;wt(h) = wt(h) — (wt(h), Ve, ..., wt(h)—2a;, wt(h)—a;, wt(h),
and the crystal graph of S;(p) is
l%i i % @) ; i—)| i i iop, i
te—¢€te— - «— fipe—pe—epe— - «—— fih——h
where

df (p) = (distance from h to p) and d; (p) = (distance from p to t),

]

+ o
so that éfi (p)p = h and fidi (p)p =1,
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5.4. Highest weight paths. A highest weight path is a path p such that
(5.27) éip =0, forall 1 <i<n.

A highest weight path is a path p such that, for each 1 < ¢ < n, p is the head of
the i-string S;(p). Thus (p(t),«)) > —1 for all t and all 1 <7 < n. So a path p

(2

is a highest weight path if and only if
(5.28) pCC—p, where C—p={u—p|pnecC}.

Following the example at the end of Section 2, for the root system of type Cs the
picture is

a1+2az

the region C' — p

If p is a highest weight path with wt(p) € P then, necessarily, wt(p) € P*.
The following theorem gives an expression for the character of a crystal in terms
of the basis {sy | A € P} of Z[P]W.

Theorem 5.5. Let B be a crystal. Let char(B) be as in (5.24) and sy as in
(5.5). Then

char(B) = Z Swt(p)»
pEB
pCC—p

where the sum s over highest weight paths p € B.

Proof. Fix i, 1 <1i <mn. If p € B let s;p be the element of the i-string of p which
satisfies

wt(s;p) = s;wt(p).
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H,,

3

t Sip p

o>

Then s;(s;p) = p and

sichar(B) = Z Xsvtp) — Z X"HsP) = char(B).
pEB pEB

Hence char(B) € Z[P]V.
Let

€= Z det(w)w so that a, =e(X*), forpe P.
weW

Since char(B) € Z[P]"V,
char(B)a, = char(B)e(X”) = e(char(B)X")

and

1 har(B)X?
char(B) = a—char(B)ap = zs(car(i))
P P

(5.29)

X wt(p)+p w
_ Z 5( - ) _ Z a tC(Lp)+p _ Z Swt(p)-

pEB pEB P pEB

There is some cancellation which can occur in this sum. Assume p € B such that
p € C — p let t be the first time that p leaves the cone C' — p. In other words let
t € Ry be minimal such that there exists an ¢ with

p(t) € Hoy -1 where Hy,o1={Xebp | (\af)=-1}

Let ¢ be the minimal index such that the point p(t) € H,, —1 and define s; o p to
be the element of the i-string of p such that

wt(s; op) = s; 0p.
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Haz,fl
| HOéi
t siop | p

[ ) [ J [ J [ J ® (] (] (] (]

"

o>

Note that since (p;(t),a)) = —1, p is not the head of its i-string and s; o p is well
defined. If ¢ = s; o p then the first time ¢ that ¢ leaves the cone C' — p is the same
as the first time that p leaves the cone C'— p and p(t) = ¢(¢t). Thus s;0q = p and

sjo(s; op) = p. Since
Swt(s;op) — Ssjowt(p) — — Swt(p)
cancel in the sum in (5.29). Thus

char(B) = Z Swt(p)-

pEB
pCC—p

the terms s and S,

si0p) )

g

Theorem 5.6. Recall the notations for Weyl characters, tensor product multi-
plicities, restriction multiplicities and paths from (5.5), (5.11), (5.17) and (5.22).
For each \ € PT fix a highest weight path p;\r with endpoint \ and let

B(X) be the crystal generated by py .

Let \,u,v € Pt and let J C{1,2,...,n}. Then

wt J
s\ = XWtp), SuSy = g Sutwi(g), and sy = E Siwt(p)-
pEB(N) q€B(v) gGCBO\)
pﬁ@qQC—p P=Cg=PI

Proof. (a) The path pf is the unique highest weight path in B(\). Thus, by
Theorem 5.5, char(B(\)) = s.

(b) By the “Leibnitz formula” for the root operators in Theorem 5.8¢c the set
B(p)® B(v)={p®q|p€ B(n),q€ B}
is a crystal. Since wt(p ® q) = wt(p) + wt(q),
susy = char(B(u))char(B(v)) = char((B(p) ® B(v))

- Z Swi(p)+wt(q) = Z Sptwt(q)>

P®IEB(1)®B(v) q€B(v)
P8ICC—p P ®aCC—p
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where the third equality is from Theorem 5.5 and the last equality is because the
path p} has wt(p}) = p and is the only highest weight path in B(pu).

(c) A J-crystal is a set of paths B which is closed under the operators €é;, fj, for
j € J. Since s\ = char(B(\)) the statement follows by applying Theorem 5.5 to
B(A) viewed as a J-crystal. O

5.5. Root operators for the rank 1 case. Let
B% =@ ---®b | b; € B}, where B ={+1,-1,0}.

Define
f: B® - B®** U {0} and é: B®* — B®* U {0}

as follows. Let b = b; ® --- ® b, € B®*. Ignoring Os successively pair adjacent
unpaired (41, —1) pairs to obtain a sequence of unpaired —1s and +1s

-1-1-1-1-1-1-1+4+1+4+1+4+1+1

(after pairing and ignoring Os). Then

fb = same as b except the leftmost unpaired +1 is changed to —1,

5.30 o . . .
( ) eéb = same as b except the righttmost unpaired —1 is changed to +1.

If there is no unpaired +1 after pairing then fb = 0.
If there is no unpaired —1 after pairing then éb = 0.

These operators coincide with the operators used in the type A case by Lascoux
and Schiitzenberger [LS] (see the nice exposition in [Ki]). The (+1,—1) pairing
procedure is equivalent to the process of taking the “outer edge” of the path
(4.19-4.20). In the context of Section 4 this is natural since only the outer edge
of the path contributes nontrivially to the image of the path in the affine Hecke
algebra.

Let by = R. By identifying 41, —1, 0 with the straight line paths
b1 Pb-1 Po

—_— — °

pi: [0,1]=bg  p-1: [0,1]—=bx  po: [0,1] = bR
t —t, t — —t, t — 0,

respectively, the set BE¥ is viewed as a set of maps p: [0, k] — b%. Let B¥0 = {¢}
with f¢ =0 and é¢ = 0. Then

(5.31) T4(B)= | | B®*
k€Z>
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is a set of paths closed under products, reverses and r-stretches (r € Z>¢) and
the action of € and f. For p € B let

d" (p) = (number of unpaired +1s after pairing),

(5.32) d~ (p) = (number of unpaired —1s after pairing).

See the picture in (5.33). These are the nonnegative integers such that
fdJr(p)p #0 and f‘ﬁ(p)“p =0, and g~y #0 and g+, — .
Proposition 5.7. Use notations for Tz(B) as in (5.30-5.32).
(a) If p € Ty(B) and fp # 0 then éfp = p.
If p € Tz(B) and ép # 0 then fép=p.
(b) If p € T7(B) and r € Zx( then
frop)=r(fp)  and & (rp) =r(ép).

(c) If p,q € Ty(B) then

. Jfp®aq ifdt(p) > d (q),
frea= {p®fq, if d*(p) < d™(q),
and
: _Jép®gq, ifd(p)>d (q)
oo = {p®éq, if d*(p) < d(q).

(d) If p € Tz(B) then
fp*)y=(ép)*  and  &(p*) = (fp)".

Proof. (a), (b) and (d) are direct consequences of the definition of the operators

€ and f and the definitions of r-stretching and reversing.

(c) View p and ¢ as paths. After pairing, p and ¢ have the form

d*(q)
— gt — — —
(5.33) p= ®) | and qg= |
— — — () —
d=(p)

where the left traveling portion of the path corresponds to —1s and the right
traveling portion of the path corresponds to +1s. Then

frogq ifpeq= ===, ie dt(p)>d (q),
flp®q) = _
p®fg, ifpog= T ==, ie d*(p)<d (q),
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since, in the first case, the leftmost unpaired +1 is from p and, in the second
case, it is from q. O

Use property (b) in Proposition 5.7 to extend the operators € and f to operators
on T(B), the set of maps p: [0,£] — R generated by B under the operations of
concatentation, reversing and r-stretching (r € Q>¢). Then, by completion, the
operators € and f extend to operators on

Tr(B), the set of maps p: [0,¢] — R generated by B by operations of

(5.34) concatenation, reversing and r-stretching (r € R>g).

A rank 1 path is an element of T (B).

5.6. The root operators in the general case. Recall from (5.23) that

Buniv 18 the set of maps generated by the straight line paths
by operations of concatenation, reversing and stretching.

and a path is an element p: [0, 4] — b in Byniv (see (5.23)).
Let p: [0,/] — R be a path and let « € R be a positive root. The map

(5.35) Pa: [0,4] = R given by pa(t) = (p(t),a")

is a rank 1 path (an element of Tg(B)). The rank 1 path p, is the projection of
p onto the line perpendicular to the hyperplane H,. Define operators

(536) €a: Buniv — Buniv U {0} and fa: Buniv — Buniv U {O}

by

(5.37) éap=p+ 5(Epa —pa)a  and  fop=p— 5(pa — fra)a,
and set

(5.38) € =éq, and fi=fo, forl<i<n.

The operators & and f; are designed so that after projection onto the line per-
pendicular to H,, they are the operators € and f.
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Hoci Hai
fip
17
H,, H,,
= di) —
. — > L >
i ES S —— .
«— di(p) Pa; FPa,

The dark parts of the path p are reflected (in a mirror parallel to H,,) to form
the path f;p. The left dotted line is the affine hyperplane parallel to H,, which
intersects the path p at its leftmost (most negative) point (relative to H,,) and
the distance between the dotted lines is exactly the distance between lines of
lattice points in P parallel to H,,.

The following theorem is a consequence of Proposition 5.7 and the definition
in (5.34). The uniqueness of the operators f; and é; is forced by the properties
(b), (c) and (d) in Theorem 5.8.

Theorem 5.8. The operators €; and ﬁ defined in (5.38) are the unique operators
such that

(a) If p € Buniv and fip # 0 then & fip = p.
If p € Buniv and €;p # 0 then fie;p = p.
(b) If A € P and (\, ) € Z~q then

~>\7 ;/
FO0 00 = pen
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(C) If p,q € Buniv then

. {ﬁp®q, if df (p) > dy (q),

i ) X ] d
FMPeD= Ve e, ate) <dt@, ™

. ep®q, if df(p) >d;(q),
Glpeg) = PET Ta P2
p®éiq, if d (p) < dj (q).
where df (p) = d*(pa,) with d* as in (5.33) and pa, as in (5.35).
(d) If p € Buniv and r € Z>q then
ffrp)=r(fip)  and & (rp) =r(@ip).
(e) If p € Buniv then
fi" = (@Ep)*  and  E&p* = (fip)"
(f) If p € Buniv and fip # 0 then wt(fip) = wt(p) — o.
If p € Buniv and é;p # 0 then wt(é;p) = wt(p) + ;.
5.7. Column strict tableaux. A lefter is an element of B(e1) = {e1,...,en}
and a word of length k is an element of
B<€1)®k = {61‘1 Q- e, ‘ 1<aq,...,0 < n}
For 1 <i<n —1 define
fi: B(e1)®F — B(1)®* U {0} and &: B(e1)®* — B(e1)®** U {0}
as follows. For b € B(e1)®¥,

place +1 under each ¢; in b,
(5.39) place —1 under each ¢;11 in b, and
place 0 under each €, j # 4,7+ 1.

Ignoring 0Os, successively pair adjacent (+1,—1) pairs to obtain a sequence of
unpaired —1s and +1s

(5.40) 1 -1-1-1-1-1-1+1+1+1+1
(after pairing and ignoring 0s). Then

f;b = same as b except the letter corresponding to
the leftmost unpaired +1 is changed to €;41,
é;b = same as b except the letter corresponding to
the rightmost unpaired —1 is changed to &;.

If there is no unpaired +1 after pairing then fib = 0.
If there is no unpaired —1 after pairing then ;b = 0.
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A partition is a collection X\ of boxes in a corner where the convention is that
gravity goes up and to the left. As for matrices, the rows and columns of A\ are
indexed from top to bottom and left to right, respectively.

The parts of A are \; = (the number of boxes in row i of \),
(5.41) the length of X is  ¢(X\) = (the number of rows of \),
the size of A is Al = A1+ -+ 4+ Agn) = (the number of boxes of \).

Then X is determined by (and identified with) the sequence A = (A1,..., ) of
positive integers such that A\; > Ay > -+ > XAy > 0, where £ = £()\). For example,

(5,5,3,3,1,1) =

Let A be a partition and let p = (p1,...,pun) € Z% be a sequence of nonneg-
ative integers. A column strict tableau of shape A and weight 1 is a filling of the
boxes of A with py 1s, ue 2s, ..., un ns, such that

(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write shp(p) and wt(p) for the shape and the weight
of p so that

shp(p) = (A1, ..., \n), where \; = number of boxes in row 7 of p, and

wt(p) = (1, - -+, fn), where p; = number of ¢s in p.

For example,

L] 1]1]2]2]
p= 12|2]2]|2
313(3(4|4|4]|5 has shp(p) = (9,7,7,4,2,1,0) and
4]5(5]6 wt(p) = (7,6,5,5,3,2,2).
6|7
7]
For a partition A and a sequence p = (p1, ..., ftn) € Z%, of nonnegative integers
write
(5.42) B(A) = {column str%ct tableaux p | shp(p) = A},
B(\), = {column strict tableaux p | shp(p) = A and wt(p) = p}

Let A be a partition with £ boxes and let
B(A) = {column strict tableaux of shape A}.
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The set B()\) is a subset of B(g1)®* via the injection

B()\) — B(e1)®*
P — (the arabic reading of p)
ixy s i2 | i1 |
(5.43) Ditrg e g
— Ei1®€i2®”'®€ik

where the arabic reading of pis €;, ®¢;, ®- - -®¢;, if the entries of p are i1, 142, ...,
read right to left by rows with the rows read in sequence beginning with the first
row.

Proposition 5.9. Let A = (A1,...,\,) be a partition with k boxes. Then B(\)
is the subset of B(e1)®F generated by

Pr=E1REIR - RVEIRVEIRVEDR QIR REL,RVEL, R Reén

A1 factors Ao factors An factors

under the action of the operators €;, fi, 1<i<n.

Proof. If P = P(b) is a filling of the shape X then b;, ® --- ® b;, = b is obtained
from P by reading the entries of P in arabic reading order (right to left across
rows and from top to bottom down the page). The tableau

is the column strict tableau of shape A with 1s in the first row, 2s in the second
row, and so on. Define operators €; and f; on a filling of A by

&P =P(&p) and f;P=P(fb), if P=P(b).

To prove the proposition we shall show that if P is a column strict tableau of
shape A then

(a) é;P and fiP are column strict tableaux, 3
(b) P can be obtained by applying a sequence of f; to Pj.



Alcove Walks, Hecke Algebras, Spherical Functions... 1011

Let PU) be the column strict tableau formed by the entries of P which are < j
and let \U) = shp(PY)). This conversion identifies P with the sequence

P = ((D = )\(0) C )\(1) c...C )\(n) = )\)’ where

)\(i)/)\(i_l)is a horizontal strip for each 1 < i < n.

(a) Let us analyze the action of é; and f; on P. The sequence of +1,—1,0
constructed via (5.39) is given by

placing +1 in each box of A(® /\0=1),

placing —1 in each box of A+ /A\(®)

placing 0 in each box of AU /AU=D for j i i+ 1,
and reading the resulting filling in Arabic reading order. The process of removing
(4+1, —1) pairs can be executed on the horizontal strips )\(”1)/)\@ and )\(i)/)\(i_l),

TTF AT ———

A(i*l) E—

FFF -]

)\(H—l)

T+

with the effect that the entries in any configuration of boxes of the form

SE I EE 1 R S
—1l=1 -1

will be removed. Additional +1,—1 pairs will also be removed and the final
sequence

(5.44) R R I |
d; (p) df (p)

will correspond to a configuration of the form

—

A\(@=1) =

T

)\(iJrl) —

TFF

The rightmost —1 in the sequence (5.40) corresponds to a box in A+ /X which
is leftmost in its row and which does not cover a box of A®/X(=1). Similarly
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the leftmost +1 in the sequence (5.40) corrresponds to a box in A®) /A=) which
is rightmost in its row and which does not have a box of /\(Hl)/ A9 covering it.
These conditions guarantee that é; P and f; P are column strict tableaux.

(b) The tableau P is obtained from P, by applying a sequence of fz in the
following way. Applying the operator

foi=foo1- fisrfi to Py
will change the rightmost ¢ in row 7 to n. A sequence of applications of
fni, as i decreases (weakly) from n — 1 to 1,

can be used to produce a column strict tableau P, in which

(1) the entries equal to n match the entries equal to n in P, and
(2) the subtableau of P, containing the entries <n —1is Pyn-1).

Iterating the process and applying a sequence of operators
f n—1i, as i decreases (weakly) from n — 2 to 1,

to the tableau P, can be used to produce a tableau P,,_1 in which

(1) the entries equal to n and n — 1 match the entries equal to n and n — 1
in P, and
(2) the subtableau of P,_; containing the entries < n — 2 is Pyn_2).

The tableau P is obtained after a total of n iterations of this process. O
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