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Abstract. In this paper we establish a Steinberg-Lusztig tensor product the-
orem for abstract Fock space. This is a generalization of the type A result
of Leclerc-Thibon and a Grothendieck group version of the Steinberg-Lusztig
tensor product theorem for representations of quantum groups at roots of
unity. Although the statement can be phrased in terms of parabolic affine
Kazhdan-Lusztig polynomials and thus has geometric content, our proof is

combinatorial, using the theory of crystals (Littelmann paths). We derive the
Casselman-Shalika formula as a consequence of the Steinberg-Lusztig tensor
product theorem for abstract Fock space.

Introduction

In our previous paper with P. Sobaje [LRS] we provided a construction of an
“abstract” Fock space F� in a general Lie-type setting. The construction is given
by simple combinatorial “straightening relations” which generalize the Kashiwara-
Miwa-Stern [KMS] formulation of the q-Fock space from the type A case. We
showed that the abstract Fock space is a combinatorial realization of the graded
Grothendieck group of finite dimensional representations of the quantum group
at a root of unity, where the standard basis elements |λ〉 correspond to the Weyl
modules Δq(λ) and the KL-basis Cλ corresponds to the simple modules Lq(λ). The
KL-basis Cλ for abstract Fock space F� is an analogue of the Kazhdan-Lusztig basis
(KL-basis) of the Iwahori-Hecke algebra.

In Section 1 we prove a product theorem (Theorem 1.4) in abstract Fock space
which generalizes the type A theorem of Leclerc and Thibon [LT, Theorem 6.9].
Our proof follows the same pattern as the proof for type A given in [LT, Theorem
6.9] except that, in order to deal with general Lie-type, we have replaced the use of
ribbon tableaux with the crystal basis and Littelmann paths. The basic philosophy
of our technique is similar to the main idea of a paper of Guilhot [Gu] but we also
make use of the elegant cancellation technique of Littelmann [Li, proof of Theorem
9.1] to complete the proof. This technique provides a combinatorial control of the
Demazure operator used in the proof of [Knp, Lemma 4.4]. We have not considered
the unequal parameter case in this paper but the close relation between our context
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and that of [Knp] cries out for an extension of the tensor product theorem for
abstract Fock space to unequal parameters.

The Casselman-Shalika formula is important in the representation theory of p-
adic groups (see [CS]), in its relation to the affine Hecke algebra (see for example
[BBF]) and in the geometric Langlands program (see [FGV] and [NP]). In Section
2 we show that the Casselman-Shalika formula can be derived as a special case
of the Steinberg tensor product theorem for abstract Fock space. This derivation
is done by using the relationship between the abstract Fock space and the affine
Hecke algebra as detailed in [LRS, Theorem 4.7].

In Section 3, we review the connection between the abstract Fock space and
the representations of quantum groups at roots of unity (Theorem 3.1) and the
Steinberg-Lusztig tensor product theorem (Theorem 3.2). The Steinberg-Lusztig
tensor product theorem is the primary motivation for the product theorem in ab-
stract Fock space. Our approach does provide an alternative proof of the Steinberg-
Lusztig tensor product theorem for representations of quantum groups at roots of
unity (though hardly elementary since proving the Steinberg-Lusztig tensor product
theorem this way relies on deep results of Kazhdan-Lusztig [KL94] and Kashiwara-
Tanisaki [KT95]).

As explained in [LT], the Steinberg-Lustzig tensor product theorem and the
abstract Fock space are intimately related to the LLT polynomials defined in type
A by Lascoux, Leclerc, and Thibon [LLT]. Fundamentally, the LLT polynomials are
taking the role of the characters of the Frobenius twisted Weyl modules which, by
the Steinberg-Lusztig tensor product theorem, are simple modules for the quantum
group at a root of unity. General Lie-type definitions of LLT polynomials have
been given by Grojnowski-Haiman [GH] and Lecouvey [Lcy]. In the second half of
Section 3, we summarize a 2008 letter from C. Lecouvey to A. Ram which explains
that a consequence of the tensor product theorem for abstract Fock space is that
the definition from [GH] and the definition from [Lcy] coincide up to a power of t

1
2 .

Kazhdan and Lusztig [KL94] established an equivalence of categories between an
appropriate category of representations of the affine Lie algebra (of negative level)
and the finite dimensional representations of the quantum group (of the finite di-
mensional Lie algebra) at a root of unity. In Section 4 we review this correspondence
and make explicit the tensor product theorem in terms of representations of the
affine Lie algebra. This produces a character formula for certain negative level ir-
reducible highest weight representations of the affine Lie algebra. From the point
of view of this paper this character formula is an easy consequence of [KL94] and
[Lu89]. We find it difficult to believe that this formula has not been noticed before
but we have not yet been able to locate a suitable specific reference.

1. A product theorem in abstract Fock space F�

Let W0 be a finite Weyl group, generated by simple reflections s1, . . . , sn, and
acting on a lattice of weights a∗

Z
. For example, this situation arises when T is a

maximal torus of a reductive algebraic group G,

(1.1) a
∗
Z = Hom(T,C×) and W0 = N(T )/T,

where N(T ) is the normalizer of T in G. The simple reflections in W0 correspond
to a choice of Borel subgroup B of G which contains T . Let R+ denote the positive
roots. Let α1, . . . , αn be the simple roots and let α∨

1 , . . . , α
∨
n be the simple coroots.
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The dot action of W0 on a∗
Z
is given by

(1.2) w ◦ λ = w(λ+ ρ)− ρ, where ρ =
1

2

∑
α∈R+

α

is the half sum of the positive roots for G (with respect to B).

Fix � ∈ Z>0. The abstract Fock space F� is the Z[t
1
2 , t−

1
2 ]-module generated by

{|λ〉 | λ ∈ a∗
Z
} with relations

(1.3)

|si◦λ〉 =

⎧⎪⎨
⎪⎩
−|λ〉 if 〈λ+ ρ, α∨

i 〉 ∈ �Z≥0,

−t
1
2 |λ〉 if 0 < 〈λ+ ρ, α∨

i 〉 < �,

−t
1
2 |si ◦ λ(1)〉 − |λ(1)〉 − t

1
2 |λ〉 if 〈λ+ ρ, α∨

i 〉 > � and 〈λ+ ρ, α∨
i 〉 �∈ �Z,

where λ(1) = λ − jαi if 〈λ + ρ, α∨
i 〉 = k� + j with k ∈ Z>0 and j ∈ {1, . . . , � − 1}.

Note that these relations are specified only for weights λ such that 〈si ◦λ, α∨
i 〉 < 0.

Figure 1 illustrates the terms in (1.3). This is the case G = SL2 with � = 5,
〈ω1, α

∨
1 〉 = 1, and α1 = 2ω1 and, in the figure, λ corresponds to the third case of

(1.3), μ to the first case, and ν to the second case.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

−14−13−12−11−10−9 −8 −7 −6 −5 −4 −3 −2 −ρ 0 ω1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

λλ(1)s1◦λ(1)s1◦λ
μs1◦μ

νs1◦ν

Figure 1

Define a Z-linear involution : F� → F� by

(1.4) t
1
2 = t−

1
2 and |λ〉 = (−1)�(w0)(t−

1
2 )�(w0)−Nλ |w0 ◦ λ〉.

where w0 is the longest element of W0, �(w0) = Card(R+) is the length of w0, and
Nλ = Card{α ∈ R+ | 〈λ+ ρ, α∨〉 ∈ �Z}.

The dominant integral weights with the dominance partial order ≤ are the ele-
ments of

(1.5)
(a∗

Z
)+ = {λ ∈ a∗

Z
| 〈λ+ ρ, α∨

i 〉 > 0 for i = 1, 2, . . . , n}

with μ ≤ λ if μ ∈ λ−
∑

α∈R+ Z≥0α.

In [LRS, Theorem 1.1 and Proposition 2.1] we showed that F� has bases

(1.6) {|λ〉 | λ ∈ (a∗Z)
+} and {Cλ | λ ∈ (a∗Z)

+}

where Cλ are determined by

(1.7) Cλ = Cλ and Cλ = |λ〉+
∑
μ �=λ

pμλ|μ〉 with pμλ ∈ t
1
2Z[t

1
2 ].

1.1. The action of K[X]W0 on F�. Letting K = Z[t
1
2 , t−

1
2 ], the group algebra of

a∗
Z
is

(1.8) K[X] = K-span{Xμ | μ ∈ a∗Z} with XμXν = Xμ+ν .
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The Weyl group W0 acts K-linearly on K[X] by
(1.9)

wXμ = Xwμ for w ∈ W0 and μ ∈ a
∗
Z, and K[X]W0 = {f ∈ K[X] | wf = f}

is the ring of symmetric functions.
Let V be the free K-module generated by {|λ〉 | λ ∈ a∗

Z
} so that

(1.10) F�
∼= V/I,

where I is the subspace of V consisting of K-linear combinations of the elements

aλ = |si ◦ λ〉+ |λ〉 with 〈λ+ ρ, α∨
i 〉 ∈ �Z≥0,

bλ = |si ◦ λ〉+ t
1
2 |λ〉 with 0 < 〈λ+ ρ, α∨

i 〉 < �, and

cλ = |si ◦ λ〉+ t
1
2 |si ◦ λ(1)〉+ |λ(1)〉+ t

1
2 |λ〉 with 〈λ+ ρ, α∨

i 〉 > �
and 〈λ+ ρ, α∨

i 〉 �∈ �Z.

Let g̊ be the Lie algebra of the reductive group G alluded to in (1.1). Let ϕ be
the highest weight of the adjoint representation and let ϕ∨ ∈ [̊gϕ, g̊−ϕ] such that
〈ϕ, ϕ∨〉 = 2 (so that ϕ∨ is an appropriate normalized highest short coroot of g̊).

(1.11) The dual Coxeter number is h = 〈ρ, ϕ∨〉+ 1.

The level (−�− h) action of K[X] on V is the K-linear extension of

(1.12) Xμ · |γ〉 = | − �w0μ+ γ〉 for μ, γ ∈ a
∗
Z

(for explanation of the terminology “level (−�−h) dot action” and the reason that
h does not appear in this formula see Remark 1.3). Letting w0 be the longest
element of W0, define

μ∗ = −w0μ and w∗ = w0ww0 for μ ∈ a
∗
Z and w ∈ W0.

This notation is such that if μ ∈ a∗
Z
and Lg̊(μ) denotes the irreducible g̊-module of

highest weight μ, then the dual Lg̊(μ)
∗ ∼= Lg̊(μ

∗). Then

(1.13) Xμ · |γ〉 = |�μ∗ + γ〉 and (wμ)∗ = w∗μ∗.

The following proposition establishes an action of the ring of symmetric functions
K[X]W0 on the abstract Fock space F�. From the point of view of Theorem 2.2
below, this action is coming from an action of the center of the affine Hecke algebra
which, by an important result of Bernstein, is the ring of symmetric functions (inside
the affine Hecke algebra). Our proof of Proposition 1.1 provides an independent
proof of the existence of the action of K[X]W0 without referring to the affine Hecke
algebra and the characterization of its center.

Proposition 1.1. The action of K[X] on V given in (1.12) induces a K-linear
action of the ring K[X]W0 of symmetric functions on F� by( ∑

w∈W0

Xwμ

)
· |γ〉 =

∑
w∈W0

|�(wμ)∗ + γ〉 for μ ∈ a∗Z and γ ∈ a∗Z.
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Proof. Let f be an element of the subspace I defined in (1.10), let μ ∈ a∗
Z
, and let

i ∈ {1, . . . , n}. Summing over a set of representatives of the cosets in {1, s∗i }\W0,

( ∑
w∈W0

Xwμ

)
· f =

⎛
⎝ ∑

v∈{1,s∗i }\W0

(Xvμ +Xs∗i vμ)

⎞
⎠ · f,

where the representatives v ∈ {1, s∗i }\W0 are chosen such that 〈vμ, α∨
i∗〉 ∈ Z≥0.

Case 1. f = |si ◦ λ〉+ |λ〉 with 〈λ+ ρ, α∨
i 〉 ∈ �Z≥0. Then

(Xs∗i vμ +Xvμ) · (|si ◦ λ〉+ |λ〉)
= |�(s∗i vμ)∗ + si ◦ λ〉+ |�(vμ)∗ + si ◦ λ〉+ |�(s∗i vμ)∗ + λ〉+ |�(vμ)∗ + λ〉
= |�siv∗μ∗ + si ◦ λ〉+ |�v∗μ∗ + si ◦ λ〉+ |�siv∗μ∗ + λ〉+ |�v∗μ∗ + λ〉
= |si ◦ (�v∗μ∗ + λ)〉+ |si ◦ (�siv∗μ∗ + λ)〉+ |�siv∗μ∗ + λ〉+ |�v∗μ∗ + λ〉

=

{
a�v∗μ∗+si◦λ + a�v∗μ∗+λ if 〈�v∗μ∗, α∨

i 〉 > 〈λ+ ρ, α∨
i 〉,

a�siv∗μ∗+λ + a�v∗μ∗+λ if 〈�v∗μ∗, α∨
i 〉 ≤ 〈λ+ ρ, α∨

i 〉.

Thus the right-hand side is an element of I.

Case 2. f = |si ◦ λ〉 + t
1
2 |λ〉 with 0 < 〈λ + ρ, α∨

i 〉 < �. Then �v∗μ∗ + si ◦ λ =
(�v∗μ∗ + λ)(1) so that

(Xs∗i vμ +Xvμ) · (|si ◦ λ〉+t
1
2 |λ〉)

= |�(s∗i vμ)∗ + si ◦ λ〉+ |�(vμ)∗ + si ◦ λ〉+ t
1
2 |�(s∗i vμ)∗ + λ〉+ t

1
2 |�(vμ)∗+λ〉

= |�siv∗μ∗ + si ◦ λ〉+ |�v∗μ∗ + si ◦ λ〉+ t
1
2 |�siv∗μ∗ + λ〉+ t

1
2 |�v∗μ∗+λ〉

= |si◦(�v∗μ∗+λ)〉+|(�v∗μ∗+λ)(1)〉+t
1
2 |si◦(�v∗μ∗ + si ◦ λ)〉+ t

1
2 |�v∗μ∗+λ〉

= |si◦(�v∗μ∗+λ)〉+ t
1
2 |si ◦ (�v∗μ∗+λ)(1)〉+|(�v∗μ∗ + λ)(1)〉+ t

1
2 |�v∗μ∗+λ〉

=

{
c�v∗μ∗+λ if 〈v∗μ∗, α∨

i 〉 ∈ Z>0,

2b�v∗μ∗+λ if 〈v∗μ∗, α∨
i 〉 = 0,

since if s∗i vμ �= vμ, then siv
∗μ∗ �= v∗μ∗ and 〈v∗μ∗, α∨

i 〉 ∈ Z>0, then 〈�v∗μ∗ + λ +
ρ, α∨

i 〉 > � and 〈�v∗μ∗ + λ + ρ, α∨
i 〉 �∈ �Z. Thus the right-hand side is an element

of I.

Case 3. Assume λ ∈ a∗
Z
with 〈λ + ρ, α∨

i 〉 > � and 〈λ + ρ, α∨
i 〉 �∈ �Z. If μ ∈ a∗

Z
and

〈ν, α∗
i 〉 ∈ Z≥0, then

si◦(v∗μ∗+ν) = si(v
∗μ∗+ν+ρ)−ρ = siv

∗μ∗+si◦ν and (�ν∗+λ)(1) = �ν∗+λ(1),
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so that, with 〈λ+ ρ, α∨
i 〉 = k�+ j with k > 0 and 0 ≤ j < �,

(Xs∗i vμ +Xvμ) · (|si ◦ λ〉+ t
1
2 |si ◦ λ(1)〉+ |λ(1)〉+ t

1
2 |λ〉)

= |�(s∗i vμ)∗ + si ◦ λ〉+ |�(vμ)∗ + si ◦ λ〉+ t
1
2 |�(s∗i vμ)∗ + si ◦ λ(1)〉

+ t
1
2 |�(vμ)∗ + si ◦ λ(1)〉

+ |�(s∗i vμ)∗ + λ(1)〉+ |�(vμ)∗ + λ(1)〉+ t
1
2 |�(s∗i vμ)∗ + λ〉+ t

1
2 |�(vμ)∗ + λ〉

= |�siv∗μ∗ + si ◦ λ〉+ |�v∗μ∗ + si ◦ λ〉+ t
1
2 |�siv∗μ∗ + si ◦ λ(1)〉

+ t
1
2 |�v∗μ∗ + si ◦ λ(1)〉

+ |�siv∗μ∗ + λ(1)〉+ |�v∗μ∗ + λ(1)〉+ t
1
2 |�siv∗μ∗ + λ〉+ t

1
2 |�v∗μ∗ + λ〉

= |si ◦ (�v∗μ∗ + λ)〉+ |si ◦ (�siv∗μ∗ + λ)〉+ t
1
2 |si ◦ (�v∗μ∗ + λ(1))〉

+ t
1
2 |si ◦ (�siv∗μ∗ + λ(1))〉

+ |�siv∗μ∗ + λ(1)〉+ |(�v∗μ∗ + λ)(1)〉+ t
1
2 |�siv∗μ∗ + λ〉+ t

1
2 |�v∗μ∗ + λ〉

=

⎧⎪⎨
⎪⎩
cλ+�v∗μ∗ + csi◦λ(1)+v∗μ∗ if 〈�v∗μ∗, α∨

i 〉 > �k > 0,

cλ+�v∗μ∗ + cλ+siv∗μ∗ if 0 < 〈�v∗μ∗, α∨
i 〉 < �k,

cλ+�v∗μ∗ + bλ+siv∗μ∗ + bsi◦λ(1)+v∗μ∗ if 〈�v∗μ∗, α∨
i 〉 = �k.

Thus the right-hand side is an element of I.

These computations show that I is stable under the action of K[X]W0 . Thus the
action of K[X]W0 on F� = V/I is well-defined. �

Remark 1.2. One might be tempted to try to define an action of K[X] on F� by
Xμ · |γ〉 = |γ + �μ〉 for μ, γ ∈ a∗

Z
but this action is not well-defined. For example in

the G = SL2 case with � = 5 pictured after (1.3), then |−1〉 = |s1 ◦ (−1)〉 = −|−1〉
so that | − 1〉 = 0 and 0 = Xω1 · | − 1〉 = |5− 1〉 = |4〉, which is a contradiction to
(1.6). On the other hand 0 = (X−ω1 + Xω1) · | − 1〉 = | − 5 − 1〉 + |4〉 = 0, as it
should be.

Remark 1.3. The representation theoretic source of the level (−� − h)-action of
(1.12) is the equivalence of categories in Theorem 4.1. If h∗ = Cδ + a∗ + CΛ0 is
the Cartan of the affine Kac-Moody Lie algebra g associated to g̊ (where δ is the
imaginary root and Λ0 is the fundamental weight corresponding to the additional
node of the Dynkin diagram), then the affine Weyl group W = {wtμ | w ∈ W0, tμ}
acts on h∗ as follows (see [Kac, (6.5.2)]): the action of a translation tμ is given by

tμ(aδ + λ+mΛ0) =
(
a− 〈λ, μ〉 − 1

2
m〈μ, μ〉

)
δ + λ+mμ+mΛ0, and

w(aδ + λ+mΛ0) = aδ + wλ+mΛ0 for w ∈ W0, the finite Weyl group.

The level −� − h subset of h∗ is {aδ + λ + (−� − h)Λ0 | a ∈ C, λ ∈ a∗} and the
dot action is given by u ◦ μ = u(μ + ρ̂) − ρ̂, where ρ̂ ∈ h∗ is such that 〈ρ̂, α∨

i 〉 =
1 for i ∈ {0, . . . , n}. In Theorem 4.1 the affine Lie algebra representations are
representations of g′ (the Lie algebra g without the derivation) and so the desired
action of the affine Weyl group is mod δ. A short computation (see [LRS, (3,19)])
using that ρ̂ = ρ+ hΛ0 gives

(tμw) ◦ (λ+ (−�− h)Λ0) = (w ◦ λ)− �μ+ (−�− h)Λ0 mod δ.
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Ignoring the (−�− h)Λ0 this is, except for the appearance w0, the formula for the
level (−�−h) dot action on a∗ which is used in (1.12). Working with representations
of g that are negative level, the fundamental alcove sits in the antidominant chamber
instead of the dominant chamber (see (2.10) and (2.14) below), and this is the source
of the w0 in (1.12).

1.2. The product theorem. Let g̊ be the Lie algebra of the reductive group G
alluded to in (1.1). For λ ∈ (a∗

Z
)+ let Lg̊(λ) be the irreducible U (̊g)-module of

highest weight λ and let B(λ) be the crystal of Lakshmibai-Seshadri paths (LS
paths) for the representation Lg̊(λ),

B(λ) = {LS paths p of type λ} and wt(p) denotes the endpoint of p;

see [Ra, §5]. The Weyl character corresponding to λ is the element of K[X]W0

given by

(1.14) sλ = char(Lg̊(λ)) =

∑
w∈W0

det(w)Xw◦λ

∑
w∈W0

det(w)Xw◦0
=

∑
p∈B(λ)

Xwt(p).

An �-restricted dominant integral weight is λ0 ∈ (a∗
Z
)+ such that 〈λ0, α

∨
i 〉 < �

for i ∈ {1, . . . , n}. In other words, if ω1, . . . , ωn are the fundamental weights for g̊,
then a weight λ0 ∈ (a∗

Z
)+ is �-restricted if λ0 is an element of

(1.15) Π� = {a1ω1 + · · ·+ anωn | a1, . . . , an ∈ {0, 1, . . . , �− 1}}.

Theorem 1.4. Let λ ∈ (a∗
Z
)+ be a dominant integral weight and write

λ = �λ1 + λ0 with λ0 ∈ Π� and λ1 ∈ (a∗Z)
+.

Then, with Cλ ∈ F� as in (1.7) and the K[X]W0-action on F� as in Proposition
1.1,

Cλ = sλ∗
1
· Cλ0

.

Proof. The proof is accomplished in two steps:

(a) Show that sλ∗
1
· Cλ0

is bar invariant.

(b) Show that sλ∗
1
· Cλ0

= |λ〉+
∑

μ �=λ cμ|μ〉 with cμ ∈ t
1
2Z[t

1
2 ].

Proof of (a). The bar involution and Nγ are defined in (1.4). Since 〈−�w0μ, α
∨〉 ∈

�Z, then

Nγ−�w0μ = Card{α ∈ R+ | 〈γ − �w0μ+ ρ, α∨〉 ∈ �Z}
= Card{α ∈ R+ | 〈γ + ρ, α∨〉 ∈ �Z} = Nγ .

Thus

Xμ · |γ〉 = |γ − �w0μ〉 = (−1)�(w0)(t−
1
2 )�(w0)−Nγ−�w0μ |w0 ◦ (γ − �w0μ)〉

= (−1)�(w0)(t−
1
2 )�(w0)−Nγ−�w0μ |w0(γ + ρ)− ρ− �μ〉

= (−1)�(w0)(t−
1
2 )�(w0)−Nγ−�w0μ |w0 ◦ γ − �μ〉

= (−1)�(w0)(t−
1
2 )�(w0)−Nγ |w0 ◦ γ − �μ〉

= (−1)�(w0)(t−
1
2 )�(w0)−NγXw0μ · |w0 ◦ γ〉 = Xw0μ · |γ〉,
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and since sλ∗
1
is W0-invariant,

sλ∗
1
· Cλ0

= (w0sλ∗
1
) · Cλ0

= sλ∗
1
· Cλ0

. �

Proof of (b). Let λ = λ0 + �λ1 as in the statement of the theorem and let a ≡ b

mean a = b mod t
1
2 (or, more precisely, that a− b ∈

⊕
λ∈a∗

Z

t
1
2Z[t

1
2 ] |λ〉). The proof

will rely on the following lemma.

Lemma 1.5. Keeping the notation of Theorem 1.4,

|λ0 + �ν〉 ≡ −|λ0 + �(si ◦ ν)〉 for ν ∈ aZ.

Proof. By the second formula in (1.7),

(1.16) sλ∗
1
· Cλ0

≡ sλ∗
1
· |λ0〉 =

∑
p∈B(λ∗

1)

Xwt(p)|λ0〉 =
∑

p∈B(λ∗
1)

|�wt(p)∗ + λ0〉.

By (1.3), if λ ∈ a∗
Z
and 〈λ+ ρ, α∨

i 〉 ≥ 0, then

|si ◦ λ〉 ≡

⎧⎪⎨
⎪⎩
−|λ〉 if 〈λ+ ρ, α∨

i 〉 ∈ �Z≥0,

0 if 0 < 〈λ+ ρ, α∨
i 〉 < �,

−|λ(1)〉 otherwise,

where λ(1) = λ−jαi if 〈λ+ρ, α∨
i 〉 = k�+j with j ∈ {0, 1, . . . , �−1}. Since λ(1) = λ

if 〈λ+ ρ, α∨
i 〉 ∈ �Z≥0, the first case can be viewed as a special case of the last case

to read

|si ◦ λ〉 ≡
{
0 if 0 < 〈λ+ ρ, α∨

i 〉 < �,

−|λ(1)〉 otherwise.

Assume 〈ν + ρ, α∨
i 〉 ∈ Z≤0 and let λ = si ◦ (λ0 + �ν). Since 〈ρ, α∨

i 〉 = 1, then

〈λ+ ρ, α∨
i 〉 = 〈si ◦ (λ0 + �ν) + ρ, α∨

i 〉 = 〈si(λ0 + �ν + ρ), α∨
i 〉 = 〈λ0 + �ν + ρ, siα

∨
i 〉

= −〈λ0 + �ν + ρ, α∨
i 〉 = �(−〈ν + ρ, α∨

i 〉) + (�− 1− 〈λ0, α
∨
i 〉).

Since λ0 ∈ Π�, then 0 ≤ �− 1− 〈λ0, α
∨
i 〉 < � and so

λ(1) = λ− (�− 1− 〈λ0, α
∨
i 〉)αi = si ◦ (λ0 + �ν)− (�− 1− 〈λ0, α

∨
i 〉)αi

= siλ0 + �siν + siρ− ρ− (�− 1− 〈λ0, α
∨
i 〉)αi

= (λ0 − 〈λ0, α
∨
i 〉αi) + �(siν + siρ− ρ) + (�− 1)αi − (�− 1− 〈λ0, α

∨
i 〉)αi

= λ0 + �(si ◦ ν).

Thus, since si ◦ λ = λ0 + �ν,

|λ0 + �ν〉 ≡
{
0 if 〈ν + ρ, α∨

i 〉 = 0,

−|λ0 + �(si ◦ ν)〉 if 〈ν + ρ, α∨
i 〉 < 0.

Since si ◦ ν = ν when 〈ν + ρ, α∨
i 〉 = 0, then |λ0 + �ν〉 ≡ −|λ0 + �(si ◦ ν)〉 when

〈ν + ρ, α∨
i 〉 ∈ Z≤0 and, replacing ν by si ◦ ν, gives |λ0 + �ν〉 ≡ −|λ0 + �(si ◦ ν)〉 for

〈ν + ρ, α∨
i 〉 ∈ Z≥0. Thus

(1.17) |λ0 + �ν〉 ≡ −|λ0 + �(si ◦ ν)〉 for ν ∈ aZ,

completing the proof of Lemma 1.5. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

196 MARTINA LANINI AND ARUN RAM

Let us now complete the proof of (b) of Theorem 1.4. Follow [Ra, proof of
Theorem 5.5] (see also [Li, proof of Theorem 9.1]) to define an involution ι on the
set B(λ∗

1) \ {p+λ∗
1
}, where p+λ∗

1
is the unique highest weight path in B(λ∗

1).

Let p ∈ B(λ∗
1) and p �= p+λ∗

1
. Since p �= p+λ∗

1
the path p crosses a wall out

of the fundamental chamber at some point during its trajectory. Let r be such
that the first time p leaves the dominant chamber is by crossing the hyperplane
{x ∈ a∗

R
| 〈x, α∨

r 〉 = 0}. Letting ẽr and f̃r denote the root operators on B(λ∗
1), the

r-string containing p is

Sr(p) = {q ∈ B(λ∗
1) | q = ẽkrp or q = f̃k

r p where k ∈ Z≥0}.
Let

ι(p) be the element of Sr(p) such that wt(ι(p)) = sr ◦ wt(p).
Note that since p leaves the fundamental chamber at the wall corresponding to α∨

r

then ẽrp �= 0 (i.e., p is not the head of its r-string) and so sr ◦ p is well-defined. It
should be noted that this dot action on paths is different from the classical Weyl
group action on the crystal. By Lemma 1.5,

|λ0+�wt(p)∗〉 ≡ −|λ0+�(s∗r ◦wt(p)∗)〉 = −|λ0+�(sr◦wt(p))∗〉 = −|λ0+�wt(ι(p))∗〉,
and so the map ι partitions the set B(λ∗

1) \ {p+λ∗
1
} into pairs {p, ι(p)} which cancel

each other in the mod t
1
2 straightening of the terms of sλ∗

1
· Cλ0

in (1.16). Thus

sλ∗
1
· Cλ0

≡ |�(λ∗
1)

∗ + λ0〉 = |λ0 + �λ1〉 which proves (b).

�

2. The Casselman-Shalika formula

In order to establish the Casselman-Shalika formula it is necessary to use the
connection between the abstract Fock space F� and the affine Hecke algebra H.
Let us recall this relationship from [LRS].

2.1. The affine Hecke algebra H. Keep the notation for the finite Weyl group
W0, the simple reflections s1, . . . , sn, and the weight lattice a∗

Z
as in (1.1). For

i, j ∈ {1, . . . , n} with i �= j, let mij denote the order of sisj in W0 so that s2i = 1
and (sisj)

mij = 1 are the relations for the Coxeter presentation of W0. Let K =

Z[t
1
2 , t−

1
2 ]. The affine Hecke algebra is

(2.1) H = K-span{XμTw | μ ∈ a∗Z, w ∈ W0},
with K-basis {XμTw | μ ∈ a∗

Z
, w ∈ W0} and relations

(2.2) (Tsi − t
1
2 )(Tsi + t−

1
2 ) = 0, TsiTsjTsi . . .︸ ︷︷ ︸

mij factors

= TsjTsiTsj . . .︸ ︷︷ ︸
mij factors

,

(2.3) Xλ+μ = XλXμ, and TsiX
λ −XsiλTsi = (t

1
2 − t−

1
2 )

(
Xλ −Xsiλ

1−X−αi

)
for i, j ∈ {1, . . . , n} with i �= j and λ, μ ∈ a∗

Z
. The bar involution on H is the

Z-linear automorphism : H → H given by

(2.4) t
1
2 = t−

1
2 , Tsi = T−1

si , and Xλ = Tw0
Xw0λT−1

w0
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for i = 1, . . . , n and λ, μ ∈ a∗
Z
. For μ ∈ a∗

Z
and w ∈ W0 define

(2.5) Xtμw = Xμ(Tw−1)−1 and Ttμw = TxX
μ+

Twμ+ (Tw−1xwμ+
)−1,

where μ+ is the dominant representative of W0μ, x ∈ W0 is the element of minimal
length such that μ = xμ+, and wμ+ is the longest element of the stabilizer Wμ+ =
StabW0

(μ+). Define

ε0 = (−t
1
2 )�(w0)

∑
z∈W0

(−t−
1
2 )�(z)Tz and 10 = (t−

1
2 )�(w0)

∑
z∈W0

(t
1
2 )�(z)Tz,

so that

(2.6) ε0 = ε0, 10 = 10, and ε0Tsi = −t−
1
2 ε0, and Tsi10 = t

1
210

for i ∈ {1, . . . , n}. The algebra K[X] defined in (1.8) is a subalgebra of H and,
by a theorem of Bernstein (see [NR, Theorem 1.4]), the center of H is the ring of
symmetric functions,

(2.7) Z(H) = K[X]W0 .

Remark 2.1. Formulas (2.4) and (2.5) are just a reformulation of the usual bar
involution and the conversion between the Bernstein and Coxeter presentations of
the affine Hecke algebra (see for example [NR, Lemma 2.8 and (1.22)]).

2.2. The relation between H and the abstract Fock space F�. In this sub-
section we follow [LRS, §4.2]. The affine Weyl group is

(2.8) W = {tμw | μ ∈ a
∗
Z, w ∈ W0} with tμtν = tμ+ν and wtμ = twμw

for μ, ν ∈ a∗
Z
and w ∈ W0. Let ϕ∨ and h be as in (1.11). For � ∈ Z>0, the level

(−�− h) dot action of W on a∗
Z
is given by

(2.9) (tμw) ◦ λ = (w ◦ λ)− �μ = w(λ+ ρ)− ρ− �μ

for μ ∈ a∗
Z
, w ∈ W0, and λ ∈ a∗

Z
. Note that this is an extension of the dot action of

W0 given in (1.2). Define

(2.10) A−�−h = {ν ∈ a∗Z | 〈ν, ϕ∨〉 ≥ −�− 1 and 〈ν, α∨
i 〉 ≤ −1 for i ∈ {1, . . . , n}}

and

(2.11) P+
−�−h =

⊕
ν∈A−�−h

ε0Hpν ,

where ε0 is as in (2.6) and pν are formal symbols indexed by ν ∈ A−�−h satisfying

pν = pν and Typν = (t
1
2 )�(y)pν for y ∈ Wν ,

where Wν = StabW (ν) is the stabilizer of ν under the level (−�− h) dot action of
W on a∗

Z
. (Warning: There is a slight conflict of notation here with the notation

W0 for the finite Weyl but this should not cause confusion.) Define a bar involution
(2.12)

: P+
−�−h → P+

−�−h by ε0fpν = ε0f̄pν for ν ∈ A−�−h and f ∈ H.

For λ ∈ a∗
Z
define

(2.13) [Xλ] = [Xw0v◦ν ] = ε0X
vpν , where λ = w0v ◦ ν with ν ∈ A−�−h,
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and v ∈ W is such that Xvu = XvTu for any u ∈ Wν . It is helpful to stress that
the (−� − h) dot action of (2.9) applies here so that, when v = tμw with μ ∈ a∗

Z

and w ∈ W0, then λ = −�w0μ+ (w0w) ◦ ν and

(2.14) [Xλ] = [X−�w0μ+(w0w)◦ν ] = ε0X
tμwpν = ε0X

μ(Tw−1)−1pν .

With this notation, a main result of [LRS] is the following.

Theorem 2.2 (see [LRS, Theorem 4.7]). Let ≤ be the dominance order on the set
(a∗

Z
)+ of dominant integral weights. Then the K-linear map Φ: F� → P+

−�−h given
by

(2.15) Φ( |λ〉 ) = [Xλ] for λ ∈ a
∗
Z,

is a well-defined K-module isomorphism satisfying Φ(f) = Φ(f).

Since elements of Z(H) = K[X]W0 commute with ε0 there is a K[X]W0-action
on P−�−h by left multiplication. The pullback of this action by the isomorphism Φ
is the source of the K[X]W0 action on F� given in Proposition 1.1,

(2.16) zΦ(f) = Φ(zf) for z ∈ Z(H) = K[X]W0 and f ∈ F�.

2.3. Deducing the Casselman-Shalika formula. For μ ∈ a∗
Z
define the “Whit-

taker function” Aμ ∈ ε0H10 by

(2.17) Aμ = ε0X
μ10.

See, for example, [HKP, §6] for the connection between p-adic groups and the
affine Hecke algebra and the explanation of why Aμ is equivalent to the data of
a (spherical) Whittaker function for a p-adic group. As proved carefully in [NR,
Theorem 2.7], it follows from (2.6) and (2.3) that

ε0H10 has K-basis {Aλ+ρ | 〈λ+ ρ, αi〉 ∈ Z≥0 for i ∈ {1, . . . , n}} .
Following [NR, Theorem 2.4], the Satake isomorphism, K[X]W0 ∼= 10H10, and
the Casselman-Shalika formula, Aλ+ρ = sλAρ, can be formulated by the following
diagram of vector space (free K-module) isomorphisms:

(2.18)
Z(H) = K[X]W0

∼−→ 10H10
∼−→ ε0H10

f �−→ f10 �−→ Aρf10

sλ �−→ sλ10 �−→ Aλ+ρ.

This diagram has particular importance due to the fact that K[X]W0 is an avatar of
the Grothendieck group of the category Rep(G) of finite dimensional representations
of G, the spherical Hecke algebra 10H10 is a form of the Grothendieck group of
K-equivariant perverse sheaves on the loop Grassmanian Gr for the Langlands
dual group G∨, and ε0H10 is isomorphic to the Grothendieck group of Whittaker
sheaves (appropriately formulated N -equivariant sheaves on Gr); see [FGV].

Our proof of the Casselman-Shalika formula is accomplished by restricting Theo-
rem 1.4 to the summand in (2.11) corresponding to −ρ ∈ A−�−h. We shall identify
this summand with ε0H10 via the Z(H)-isomorphism

ε0H10
∼−→ ε0Hp−ρ

ε0X
μ10 �−→ ε0X

μp−ρ.

Using the level (−�− h) dot action of W from (2.9), the stabilizer of −ρ is W0 and

W ◦ (−ρ) = {t−λ ◦ (−ρ) | λ ∈ a∗Z} = {�λ− ρ | λ ∈ a∗Z}.
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Since 〈(�λ− ρ) + ρ, α∨〉 ∈ �Z for α ∈ R+, the straightening law (1.3) for elements
of W ◦ (−ρ) is

(2.19) |si ◦ (�λ− ρ)〉 = −|�λ− ρ〉.

Theorem 2.3 (Casselman-Shalika). For λ ∈ (a∗
Z
)+ and μ ∈ a∗

Z
let sλ be the Weyl

character as defined in (1.14) and let Aμ be the Whittaker function as defined in
(2.17). Then

sλAρ = Aλ+ρ.

Proof. Using (2.19),

|�λ− ρ〉=(−1)�(w0)(t−
1
2 )�(w0)−�(w0)|w0◦(�λ−ρ)〉 = (−1)�(w0)|w0◦(�λ−ρ)〉 = |�λ−ρ〉

and thus |�λ− ρ〉 satisfies the conditions of (1.7) so that

(2.20) C�λ−ρ = |�λ− ρ〉, for λ ∈ (a∗Z)
+.

By (2.14) and (2.17),

[X−�w0μ−ρ] = ε0X
μT−1

w0
p−ρ=t−�(w0)/2ε0X

μp−ρ=t−�(w0)/2Aμ for μ∈(a∗Z)
+.

Using (2.16), (2.20), (2.15), and that w0ρ = −ρ,

t−�(w0)/2sλAρ = sλ[X−�w0ρ−ρ] = sλ[X(�−1)ρ] = sλΦ(|(�− 1)ρ〉) = Φ(sλ |(�− 1)ρ〉)
= Φ(sλC(�−1)ρ) = Φ(C−�w0λ+(�−1)ρ), by Theorem 1.4,

= Φ(|(−�w0λ) + (�− 1)ρ〉) = [X−�w0λ+(�−1)ρ] = [X−�w0(λ+ρ)−ρ]

= t−�(w0)/2Aλ+ρ. �

3. Quantum groups and LLT polynomials

In this section we describe the main motivation for Theorem 1.4, namely, the
Steinberg-Lusztig tensor product theorem for representations of quantum groups
at roots of unity. Then we explain the connection between these results and the
theory of LLT polynomials.

3.1. Representations of quantum groups at a root of unity. Let g̊ be the
Lie algebra of the group G alluded to in (1.1). Let q ∈ C× and let Uq (̊g) be the
Drinfel’d-Jimbo quantum group corresponding to g̊. Let

Δq(λ) the Weyl module for Uq (̊g) of highest weight λ,

Lq(λ) the simple module for Uq (̊g) of highest weight λ.

Let

K(fd-Uq (̊g)-mod) be the free Z[t
1
2 , t−

1
2 ]-module generated by symbols [Δq(λ)]

for λ ∈ a∗
Z
. For μ ∈ a∗

Z
, denote by Wμ, resp., μW , the set of minimal length

coset representatives for W/Wμ, resp., Wμ\W . Define elements [Lq(w0y ◦ ν)] for
ν ∈ A−�−h and y ∈ 0W such that w0y ∈ W ν , by the equation

[Δq(w0x ◦ ν)] =
∑
y≤x

⎛
⎝ ∑

i∈Z≥0

[
Δq(w0x ◦ ν)(i)

Δq(w0x ◦ ν)(i+1)
: Lq(w0y ◦ ν)

]
(t

1
2 )i

⎞
⎠ [Lq(w0y ◦ ν)],

where [M : Lq(μ)] denotes the multiplicity of the simple g-module Lq(μ) of highest
weight μ in a composition series of M and

Δq(λ) = Δq(λ)
(0) ⊇ Δq(λ)

(1) ⊇ · · · is the Jantzen filtration of Δq(λ)
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(see, for example, [Sh, §1.4, §2.3 and §2.10 and Cor. 2.14] and [JM, §4] for the
Jantzen filtration in this context).

The combination of [LRS, (3.20)] and [LRS, Theorem 4.7]) is the following con-
nection between the representation theory of the quantum group at a root of unity
and the abstract Fock space.

Theorem 3.1. Let � ∈ Z>0 and let q ∈ C× such that q2� = 1. Let K = Z[t
1
2 , t−

1
2 ].

Then the K-linear map given by

K(fd-Uq (̊g)-mod)
Ψ2−→ F�

[Δq(λ)] �−→ |λ〉
[Lq(λ)] �−→ Cλ

is a well-defined isomorphism of Z[t
1
2 , t−

1
2 ]-modules.

The enveloping algebra U (̊g) has a presentation by generators e1, . . . , en, f1, . . . ,
fn, and h1, . . . , hn and Serre relations and the quantum group Uq (̊g) has a presen-
tation by generators E1, . . . , En, F1, . . . , Fn, and K1, . . . ,Kn and quantum Serre
relations such that, at q = 1, Ei becomes ei and Fi becomes fi. Following [Lu89]
and [CP, Theorem 9.3.12], with appropriate restrictions on � as in [CP, just be-
fore Proposition 9.3.5 and Theorem 9.3.12], the Frobenius map is the Hopf algebra
homomorphism

(3.1)

Fr : Uq (̊g) −→ U (̊g)

E
(r)
i �→

{
e
(r/�)
i if � divides r,

0 otherwise,

F
(r)
i �→

{
f
(r/�)
i if � divides r,

0 otherwise,

Ki �→ 1.

The Frobenius twist of a U (̊g)-module M is the Uq (̊g)-module MFr with underlying
vector space M and Uq (̊g)-action given by

um = Fr(u)m for u ∈ Uq (̊g) and m ∈ M .

Theorem 3.2 ([Lu89, Theorem 7.4]; see also [CP, 11.2.9]). Let � ∈ Z>0 and let Π�

be as defined in (1.15). Let λ ∈ (a∗
Z
)+ and write

λ = �λ1 + λ0 with λ0 ∈ Π� and λ1 ∈ (a∗Z)
+.

Let q ∈ C× be such that q2� = 1 and let Lq(λ) denote the simple Uq (̊g)-module of
highest weight λ. Then

Lq(λ) ∼= Δ(λ1)
Fr ⊗ Lq(λ0),

where Δ(μ) denotes the irreducible U (̊g)-module of highest weight μ.

Accepting Theorem 3.1, Theorem 3.2 is equivalent to the product theorem for
abstract Fock space, Theorem 1.4.

3.2. LLT polynomials for general Lie-type. In [LLT] and [LT, (43)] and [GH,
Definition 6.6], the LLT polynomials for type A are defined by

(3.2) G
(�)
μ/ν(x, t

−1)
∑

T∈SSRT�(μ/ν)

t−spin(T )xT ,

where SSRT�(μ/ν) is the set of semistandard � ribbon tableaux of shape μ/ν,
spin(T ) is the spin of the tableaux T and XT is the weight of the tableaux T
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(see [GH, §6.5] for an efficient review of the combinatorial definitions of semistan-
dard ribbon tableaux, spin, and weight).

In Lecouvey [Lcy], there is a definition of LLT polynomials for general Lie-type
generalizing the definition of [LLT] from type A which proceeds as follows. Define
a K-algebra homomorphism

ψ� : K[X] −→ K[X]
Xμ �−→ X�μ so that ψ�(sλ) = char(Δq(λ)

Fr),

in the framework of Theorem 3.2. Then [Lcy, (57)] defines

(3.3) G�
μ =

∑
λ∈(a∗

Z
)+

p�λ,μsλ,

where p�λ,μ ∈ Z[t
1
2 ] are as in (1.7). As pointed out in [Lcy, Cor. 5.1.3], Theorem

3.1 gives

ψ�(sλ) = char(Δ(λ)Fr) = char(Lq(�λ))

=
∑

μ∈(a∗
Z
)+

p�λ,μ(1)char(Δq(μ)) =
∑

μ∈(a∗
Z
)+

p�λ,μ(1)sμ.

As explained carefully in [LRS, Theorem 4.8(b)], the polynomials p�λ,μ are parabolic
singular Kazhdan-Lusztig polynomials.

In [GH, Definition 5.12 and Corollary 6.4] there is another definition of LLT
polynomials for general Lie-type:

(3.4) LG
L,β,γ = tlβ−γ+�(w)−�(v)

∑
λ∈(a∗

Z
)+

Qλ
μνsλ, where sλ∗ · |ν〉 =

∑
μ

Qλ
μν |μ〉

determine the polynomials Qλ
νμ. Here G is the reductive algebraic group alluded to

in (1.1), L is a Levi subgroup of G with Weyl group Wν , lβ−γ is the nonnegative
integer defined in [GH, Remark 5.10], and

μ = v◦(η+�β) and ν = w◦(η+�γ), where v ∈ W0tβWη and w ∈ W0tγWη

are minimal representatives. At this point, the reader’s discomfort occurring from
the transitions between β and γ and v and w and μ and ν is mitigated by recognizing
that the relation between these two definitions occurs in the special case ν = 0:
Theorem 1.4 and (2.20) and the definition of Qλ

μν in (3.4) give

C�λ=sλ∗ ·C0=sλ∗ ·|0〉 =
∑
μ

Qλ
μ0|μ〉, and comparing with (1.7) gives p�λ,μ = Qλ

μ,0

and specifies the close relationship between G�
μ and LG

L,β,γ which occurs at ν = 0.
They are the same up to a power of t.

4. Tensor product theorem on affine Lie algebra representations

Let g̊ be the Lie algebra of G and let g = g̊⊗CC[ε, ε−1] +CK +Cd be the corre-
sponding affine Kac-Moody Lie algebra (see [Kac, §6.2] – we follow the notation of
[LRS, (3.17)]). Let � ∈ Z>0 and let h be the dual Coxeter number. As explained in
[LRS, Theorem 3.2], an important result of Kazhdan-Lusztig establishes a relation
between level (−� − h)-representations in parabolic category Og

g̊
for the affine Lie

algebra and the finite dimensional representations of the quantum group Uq (̊g) with
q2� = 1.
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Let

g
′ = [g, g] = g̊⊗C C[ε, ε−1] + CK.

By restriction, the modules in Og

g̊
are g′-modules. Let Λ0 be the fundamental

weight of the affine Lie algebra so that L(cΛ0 + λ) is an irreducible highest weight
g-module of level c (i.e., K acts by the constant c).

Theorem 4.1 ([KL94, Theorem 38.1]). There is an equivalence of categories{
finite length g′-modules
of level −�− h in Og

g̊

}
Ψ1−→

{
finite dimensional Uq (̊g)-modules

with q2� = 1

}
Δg

g̊
((−�− h)Λ0 + λ) �−→ Δq(λ)

L((−�− h)Λ0 + λ) �−→ Lq(λ).

This statement of Theorem 4.1 is for the simply-laced (symmetric) case. With
the proper modifications to this statement the result holds for non-simply-laced
cases as well; see [Lu94, §8.4] and [Lu95].

Let �λ− ρ ∈ (a∗
Z
)+. Under the composition of the map Ψ1 in Theorem 4.1 and

the map Ψ2 from Theorem 3.1,

Ψ2(Ψ1([L((−�− h)Λ0 + �λ)− ρ])) = Ψ2([Lq(�λ− ρ)]) = C�λ−ρ = |�λ− ρ〉.
Thus it follows from Theorem 4.1, Theorem 3.1, and (2.20) that

(4.1)
L((−�− h)Λ0 + �λ− ρ) = Δg

g̊
((−�− h)Λ0 + �λ− ρ)

= Indg
g̊0+b

(Lg̊(�λ− ρ)) ∼= U(g)⊗U(k) Lg̊(�λ− ρ),

where

k =
⊕

k∈Z≥0

εk
(
a⊕

⊕
α∈R+

g̊α + g̊−α

)
with R+ the set of positive roots of g̊.

As given in (1.14), the Weyl character formula for the g̊-module Lg̊(�λ− ρ) is

char(Lg̊(�λ− ρ)) = s�λ−ρ =

( ∏
α∈R+

1

1−X−α

)
·
∑

w∈W0

det(w)Xw◦(�λ−ρ)(4.2)

=

( ∏
α∈R+

1

1−X−α

)
·
∑

w∈W0

det(w)Xw(�λ)−ρ.(4.3)

Letting q = eδ, n = dim(a), and using the Poincaré-Birkhoff-Witt theorem, the
character of the g-module in (4.1) is

(4.4)

char(L((−�− h)Λ0 + �λ− ρ)) = char(Δg

g̊
((−�− h)Λ0 + �λ− ρ))

= char(U(g)⊗U(k) Lg̊(�λ− ρ))

= s�λ−ρ

∏
k∈Z>0

(
1

(1− q−k)n

∏
α∈R+

1

1− q−kXα
· 1

1− q−kX−α

)

=

⎛
⎝ ∏

k∈Z>0

1

(1− q−k)n

⎞
⎠

⎛
⎝ ∏

k∈Z>0

∏
α∈R+

1

1− q−kXα

⎞
⎠

·

⎛
⎝ ∏

k∈Z≥0

∏
α∈R+

1

1− q−kX−α

⎞
⎠( ∑

w∈W0

det(w)Xw(�λ)−ρ

)
,
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where the third equality comes from the fact that we are considering induction from
the k-structure, so that the contribution of the roots of this Levi subalgebra should
be removed from the character of U(g).

The above formula is reminiscent of Weyl-Kac character formula for integrable
representations, but we have not yet found a reference for it in the literature. As we
have explained in (4.1), this formula is an easy consequence of [KL94] and [Lu89].

The equivalence in Theorem 4.1 is an equivalence of monoidal categories where
the product on the left-hand side is the fusion tensor product ⊗̂ and the product on
the right-hand side is the tensor product coming from the Hopf algebra structure of
Uq (̊g). Thus, in terms of affine Lie algebra representations, the Lusztig-Steinberg
tensor product theorem says that

if λ ∈ (a∗Z)
+ and λ = λ0 + �λ1 with λ0 ∈ Π�,

where Π� is as in (1.15). Then

L((−�− h)Λ0 + λ) ∼= L((−�− h)Λ0 + λ0)⊗̂L((−�− h)Λ0 + �λ1).(4.5)
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