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Introduction

An Artin group is a group G with a presentation by a system of generators

ai, i ∈ I, and relations

aiajai · · · = ajaiaj · · · , i, j ∈ I

where the words on each side of these relations are sequences of mij letters where

ai and aj alternate in the sequence. The matrix of values mij is a Coxeter matrix

M = (mij)i,j∈I on I. These groups generalize the braid groups established in 1925

by E. Artin in a natural way and therefore we suggest naming them Artin groups.

If one adds the relations a2i = 1 to the relations in the presentation of an Artin

group then one gets a presentation of a Coxeter group G. Thus the Coxeter groups

are quotient groups of the Artin groups. It is well known that in the case of the

braid group one gets the symmetric group in this way.

Typeset by AMS-TEX
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Since their introduction by Coxeter in 1935 the Coxeter groups have been well

studied and a nice presentation of the results can be found in Bourbaki [1]. Other

than the free groups, the braid group is the only class of Artin groups that has

had a serious line of investigation, in particular, recently the solution of the conju-

gation problem was given by Garside. For the other Artin groups, a few isolated

results appear in [2], [3] and [5]. These references, as well as our own work here,

concentrate, for the most part, on the case that the Artin group G corresponds to

a finite Coxeter group. The Coxeter groups were already classified by Coxeter him-

self: these are the finite reflection groups - the irreducible cases being, the groups of

Types An, Bn, Cn, Dn, E6, E7, E8, F4, G2, H3, H4 and I2(p) with p = 5 or p ≥ 7

(see [1] VI §4.1). It was proved in [2] that for these finite reflection groups the Artin

group G is the fundamental group of the spaces XG of regular orbits for which G

is the corresponding complex reflection group. In [3] we conjectured, and for a few

cases proved, that XG is an Eilenberg-McLane space so that the cohomology of

XG is isomorphic to the cohomology of G, and thus a few statements were proved

about the cohomology of G.

In the following work we study the Artin groups by combinatorial methods, which

are very similar to those of Garside. For G with finite G we solve the word problem

and the conjugation problem and we determine the centre of G. For irreducible

G the centre of G is infinite cyclic and generated by an appropriate power of the

product ai · · · an of the generators of G. For some cases these results were already

known, and J.P. Serre asked us whether this was always the case. This question

was the starting point of our work and we would like to thank J.P. Serre for his

direction.

Deligne told us that he had constructed in the manner of Tits simplicial com-

plexes on which G operates, and has proved that XG is an Eilenberg-McLane space

for all G with finite G. We hope that our own work is not made superfluous by the

very interesting work of Deligne, which we have not yet seen.

§1. Definition of Artin Groups

In these paragraphs we shall define the Artin groups, and fix some of the nota-
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tions and ideas which will follow.

1.1 Let I be an index set, FI the free group generated by I and F+
I the free

semigroup generated by I inside FI . In the following we drop the subscript I when

it is clear from the context.

We call the elements of FI words and the elements of F+
I positive words. The

empty word is the identity element of F+
I . The positive words have unique repre-

sentations as products of elements of I and the number of factors is the length L

of a positive word. The elements of I are called letters. Frequently we shall denote

the letters i ∈ I with the more practical notation ai often also with a, b, c, etc. The

equivalence relation on positive words A and B is called letterwise agreement and

denoted by A ≡ B.

In the following we will very often consider positive words with factors beginning

with a and in which only letters a and b occur. Such a word of length q will be

denoted 〈ab〉q so that

〈ab〉q ≡ aba · · ·︸ ︷︷ ︸
q factors

1.2 Let M = (mij)i,j∈I be a Coxeter matrix on I. The Artin group GM corre-

sponding to M is the quotient of FI by the smallest normal subgroup generated

by the relations 〈ab〉mab(〈ba〉mab)−1 where a, b ∈ I and mab 6=∞. In other words:

The Artin group GM corresponding to M is the group with generators ai, i ∈ I,

and the relations

〈aiaj〉mij = 〈ajai〉mij for i, j ∈ I, and mij 6=∞ .

When the Coxeter matrix M is clear from the context we drop the index M . We

denote the images of the letters and words under the quotient homomorphism

FI −→ GM

by the same symbols and the equivalence relation on elements A and B in GM is

denoted by A = B.

If M is a Coxeter matrix on I then the Coxeter group GM corresponding to M

is the group given by generators ai, i ∈ I and the relations

a2i = 1 for i ∈ I ,

〈aiaj〉mij = 〈ajai〉mij for i, j ∈ I with mij 6=∞ .
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Obviously this is the same group as the one which is defined by the generators ai,

i ∈ I, and the usual relations

(aiaj)
mij = 1, for i, j ∈ I and mij 6=∞ .

The images of the elements A of GM under the canonical homomorphism

GM −→ GM

are denoted by A and the generating system {ai}i∈I by I. The pair (GM , I) is a

Coxeter System in the sense of Bourbaki [1] IV 1.3.

In order to describe the Coxeter matrix M we occasionally use the Coxeter graph

ΓM in the sense of Bourbaki [1] IV 1.9.

An Artin group GM is of finite type resp. irreducible resp. of type An, Bn, Cn,

Dn etc, when the Coxeter system (GM , I) is finite resp. irreducible resp. of type

An, Bn, Cn, Dn etc.

1.3 Let M be a Coxeter matrix. An elementary transformation of positive words

is a transformation of the form

A〈ab〉mabB −→ A〈ba〉mabB

where A, B ∈ F+ and a, b ∈ I. A positive transformation of length t from a positive

word V to a positive word W is a composition of t elementary transformations that

begins with V and ends at W . Two words are positive equivalent if there is a positive

transformation that takes one into the other. We indicate positive equivalence of

V and W by V=. W .

The semigroup of positive equivalence classes of positive words relative to M

is denoted G+
M . The quotient homomorphism F+ −→ G+

M factors over natural

homomorphisms:

F+ −→ G+
M −→ GM ,

and for GM of finite type we will show that G+
M −→ GM is injective. The equiva-

lence relation on elements V,W ∈ G+
M is denoted V=. W .
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§2. Reduction Rule

In these paragraphs we prove that one can always reduce in the Artin semigroup.

2.1 The main result in this section is the reduction lemma which will be used again

and again in this work.

Lemma 2.1. Reduction lemma. For each Coxeter matrix we have the following

reduction rule:

If X and Y are positive words and a and b are letters such that aX=. bY then

there exists a positive word W such that

X=. 〈ba〉mab−1W and Y=. 〈ab〉mab−1W .

Proof. The proof is by a double induction, first on the length L(X) of the word X

and then on the length t of the positive transformation from aX to bY .

Let Aλ be the statement of the lemma for words of length L(X) = λ and let

Aλ,τ be the statement under the additional condition that aX can be transformed

into bY by a positive transformation of length τ . The base cases A0 and Aλ,0 are

trivial. Thus we assume now that Aλ for λ < l and Al,τ for τ < t hold and prove

Al,t.

Assume that aX is transformed into bY by a positive transformation of length

t. Then there is a positive word cZ such that aX becomes cZ under an elementary

transformation and cZ becomes bY by a positive transformation of length t− 1. If

either c ≡ a or c ≡ b then it follows immediately from Al,τ for τ < t that X=. Z,

resp. Y=. Z, and through renewed application of Al,τ , the assertion of the lemma

follows.

Hence we suppose that c 6≡ a and c 6≡ b. Since cZ arises from an elementary

transformation of aX, and the induction assumption Al,τ is applicable to cZ and

bY , then there exist positive words U and V such that:

X=. 〈ca〉mac−1U and Z=. 〈ac〉mac−1U ,

Y=. 〈cb〉mac−1V and Z=. 〈bc〉mbc−1V .

If a ≡ b then it follows from the two relations for Z that U=. V , by using the

induction hypothesis for Aλ, λ < l. Then it follows from the other two relations

that X=. Y , completing the case when a ≡ b.
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From this point we assume that a, b and c are pairwise distinct. Let Ma,b,c be the

Coxeter matrix on {a, b, c} defined by mab,mac and mbc. The proof of the induction

step for certain cases is already set out by Garside - namely for the cases in which

Ma,b,c defines a finite Coxeter group. This is known to be precisely the when the

corresponding Graph is one of the following three vertex Coxeter graphs:

p 3 ≤ p
3 p 3 ≤ p ≤ 5

The cases are completed by reproducing exactly the line of reasoning in the proof

of Garside [5] p. 237 and 253. Thus the proof will be complete when we can show

that the other cases, in which Ma,b,c does not define a finite group, can be dealt

with. The remainder of the proof of 2.1 follows from the induction assumption Aλ

for λ < l and the following Lemma 2.2. �

2.2 The reason that we can deal with the above mentioned case is that the relation

aX=. bY=. cZ is only possible for finite GMa,b,c
. To see this we must first prove the

following somewhat complicated lemma.

Lemma 2.2. Let M be a Coxeter matrix for which the statement of the reduction

lemma hold for words X such that L(X) < l. Let a, b, c be pairwise distinct letters

for which the Coxeter matrix Ma,b,c does not define a finite Coxeter group. Then

there do not exist positive words U, V , and Z with L(Z) ≤ l and

Z=. 〈ac〉mac−1U=. 〈bc〉mbc−1V .

Proof. We assume that U , V and Z are positive words for which the given relation

holds and derive a contradiction. We will consider the different cases for the graph

Γ of Ma,b,c. We get from the classification of Coxeter systems of rank three that

we have the following possibilities.

Case 1: Γ is a cycle
r

p q

with p, q, r ≥ 3.

Case 2: Γ is a tree q p with p, q > 3.

Case 3: Γ is a tree 3 p with p > 5.

In cases 2 and 3 we will also have to distinguish the different possibilities for the

choice of the vertex c in these graphs.
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Case 1: We will prove in this case the stronger statement: There do not exist

positive words Z, W1, W2 with L(Z) < ` and

Z=. aW1=. bcW2 .

Assume that there are such words. Let these be chosen such that L(Z) is minimal.

By repeated applications of the reduction rule on the last equality of the given

relation we get the existence of words W3, W4, W5 for which

aW1 =. bcW2

cW2 =. abW3

bW3 =. caW4

aW4 =. bcW5.

Setting W ′1 ≡W4 and W ′2 ≡W5 and Z ′ ≡ aW4 we get

Z ′ =. aW ′1 =. bcW ′2,

and L(Z ′) < L(Z), contradicting the minimality of L(Z). The remaining cases are

similar and we shall be more brief.

Case 2: There are two cases to consider:

(i) c is one of the two end points of Γ,

(ii) c is the middle point of Γ.

(i) Let us suppose that a is the other end point. Suppose that we are given a

relation between positive words of minimal length

aW1 =. bcW2 .

From successive applications of the reduction lemma we have the existence of W3,

W4, W5, W6 with

aW1 =. bcW2

cW2 =. abaW3

baW3 =. cW4

aW3 =. cbcW5

bcW5 =. aW6 .
7



On account of the last relation L(W6) < L(W1) contradicting the minimality of

L(W1).

(ii) From a relation aW1=. bcbW2 between positive words of minimal length and

successive applications of the reduction lemma we have the existence of W3, W4

with

bW2 =. acaW3

aW3 =. babW4 .

The last relation combined with L(W3) < L(W1) gives a contradiction.

Case 3: We distinguish three cases:

(i) c is the “middle” point of Γ (thus mac = 3,mbc = p),

(ii) c is the “left” point of Γ (thus mac = 2,mbc = 3),

(iii) c is the “right” point of Γ (thus mac = 2,mbc = p).

(i) Assume that there is a relation

aW1 =. bcbcW2

between positive words, the relevant words being of minimal length. By a four fold

application of the reduction lemma it follows that there exist words W3 and W4

with

bcW2 =. acW3

W3 =. 〈bc〉mbc−1W4 .

Substituting the second equation into the first, applying the defining relation and

the reduction lemma gives

cW2 =. a〈cb〉mbc−1W4 .

Again, a two fold application of the reduction lemma gives the existence of a word

W5 with

aW5 =. 〈bc〉mbc−2W4 .

This relation combined with L(W5) < L(W1) contradicts the minimality of L(W1).
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(ii) Assume that there is a relation

aW1 =. bcW2

between words of length less than l. It follows from the reduction lemma that there

exists a word W3 with

cW2 =. 〈ab〉mab−1W3 .

One such relation can from (i) not be valid, and the same analysis as in (i) except

for only some changes in the markings of the letters and the words.

(iii) Assume that there is a relation

aW1 =. bcbcbW2

between words of length < `. It follows from the reduction lemma that there exists

a word W3 with

aW3 =. cbcbW2

Again, by (i), such a relation cannot hold.

Thus all cases are settled and Lemma 2.2 is proved. �

2.3 We shall derive a few easy conclusions from the reduction lemma.

First we note the following. From 2.1 and 2.2 it follows that a positive word

can only be divisible by 3 different letters a, b, c if the associated Coxeter matrix

Ma,b,c defines a finite Coxeter group. Later this statement will be generalized even

further.

In addition we remark that in analogy to 2.1 we naturally get a reduction lemma

for reduction on the right side. One can reach this conclusion as follows. For each

positive word

A ≡ ai1 · · · aik

define the positive word rev A by

rev A ≡ aik · · · ai1 .

Clearly A=. B implies rev A=. rev B since the passage from A to rev A is compatible

with elementary transformations. It is clear that the application of rev to the words

in Lemma 2.1 gives the right hand analog.

¿From Lemma 2.1 and the right hand analog we get the following:
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Proposition 2.3. If A,B and X,Y are positive words with AXB=. AY B then

X=. Y .

The Artin monoid G+
M thus satisfies the cancellation condition.

§3. The Division Algorithm

Let U , V and W be positive words. Say U divides W (on the left) if

W ≡ UV (if working in F+),

W =. UV (if working in G+
M ),

and write U |W (interpreted in the context of F+ or G+
M ).

We present an algorithm which is used later in the theory of divisibility in G+
M .

For example the algorithm can be used to decide whether a given letter divides a

positive word, and to determine the smallest common multiple of a letter and a

word if it exists.

3.1. Let a ∈ I be a letter. The simplest positive words which are not multiples

of a are clearly those in which a does not appear. Further, the words of the form

〈ba〉q with q < mab and mab 6= 2 are also not divisible by a. Of course many other

quite simple words have this property, for example concatenations of the previous

types of words in specific order, called a-chains, which we will define shortly. At

the same time we will define what we mean by the source and target of an a-chain.

Definition. (i) A primitive a-chain is a positive word W such that mab = 2 for

all letters b in W (so b 6≡ a and ab = ba).

We call a the source and target of W . (Note vacuously the empty word is a

primitive a-chain.)

(ii) An elementary a-chain is a positive word of the form 〈ba〉q with mab > 2

and 0 < q < mab. The source is a, and the target is b if q is even, and a if q is odd.

(iii) An a-chain is a product C ≡ C1 · · ·Ck where for each i = 1, . . . , k, Ci is a

primitive or elementary ai-chain for some ai ∈ I, such that a1 = a and the target

of Ci is the source of Ci+1.
10



[Ed: This may be expressed as:

a ≡ a1
C1−→ a2

C2−→ a3 −→ · · ·
Cn−1−→ ak

Ck−→ ak+1 ≡ b

]

The source of C is a and the target of C is the target of Ck. If this target is b

we say: C is a chain from a to b.

[Example. I = {a, b, c, d}, mab = mbc = 2, mcd = 4, mac = mad = mbd = 2.

c, cd, dcd, c2dcd7 are primitive a-chains.

b, ba are elementary a-chains.

a, ab, c, cb are elementary b-chains.

dcd, dc, d are elementary c-chains.

a b a︸︷︷︸
C1

c d︸︷︷︸
C2

b c︸︷︷︸
C3

a b︸︷︷︸
C4

d c2 d2︸ ︷︷ ︸
C5

b a︸︷︷︸
C6

is a d-chain.

d
C1−→
prim

d
C2−→
el.

c
C3−→
el.

b
C4−→
el.

a
C5−→
prim

a
C6−→
el.

b. ]

(iv) There is a unique decomposition of a given a-chain into primitive and ele-

mentary factors if one demands that the primitive factors are as large as possible.

The number of elementary factors is the length of the chain.

Remark. If C is a chain from a to b then revC is a chain from b to a.

Lemma 3.1. Let C ≡ C1 · · ·Ck be a chain from a to b (where Ci is a primitive or

elementary chain from ai to ai+1 for i = 1, · · · , k) and D a positive word such that

a divides CD. Then b divides D, and in particular a does not divide C.

Proof. The last claim follows from the first by putting D equal to the empty word.

We prove the first claim by induction on k. Suppose k = 1.

(a) Suppose C ≡ x1...xm is primitive, so maxi = 2 for all i. Then x1...xmD=. aV

for some positive word V . [Recall the Reduction Lemma (2.1): If X, Y are positive

words and a, b ∈ I such that aX=. bY then there exists a positive word W such that

X =. 〈ba〉mab−1W and

Y =. 〈ab〉mab−1W.]

By (2.1), x2 · · ·xmD=. 〈ax1〉max1−1W ≡ aW for some positive word W . Continuing

in this fashion yields that a divides D and we are done (since a is the target of C).
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(b) Suppose C ≡ 〈ba〉q is elementary, where mab > 2 and 0 < q < mab. Then

D ≡ 〈ba〉qD =. aV

for some positive word V . By (2.1), 〈ab〉q−1D =. 〈ab〉mab−1W for some positive

word W . So by cancellation (special case of (2.1)),

D =.

{ 〈ab〉mab−qW if q is odd, or

〈ba〉mab−qW if q is even.

So D is divisible by a if q is odd, and b if q is even, which is in each case the target

of C and we are done.

This begins the induction. Suppose now k > 1. By the inductive hypothesis ak

divides CkD, and by (a) and (b), b ≡ ak+1 divides D and we are done. �

3.2. For all positive words W and letters a ∈ I we will define a recursively

calculable positive word Ta(W ) such that W=. Ta(W ) and either Ta(W ) begins with

a or Ta(W ) is an a-chain. To simplify the description we need other operations on

positive words:

(i) Every positive W has a unique factorization

W ≡ Ca(W )Da(W )

where Ca(W ) ≡ C0 or Ca(W ) ≡ C0C1 where C0 is a primitive a-chain and C1 and

elementary a-chain such that the word length of Ca(W ) is as large as possible.

(ii) If C is a primitive a-chain put

C+ ≡ aC

which is positive equivalent to Ca by commutativity.

If C ≡ C0〈ba〉q where C0 is primitive, put

C+ ≡
{
aC if q = mab − 1, or

C0〈ba〉q+1 otherwise.

In each case C+=. Cc where c is the target of C.

[Ed: Note that, if q = mab − 1,

C+ ≡ aC =. C0a〈ba〉q ≡ C0〈ab〉mab =. C0〈ba〉mab ≡ Cc ,
12



where c is the target of C.

N.B.: The point of this definition is to construct a word C+ which is positive

equivalent to Cc (C ≡ C0C1 a chain from a to c) and such that either C+ starts

with a, or C+ ≡ C0C
+
1 where C+

1 is also elementary, but longer than C1.]

(iii) If D is any nonempty positive word denote by D− the word obtained by

deleting the first letter of D. [Ed: Thus CD=. C
+D−.]

Definition. For W empty or beginning with a put

Ta(W ) ≡W.

For all other words define Ta(W ) recursively: let L(W ) = ` and suppose the a-chain

Ca(W ) has target c. Then put

Sa(W ) ≡
{
Ca(W )Tc(Da(W )) if c is not the first letter of Tc(Da(W ))

Ca(W )+Tc(Da(W ))− otherwise,

and Ta(W ) ≡ S`a(W ) (the result of applying Sa ` times).

[Observations. Let W be positive and a ∈ I. Then

(A) Ta(W ) ≡ Sa(W ) ≡W if W is an a-chain or begins with a,

(B) Ta(W ) =. Sa(W )=. W .

Proof. (A) The result if clear if W begins with a or is empty. Suppose W is a

nonempty a-chain, so W ≡ Ca(W )Da(W ) where Ca(W ) is a nonempty chain from

a to c, say and Da(W ) is a c-chain. By an inductive hypothesis, since L(Da(W )) <

L(W ), Tc(Da(W )) ≡ Sc(Da(W )) ≡ Da(W ) so that Sa(W ) ≡ Ca(W )Da(W ) ≡ W

noting that c cannot be the first letter of Da(W ), whence Ta(W ) ≡ S`a(W ) ≡ W ,

and (i) is proved.

(B) Again the result is clear if W begins with a or is empty. Otherwise, we may

suppose that Ca(W ) is nonempty. Thus L(Da(W )) < L(W ), and by an inductive

hypothesis Tc(Da(w))=. Da(W ). Since C+D−=. CD it is clear (either way) that

Sa(W )=. Ca(W )Tc(Da(W )) =. Ca(W )Da(W ) ≡W .

Now since L(Sa(W )) = L(W ) we may repeat this step ` times to show that

Ta(W )=. Sa(W )=. W . � ]

13



Lemma 3.2. Let W be positive and a ∈ I. Then

(i) Ta(W ) is an a-chain or begins with a,

(ii) Ta(W ) ≡W if and only if W is an a-chain or begins with a,

(iii) Ta(W ) =. W .

Proof. The proof for all three parts follows by induction on the wordlength, where

the induction basis is trivial. [Ed: Namely when L(W ) = 0, Ta(W ) ≡ W . More

concretely, if L(W)=1, then W is a or an a-chain, and the algorithm again leaves

W unchanged.]

(i) [We may suppose that L(W ) > 0]. From the definition of Sa(W ) and the

induction hypothesis the following is true. If Sa(W ) is neither an a-chain nor a

word beginning with a, then Ca(Sa(W )) has length strictly greater than Ca(W ).

Hence the result Ska(W ) of k successive applications of Sa must eventually, for k = `

at least, be either an a-chain or word beginning with a.

[Note: If W is an a-chain or begins with a then the first statement is clear since,

by Observation (A), Sa(W ) ≡ W . Otherwise, Ca(W ) is non-empty. Then, by the

induction hypothesis, if c is not its first letter Tc(Da(W )) is a c-chain and composes

with Ca(W ) to make Sa(W ) an a-chain. Otherwise Sa(W ) = Ca(W )+Tc(Da(W ))−

and, by the N.B. above, Ca(W )+ either starts with a or is of such a form that is

must divide Ca(Sa(W )). This last implies that

L(Ca(Sa(W ))) ≥ L(Ca(W )+) = L(Ca(W )) + 1 .

Note that, by Observation (A), each further application of Sa either leaves the

word unchanged (when it is already either an a-chain or a word beginning with

a) or strictly increases the prefix Ca. Thus, after k successive applications, either

Ska(W ) is an a-chain or starts with a, or L(Ca(Ska(W ))) ≥ L(Ca(W ))+k > k. This

last case gives an obvious contradiction once k = L(W ) = `, since Sa preserves the

total word length, so that L(Ca(Ska(W ))) ≤ L(W ). Hence Ta(W ) must either be

an a-chain or start with a. (One may like to observe that, once k > L(Da(W )),

the contradiction is already reached).

Claims (ii) and (iii) are immediate from Observations (A) and (B) respectively.

The original text reads as follows. ]
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(ii) From the definition of Sa(W ) and the induction hypothesis it follows that, for

an a-chain or word W beginning with a, Sa(W ) ≡W and thence that Ta(W ) ≡W .

The converse follows by (i).

(iii) The proof by induction is trivial, given that C+=. Cc. �

3.3. With the help of the projection operators Ta defined in 3.2 one gets a

simple algorithm for producing a common multiple of a letter a and a word W , if

one exists. If a positive word V begins with a, put

Ra(V ) ≡ V .

If V is a chain from a to b then put

Ra(V ) ≡ Ta(V b).

Definition. Let W be a positive word and a ∈ I. Then the a-sequence of W is

the sequence at positive words Wi, for i = 1, 2, · · · where

W1 ≡ Ta(W ) and

Wi+1 ≡ Ra(Wi)

for all i > 1.

[Ed: Note that the following lemma anticipates the following section (§4) by

effectively demonstrating that if a common multiple exists then the a-sequence of

W terminates in a word W ′ which is a least common multiple for a and W . That

is both a and W divide W ′, and W ′ divides any other common multiple of a and

W .

The original text is translated below, but we give here an expanded version as

follows:

Lemma 3.3. (i) If V is a common multiple of a and W then Wi divides V for all

i > 0, and Wj ≡Wj+1 for j > L(V )− L(W ) (the sequence terminates).

(ii) Conversely, if Wj ≡ Wj+1 for some j, then Wj is a common multiple of a

and W (and, by (i), a least common multiple).

Proof. (ii) Suppose Wj ≡ Wj+1. By definition Wj begins with a. Certainly

W=. Ta(W ) ≡W1 (by Lemma 3.2). Suppose W divides Wi. Now

Wi+1 ≡
{
Wi if Wi begins with a

Ta(Wib) if Wi is a chain from a to b
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But Ta(Wib)=. Wib which is divisible by Wi and hence by W . By induction W

divides Wj , so Wj is a common multiple of a and W .

(i) Suppose now that V is a common multiple of a and W . Since W=. Ta(W ), W1

divides V . Suppose Wi divides V . Either Wi begins with a, in which case Wi+1 ≡

Wi and certainly Wi+1 divides V , or Wi is an a-chain and Wi+1 ≡ Ra(Wj) ≡

Ta(Wib) where b is the target of Wi. But V=. aY=. WiZ for some positive words T

and Z, so by (3.1)

V=. WibZ
′=. Ta(Wib)Z ≡Wi+1Z

′

for some positive word Z. By induction this shows Wi divides V for all i. If

Wi 6≡Wi+1 then L(Wi+1) = L(W ) + i. Since L(Wi+1) ≤ L(V ), we must then have

i ≤ L(V )− L(W ). Thus Wj ≡Wj+1 for all j > L(V )− L(W ). � ]

Lemma 3.3. Let W be a positive word, a a letter, and Wi, i = 1, 2, .., the a-

sequence of W . Then there exists a common multiple V of a and W precisely when

Wj ≡Wj+1 for j > L(V )− L(W ).

Proof. When Wj ≡ Wj+1, it follows by the definition of the a-sequence that a

divides Wj . Because each Wi clearly divides Wi+1 [Ed: and because W1=. W ],

then every Wj is a common multiple of a and W . Conversely, if V is a common

multiple, then it follows by the definition of Wi together with (3.1) and (3.2) that

V is divisible by every Wi. From Wj 6≡Wj+1 it follows that L(Wj+1) = L(W ) + j.

From Wj+1|V it then follows that L(W ) + j ≤ L(V ). Thus j > L(V ) − L(W )

implies that Wj ≡Wj+1. �

3.4. When a positive word W is of the form W ≡ UaaV where U and V are

positive words and a is a letter then we say W has a quadratic factor. A word is

square-free relative to a Coxeter matrix M when W is not positive equivalent to

a word with a quadratic factor. The image of a square free word in G+
M is called

square-free.

Lemma 3.4. Let W be a square-free positive word and a a letter such that aW is

not square free. Then a divides W .

Proof. First we prove the following lemma.
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Lemma. Let V be a positive word which is divisible by a and contains a square.

Then there is a positive word Ṽ with Ṽ=. V which contains a square and which begins

with a.

The proof of the Lemma is by induction on the length of V . Decompose V , as

in 3.2, in the form

V ≡ Ca(V )Da(V ) .

Without loss of generality we may assume that V is a representative of its positive

equivalence class which contains a square and is such that L(Ca(V )) is maximal.

When Ca(V ) is the empty word it follows naturally that Ṽ ≡ V satisfies the

conditions for Ṽ . For nonempty Ca(V ) we have three cases

(i) Ca(V ) contains a square. Then Ṽ ≡ Ta(V ) satisfies the conditions for Ṽ .

(ii) Da(V ) contains a square. By the induction assumption, one can assume,

without loss of generality that Da(V ) begins with the target of the a-chain Ca(V ).

Thus, since the length of Ca(V ) is maximal, Ca(V ) is of the form C0〈ba〉mab−1,

where C0 is a primitive a-chain. From this if follows that when Da(V )− contains

a square then Ṽ ≡ aCa(V )Da(V )− satisfies the conditions for Ṽ , and otherwise

Ṽ ≡ a2Ca(V )Da(V )−− does.

(iii) Neither Ca(V ) or Da(V ) contain a square. Then V is of the form V ≡

C0〈ba〉qDa(V ) where q ≥ 1, and Da(V ) begins with a if q is even, and b if q is

odd. Then from the fact that a divides V the reduction lemma is applicable and

the relations imply that there exists E such that

Da(V ) =. 〈ba〉mabE .

Then

Ṽ ≡ aC0〈ba〉mab−1〈ba〉qE if mab is even

Ṽ ≡ aC0〈ba〉mab−1〈ab〉qE if mab is odd ,

satisfy the conditions.

This finishes the proof of the lemma.

Proof of 3.4. By the Lemma there exists a positive word U , such that U contains

a square and aW=. aU . It follows from the reduction lemma that U=. W and, since
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W is square free that U does not contain a square. So U begins with a and W is

divisible by a.

3.5. By applying 3.4 we get the following lemma which will be needed later.

Lemma 3.5. If W is a square free positive word and a is a letter then the a-

sequences Wi of W are also square free.

Proof. W1 is square free since W1=. W . Assume Wi is square free. Then either

Wi+1 ≡ Wi or Wi+1=. Wibi where bi is the target of the chain Wi. If Wibi is not

square free then birevWi is not square free and by 3.4, the bi chain Wi is not divisible

by bi, in contradiction to 3.1.

3.6. Using the operators Ta we can give a division algorithm, which, when given

positive words V and W such that W divides V , constructs a positive word V : W

such that

V =. W · (V : W ) .

Definition. For W ≡ a1 · · · ak, V : W is the word

V : W ≡ Tak(Tak−1
(· · ·Ta2(Ta1(V ))−)− · · · )−)− .

§4. Divisibility Theory

4.1. By a common divisor of a system gj , j ∈ J of elements of a semigroup G+

we mean an element of G+ which divides each gj (or more exactly, divides on the

left). Similarly, a common multiple is an element which is (left) divisible by all gj ,

j ∈ J . A greatest common divisor (g.c.d.) is a divisor into which all other common

divisors divide, and a least common multiple (l.c.m.) is a common multiple which

divides all other common multiples. The analogous concepts of divisibility on the

right are similarly defined.

Because the reduction rule (2.3) holds in the Artin semigroup G+
M and no el-

ement of G+
M other than the identity has an inverse, when greatest common di-

visors and least common multiples exist, they are uniquely determined. For the
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system g1, · · · , gk ∈ G+, we denote the least common multiple (w.r.t. left di-

visibility) by [g1, · · · , gk]l or just [g1, · · · , gk] and the greatest common divisor by

(g1, · · · , gk)l or (g1, · · · , gk). The corresponding notation for divisibility from the

right is [g1, · · · , gk]r and (g1, · · · , gm)r respectively. Corresponding ideas and nota-

tions apply for the positive words (in F+) which these elements represent.

It is clear that infinite subsets of an Artin semigroup can have no common

multiples. But for finite subsets:

Proposition (4.1). A finite set of elements of an Artin semigroup G+
M either has

a least common multiple or no common multiple at all.

Proof. Since one can carry out an induction on the number of elements, it suffices

to show that for any two positive words V and W which have a common multiple a

least common multiple exists. We prove this simultaneously for all W by induction

on the length of V .

Starting the induction: Let V ≡ a and U a common multiple of a and W . Then

from (3.3) there is a term Wi in the a-series of W with Wi ≡ Wi+1. This Wi is

then a least common multiple of a and W , since by (3.3) both a and W divide Wi,

and from the construction of the a-series and (3.1) it follows that Wj divides U for

j = 1, 2, . . . , i.

[Aside: Recall

(3.1) If C is a chain from a to b and D a positive word such that CD is divisible

by a, then D is divisible by b.

So if W |U , then either Wk+1 ≡ Wk so Wk+1|U , or Wk is an a-chain from a to b

say, and WkK=
·
U for some word K, and a|WkK, so K must be divisible by b, so

U=
·
WkbK

′ for some word K ′, but Wk+1 ≡ Ta(Wb). So U=
·
Wk+1K

′, and Wk+1|U .

So we have that Wi is a least common multiple.]

Completing the induction: Let V ≡ aV ′ and U be a common multiple of V and W

with U ≡ aU ′. Since U is a common multiple of a and W , by the first induction

step there is a least common multiple aW ′ of a and W . By the reduction lemma,

U ′ is a common multiple of V ′ and W ′, so by induction hypothesis there exists a

least common multiple [V ′,W ′]. Then a[V ′, w′] is the least common multiple of V

and W . �.

4.2 While in certain Artin semigroups there are pairs of elements without a least
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common multiple, the greatest common divisor always exists:

Proposition (4.2). Every non-empty set of elements of an Artin semigroup G+
M

has a greatest common divisor.

Proof. Let X ⊆ G+
M and W ∈ X. The set of common divisors of the elements of X

is a finite set {A1, . . . , Ak}, since each of these elements must divide W , and there

are only finitely many divisors of W .

[Aside: A divisor of W cannot be longer than W , and (given a finite indexing set /

set of letters) there are only finitely many words of length less than or equal to W

in F+.]

Since W is a common multiple of all A1, · · · , Ak, by (4.1), (Existence of least

common multiple), the least common multiple [A1, · · · , Ak] exists, and this is clearly

the greatest common divisor of the elements of X.

[Aside: Let N = [A1, · · · , Ak]. For all W ∈ X, W is a common multiple of

{A1, · · · , Ak}, so since N is the least common multiple, N |W . So N is a common

divisor of X. So N ∈ {A1, · · · , Ak}, and since it is a common multiple of this set,

it must be the greatest common divisor.] �

Comment. The only letters arising in the greatest common divisor and least

common multiple of a set of words are those occurring in the words themselves.

Proof. For the greatest common divisor it is clear, because in any pair of positive

equivalent words exactly the same letters occur. For the least common multiple,

the proof is an exact analogue of the existence proof in (4.1).

[Aside: Recall how we found [a,W ]: W1 ≡ Ta(W ), and Wi+1 ≡ Wi if Wi starts

with a, or Wi+1 ≡ Ta(Wib) if Wi is an a-chain from a to b. But if b 6= a, then the

only way we can have an a-chain from a to b is if there is an elementary sub-chain

somewhere in the a-chain containing b. So Wi+1 only contains letters which are

already in Wi.]

(4.3) From application of the operation rev to the result of (4.1), it is easy to get

the following Lemma:

Lemma (4.3).

(i) [A1, · · · , Ak]l exists precisely when [revA1, · · · , revAk]r exists, and then the
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following holds:

[A1, · · · , Ak]l=. rev ([rev A1, · · · , rev Ak]r) ,

(ii) (A1, · · · , Ak)l=. rev ((rev A1, · · · , rev Ak)r).

�

§5. The Fundamental Element

Definition. Let M be a Coxeter-Matrix over I. Let J ⊂ I be a subset such that

the letters1 of J in G+
M possess a common multiple. Then the uniquely determined

least common multiple of the letters of J in G+
M is called the fundamental element

∆J for J in G+
M .

The word “fundamental”, introduced by Garside, refers to the fundamental role

which these elements play. We will show for example that if GM is irreducible and

if there exists a fundamental word ∆I , then ∆I or ∆2
I generates the centre of GM .

The condition for the existence of ∆I is very strong: ∆I exists exactly when GM

is of finite type (cf 5.6).

5.1. The lemmas of the following sections are proven foremost because they will

be required in later proofs, but they already indicate the important properties of

fundamental elements.

Lemma 5.1. Let J ⊂ I be a finite set J = {j1, · · · , jk}, for which a fundamental

element ∆J in G+
M exists. Then we have:

(i) ∆J=. [aj1 , · · · , ajk ]l=. [aj1 , · · · , ajk ]r.

(ii) rev ∆J=. ∆J .

Proof. (i) If [aj1 , · · · , ajk ]r were not left-divisible by an aj with j ∈ J then by 3.2

it could be represented by a chain from aj to an a′j , j
′ ∈ J and thus it would not

be right-divisible by a′j in contradiction to its definition. Hence [aj1 , · · · , ajk ]r is

divisible by [aj1 , · · · , ajk ]l. Analogously one shows that [aj1 , · · · , ajk ]l is divisible by

[aj1 , · · · , ajk ]r and hence both these elements of G+ are equivalent to one another.

1For the sake of simplicity we call the images of letters of F+ in G+ also letters, and we also
denote them as such.
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(ii) The assertion (ii) follows trivially from (1) and 4.3. �

5.2. Let M be a certain Coxeter-matrix over I, and G+ the corresponding Artin-

semigroup. If J ⊂ I is an arbitrary subset, then we denote by G+
J the subsemigroup

of G+ which is generated by the letters aj , j ∈ J . Of course, G+
J is canonically

isomorphic to G+
MJ

, where MJ is the Coxeter-matrix over J obtained by restriction

of M .

Lemma 5.2. If a fundamental element ∆J in G+ exists for J ⊂ I, then there

is a uniquely determined involutionary automorphism σJ of G+
J with the following

properties:

(i) σJ sends letters to letters, i.e. σJ(aj) = aσ(j) for all j ∈ J . Hence σ is a

permutation of J with σ2 = id and mσ(i)σ(j) = mij.

(ii) For all W ∈ G+
J ,

W∆J=. ∆JσJ(W ) .

Proof. W∆J is left-divisible by ∆J by the same argument as in the proof of 5.1.

So by 2.3 there is a uniquely determined σJ(W ) such that (ii) holds. From 2.3 it

also follows immediately that σJ is an automorphism of G+
J . Since σJ preserves

lengths it takes letters to letters, and hence arises from a permutation σ of J . From

σ(a)∆J=. ∆Jσ
2(a) it follows by application of rev that σ2(a)∆J=. ∆Jσ(a). The right

hand side is positive equivalent to a∆J and hence from 2.3, σ2(a)=. a. Thus σ is an

involution and clearly σJ is too. Finally, since for all i, j,

< σ(ai)σ(aj) >
mij =. < σ(aj)σ(aj) >

mij

it follows that mij = mσ(i)σ(j). Thus (i) is proved. �

Remark. The converse of 5.2 also holds: let G+
J be irreducible, σ : J −→ J a

permutation and ∆ ∈ G+
J a nontrivial element such that a∆=. ∆σ(a) for all letters

a of J . Then there exists a fundamental element ∆J .

Proof. It suffices to show that ∆ is a common multiple of the letters of J . At

least, one letter a from J divides ∆. Hence let ∆=. a∆′. If b is any letter of J with

mab > 2, ba∆=. ∆σ(b)σ(a)=. a∆′σ(b)σ(a), so by the reduction lemma 2.1, we have

that a∆ is divisible by 〈ab〉mab−1 and thus b is a divisor of ∆. Hence ∆ is divisible
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by all the letters of J since the Coxeter-graph of MJ is assumed connected. By 4.1

the existence of ∆J then follows.

5.3. The first part of the following lemma follows immediately from 5.2 (ii).

Lemma 5.3. Suppose there exists a fundamental element ∆J . Then for all U , V ,

W ∈ G+
J :

(i) ∆J left-divides U exactly when it right-divides U .

(ii) If ∆J divides the product VW , then each letter aj, for j ∈ J , either right-

divides the factor V or left-divides W .

Proof. (ii) If aj neither right-divides V nor left-divides W then, by 3.2, one can

represent V by a chain with target aj and W by a chain with source aj . Thus one

can represent VW by a chain [Ed: a word in the letters of J ] which, by 3.1, is not

divisible by its source, and hence neither by ∆J .

5.4. The following lemma contains an important characterization of fundamental

elements.

Lemma 5.4. If a fundamental element ∆J exists for J ⊂ I, the following hold:

(i) U ∈ G+
J is square free if and only if U is a divisor of ∆J .

(ii) The least common multiple of square free elements of G+
J is square free.

Proof. (i) From 3.5 it follows immediately by induction on the number of elements

of J that ∆J is square free; and consequently so are its divisors. The converse is

shown by induction on the length of U . Let U=. V a. By the induction assumption

there exists a W with ∆J=. VW . Since a does not right-divide V , it left divides W

by 5.3 and hence U is a divisor of ∆J .

(ii) The assertion (ii) follows trivially from (i). �

5.5. Let M be a Coxeter-matrix over I. The Artin semigroups G+
M with funda-

mental element ∆I can be described by the type of embedding in the corresponding

Artin group GM . Instead of ∆I , resp. σI , we will write simply ∆, resp. σ, when

there is no risk of confusion.

Proposition 5.5. For a Coxeter-matrix M the following statements are equivalent:

(i) There is a fundamental element ∆ in G+
M .
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(ii) Every finite subset of G+
M has a least common multiple.

(iii) The canonical map G+
M −→ GM is injective, and for each A ∈ GM there

exist B,C ∈ G+
M with A = BC−1 . 2

(iv) The canonical map G+
M −→ GM is injective, and for each A ∈ GM there

exist B, C ∈ G+
M with A = BC−1, where the image of C lies in the centre

of GM .

Proof. [Ed: In this proof G+
M is written G+ for simplicity ]

We will show first of all the equivalence of (i) and (ii), where clearly (ii) trivially

implies (i). Let Λ=. ∆ or Λ=. ∆2 according to whether σ = 1 or not. Then Λ is, by

5.2, a central element in G+ and for each letter ai, i ∈ I, there is by 5.1 a Λi with

Λ = aiΛi. Now, if A=. ai1 . . . aim is an arbitrary element of G+ then

Λm=. aimΛim · · · ai1Λi1=. AΛim · · ·Λi1 .

Hence Λm is divisible by each element A of G+ with L(A) ≤ m. In particular, a

finite set of elements always has a common multiple and thus by 4.1 a least common

multiple. This proves the equivalence of (i) and (ii).

If (ii), then (iv). Since to all B, C ∈ G+ there exists a common multiple, and

thus B′, C ′ ∈ G+ with BC ′=. CB
′. From this and cancellativity, 2.3, it follows by a

general theorem of Öre that G+ embeds in a group. Thence follows the injectivity

of G+ → G and also that each element A ∈ G can be represented in the form A =

C−1B or also B′C−1 with B,B′, C, C ′ ∈ G+. That C can moreover be chosen to be

central follows from the fact that — as shown above — to every C with L(C) ≤ m

there exists D ∈ G+ with Λm=. CD so that, therefore, C−1 = Λ−mD = DΛ−m.

[Ed: As an alternative to applying Öre’s condition we provide the following proof

of the injectivity of G+ → G when there exists a fundamental element ∆.

By (5.2) it is clear that ∆2 is a central element in G+. Let W , W ′ be positive

words such that W = W ′ in G. Then there is some sequence W1,W2, . . . ,Wk of

words in the letters of I and their inverses such that W ≡W1 = W2 = · · · = Wk ≡

W ′ where at each step Wi+1 is obtained from Wi either by a positive transformation

(cf 1.3.) or (so-called trivial) insertion or deletion of a subword aa−1 or a−1a for

2We denote elements of G+
M and their images in GM by the same letters.
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some letter a. Note that the number of inverse letters appearing in any word is

bounded by k.

Let C denote the central element ∆2 of G+. Then we may define positive words

Vi for i = 1, . . . , k such that Vi = CkWi as follows. Write Wi ≡ Ua−1U ′ for U a

positive word, a a letter. Then CU=. UC, so if we let Ca denote the unique element

of G+ such that Caa=. C, CWi = CUa−1U ′ = UCa−1U ′ = UCa−1U ′ = UCaU
′

where UCa is positive. Repeating this step for successive inverses in U ′ yields a

positive word V ′i equal in G to CrWi for some r ≤ k. Put Vi ≡ Ck−rV ′i . Essentially,

Vi is obtained from Wi by replacing each occurrence of a−1 with the word Ca, and

then attaching unused copies of C to the front.

Now we check that Vi=. Vi+1.

If Wi+1 differs from Wi by a positive transformation, then Wi+1 is Wi with

some positive subword U switched with a positive subword U ′, and so the same

transformation applied to Vi gives the word Vi+1, so they are positive equivalent.

If Wi+1 is obtained from Wi by insertion of aa−1 or a−1a Then Vi+1 ≡ CrUCaaV

or CrUaCaV for positive words U, V , where Vi ≡ Cr+1UV . By the centrality of C

and the fact that C=. aCa=. Caa, Vi and Vi+1 are positive equivalent.

If Wi+1 is obtained by a trivial deletion, then the proof is identical as above, but

with the roles of Wi+1 and Wi reversed.

Hence we have a sequence of words V1, V2, . . . , Vk such that each is positive

equivalent to its predecessor, so that V1 is positive equivalent to Vk. But V1 ≡ CkW

and Vk ≡ CkW ′ so by cancellativity, W is positive equivalent to W ′.

So G+ embeds in G. ]

Assuming (iv), (iii) follows trivially. And from (iii), (ii) follows easily. Since for

B, C ∈ G+ there exist B′, C ′ ∈ G+ with C−1B = B′C ′
−1

, and thus BC ′ = CB′

and consequently BC ′=. CB
′ so by 4.1 B and C have a least common multiple.

Thus 5.5 is proved. �

5.6. Let QFG+
M be the set of square free elements of G+

M . For the canonical

map QFG+
M −→ GM defined by composition of inclusion and the residue class map

it follows immediately from Theorem 3 of Tits in [6] that

QFG+
M −→ GM is bijective .

25



Theorem 5.6. Let M be a Coxeter-matrix. Then there exists a fundamental ele-

ment ∆ in G+
M if and only if GM is finite.

Proof. By Tits, GM is finite exactly when QFG+
M is finite. By 5.4 and 3.5 this is

the case if and only if ∆ exists. Since, if ∆ exists, by 5.4 QFG+
M consists of the

divisors of ∆. And if ∆ does not exist, by 3.5 there exists a sequence of infinitely

many distinct square free elements. �

5.7. By the length l(w) of an element w in a Coxeter group GM we mean the

minimum of the lengths L(W ) of all positive words W which represent w. The

image of a positive word W or an element W of G+
M in GM we denote by W . The

theorem of Tits already cited immediately implies the following:

The square free elements of G+
M are precisely those W with L(W ) = l(W )

[Ed: Proof. If an element is not square free, then it is represented by a word

W which contains a square. But this is clearly not a reduced word for the Coxeter

element W , and so l(W ) ≤ L(W )− 2 (the square cancels).

Conversely, suppose that W represents a square free element of G+
M . By defi-

nition of length there is a V ∈ G+
M such that V = W and L(W ) = l(V ) = l(W ).

Then by above V is square free. But V = W and hence by Tits theorem V=. W

and L(W ) = L(V ) = l(W ). � ]

Proposition 5.7. Let GM be finite. The following hold for the fundamental ele-

ment ∆ of G+
M :

(i) ∆ is the uniquely determined square free element of maximal length in G+
M .

(ii) There exists a uniquely determined element of maximal length in GM , namely

∆. The fundamental element ∆ is represented by the positive words W with

W = ∆ and L(W ) = l(∆).

Proof. (i) By 5.4, the elements of QFG+
M are the divisors of ∆. A proper divisor

W of ∆ clearly has L(W ) < L(∆). Thus ∆ is the unique square free element of

maximal length.

(ii) By the theorem of Tits and (i) there is also in GM only one unique element

of maximal length, namely ∆. A positive word with W = ∆ and L(W ) = l(∆) is

according to Tits square-free and it has maximal length, so by (i) it represents ∆.

That only such positive words can represent ∆ is clear.
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5.8. Let GM be a finite Coxeter group and for simplicity let the Coxeter system

(GM , I) be irreducible.

[Note: Bourbaki defines a Coxeter system (W,S) to be a group W and a set S of

elements of order 2 in W such that the following holds: For s, s′ in S, let m(s, s′)

be the order of ss′. Let I be the set of pairs (s, s′) such that m(s, s′) is finite. The

generating set S and relations (ss′)m(s,s′) = 1 for (s, s′) in I form a presentation of

the group W .

A Coxeter system (W,S) is irreducible if the associated Coxeter graph Γ is

connected and non empty.

Note also that Bourbaki, Groupes et Algèbres de Lie, IV §1 ex 9 gives an example

of a group W and two subsets S and s′ of elements of order 2 such that (W,S)

and (W,S′) are non-isomorphic Coxeter systems, one of which is irreducible, the

other reducible. Hence the notion of irreducibility depends on S, not just on the

underlying group W . Bourbaki says: when (W,S) is a Coxeter system, and also

says, by abuse of language, that W is a Coxeter group. However one can check

that, in the example cited, the two systems do have distinct Artin groups, which

may be distinguished by their centres (see §7). ]

The existence of the unique word ∆ of maximal length in G and its properties

are well known (see [1], Bourbaki, Groupes et Algr̀bres de Lie, IV, §1, ex. 22; V,

§4, ex. 2 and 3; V, §6, ex. 2). For example we know that the length l(∆) is equal

to the number of reflections of G and thus

L(∆) =
nh

2

where h is the Coxeter number and n the rank, i.e. the cardinality of the generating

system I. Explicit representations of ∆ by suitable words are also known and from

this we now obtain quite simple corresponding expressions for ∆.

Let M be an irreducible Coxeter system of finite type over I. A pair (I ′, I ′′) of

subsets of I is a decomposition of I if I is the disjoint union of I ′ and I ′′ and mij ≤ 2

for all i, j ∈ I ′ and all i, j ∈ I ′′. Obviously there are exactly two decompositions of

I which are mapped into each other by interchanging I ′ and I ′′.

[Ed: Proof. By Bourbaki, V §4 number 8 corollary to proposition 8, or from

the classification of finite Coxeter groups we know that if (W,S) is irreducible and
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finite then its graph is a tree. So the statement about decompositions boils down

to the following statement about trees: if Γ is a tree with a finite set S of vertices

then there exists a unique partition (S′, S′′) (up to interchange of S′ and S′′), of S

into two sets such that no two elements of S′ and no two elements of S′′ are joined

by an edge.

We prove this by induction on the number of vertices of Γ. For a graph on

one vertex a it is clear that the only suitable partitions are ({a}, φ) and (φ, {a}).

Now let Γ be an arbitrary tree with a finite set of vertices and let a be a terminal

vertex. Then applying the assumption to the subgraph of Γ whose vertices are

those vertices n 6= a of Γ we see that there exists a unique partition (S′1, S
′′
l ) (up

to interchange of S′1, S
′′
1 ) of S \ {a} such that no two elements of S′1 and no two

elements of S′′1 are joined by an edge of Γ′. Now, by definition of a tree, a is joined

to exactly one vertex b of Γ′. Without loss of generality let b ∈ S′1. Then it is easy

to see that (S′1, S
′′
1 ∪ {a}) is a partition of S satisfying the above conditions and

that it is unique up to interchanging S′1 and S′′1 ∪ {a}. � ]

Definition. Let M be a Coxeter matrix over I and (I ′, I ′′) a decomposition of I.

The following products of generators in G+
M are associated to the decomposition:

Π′ =.
∏
i∈I′

ai, Π′′ =.
∏
i∈I′′

ai, Π =. Π′Π′′.

Lemma 5.8. Let M be a Coxeter-matrix over I, irreducible and of finite type. Let

Π′,Π′′ and Π be the products of generators of G+
M defined by a decomposition of I

and let h be the Coxeter number. Then:

∆ =. Πh/2 if h is even,

∆ =. Πh−1/2Π′ =. Π′′Πh−1/2 if h is odd,

∆2 =. Πh always.

Proof. According to Bourbaki, V §6 ex 2 (6) the corresponding equations for

∆,Π,Π
′
,Π
′′

hold. Since, in addition, the elements on the right hand sides of the

equations have length nh/2 the statement follows from Proposition 5.7 (ii).

Remark. The Coxeter number h is odd only for types A2k and I2(2q+ 1). When

h is even, it is by no means necessary for ∆=. P
h/2 to hold where P is a product
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of the generators in an arbitrary order. In any case, the following result show that

this dependence on the order plays a role when ∆ is not central in G+, thus in the

irreducible cases of types An for n ≥ 2, D2k+1, E6 and I2(2q+ 1). [ See end of §7.]

Proposition. Let a1, · · · , an be the generating letters for the Artin semigroup G+
M

of finite type. Then:

(i) For the product P=. ai1 · · · ain of the generators in an arbitrary order ∆2=. P
h.

(ii) If ∆ is central in G+
M then in fact for the product P of the generators in an

arbitrary order, ∆=. P
h/2.

(iii) If ∆ is not central and h is even, there is an ordering of the generators such

that, for the product of the generators in this order ∆ 6= Ph/2.

Proof. By [1] V §6.1 Lemma 1, all products P of generators in GM are conjugate to

one another. Thus Ph is conjugate to Πh and Ph/2 is conjugate to Πh/2 if h is even.

If ∆ is central and h is even then ∆ = Πh/2 is central and hence Ph/2 = Πh/2 in GM

and thus Ph/2=. Πh/2=. ∆ in G+
M . Likewise it follows immediately that Ph=. Πh=. ∆2

since ∆2=. Πh is always central. Hence (i) and (ii) are shown. [Note: we are using

the fact that G+
M −→ GM is injective here. ]

(iii) Suppose ∆ is not central, i.e. σ 6= id and let h be even. If for all products

P=. ai1 · · · ain we were to have the equation Ph/2=. ∆ then this also would be true for

the product ainPa
−1
in

which arises from it by cyclic permutation of the factors. Now,

if P were such a product with σ(ain) 6= ain then we would have ainP
h/2a−1in =. ∆

and thus ain∆=. ∆ain in contradiction to ain∆=. ∆σ(ain). �
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§6. The Word Problem

In this section we solve the word problem first for Artin semigroups of finite type

and then for Artin groups of finite type.

6.1. Let M be a Coxeter matrix on I. For each positive word W we define a subset

I(W ) of I by

I(W ) = {i ∈ I such that ai|W} .

For W=. W
′ it follows naturally that I(W ) = I(W ′).

For each subset J of I for which a fundamental element exists, we choose to

represent this by the fundamental word ∆J as we did in 5.8. [Ed: Implicitly we

have chosen an ordering of the elements of J , and the words Π,Π′,Π′′ from (5.8)

are products of letters in that order. ] Now we can define the normal form for

positive words.

Definition. A positive word W is in normal form relative to M when

W ≡ ∆I1∆I2 · · ·∆Ik

where k ≥ 0 and the Ij are nonempty subsets of I such that, for j = 1, 2, . . . , k, we

have

Ij = I(∆Ij∆Ij+1
. . .∆Ik) .

Lemma 6.1. For positive words in normal form we have

∆I1 . . .∆Ik =. ∆J1 · · ·∆Jl

exactly when k = l and Ij = Jj for j = 1, 2, . . . k.

Proof. The proof is by induction on the length of the words. For length 0 the

statement is trivial.

Let V ≡ ∆I1 · · ·∆Ik and W ≡ ∆J1 · · ·∆Jl be of length less than or equal to

λ and assume the statement of the lemma for words of length less than λ. It

follows from V=. W that I(V ) = I(W ) and thus I1 = J1. From 2.3 it follows

that ∆I2 · · ·∆Ik=. ∆J2 · · ·∆Jl and hence that l = k and Ij = Jj by the induction

assumption. �
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6.2. We shall algorithmically rewrite each positive word W into a positive equiva-

lent word N+(W ) which is in normal form.

For the empty word W we define N+(W ) ≡W . For words W of positive length

N+(W ) is recursively defined by

N+(W ) ≡ ∆I(W )N
+(W : ∆I(W )).

Lemma 6.2. (i) N+(W )=. W.

(ii) N+(W ) is in normal form.

Proof. (i) By induction on word length one proves that

W =. ∆I(W ) · (W : ∆I(W )) =. ∆I(W )N
+(W : ∆I(W )) .

(ii) This statement is also proved by an easy induction. By the induction as-

sumption N+(W : ∆I(W )) is in normal form and since, by (i), I(W ) = I(N+(W ))

it follows that N+(W ) is in normal form.

�

Definition. N+(W ) is the positive normal form of W .

6.3 The following theorem solves the word problem for all Artin semigroups such

that the positive normal form is computable.

Theorem 6.3. V=. W if and only if N+(V ) ≡ N+(W ). In other words: positive

words represent exactly the same element of the Artin semigroup G+
M when they

have the same normal form with respect to M .

Proof. By 6.2 (i) V=. W if and only if N+(V )=. N
+(W ). By 6.1 and 6.2 (ii) this

happens exactly when N+(V ) ≡ N+(W ). �

6.4. Let M be a Coxeter matrix on I and suppose the Artin group GM is of finite

type.

Definition. A word in the free group FI is in normal form if it is equal in the free

group to a word

∆m
I ∆I1 · · ·∆Ik

where m is an integer, k is a natural number, k ≥ 0, the Ij are subsets of I and the

positive word ∆I1 · · ·∆Ik is in normal form. [Ed: Here it is assumed that I1 6= I.]
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Lemma 6.4. For words in normal form we have

∆m
I ∆I1 · · ·∆Ik = ∆n

I∆J1 · · ·∆Jl

if and only if m = n and k = l and Ij = Jj for j = 1, · · · , k.

Proof. Let m ≥ n. Then by 5.5

∆m−n
I ∆I1 · · ·∆Ik =. ∆J1 · · ·∆Jl

and the result now follows from 6.1. �

6.5. Now we define a computable normal form N(W ) for each word W . By 5.5, for

each W there exists an integer m and a positive word W ′ such that W = ∆m
I W

′.

We define the exponent of W to be the maximum m(W ) of all such m. The integer

m(W ) is computable.

There is a positive word W+ with

W = ∆
m(W )
I W+ .

Such a W+ is computable by the division algorithm 3.6 and the method described in

5.5. We note that with this definition W+ is defined only up to positive equivalence,

but by 6.3 N+(W+) is uniquely defined. Thus we can define

N(W ) ≡ ∆
m(W )
I N+(W+) .

Lemma 6.5. (i) N(W ) = W in GM .

(ii) N(W ) is in normal form.

Proof. (i) This statement follows trivially from 6.2 (i).

(ii) To prove that (ii) is satisfied one observes that by 5.2 and 6.2 (ii) one need

only show that I(N+(W+)) 6= I. This is clear from the maximality of m(W ). �

Definition. N(W ) is the normal form of W .

6.6. The following theorem solves the word problem for Artin groups of finite type.

Theorem 6.6. In an Artin group of finite type two words V and W represent the

same element precisely when their normal forms are such that N(V ) ≡ N(W ).

Proof. The theorem follows trivially from 6.4 and 6.5.
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§7. The Centre

In this section we determine the centre of all the Artin semigroups and the centre

of the Artin groups of finite type.

7.1. Let M be a Coxeter matrix over I and I = ∪νIν the expression of I as a

disjoint union corresponding to the decomposition of the Coxeter graph ΓM into

connected components. If Mν is the restriction of M to a Coxeter matrix over Iν ,

then G+
M (resp. GM ) is isomorphic to the direct sum of the G+

Mν
(resp. GMν

), and

the centre of each direct sum is isomorphic to the direct sum of the centres of the

summands. It suffices therefore to restrict our attention to the case where M is

irreducible, that is where ΓM is connected. In what follows there shall arise the

two distinct cases of whether M is of finite type, that is GM is finite, or not.

Theorem 7.1. Let M be an irreducible Coxeter matrix. Then we have:

(i) If M is of infinite type, the centre of the Artin semigroup G+
M is trivial.

(ii) If M is of finite type, the centre of G+
M is an infinite cyclic semigroup. It

is generated by the fundamental element ∆, if the associated involution σ is

trivial, and otherwise by ∆2.

Proof. An element Z in a semigroup (resp. group) with generators ai, i ∈ I, shall

be called quasicentral when there is, for each i ∈ I, a j ∈ I such that aiZ = Zaj .

The quasicentral elements form a semigroup (resp. group), the quasicentre, in which

the centre is naturally embedded.

Now suppose that Z is a non-trivial element of the quasicentre of G+
M , and

a a letter which divides Z. Then for each letter b with mab > 2, it is true that

baZ=. Zb
′a′=. a(Z : a)b′a′ for appropriate letters a′, b′. Hence, by 2.1, baZ is divisible

by 〈ba〉mab , and Z is therefore divisible by b. It follows by connectedness of ΓM

that Z is divisible by every letter, and hence by 4.1 that there exists a fundamental

element ∆ and it divides Z. By 5.2, (Z : ∆) is also quasicentral, and it has strictly

smaller length than Z. By induction on the length, there exists a natural number

r such that Z=. ∆r. This show that the quasicentre of G+
M is trivial for the infinite

type, and for the finite type is infinite cyclic, generated by ∆. Thus we have proven

(i) and part of (ii). The rest follows easily from 5.2, as σ = id exactly when ∆ is

central, and ∆2 is always central since σ2 = id. �
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7.2. From 7.1 we obtain the following description of the centres of the Artin

groups of finite type.

Theorem 7.2. Let M be an irreducible Coxeter matrix of finite type over I. Then

the centre of the Artin group GM is infinite cyclic. It is generated by the fundamen-

tal element ∆ when the associated involution σ is the identity on I, and otherwise

by ∆2.

For the generating element of the centre we have ∆ = Πh/2, resp. ∆2 = Πh,

where h is the Coxeter number and Π is the product of the generating letters of GM

in any particular order.

Proof. Let Z = ∆m(z)Z+ be quasicentral. As ∆ is quasicentral, then Z+ is also

quasicentral in GM , hence also in G+
M . Therefore, by 7.1, the element Z+ is trivial,

and the quasicentre of GM is infinite cyclic and generated by ∆. The rest of the

argument follows from 5.2, 5.5 and 5.8. �

By explicitly calculating each case under the classification into types An, Bn, Cn,

Dn, E6, E7, E8, F4, G2, H3, H4 and I2(p) the following may be shown, either by

5.8 or by well-known results about the longest element in GM (the Coxeter group).

Corollary. In the irreducible case the involution σ is non-trivial only for the fol-

lowing types: An for n ≥ 2, D2k+1, E6 and I2(2q + 1).

§8. The Conjugation Problem

In this section we solve the conjugation problem for all Artin groups GM of finite

type.

Two words V and W are called conjugate when there exists a word A such that

V = A−1WA and we denote this by V ∼ W . The conjugation problem consists of

giving an algorithm for deciding whether any two given words are conjugate. In our

case this problem can easily be reduced to the simpler problem of checking whether

any two positive words are conjugate. Here we give a method with which one can

calculate, for every positive word W , the finite set of all positive words which are

conjugate to W . With this the conjugation problem is clearly solved.
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8.1 When two positive words V and W are conjugate, there exists a word A

such that AV = WA. Since by 5.5 there exist a positive word B and a central word

C such that A = BC−1, then also BV=. WB. This proves the following lemma.

Lemma 8.1. Positive words V and W are conjugate precisely when there is a

positive word A such that

AV =. WA

8.2. Every positive word is positive equivalent to the product of square free

words. This approaches the goal of creating the positive word A−1WA conjugate

to the positive word W , in which one conjugates successively by the square-free

factors of A, and in such a manner that one always obtains positive words. By

considering 8.1 one arrives at the following construction.

For every finite set X of positive words define the set X ′ of positive words by

X ′ = {V | AV =. WA with W ∈ X and A square free}.

Because this set is finite, one can iterate the construction and obtain the sets

X(k) = (X(k−1))′.

The sets X(k) of positive words are calculable. Since by 5.4, for GM of finite type

there are only finitely many square free words A, namely divisors of the fundamental

word ∆, and these are calculable using the division algorithm. Furthermore the

division algorithm decides for which square free words A the word WA is left

divisible, and the division algorithm 3.6 gives us the quotient (W ·A) : A. Finally, by

the solution to the word problem in 6.3, all positive words V such that V=. (WA) : A

are calculable, that is, all V such that AV=. WA. Hence X ′ is calculable, and so

too are X(k).

Let l(X) be the maximum of the lengths of words in X. Then it is clear that

l(X(k)) = l(X). [Ed: Clearly X(i) ⊆ X(i+1), by putting A ≡ 1, and for V ∈ X(i+1),

l(V ) = l(W ) for some W ∈ X(i).] If we let k(l) be the number of positive words of

length ≤ l then X(k) has at most k(l(X)) elements. Because X(k) ⊆ X(k+1), then

eventually, for k = k(l(X)), X(k) = X(k+1). [Ed: Note that once X(i) = X(i+1)

then X(i) = X(j) for all j > i.] Hence

X(k(l(X))) = ∪kX(k) .
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Definition. X∼ = X(k(l(X))).

So X∼ is the smallest set of positive words containing both X and, for every element

W ∈ X∼, all other positive words V of the form V = A−1WA for some square free

word A. The set X∼ is calculable.

Lemma 8.2. Let X be a finite set of positive words. Then the finite set X∼ is

calculable and

X∼ = {V | V ∼W with W ∈ X}

Proof. By 8.1 it suffices to show, by induction on the length of A, that for positive

words V and A with AV=. WA for some W ∈ X, that V is also an element of X∼.

[Ed: It is clear that X∼ ⊆ {V | V ∼ W with W ∈ X} . One must establish the

reverse inclusion. ]

Let A=. BC where B is a square free divisor of A of maximal length. We claim

that B is a left divisor of WB. When we have proved this we are finished because

then WB=. BU with U ∈ X∼ and BCV =. WBC =. BUC, so CV =. UC and by

induction hypothesis V ∈ (X∼)∼ = X∼.

To prove the left divisibility of WB by B:

For B square free, by 5.1 and 5.4 there exists a positive word D with DB =. ∆.

Then DWBC=. DBCV=. ∆CV , so that DWBC is divisible by ∆. We claim that

indeed DWB is divisible on the right by every letter a and thus by ∆. Otherwise

by 5.3 we have that C is left divisible by a and by 3.4 Ba is square free. Both

together contradict the maximality of the length of B. So there exists a positive

word U with DWB=. ∆U , that is with WB=. BU , which is what was to be shown.

�

8.3. The result of the previous section contains the solution to the conjugation

problem.

Theorem 8.3. Let GM be an Artin group of finite type. Let ∆ be the fundamental

word for GM . Then the following solves the conjugation problem.

(i) Let V and W be arbitrary words. For their exponents take m(V ) ≥ m(W ).

Let V = ∆m(V )V + and W = ∆m(W )W+ with V + and W+ positive words.
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Then V and W are conjugate when

W+ ∼ ∆m(V )−m(W )V +, if ∆ is central or m(W ) even,

∆W+ ∼ ∆m(V )−m(W )+1V +, if ∆ is not central and m(W ) odd.

(ii) If V and W are positive words, then V is conjugate to W when V is an

element of the calculable set of positive words W∼.

Proof. The statement (i) follows in a trivial way from the centrality of ∆2, and (ii)

follows trivially from 8.2. �

Note added in proof. In the work which was cited in the introduction, Deligne

also determined the centre and solved the word and the conjugation problems for

the Artin groups of finite type. As we have, he utilises the ideas of Garside but in a

geometric formulation which goes back to Tits. We therefore after some consider-

ation deem the publication of our simple purely combinatorial solution defensible.
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math. 17, 273-302(1972).

5. Garside,F.A.: The braid group and other groups. Quart. J. Math. Oxford,

2 Ser. 20, 235-254(1969).

6. Tits,J.: Le problème des mots dans les groupes de Coxeter. Istituto Nazionale

di Alta Matematica, Symposia Mathematica, Vol.1 175-185(1968).

37


