W-algebras notes

Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia aram@unimelb.edu.au

August 31, 2016

Contents

1	Introduction	1
2	Vertex algebras, associative filtered algebras and Poisson algebras	1
	2.1 Vertex algebras	1
	2.2 The enveloping algebra $U(V)$ of V	3
	2.3 The Poisson algebra $Ps(V)$ of V	4
	2.4 Poisson algebras and modules	5
	2.5 Associative filtered algebras	6
3	The vertex algebra $V^k(\mathfrak{g})$	6
	3.1 The associative filtered algebra of $V^k(\mathfrak{g})$	7
	3.2 The Poisson algebra of $V^k(\mathfrak{g})$	8
	3.3 $V^k(\mathfrak{g})$ -modules	8

1 Introduction

This is mostly lifted from Arakawa's paper [Ar].

2 Vertex algebras, associative filtered algebras and Poisson algebras

2.1 Vertex algebras

A vertex algebra is a vector space V with a linear map

$$V \longrightarrow (\operatorname{End}(V))[[z, z^{-1}]]$$
$$a \longmapsto a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$$

and elements $\mathbf{1} \in V$ and $T \in \text{End}(V)$ such that

- (a) $\mathbf{1}(z) = \mathrm{id}_V$,
- (b) If $a, b \in V$ and $a_{(-1)}\mathbf{1} = a$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $a_{(n)}b = 0$,
- (c) If $a \in V$ then $(Ta)(z) = [T, a(z)] = \frac{d}{dz}a(z)$,
- (d) If $a, b \in V$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then

$$(z - w)^n[a(z), b(w)] = 0, \qquad \text{in End}(V).$$

A conformal vertex algebra is a vertex algebra V with

$$\omega \in V$$
 such that if $\omega(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$

then there exists $c_V \in \mathbb{C}$ such that

(e) If
$$m, n \in \mathbb{Z}$$
 then $[L_m, L_n] = (m-n)L_{m+n} + \frac{(m^3 - m)}{12}c_V\delta_{m, -n}$,

- (f) $L_{-1} = T$, and
- (g) L_0 is diagonalizable on V.

A graded conformal vertex algebra is a conformal vertex algebra V with

$$V = \bigoplus_{d \in \frac{1}{2}\mathbb{Z}} V_d, \quad \text{where} \quad V_d = \{a \in V \mid L_0 a = da\}.$$

Notation:

- The map $V \to \operatorname{End}(V)[[z, z^{-1}]]$ is the state-field correspondence.
- A field is an element of $\{a(z) \mid a \in V\}$.
- A mode is an element of $\{a_{(n)} \mid a \in V, n \in \mathbb{Z}\}$.
- The constant c_V is the *central charge*.
- The degree of a homogenous element $a \in V$ is the conformal weight of a.

Let V be a vertex algebra. A V-module is a vector space M with a linear map

$$V \longrightarrow (\operatorname{End}(M))[[z, z^{-1}]]$$
$$a \longmapsto a^{M}(z) = \sum_{n \in \mathbb{Z}} a^{M}_{(n)} z^{-n-1}$$

such that

- (a) $\mathbf{1}^M(z) = \mathrm{id}_M$,
- (b) If $a \in V$ and $m \in M$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{\geq \ell}$ then $a_{(n)}^M m = 0$.

(c) If $p, q, r \in \mathbb{Z}$ and $a, b, c \in \mathbb{Z}$ then, in $\operatorname{End}(M)$,

$$\sum_{i \in \mathbb{Z}_{\geq 0}} {\binom{p}{i}} \left(a_{(r+i)} b \right)_{(p+q+i)}^M = \sum_{i \in \mathbb{Z}_{> 0}} (-1)^i {\binom{r}{i}} \left(a_{(p+r-i)}^M b_{(q+i)}^M - (-1)^r b_{(q+r+i)}^M a_{(p+i)}^M \right).$$

Proposition 2.1. Let V be a vertex algebra.

- (a) The category of V-modules is an abelian category.
- (b) V is a V-module (the adjoint module).

Proof. Proof idea for (b): Show that if $a, b \in V$ and $p, q, r \in \mathbb{Z}$ then, in End(M),

$$\sum_{i \in \mathbb{Z}_{\geq 0}} \binom{p}{i} (a_{(r+i)}b)_{(p+q+i)} = \sum_{i \in \mathbb{Z}_{>0}} (-1)^i \binom{r}{i} (a_{(p+r-i)}b_{(q+i)} - (-1)^r b_{(q+r+i)}a_{(p+i)}).$$

Let V be a graded conformal vertex algebra.

• V is rational, or (representation) semisimple, if every V-module is completely reducible.

2.2 The enveloping algebra U(V) of V

Let V be a graded conformal vertex algebra.

$$V = \bigoplus_{d \in \frac{1}{2}\mathbb{Z}} V_d, \quad \text{where} \quad V_d = \{a \in V \mid L_0 a = da\}.$$

For homogeneous $a, b \in V$ define

$$a \circ b = \sum_{i \in \mathbb{Z}_{\geq 0}} {\operatorname{wt}(a) \choose i} a_{(i-2)} b, \quad \text{and} \\ a * b = \sum_{i \in \mathbb{Z}_{\geq 0}} {\operatorname{wt}(a) \choose i} a_{(i-1)} b.$$

The enveloping algebra of V, or $(L_0$ -twisted) Zhu's algebra of V is

$$U(V) = \frac{V}{O(V)}$$
, where $O(V) = \mathbb{C}$ -span $\{a \circ b \mid \text{homogeneous } a, b \in V\}$,

with product

$$\begin{array}{cccc} U(V)\otimes U(V) &\longrightarrow & U(V) \\ (a,b) &\longmapsto & a*b. \end{array}$$

Define a filtration on U(V) by

$$F_d U(V) = (\text{image of } V_{\leq d} \text{ in } U(V)).$$

Proposition 2.2. The map $\pi_P \colon Ps(V) \to gr_F U(V)$ given by

$$\pi_P(a + C_2(V)_p) = (a + (O(V) \cap V_{\le p})) + V_{\le (p - \frac{1}{2})}, \quad for \ a \in \operatorname{Ps}(V)_p,$$

is a sujective homomorphism of graded Poisson algebras.

Let V be a vertex algebra and let M be a graded V-module. For homogeneous $a \in V$ and $m \in M$ define

$$a \circ m = \sum_{i \in \mathbb{Z}_{\geq 0}} {\operatorname{wt}(a) \choose i} a_{(i-2)}^M m.$$

Let

 $O(M) = \mathbb{C}$ -span $\{a \circ m \mid \text{homogeneous } a \in V \text{ and } m \in M\}.$

Define

$$U(M) = \frac{M}{O(M)},$$

with U(V)-bimodule structure given by

$$a * m = \sum_{i \in \mathbb{Z}_{\geq 0}} \binom{\operatorname{wt}(a)}{i} a_{(i-1)}^M \qquad \text{and} \qquad m * a = \sum_{i \in \mathbb{Z}_{\geq 0}} \binom{\operatorname{wt}(a) - 1}{i} a_{(i-1)}^M m.$$

Theorem 2.3. The functor

$$\begin{array}{cccc} V \text{-}Mod & \longrightarrow & U(V) \text{-}biMod \\ M & \longmapsto & U(M) \end{array} \quad is \ a \ right \ exact \ functor. \end{array}$$

2.3 The Poisson algebra Ps(V) of V

Let V be a graded conformal vertex algebra

$$V = \bigoplus_{d \in \frac{1}{2}\mathbb{Z}} V_d, \quad \text{where} \quad V_d = \{ v \in V \mid L_0 v = dv \},$$

Let

$$C_2(V) = \mathbb{C}\operatorname{-span}\{a_{(-2)}v \mid v \in V\}.$$

The Poisson algebra of V, or Zhu's C_2 -algebra of V, is

$$Ps(V) = \frac{V}{C_2(V)} \quad \text{with} \quad \overline{a} \cdot \overline{b} = \overline{a_{(-1)}b} \quad \text{and} \quad \{\overline{a}, \overline{b}\} = \overline{a_{(0)}b}.$$

and grading

$$\operatorname{Ps}(V) = \bigoplus_{d \in \frac{1}{2}\mathbb{Z}} \operatorname{Ps}(V)_d$$
, where $\operatorname{Ps}(V)_d = (\text{image of } V_d \text{ in } \operatorname{Ps}(V)).$

Proposition 2.4. Let V be a graded conformal vertex algebra. Then Ps(V) is a graded Poisson algebra.

Let V be a graded conformal vertex algebra.

- V is finitely strongly generated if Ps(V) is a finitely generated ring.
- V is C_2 -cofinite, or lisse, if Ps(V) is a finite dmensional.

Proposition 2.5. Let V be a graded conformal vertex algebra and let M be a graded V-module. Define

$$C_2(M) = \mathbb{C}\operatorname{-span}\{a^M_{(-2)}m \mid a \in V, m \in M\}.$$

Then

$$\operatorname{Ps}(M) = \frac{M}{C_2(M)}, \quad \text{with} \quad \overline{a} \cdot \overline{m} = \overline{a_{(-1)}^M m} \quad \text{and} \quad \{\overline{a}, \overline{m}\} = \overline{a_{(0)}^M m}.$$

is a Poisson module for Ps(V).

2.4 Poisson algebras and modules

A Poisson algebra is a commutative \mathbb{C} -algebra R with a bilinear map

$$\begin{array}{rccc} R \otimes R & \longrightarrow & R \\ (r_1, r_2) & \longmapsto & \{r_1, r_2\} \end{array} \quad \text{ such that } \end{array}$$

- (a) If $a, b \in R$ then $\{a, b\} = -\{b, a\},\$
- (b) If $a, b, c \in R$ then $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$,
- (c) If $a, b, c \in R$ then $\{a, bc\} = \{a, b\}c + b\{a, c\}$.

Let R be a Poisson algebra (really we should use graded Poisson superalgebras). A *Poisson* module for R is an R-module M with a bilinear map

$$\begin{array}{cccc} R \otimes M & \longrightarrow & M \\ (r,m) & \longmapsto & \{r,m\} \end{array} \quad \text{such that} \end{array}$$

- (a) If $r_1, r_2 \in R$ then $\{r_1, r_2\}m = r_1r_2m r_2r_1m$,
- (b) If $r_1, r_2 \in R$ and $m \in M$ then $\{r_1, r_2m\} = \{r_1, r_2\}m + r_2\{r_1, m\}$.
- (c) If $r_1, r_2 \in R$ and $M \in M$ then $\{r_1r_2, m\} = r_1\{r_2, m\} + r_2\{r_1, m\}$.

Notation:

• *R*-PMod is the category of Poisson modules for *R*.

2.5 Associative filtered algebras

An associative filtered algebra is a \mathbb{C} -algebra U with a filtration

$$\mathbb{C} = U_0 \subseteq U_1 \subseteq \cdots$$
 such that $\left(\bigcup_{i \in \mathbb{Z}_{\geq 0}} U_i\right) = U$ and $U_i U_j \subseteq U_{i+j}$.

WHAT WE REALLY NEED IS INCREASING EXHAUSTIVE SEPARATED FILTRATION. WHAT DOES THIS MEAN?? Notation:

• A-biMod is the category of A-bimodules.

Let A be an associative filtered algebra and let $M \in A$ -biMod. A compatible filtration is a $\frac{1}{2}\mathbb{Z}$ -filtration on M such that if $p, q \in \frac{1}{2}\mathbb{Z}$ then

$$(F_pU) \cdot (F_qM) \subseteq F_{p+q}M, \quad (F_qM) \cdot (F_pA) \subseteq F_{p+q}M, \text{ and } [F_pA, F_qM] \subseteq F_{p+q-1}M.$$

Proposition 2.6. Let U be an associative filtered algebra.

(a) Then

$$\operatorname{gr}_F U = \bigoplus_{p \in \frac{1}{2}\mathbb{Z}} \frac{F_p U}{F_{p-\frac{1}{2}} U} \qquad \text{with} \quad \{\overline{a}, \overline{b}\} = \overline{ab - ba},$$

is a graded Poisson algebra.

(b) Let $M \in A$ -biMod with a compatible filtration. Then

$$\mathrm{gr}_F M = \bigoplus_{p \in \frac{1}{2}\mathbb{Z}} \left(\frac{F_p M}{F_{p-\frac{1}{2}} M} \right) \qquad \text{is a graded Poisson module for } \mathrm{gr}_F U$$

3 The vertex algebra $V^k(\mathfrak{g})$

Let \mathfrak{g} be a finite dimensional simple Lie algebra with nondegenerate ad-invariant inner product $(|): \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{C}$. Let

$$\hat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K, \quad \text{with} \quad [K, xt^m] = 0, \quad \text{and}$$
$$[xt^m, yt^n] = [x, y]t^{m+n} + m(x|y)\delta_{m, -n}K,$$

for $x, y \in \mathfrak{g}$ and $m, n \in \mathbb{Z}$. Let $k \in \mathbb{C}$. The universal affine vertex algebra associated to \mathfrak{g} at level k is the vector space

$$V^{k}(\mathfrak{g}) = U\hat{g} \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_{k},$$

where $\mathbb{C}_k = \mathbb{C}$ -span $\{v\}$ with Kv = kv and $xt^m v = 0$ for $x \in \mathfrak{g}$ and $m \in \mathbb{Z}$, and $V^k(\mathfrak{g})$ has vertex algebra structure determined by

$$\mathbf{1} = v, \qquad (xt^{-1}\mathbf{1})(z) = \sum_{n \in \mathbb{Z}} (xt^n) z^{-n-1}, \text{ for } x \in \mathfrak{g},$$

and, if $\{X_1, \ldots, X_\ell\}$ is a basis of \mathfrak{g} and $\{X^1, \ldots, X^n\}$ is the dual basis of \mathfrak{g} with respect to (|) then

$$\omega = \frac{1}{2(k+h^{\vee})} \sum_{i=1}^{\ell} (X_i t^{-1}) (X^i t^{-1}) \mathbf{1}.$$
 (the Sugawara vector)

3.1 The associative filtered algebra of $V^k(\mathfrak{g})$

Let $U\mathfrak{g}$ be the enveloping algebra of \mathfrak{g} . The *PBW filtration on* $U\mathfrak{g}$ is given by

$$f_{-1}U\mathfrak{g} = 0, \quad F_0U\mathfrak{g} = \mathbb{C}, \quad F_pU\mathfrak{g} = \mathfrak{g} \cdot (F_{p-1}U\mathfrak{g}) + (F_{p-1}\mathfrak{g})$$

The Poincaré-Birkhoff-Witt theorem gives that

$$\operatorname{gr}_F U\mathfrak{g} \cong S(\mathfrak{g}) = \mathbb{C}[\mathfrak{g}^*].$$

Let f be a nilpotent element of \mathfrak{g} . The Kazhdan filtration of $U\mathfrak{g}$ with respect to f is given by

$$K_p U \mathfrak{g} = \sum_{i-j \leq p} F_i U \mathfrak{g}[j], \quad \text{where} \quad F_p U \mathfrak{g}[j] = \{ u \in F_p U \mathfrak{g} \mid \mathrm{ad}(h)(u) = 2ju \}.$$

Proposition 3.1. Let f be a nilpotent element of \mathfrak{g} and let

$$K_0 U \mathfrak{g} \subseteq K_1 U \mathfrak{g} \subseteq K_2 U \mathfrak{g} \subseteq \cdots$$
 be the Kazhdan filtration of $U \mathfrak{g}$

with respect to f. Then

$$\operatorname{gr}_{K} U\mathfrak{g} \cong S(\mathfrak{g}) = \mathbb{C}[\mathfrak{g}^{*}].$$

IS THE PBW FILTRATION THE KAZHDAN FILTRATION OF $U\mathfrak{g}$ with respect to the regular nilpotent????

Proposition 3.2. (Frenkel-Zhu) (equation (25) in Arakawa)

- (a) $U(V^k(\mathfrak{g})) \cong U\mathfrak{g}$.
- (b) The filtration on $U(V^k(\mathfrak{g}))$ given by

$$F_p(U(V^k(\mathfrak{g})) = (image \ of \ V^k(\mathfrak{g})_{\leq p} \ in \ U(V^k(\mathfrak{g})))$$

corresponds to the PBW??? or Kazhdan??? filtration on Ug.

For a $U\mathfrak{g}$ -bimodule M define ad: $\mathfrak{g} \to \operatorname{End}(M)$ by

 $\operatorname{ad}(x)m = xm - mx, \quad \text{for } x \in \mathfrak{g} \text{ and } m \in M.$

The action of \mathfrak{g} by ad is the *adjoint action of* \mathfrak{g} *on* M.

- $U\mathfrak{g}$ -biMod is the category of $U\mathfrak{g}$ -bimodules.
- \mathcal{HC} is the full subcategory of $U\mathfrak{g}$ -biMod consisting of M such that

the ad action of \mathfrak{g} on M is locally finite.

Proposition 3.3.

(a) $U: \mathrm{KL}_k \to \mathcal{HC}$ is a right exact functor.

(b) If $M \in \mathrm{KL}_k$ and M is finitely generated then U(M) is a finitely generated $U\mathfrak{g}$ module.

Proposition 3.4.

(a) $V^k(\mathfrak{g}) \in \mathrm{KL}_k^{\Delta}$.

(b) $\operatorname{KL}_{k}^{\Delta} = \{ m \in \operatorname{KL}_{k} \mid M \text{ is a free } U(\mathfrak{g}[t^{-1}]t^{-1}) \text{-module of finite rank} \}.$

(c) If $M \in \mathrm{KL}_k^{\Delta}$ then $\mathrm{Ps}(M) \cong \mathrm{gr}_F U(M)$.

(d) $U \colon \mathrm{KL}_k^\Delta \to \mathcal{HC}$ is an exact functor.

3.2 The Poisson algebra of $V^k(\mathfrak{g})$

The commutative algebra $\mathbb{C}[\mathfrak{g}^*] = S(\mathfrak{g})$ is a Poisson algebra with the

Kirillov-Kostant Poisson bracket.

Proposition 3.5.

- (a) $C_2(V^k(\mathfrak{g})) = \mathfrak{g}[t^{-1}]t^{-2}V^k(\mathfrak{g}).$
- (b) The map

$$\Phi \colon \mathbb{C}[\mathfrak{g}^*] \to \operatorname{Ps}(V^k(\mathfrak{g})) \qquad determined \ by \qquad \Phi(x) = \overline{(xt^{-1})\mathbf{1}} \ for \ x \in \mathfrak{g},$$

is an isomorphism of Poisson algebras.

A $\mathbb{C}[\mathfrak{g}^*]$ -Poisson module is a $\mathbb{C}[\mathfrak{g}^*]$ -module M with a linear map ad: $\mathfrak{g} \to \operatorname{End}(M)$ such that (a) If $x, y \in \mathfrak{g}$ then $\operatorname{ad}(\{x, y\}) = \operatorname{ad}(x)\operatorname{ad}(y) - \operatorname{ad}(y)\operatorname{ad}(x)$,

(b) If $x \in \mathfrak{g}, f \in \mathbb{C}[\mathfrak{g}^*]$ and $m \in M$ then

$$\operatorname{ad}(x)(fm) = \{x, f\}m + f\operatorname{ad}(x)(m).$$

The action of \mathfrak{g} by ad is the *adjoint action of* \mathfrak{g} *on* M.

- $\mathbb{C}[\mathfrak{g}^*]$ -PMod is the category of $\mathbb{C}[\mathfrak{g}^*]$ -Poisson modules.
- $\overline{\mathcal{HC}}$ is the full subcategory of $\mathbb{C}[\mathfrak{g}^*]$ -PMod consisting of M such that

the ad action of \mathfrak{g} on M is locally finite.

3.3 $V^k(\mathfrak{g})$ -modules

A smooth $\hat{\mathfrak{g}}$ -module is a $\hat{\mathfrak{g}}$ -module M such that if $m \in M$ then there exists $\ell \in \mathbb{Z}_{>0}$ such that

if
$$n \in \mathbb{Z}_{>\ell}$$
 and $x \in \mathfrak{g}$ then $(xt^n)m = 0$.

Proposition 3.6. A $V^k(\mathfrak{g})$ -module is the same thing as a smooth $\hat{\mathfrak{g}}$ -module of level k.

View \mathfrak{g} as a Lie subalgebra of \mathfrak{g} by the inclusion $x \mapsto xt^0$.

- $V^k(\mathfrak{g})$ -Mod is the abelian category of $V^k(\mathfrak{g})$ -modules.
- $V^k(\mathfrak{g})$ -gMod is the full subcategory of $V^k(\mathfrak{g})$ -Mod of

positively graded $V^k(\mathfrak{g})$ -modules.

• KL_k is the full subcategory of graded $V^k(\mathfrak{g})$ -modules M such that

 \mathfrak{g} acts locally finitely on M.

• $\operatorname{KL}_k^{\Delta}$ is the full subcategory of KL_k -modules M which satisfy: there exists $r \in \mathbb{Z}_{\geq 0}$ and

$$0 = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_r = M \quad \text{with} \quad \frac{M_i}{M_{i-1}} \cong \Delta_{\mathfrak{g}}^{\hat{\mathfrak{g}}}(E_i),$$

for finite dimensional \mathfrak{g} -modules E_1, \ldots, E_r .

Proposition 3.7. Let M be a $V^k(\mathfrak{g})$ -module.

(a)
$$C_2(M) = \mathfrak{g}[t^{-1}]t^{-2}M.$$

(b)
$$\operatorname{Ps}(M) = \frac{M}{\mathfrak{g}[t^{-1}]t^{-2}M}$$
 is a Poisson module for $\mathbb{C}[\mathfrak{g}^*]$ with
 $x \cdot \overline{m} = \overline{(xt^{-1})m}$ and $\{x, \overline{m}\} = \overline{(xt^0)m}, \quad \text{for } x \in \mathfrak{g} \text{ and } m \in M.$

References

[Ar] T. Arakawa, Rationality of W-algebras: principal nilpotent cases arXiv:1211.7124.