Chapter 3. FIELDS AND VECTOR SPACES

§1T. Fields

(3.1.1) Definition.

e A field is a set F' with two operations, addition +: F' X F' — F' and multiplication x: F x F' — F
(we write a + b instead of +(a,b) and ab or a - b instead of x(a,b)), such that

a) Ifz,y,2 € Fthen (z+y)+2=2+ (y + 2).

b) fz,y € Fthenz +y =y + .

) There exists a zero, 0 € F, such that 0+ z =z for all z € F.

) If z € F then there is an additive inverse, —z € F', such that z + (—z) = 0.

) If x,y,2 € F then z(yz) = (zy)z.

) If x,y € F then zy = yx.

) There exists an identity, 1 € F, such that 1 #0 and 1-z =z for all z € F.

) If x € F and = # 0 then there exists an inverse (sometimes called a multiplicative inverse),
z~! € F, such that zz~! = 1.

i) For all z,y,z € F,

c
d
e
f
g
h

z(y +2) = zy + 2.

e A subfield of a field F is a subset K C F such that
a) fz,ye Kthenz+y € K.
b) 0 € K.
c) If z € K then —z € K.
d) If z,y € K then zy € K.
e) le K.
f) fr € K thenz ! € K.

Note that every field is a commutative ring and the only conditions in the definition of a field that are not
in the definition of a ring are f) and h).

Important examples of fields are:
a) The rational numbers @, the real numbers R, and the complex numbers C.
b) Z, where p is a prime.

Homomorphisms

Field homomorphisms might be used to compare fields. The only problem is that there aren’t many inter-
esting field homomorphisms, as we show in Proposition 3.1.3. We shall study fields in more depth in Part
V.

(3.1.2) Definition. Let K and F be fields with identities 1x and 1 respectively.

e A field homomorphism is a map f: K — F between fields K and F' such that

a) flx+y)=f(z)+ f(y) for all z,y € F.
b) f(zy) = f(x)f(y) for all 7,y € F.
¢) f(lk) =1p.

HW: Show that if f: K — F is a field homomorphism then f(0x) = Op, where Ox and O are the zeros in
K and F respectively.

HW: Explain why conditions a) and b) in the definition of a field homomorphism do not imply condition ¢).

(3.1.3) Proposition. If f: K — F is a field homomorphism then f is injective.

Proposition 3.1.3 stated another way, says that the kernel of any field homomorphism is {0}. This means
that we cannot get an interesting analogue of Theorem 1.1.15 for fields. Proposition 3.1.3 also shows that if
f: K — F is a field homomorphism then im f = f(K) is a subfield of F.
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§2T. Vector Spaces

(3.2.1) Definition.

e A vector space over a field F' is a set V' with an addition operation +:V x V — V and an action
x:F xV =V (we write v + w instead of +(v,w) and cv instead of x(c,v)) such that

) (v1 +v2) +v3 =v1 + (v2 + v3) for all vy,ve,v3 € V.

v +v2 = vy + vy for all vy,ve € V.

There exists a zero, 0 € V, such that 0+ v =v forallv e V.

For each v € V there exists an additive inverse, —v € V, such that v + (—v) = 0.

c1(cav) = (c1eo)v for all ¢1,c20 € Fandv € V.

l-v=vforallveV.

c(v1 +v2) = cvy + cvy for all ¢ € F and vy,v2 € V.

(ca+e)v=cv+cwiorall ¢j,co € Fandv e V.
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e A subspace W of a vector space V over a field F is a subset W C V such that
a) If wy,ws € W then w; + wy € W.
b) 0 e W.
c) If we W then —w e W.
d) If we W then cw € W for all c € F.

e The zero space, (0), is the set containing only 0 with operations 0 +0 = 0 and ¢- 0 = 0 for all
ceF.

Properties a), b), ), and d) in the definition of a vector space imply that a vector space is an abelian group
with an action of the field F. A vector space is just a module over a field.

HW: Show that if V' is a vector space over F then 0-v = 0 for all v € V. (Notice that the 0 on the left hand
side of this equation is an element of F' and the 0 on the right hand side is an element of V.)

HW: Show that if V is a vector space over F' and if ¢ € F and v € V then ¢-v = 0 if and only if either ¢ = 0
or v =0.

Important examples of vector spaces are:
a) R and C*.
b) F* for any field F.

Cosets

(3.2.2) Definition.

e A subgroup of a vector space V over a field F is a subset W C V such that
a) If wi,wy € W then wy; +ws € W.
b) 0eW.
c) If we W then —w e W.

Let V be a vector space over a field F' and let W be a subgroup of V.

(3.2.3) Definition.
e Acosetof WinVisaset v+ W ={v+w|we W} wherev e V.
o V/W (pronounced “V mod W?”) is the set of cosets of W in V.

(3.2.4) Proposition. Let V be a vector space over a field F' and let W be a subgroup of V.. Then the cosets
of W in V partition V.

Notice that the proofs of Proposition 3.2.4 and Proposition 2.2.4 are essentially the same.

HW: Write a very short proof of Proposition 3.2.4 by using Proposition 2.2.4.
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Quotient Spaces < Subspaces

Let V be a vector space over F' and let W be a subspace of V. We can try to make the set V/W of cosets
of W in V into a vector space by defining an addition operation and an action of F'.

(3.2.5) Theorem. Let W be a subgroup of a vector space V over a field F. Then W is a subspace of V if
and only if V/W with operations given by

(v + W)+ (va + W) =(v1 +v2) + W, and
cv+W)=co+ W,

is a vector space over F'.

Notice that the proofs of Theorem 3.2.5 and Theorem 2.2.5 are essentially the same.
HW: Write a very short proof of Proposition 3.2.5 by using Proposition 2.2.5.

(3.2.6) Definition.
e The quotient space V/W is the vector space of cosets of a subspace W of a vector space V over
a field F' with operations given by (v1 + W) + (va + W) = (v1 +v2) + W and c(v + W) = cv + W.

We have made V/W into a vector space when W is a subspace of V.

Linear Transformations
Linear transformations are used to compare vector spaces.

(3.2.7) Definition.

e A linear transformation is a mapping 7:V — W between vector spaces V and W over F such
that
a) T(vy +v2) =T (v1) + T'(ve) for all vy,vy € V.
b) T(cv) =T (v) for all c € F and v € V.
e A vector space isomorphism is a bijective linear transformation.
e Two vector spaces V and W are isomorphic, V ~ W, if there exists a vector space isomorphism
T:V — W between them.

Two vector spaces are isomorphic if the elements of the vector spaces and the operations and the actions
match up exactly. Think of two vector spaces that are isomorphic as being “the same”.

(3.2.8) Proposition. Let T:V — W be a linear transformation. Let Oy and Oy be the zeros for V and W
respectively. Then

a) T(Oy) = Ow.
b) For anyv eV, T(—v) = —-T(v).

(3.2.9) Definition.
e The null space of a linear transformation 7:V — W is the set

kerT ={veV|T()=0w},

where Oy is the zero element of W.
e The range of a linear transformation T:V — W is the set

imT ={we W | T(v) =w for some v € V}.

(3.2.10) Proposition. Let T:V — W be a linear transformation. Then
a) ker T is a subspace of V.
b) imT is a subspace of W.



(3.2.11) Proposition. Let T:V — W be a linear transformation. Let Oy be the zero in V. Then

a) kerT = {0y } if and only if T is injective.

b) imT =W if and only if T is surjective.
Notice that the proof of Proposition 3.2.11 b) does not use the fact that T: V' — W is a linear transformation,
only the fact that T:V — W is a function.

(3.2.12) Theorem.
a) Let T:V — W be a linear transformation and let N =kerT. Define

T: VikeeT - W
v+ N =  fv).
Then T is a well defined injective linear transformation.
b) Let T:V — W be a linear transformation and define
T: V. = imT
v = T().
Then T' is a well defined surjective linear transformation.

¢) If T:V — W is a linear transformation, then

V/kerT ~imT,

where the isomorphism is a vector space isomorphism.

Direct Sums
Suppose V and W are vector spaces over a field F'. The idea is to make V x W into a vector space.

(3.2.13) Definition.

e The direct sum of V & W of two vector spaces V and W over a field F is the set V x W with
operations given by
(v1,w1) + (v2,w2) = (V1 + V2, w1 + W)

c(v,w) = (cv, cw)
for all v,v1,v2 € V, w,w1,wy € W and ¢ € F. The operations in V @& W are componentwise.
e More generally, given vector spaces Vi, Va,...,V, over F the direct sum V; @& --- @ V,, is the set
given by Vi x --- x V,, with the operations given by
(V1 ey Vi ey ) F (W1, e, Wiy ey Wh) = (01 F W1, -,V + Wiy e e, Uy + W)

(V1,3 Vi ey Up) = (CUL, -2 -y CUGy - e CUR)
where v;,w; € V;, ¢ € F, and v; + w; and cv; are given by the operations in V;.

HW: Show that these are good definitions, i.e., that as defined above, V @ W and V; @ --- ® V,, are vector
spaces over F' with zeros given by (0y,0w) and (Oy,,...,0y,) respectively. (Oy, denotes the zero element in
Vi.)

Further Definitions

(3.2.14) Definition.

e Let V be a vector space and let S be a subset of V. The span of S, span(S), or the subspace
generated by S, is the subspace of V such that
a) S C span(S),
b) If W is a subspace of V and S C W then span(S) C W.
The subspace span(S) is the smallest subspace of V' containing S. Think of span(S) as gotten by adding to
S exactly those elements of V' that are needed to make a subspace.
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