(1.3.1) Definition.

• Let [1, m] denote the set $\{1, 2, \ldots, m\}$. A **permutation** of m is a bijective map

$$\sigma$$
: $[1, m] \rightarrow [1, m]$.

• The symmetric group, S_m , is the set of permutations of m with the operation of composition of functions.

HW: Show that the order of the symmetric group S_m is $m! = m(m-1)(m-2)\cdots 2\cdot 1$.

- There are several convenient ways of representing a permutation σ .

 1) As a two line array $\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & m \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(m) \end{pmatrix}$.

 2) As a one line array $\sigma = \begin{pmatrix} \sigma(1)\sigma(2) & \dots & \sigma(m) \end{pmatrix}$.

 - 3) As an $m \times m$ matrix which has the $(\sigma(i), i)^{th}$ entry equal to 1 for all i and all other entries equal
 - 4) As a function diagram consisting of two rows, of m dots each, such that the i^{th} dot of the upper row is connected by an edge to the $\sigma(i)^{\text{th}}$ dot of the lower row.
 - 5) In cycle notation, as a collection of sequences (i_1, i_2, \ldots, i_k) such that $\sigma(i_1) = i_2, \ \sigma(i_2) = i_3, \ldots$ $\sigma(i_{k-1}) = i_k$, $\sigma(i_k) = i_1$. We often leave out the cycles containing only one element when we write σ in cycle notation.

HW: Show that, in function diagram notation, the product $\tau\sigma$ of two permutations τ and σ is given by placing the diagram of σ above the diagram of τ and connecting the bottom dots of σ to the top dots of τ .

HW: Show that, in function diagram notation, the identity permutation is represented by m vertical lines.

HW: Show that, in function diagram notation, σ^{-1} is represented by the diagram of σ flipped over.

HW: Show that, in matrix notation, the product $\tau\sigma$ of two permutations τ and σ is given by matrix multiplication.

HW: Show that, in matrix notation, the identity permutation is the diagonal matrix with all 1's on the diagonal.

HW: Show that, in matrix notation, the matrix of σ^{-1} is the transpose of the matrix of σ .

HW: Show that the matrix of a permutation is always an orthogonal matrix.

Sign of a permutation

(1.3.2) Proposition. For each permutation $\sigma \in S_m$, let $\det(\sigma)$ denote the determinant of the matrix which represents the permutation σ . The map

$$\varepsilon: S_m \to \{\pm 1\}$$
 $\sigma \mapsto \det(\sigma)$

is a homomorphism from the symmetric group S_m to the group $\mathbb{Z}_2 = \{\pm 1\}$.

(1.3.3) Definition.

• The sign homomorphism of the symmetric group S_m is the homomorphism

$$\begin{array}{cccc}
\varepsilon\colon & S_m & \to & \pm 1 \\
& \sigma & \mapsto & \det(\sigma)
\end{array}$$

where $det(\sigma)$ denote the determinant of the matrix which represents the permutation σ .

- The sign of a permutation σ is the determinant $\varepsilon(\sigma)$ of the permutation matrix representing σ .
- A permutation σ is **even** if $\varepsilon(\sigma) = +1$ and is **odd** if $\varepsilon(\sigma) = -1$.

Conjugacy Classes

(1.3.4) Definition.

• A **partition** $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ of m is a weakly decreasing sequence of positive integers which sum to m, i.e.

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k > 0$$
, and $\sum_{i=1}^k \lambda_i = m$.

The elements of a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ are the **parts** of the partition λ . Sometimes we represent a partition λ in the form $\lambda = (1^{m_1} 2^{m_2} \cdots)$ if λ has m_1 1's, m_2 2's, and so on. We write $\lambda \vdash m$ if λ is a partition of m.

- The **cycles** of a permutation σ are the ordered sequences (i_1, i_2, \ldots, i_k) such that $\sigma(i_1) = i_2, \sigma(i_2) = i_3, \ldots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1$.
- The cycle type $\tau(\sigma)$ of a permutation $\sigma \in S_m$ is the partition of m determined by the sizes of the cycles of σ .

Example. A permutation σ can have several different representations in cycle notation. In cycle notation,

$$(12345)(67)(89)(10),$$
 $(51234)(67)(89),$ $(45123)(67)(89)(10),$ $(34512)(89)(67),$ and $(34512)(10)(98)(67),$

all represent the same permutation in S_{10} , which, in two line notation, is given by

Example. If σ is the permutation in S_9 which is given, in cycle notation, by

$$\sigma = (1362)(587)(49)$$

and π is the permutation in S_9 which is given, in 2-line notation, by

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 6 & 1 & 3 & 5 & 9 & 2 & 8 & 7
\end{pmatrix},$$

then $\pi\sigma\pi^{-1}$ is the permutation which is given, in cycle notation, by

$$\pi \sigma \pi^{-1} = (4196)(582)(37) = (1964)(258)(37).$$

(1.3.5) Theorem.

a) The conjugacy classes of S_m are the sets

$$C_{\lambda} = \{ permutations \ \sigma \ with \ cycle \ type \ \lambda \},$$

where λ is a partition of m.

b) If $\lambda = (1^{m_1} 2^{m_2} \cdots)$ then the size of the conjugacy class \mathcal{C}_{λ} is

$$|\mathcal{C}_{\lambda}| = \frac{m!}{m_1! 1^{m_1} m_2! 2^{m_2} m_3! 3^{m_3} \cdots}.$$

The proof of Theorem (1.3.5) will use the following lemma.

(1.3.6) Lemma. Suppose $\sigma \in S_m$ has cycle type $\lambda = (\lambda_1, \lambda_2, \ldots)$ and let γ_{λ} be the permutation in S_m which is given, in cycle notation, by

$$\gamma_{\lambda} = (1, 2, \dots, \lambda_1)(\lambda_1 + 1, \lambda_1 + 2, \dots, \lambda_1 + \lambda_2)(\lambda_1 + \lambda_2 + 1, \dots) \dots$$

- a) Then σ is conjugate to γ_{λ} .
- b) If $\tau \in S_m$ is conjugate to σ then τ has cycle type λ .
- c) Suppose that $\lambda = (1^{m_1} 2^{m_2} \cdots)$. Then the order of the stabilizer of the permutation γ_{λ} , under the action of S_m on itself by conjugation, is

$$1^{m_1}m_1!2^{m_2}m_2!\cdots$$

Example. The sequence $\lambda = (66433322111)$ is a partition of 32 and can also be represented in the form $\lambda = (1^32^23^345^06^2) = (1^32^23^346^2)$. The conjugacy class \mathcal{C}_{λ} in S_{32} has $\frac{32!}{1^3 \cdot 3! \cdot 2^2 \cdot 2! \cdot 3^3 \cdot 3! \cdot 4 \cdot 6^2 \cdot 2!}$ elements.

Generators and relations

(1.3.7) Definition.

• The simple transpositions in S_m are the elements $s_i = (i, i+1), 1 \le i \le m-1$.

(1.3.8) Proposition.

- a) S_m is generated by the simple transpositions s_i , $1 \le i \le m-1$.
- b) The simple transpositions s_i , $1 \le i \le m-1$, in S_m satisfy the relations

$$s_i s_j = s_j s_i, \quad if |i - j| > 1,$$

 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, \quad 1 \le i \le m-2,$
 $s_i^2 = 1, \quad 1 \le i \le m-1.$

(1.3.9) Definition.

• A reduced word for $\sigma \in S_m$ is an expression

$$\sigma = s_{i_1} \dots s_{i_n}$$

of σ as a product of simple transpositions such that the number of factors is as small as possible.

- The length $\ell(\sigma)$ of σ is the number of factors in a reduced word for the permutation σ .
- The set of **inversions** of σ is the set

$$inv(\sigma) = \{(i, j) | 1 \le i < j \le m, \sigma(i) > \sigma(j) \}.$$

HW: Show that the sign $\varepsilon(s_i)$ of a simple transposition s_i in the symmetric group S_n is -1.

(1.3.10) **Proposition.** Let σ be a permutation. Let $\ell(\sigma)$ be the length of σ and let $inv(\sigma)$ be the set of inversions of the permutation σ . Then

- a) The sign of σ is $\varepsilon(\sigma) = (-1)^{\ell(\sigma)}$.
- b) $Card(inv(\sigma)) = \ell(\sigma)$
- c) The number of crossings in the function diagram of σ is $\ell(\sigma)$.

(1.3.11) **Theorem.** The symmetric group S_m has a presentation by generators, $s_1, s_2, \ldots, s_{m-1}$ and relations

$$s_i s_j = s_j s_i, \quad if |i - j| > 1.$$

 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}.$
 $s_i^2 = 1.$