MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2004

HOMEWORK 12: SELECTED ANSWERS

Problem A. Length of a plane curve.

(2) 10.5
(3) $6 a$
(4) 12
(5) $(8 / 27)(10 \sqrt{10}-1)$
(6) $14 / 3$
(7) $53 / 6$
(8) $123 / 32$
(9) $(4 / 27)(10 \sqrt{10}-1)$
(10) $a \pi^{2} / 8$
(11) 8
(12) 12
(13) $21 / 2$
(14) $27 / 20$
(15) $19 / 3$
(16) $f(x)=a \pm x \sqrt{A^{2}-1},|A| \geq 1$
(17) No

Problem B. Surface area.
(2) $4 \pi^{2} r^{2}$
(3) $99 \pi / 2$
(4) $(\pi / 27)(10 \sqrt{10}-1)$
(5) $(\pi / 6)(17 \sqrt{ } 17-1)$
(6) $1823 \pi / 18$
(7) $253 \pi / 20$
(8) $(2 \pi / 3)(2 \sqrt{2}-1)$
(9) $12 \pi a^{2} / 5$
(10) $(2 \pi / 3)(26 \sqrt{26}-2 \sqrt{2})$
(11) $56 \pi \sqrt{3} / 5$
(12) $424 \pi / 15$
(13) $153 \pi / 40$

Problem C. Center of mass.

(1) At the intersection of the lines through each vertex which are perpendicular to the opposite side.
(2) At $(0,(2 / \pi) r, 0)$ if the center is at $(0,0)$ and the y-axis cuts the semicircle in half.
(3) At $(0,(8 / 15) r, 0)$ if the hemisphere is sitting on the $x-z$ plane with its apex at $(0, r, 0)$.
(4) $(4 a / 3 \pi, 4 a / 3 \pi)$
(5) $\left(0,(2 / 5) h^{2}\right)$
(6) $(2 a / 3(4-\pi), 2 a / 3(4-\pi))$
(7) $\quad(\pi / 2, \pi / 8)$
(8) $(2 / 5,1)$
(9) $(3 / 7) h$
(10) $\quad(3 / 5) h$
(11) On the axis of the cone $3 h / 4$ from the vertex.
(12) On the axis of the cone $3 h / 5$ from the vertex.
(13) At $(0, \pi r / 4)$ if the semicircle is positioned as in (2).
(14) At $(0,(3 / 8) r, 0)$ if the hemisphere is positioned as in (3).
(15) $\operatorname{At}(0,(1 / 2) r, 0)$ if the hemisphere is positioned as in (3).
(16) $\left(0,2 c^{2} / 5\right)$
(17) $(16 / 105,8 / 15)$
(18) $(0,12 / 5)$
(19) $(1,-3 / 5)$
(20) $(3 / 5,1)$
(21) On the axis of the cone $3 h / 4$ from the vertex.
(22) $(0,8 / 3)$
(23) $(4 / 5,0)$
(24) On the axis of the cone $2 h / 3$ from the vertex.
(25) $\quad(-r, 3 r /(2+\pi))$
(26) $(17 \sqrt{17}-1) / 12$
(27) $(2 r / \pi, 2 r / \pi)$

Problem B. Average value of a function.

$$
\text { (2) } 50 \frac{1}{2}
$$

(3) 126
(4) 117
(5) 21536939630755577663107.46
(10) $2 / \pi$
(11) 0
(12) $\frac{1}{2}$
(13) $\frac{1}{2}$
(14) $49 / 12$
(15) $\frac{1}{2}$
(16) $\alpha\left(\frac{a+b}{2}\right)+\beta$
(17a) 200 cases
(17b) 1 dollar per day
(18) $\frac{a}{3}(3 \sqrt{3}-1)$
(19a) $\frac{2}{3} b^{2}$
(19b) $\frac{2}{3} b$
(20a) 72
(20b) $82 \frac{2}{3}$
(21) $50+28 / \pi$

