MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2004

HOMEWORK 7: SELECTED ANSWERS

Problem A. Graphing rational functions.

- (1) Defined for $x \neq 0$; continuous for $x \neq 0$; differentiable for all $x \neq 0$; increasing nowhere; decreasing for all $x \neq 0$; concave up for x > 0; concave down for x < 0; critical point at x = 0; no point of inflection; asymptote y = 0 as $x \to 0$; asymptote x = 0 as $x \to \pm \infty$.
- (2) Defined for x ≠ 0; continuous for x ≠ 0; differentiable for all x ≠ 0; increasing for x > 0; decreasing for all x < 0; concave up nowhere; concave down for x ≠ 0; critical points at x = 0; no points of inflection; asymptote y = 0 as x → 0;
- (3) Defined for x ≠ 0; continuous for x ≠ 0; differentiable for all x ≠ 0; increasing for x < -1, x > 1; decreasing for all -1 < x < 0, 0 < x < 1; concave up for x > 0; concave down for x < 0; critical points at x = 0, ±1; no points of inflection; asymptote x = 0 as x → 0; asymptote y = x as x → ±∞;
- (4) Defined for x ≠ 4; continuous for x ≠ 4; differentiable for all x ≠ 4; increasing for x < 2, x > 6; decreasing for all 2 < x < 4, 4 < x < 6; concave up for x > 4; concave down for x < 4; critical points at x = 2, 4, 6; no points of inflection; asymptote x = 4 as x → 4; asymptote y = x as x → ±∞;
- (5) Defined for all x; continuous for all x; differentiable for all x; increasing for x < 0; decreasing for all x > 0; concave up for $x < -1/\sqrt{3}, x > 1/\sqrt{3}$; concave down for $-1/\sqrt{3} < x < \sqrt{3}$; critical point at x = 0; points of inflection at $x = \pm 1/\sqrt{3}$; asymptote y = 0 as $x \to \pm \infty$;

Problem B. Graphing functions with square roots.

- (1-5) Circles.
- (6-8) Ellipses.
- (9-10) Hyperbolas.
- (11-16) Parabolas.
 - (18) This problem appeared before on this homework assignment (almost).
 - (19) Make this one into problem (B18).

Problem C. Graphing other functions.

- (1) Defined for all x; continuous for all $x \neq 0, \pm 1, \pm 2, \ldots$; differentiable for all $x \neq 0, \pm 1, \pm 2, \ldots$; increasing nowhere; decreasing nowhere; concave up nowhere; concave down nowhere; all points are critical points; no points of inflection; no asymptotes;
- (2) Defined for all x; continuous for all x; differentiable for $x \neq 0$; increasing for x > 0; decreasing for x < 0; concave up nowhere; concave down nowhere; critical point at x = 0; no points of inflection; asymptote y = x as $x \to \infty$; asymptote y = -x as $x \to -\infty$;
- (3) Defined for all x; continuous for all x; differentiable for $x \neq 5$; increasing for x > 5; decreasing for x < 5; concave up nowhere; concave down nowhere; critical point at x = 5; no points of inflection; asymptote y = x as $x \to \infty$; asymptote y = -x as $x \to -\infty$;
- (4) Defined for all x; continuous for all x; differentiable for x ≠ ±1; increasing for -1 < x < 0, x > 1; decreasing for x < -1, 0 < x < 1; concave up for x < -1, x > 1; concave down for -1 < x < 1; critical points at x = ±1,0; no points of inflection; no asymptotes;
- (5) Defined for all x; continuous for all x ≠ 0; differentiable for x ≠ 0; increasing nowhere; decreasing nowhere; concave up nowhere; concave down nowhere; critical point at x = 0; no points of inflection; asymptotes y = 1 as x → ∞; asymptotes y = -1 as x → -∞;
- (6) Defined for all x; continuous for all x; differentiable for $x \neq 1$; increasing for all x; decreasing nowhere; concave up for x < 1; concave down for x > 1; critical point at x = 1; point of inflection at x = 1; no asymptotes;
- (7) Defined for all x; continuous for all x; differentiable for $x \neq 0$; increasing for x > 0; decreasing for x < 0; concave up nowhere; concave down everywhere; critical point at x = 0; no points of inflection; no asymptotes;
- (8) Defined for $x \neq 1$; continuous for all $x \neq 1$; differentiable for $x \neq 1$; increasing for x < 1; decreasing for x > 1; concave up everywhere; concave down nowhere; critical point at x = 1; no points of inflection; no asymptotes;
- (12) See page 153 in the text.
- (13) Make this one into problem (C12).
- (14) Defined for all x; continuous for all x; differentiable for x; increasing for $2k\pi + -\pi/2 < x < 2k\pi + \pi/2$, where k is an integer; decreasing for $2k\pi + \pi/2 < x < 2k\pi + 3\pi/2$, where k is an integer; concave up for $2k\pi \pi < x < 2k\pi$, where k is an integer; concave down

for $2k\pi < x < 2k\pi + \pi$, where k is an integer; critical points at $x = k\pi + \pi/2$, where k is an integer; points of inflection at $x = k\pi$, where k is an integer; no asymptotes;

(15) Compare the graphs of $y = \sin 2x$ and y = x.

Problem D. Rolle's theorem and the mean value theorem.

(4)
$$c = 2 \pm \sqrt{3}/3$$
 (5) $c = 9/4$ (6) $c = 3\pi/2$
(7) $c = \pi/4$ (8) $c = 2 \pm \sqrt{3}/3$ (11) $f(1) \neq f(3)$
(12) $f'(1)$ does not exist (13) $f(x)$ is discontinuous at $x = 0$
(14) (3,6) (17) $c = 8/27$ (18) $c = e - 1$ (20) $c = (a + b)/2$
(21) $f'(0)$ does not exist (22) $f(x)$ is discontinuous at $x = 0$
(23) $(\sqrt{7/3}, (-2/3)(\sqrt{7/3})), (-\sqrt{7/3}, (2/3)(\sqrt{7/3}))$

Problem E. Tangents and Normals.

(1) 11 (2) -12

(3)
$$x - y + 5 = 0, x + y - 7 = 0$$

- (4) x 4y + 3 = 0, 4x + y 5 = 0
- (5) 14x y 10 = 0, x + 14y 254 = 0

(6)
$$m^2x - my + a = 0$$
, $m^2x + m^3y - 2am^2 - a = 0$

(7) $bx\cos\theta + ay\sin\theta = ab$, $ax\sec\theta - by\csc\theta = (a^2 - b^2)$

(8)
$$bx \sec \theta - ay \tan \theta = ab$$
, $x \sin \theta - y \cos \theta = (a/4) \sin 4\theta$

- (9) $x\cos^3\theta + y\sin^3\theta = c$, $x\sin^3\theta y\cos^3\theta + 2c\cot 2\theta = 0$
- (10) $x ty + at^2 = 0$, $tx + y = at^3 + 2at$
- $(11) \quad 2x + 3my 18m^2 27m^4 = 0$