MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2004

HOMEWORK 14 DUE December 13, 2004

Problem A. Derivatives with all functions mixed together.

(1) Find $\frac{dy}{dx}$ when $y = \frac{2\tan x}{\tan x + \cos x}$. (2) Find $\frac{dy}{dx}$ when $y = \sqrt{x \sin x}$. (3) Find $\frac{dy}{dx}$ when $y = \frac{x + \sin 2x}{\cos 3x}$. (4) Find $\frac{dy}{dx}$ when $y = e^{5x} \ln(\sec x)$. (5) Find $\frac{dy}{dx}$ when $y = \frac{x^5}{\sin^{-1} 2x}$. (6) Find $\frac{dy}{dx}$ when $y = \sin x^2 - \frac{\tan x}{1+x^2}$. (7) Find $\frac{dy}{dx}$ when $y = (\tan\sqrt{x} + x^2 - \sin x)^3$. (8) Find $\frac{dy}{dx}$ when $y = \frac{\sin^3 x \cos^3 x}{\cos^3 x}$. (9) Find $\frac{dy}{dx}$ when $y = e^x \tan x + \frac{\ln x}{\sin x}$. (10) Find $\frac{dy}{dx}$ when $y = 2a^x \ln x$. (11) Find $\frac{dy}{dx}$ when $y = \frac{x^{3/2} + 1}{3\sqrt{x}}$. (12) Find $\frac{dy}{dx}$ when $y = \frac{1-x^2}{x^2-x+1}$. (13) Find $\frac{dy}{dx}$ when $y = \sqrt{1 + \ln x \ln \sin x}$.

(14) Find
$$\frac{dy}{dx}$$
 when $y = 7x^{1/2} + 5x^{-7/2} + \sin^{-1}(x^4) - \ln \cot x$.
(15) Find $\frac{dy}{dx}$ when $y = \sin^2 x \cos^3 x$.
(16) Find $\frac{dy}{dx}$ when $y = \sin mx \cos nx$.
(17) Find $\frac{dy}{dx}$ when $y = \sin^m x \cos^n x$.
(18) Find $\frac{dy}{dx}$ when $y = \cos^{-1}(1 - 2x^2)$.
(19) Find $\frac{dy}{dx}$ when $y = \sin^{-1}(3x - 4x^3)$.
(20) Find $\frac{dy}{dx}$ when $y = \sqrt{\frac{4+x}{\sqrt{a+x} + \sqrt{a-x}}}$.
(21) Find $\frac{dy}{dx}$ when $y = (1 + x)(1 + 2x)(1 + 3x)(1 + 4x)$.
(22) Find $\frac{dy}{dx}$ when $y = \tan^2 \sqrt{1 - x^2}$.
(23) Find $\frac{dy}{dx}$ when $y = \frac{e^{2x}}{\ln x}$.
(24) Find $\frac{dy}{dx}$ when $y = \frac{e^{2x}}{\ln x}$.
(25) Find $\frac{dy}{dx}$ when $y = \frac{e^{\sqrt{x} + 2} - e^{\sqrt{x + 2}}}{\sqrt{1 + x^2}}$.
(26) Find $\frac{dy}{dx}$ when $y = e^{\sqrt{x} + 2} - e^{\sqrt{x + 2}}$.
(27) Find $\frac{dy}{dx}$ when $y = 7x^{2 + 2x}$.
(28) Find $\frac{dy}{dx}$ when $y = \cot^2(e^{3x}x^x)$.
(29) Find $\frac{dy}{dx}$ when $y = \tan^{-1}\left(\frac{\sqrt{1 + x^2} - 1}{x}\right)$.

(30)	Find	$\frac{dy}{dx}$	when $y = \ln(\tan^{-1} x)$.
(31)	Find	$\frac{dy}{dx}$	when $y = \csc^{-1}\left(\frac{1+x^2}{2x}\right)$.
(32)	Find	$\frac{dy}{dx}$	when $y = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$.
(33)	Find	$\frac{dy}{dx}$	when $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$.
(34)	Find	$\frac{dy}{dx}$	when $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$.
(35)	Find	$\frac{dy}{dx}$	when $y = \sec^{-1}\left(\frac{x^2 + 1}{x^2 - 1}\right)$.
(36)	Find	$\frac{dy}{dx}$	when $y = x \sin^{-1} x + \sqrt{1 - x^2}$.
(37)	Find	$\frac{dy}{dx}$	when $y = x \cos^{-1} 2x - \frac{1}{2}\sqrt{1 - 4x^2}$.
(38)	Find	$\frac{dy}{dx}$	when $y = \frac{1}{2} \tan^{-1} \left(\frac{1}{2} \tan(x/2) \right).$
(39)	Find	$\frac{dy}{dx}$	when $y = \tan^{-1}(\sec x + \tan x)$.
(40)	Find	$\frac{dy}{dx}$	when $y = \frac{x \cos^{-1} x}{\sqrt{1 - x^2}}.$
(41)	Find	$\frac{dy}{dx}$	when $y = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}(x/a).$
(42)	Find	$\frac{dy}{dx}$	when $y = \sin^{-1}(2x\sqrt{1-x^2})$.
(43)	Find	$\frac{dy}{dx}$	when $y = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$.
(44)	Find	$\frac{dy}{dx}$	when $y = x^{3} \sin 2x + \frac{\cos x}{x+1}$.
(45)	Find	$\frac{dy}{dx}$	when $y = x^4 \sin 2x + \frac{x^2}{x^3 + 1}$.
			9

(46) Find
$$\frac{dy}{dx}$$
 when $y = x^{\ln x}$.
(47) Find $\frac{dy}{dx}$ when $y = (\tan x)^{\cot x}$.
(48) Find $\frac{dy}{dx}$ when $y = (\tan x)^{\cot x} + (\cot x)^{\tan x} + x^{\cos^{-1}x}$.
(49) Find $\frac{dy}{dx}$ when $y = (\sin x)(e^x)(\ln x)(x^x)(x^{\cos^{-1}x})$.
(50) Find $\frac{dy}{dx}$ when $x^y = y^x$.
(51) Find $\frac{dy}{dx}$ when $x^{2/3} + y^{2/3} = a^{2/3}$.
(52) Find $\frac{dy}{dx}$ when $e^{xy} - 4xy = 0$.
(53) Find $\frac{dy}{dx}$ when $xy = \sin(x + y)$.
(54) Find $\frac{dy}{dx}$ when $\frac{x^m}{a^m} + \frac{y^m}{b^m} = 1$.
(55) Find $\frac{dy}{dx}$ when $x^m y^n = (x + y)^{m+n}$.
(56) Find $\frac{dy}{dx}$ where $y \ln x = x - y$.

Problem B. Integrals with mixed functions.

(1)
$$\int \frac{\sin^{-1} x}{\sqrt{1 - x^2}} dx$$

(2)
$$\int \frac{\sin(2\tan^{-1} x)}{1 + x^2} dx$$

(3)
$$\int \frac{\cos(\ln x)}{x} dx$$

(4)
$$\int \frac{\csc^2(\ln x)}{x} dx$$

(5)
$$\int e^{\tan x} \sec^2 x \, dx$$

(6)
$$\int e^{\cos^2 x} \sin 2x \, dx$$

(7)
$$\int \cot x \ln(\sin x) \, dx$$

(8)
$$\int \frac{\cot x}{\ln(\sin x)} \, dx$$

(9)
$$\int \sec x \ln(\sec x + \tan x) \, dx$$

(10)
$$\int \frac{x \tan^{-1} x^2}{1 + x^4} \, dx$$

(11)
$$\int \frac{x \sin^{-1} x^2}{\sqrt{1 - x^4}} \, dx$$

(12)
$$\int \frac{1}{\sqrt{1 - x^2} \sin^{-1} x} \, dx$$

(13)
$$\int \frac{1 + \tan x}{x + \ln(\sec x)} \, dx$$

(14)
$$\int \frac{\sec x \csc x}{\ln(\tan x)} \, dx$$

(15)
$$\int \frac{dx}{x \cos^2(1 + \ln x)}$$

(16)
$$\int e^{-x} \csc^2(2e^{-x} + 5) \, dx$$

(17)
$$\int x^2 e^{x^3} \cos e^{x^3} \, dx$$

(18)
$$\int \frac{e^{m \tan^{-1} x}}{1 + x^2} \, dx$$

(19)
$$\int \frac{(x+1)e^x}{\cos^2(xe^x)} dx$$

(20)
$$\int \frac{e^{\sqrt{x}}\cos e^{\sqrt{x}}}{\sqrt{x}} dx$$

Problem C. Areas of regions.

- (1) Find the area inside the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (2) Using integration find the area of the triangle with vertices (-1, 1), (0, 5) and (3, 2).
- (3) Graph the region $\{(x, y) \mid 4x^2 + 9y^2 \leq 36\}$ and find its area.
- (4) Find the area of the region $\{(x, y) \mid y^2 \le 8x, x^2 + y^2 \le 9\}.$
- (5) Find the area of the region $\{(x, y) \mid y^2 \le x, x^2 + y^2 \le 2\}.$
- (6) Find the area of the region $\{(x, y) \mid x^2 + y^2 \le 2ax, y^2 \ge ax, x \ge 0, y \ge 0\}.$
- (7) Find the area of the region $\{(x, y) \mid y^2 \le 4x, 4x^2 + 4y^2 \le 9\}.$
- (8) Find the area of the region $\{(x, y) \mid x^2 + y^2 \le 1 \le x + y\}.$
- (9) Find the area of the region $\{(x, y) \mid 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$.
- (10) Find the area of the region $\{(x, y) \mid x^2 \le y \le |x|\}$.

Problem D. Different types of volume problems.

- (1) A solid is generated by rotating, about the x-axis, the area bounded by the curve y = f(x), the x-axis, and the lines x = a, x = b. Its volume, for all b > a, is $b^2 ab$. Find f(x).
- (2) A solid is generated by rotating the curve y = f(x), $0 \le x \le a$, about the x-axis. Its volume, for all a, is $a^2 + a$. Find f(x).
- (3) The area bounded by the curve $y^2 = 4x$ and the straight line y = x is rotated about the x-axis. Find the volume generated.
- (4) Sketch the area bounded by the curve $y^2 = 4ax$, the line x = a, and the x-axis. Find the volumes generated by rotating this area in each of the following ways:
 - (a) about the *x*-axis,
 - (b) about the line x = a.
 - (c) about the *y*-axis,

- (5) The area bounded by the curve $y = x/\sqrt{x^3 + 8}$, the x-axis, and the line x = 2 is rotated about the y-axis. Compute the volume.
- (6) Find the volume of the solid produced by rotating the larger area bounded by $y^2 = x 1$, x = 3 and y = 1 about the y-axis.
- (7) The area bounded by the curve $y^2 = 4ax$ and the line x = a is rotated about the line x = 2a. Find the volume generated.
- (8) A twisted solid is generated as follows: We are given a fixed line L in space, and a square of side length s in a plane perpendicular to L. One vertex of the square is on L. As this vertex moves a distance h along L, the square turns through a full revolution, with L as the axis. Find the volume generated.
- (9) A twisted solid is generated as follows: We are given a fixed line L in space, and a square of side length s in a plane perpendicular to L. One vertex of the square is on L. As this vertex moves a distance h along L, the square turns through two full revolutions, with L as the axis. Find the volume generated.
- (10) Two circles have a common diameter and lie in perpendicular planes. A square moves so that its plane is perpendicular to this diameter and its diagonals are chords of the circles. Find the volume generated.
- (11) Find the volume generated by rotating the area bounded by the x-axis and one arch of the curve $y = \sin 2x$ about the x-axis.
- (12) A round hole of radius $\sqrt{3}$ ft is bored through the center of a solid sphere of radius 2 ft. How much volume is cut out?