MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2004

HOMEWORK 7 DUE October 25, 2004

For each of the following graphing problems also determine

- (a) where f(x) is defined,
- (b) where f(x) is continuous,
- (c) where f(x) is differentiable,
- (d) where f(x) is increasing and where it is decreasing,
- (e) where f(x) is concave up and where it is concave down,
- (f) what the critical points of f(x) are,
- (g) where the points of inflection are, and
- (h) what the asymptotes to f(x) are (if f(x) has asymptotes).

Problem A. Graphing rational functions.

(1) Graph
$$f(x) = 1/x$$
.

(2) Graph the function
$$f(x)$$
 such that $\frac{df}{dx} = 1/x$ and $f(-1) = 2$ and $f(1) = 1$.

(3) Graph
$$f(x) = x + 1/x$$
.
 $x^2 + 2x = 20$

(4) Graph
$$f(x) = \frac{x^2 + 2x - 20}{x - 4}$$

(5) Graph $f(x) = \frac{1}{x^2 + 1}$.

(6) Graph
$$f(x) = \frac{1}{x^2 + 2x + c}$$
, where c is a constant.

(7) Graph
$$f(x) = \frac{x^3}{x^2 + 1}$$

(8) Graph
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

(9) Graph
$$f(x) = \frac{2x^2}{x^2 - 1}$$

(10) Graph
$$f(x) = \frac{x^2 + 7x + 3}{x^2}$$
.
(11) Graph $f(x) = \frac{x^2(x+1)^3}{(x-2)^2(x-4)^4}$.
(12) Graph $f(x) = \frac{x^2 - 1}{x^3 - 4x}$.

Problem B. Graphing functions with square roots.

- (1) Graph y = f(x) where $x^2 + y^2 = 1$.
- (2) Graph $f(x) = \sqrt{1 x^2}$.
- (3) Graph $f(x) = \sqrt{a^2 x^2}$, where a is a constant.
- (4) Graph y = f(x) when $(x h)^2 + (y k)^2 = r^2$, where h, k, and r are constants.
- (5) Graph y = f(x) when $x^2 + y^2 2hx 2ky + h^2 + k^2 = r^2$, where h, k, and r are constants.
- (6) Graph y = f(x) when $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are constants.
- (7) Graph y = f(x) when $x = a \cos \theta$ and $y = b \sin \theta$, where a and b are constants.
- (8) Graph $f(x) = (b/a)\sqrt{a^2 x^2}$, where a and b are constants.
- (9) Graph y = f(x) when $x^2 y^2 = 1$.
- (10) Graph y = f(x) when $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, where a and b are constants.
- (11) Graph y = f(x) when $y = ax^2 b$, where a and b are constants.
- (12) Graph y = f(x) when $x = 2y^2 1$.
- (13) Graph y = f(x) when $x = \cos 2\theta$ and $y = \cos \theta$.
- (14) Graph $f(x) = b\sqrt{x-a}$, where a and b are constants.
- (15) Graph $f(x) = \sqrt{x+2}$.
- (16) Graph $f(x) = -\sqrt{x+2}$.

- (17) Graph y = f(x) when $y^2(x^2 x) = x^2 1$.
- (18) Graph y = f(x) when $x = \frac{y^2 1}{y^2 + 1}$.

(19) Graph
$$y = f(x)$$
 when $y = \frac{\sqrt{1+x}}{\sqrt{1-x}}$.

- (20) Graph $f(x) = \frac{x^2}{\sqrt{x+1}}$.
- (21) Graph $f(x) = x\sqrt{32 x^2}$.
- (22) Graph $f(x) = x\sqrt{1-x^2}$.

Problem C. Graphing other functions.

(1) Graph
$$f(x) = \lfloor x \rfloor$$
.

- (2) Graph f(x) = |x|.
- (3) Graph f(x) = |x 5|.

(4) Graph
$$f(x) = |x^2 - 1|$$
.

(5) Graph
$$f(x) = \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -1, & \text{if } x < 0. \end{cases}$$

- (6) Graph $f(x) = (x-1)^{1/3}$.
- (7) Graph $f(x) = x^{2/3}$.

(8) Graph
$$f(x) = \frac{1}{(x-1)^{2/3}}$$
.

- (9) Graph $f(x) = x(1-x)^{2/5}$.
- (10) Graph $f(x) = x^{2/3}(6-x)^{1/3}$.
- (11) Graph y = f(x) when $\sqrt{x} + \sqrt{y} = 1$.
- (12) Graph y = f(x) when $x^{2/3} + y^{2/3} = a^{2/3}$.

- (13) Graph y = f(x) when $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$.
- (14) Graph $f(x) = \sin x$.
- (15) Graph $f(x) = \sin 2x x$.
- (16) Graph $f(x) = \sin x \cos x$ for $-\pi/3 < x < 0$.
- (17) Graph $f(x) = 2\cos x + \sin 2x$.
- (18) Graph $f(x) = \frac{\sin x}{x}$.
- (19) Graph $f(x) = \sin(1/x)$.
- (20) Graph $f(x) = \sin(x + \sin 2x)$.
- (21) Graph $f(x) = e^{-x}$.
- (22) Graph $f(x) = e^{1/x}$.
- (23) Graph $f(x) = e^{-x^2}$.
- (24) Graph $f(x) = \ln(4 x^2)$.

Problem D. Rolle's theorem and the mean value theorem.

- (1) State Rolle's theorem and draw a picture which illustrates the statement of the theorem.
- (2) State the mean value theorem and draw a picture which illustrates the statement of the theorem.
- (3) Explain why Rolle's theorem is a *special case* of the mean value theorem.
- (4) Verify Rolle's theorem for the function f(x) = (x-1)(x-2)(x-3) on the interval [1,3].
- (5) Verify Rolle's theorem for the function $f(x) = (x-2)^2(x-3)^6$ on the interval [2,3].
- (6) Verify Rolle's theorem for the function $f(x) = \sin x 1$ on the interval $[\pi/2, 5\pi/2]$.
- (7) Verify Rolle's theorem for the function $f(x) = e^{-x} \sin x$ on the interval $[0, \pi]$.
- (8) Verify Rolle's theorem for the function $f(x) = x^3 6x^2 + 11x 6$.

- (9) Let $f(x) = 1 x^{2/3}$. Show that f(-1) = f(1) but that there is no number c in the interval (-1, 1) such that $\frac{df}{dx}\Big|_{x=c} = 0$. Why does this not contradict Rolle's theorem?
- (10) Let $f(x) = (x-1)^{-2}$. Show that f(0) = f(2) but that there is no number c in the interval (0,2) such that $\frac{df}{dx}\Big|_{x=c} = 0$. Why does this not contradict Rolle's theorem?
- (11) Discuss the applicability of Rolle's theorem when f(x) = (x-1)(2x-3) on the interval $1 \le x \le 3$.
- (12) Discuss the applicability of Rolle's theorem when $f(x) = 2 + (x-1)^{2/3}$ on the interval $0 \le x \le 2$.
- (13) Discuss the applicability of Rolle's theorem when $f(x) = \lfloor x \rfloor$ on the interval $-1 \le x \le 1$.
- (14) At what point on the curve $y = 6 (x 3)^2$ on the interval [0, 6] is the tangent to the curve parallel to the x-axis?
- (15) Show that the equation $x^5 + 10x + 3 = 0$ has exactly one real root.
- (16) Show that a polynomial of degree three has at most three real roots.
- (17) Verify the mean value theorem for the function $f(x) = x^{2/3}$ in the interval [0, 1].
- (18) Verify the mean value theorem for the function $f(x) = \ln x$ in the interval [1, e].
- (19) Verify the mean value theorem for the function f(x) = x in the interval [a, b].
- (20) Verify the mean value theorem for the function $f(x) = \ell x^2 + mx + n$ in the interval [a, b], where ℓ, m and n are constants.
- (21) Show that the mean value theorem is not applicable to the function f(x) = |x| in the interval [-1, 1].
- (22) Show that the mean value theorem is not applicable to the function f(x) = 1/x in the interval [-1, 1].
- (23) Find the points on the curve $y = x^3 3x$ where the tangent is parallel to the chord joining (1, -2) and (2, 2).
- (24) If $f(x) = x(1 \ln x)$, x > 0, show that $(a b) \ln c = b(1 \ln b) a(1 \ln a)$, where 0 < a < b.

Problem E. Tangents and normals.

- (1) Find the slope of the tangent to the curve $y = x^3 x$ at x = 2.
- (2) Find the slope of the tangent to the curve $y = (\sin 2x + \cot x + 2)^2$ at $x = \pi/2$.
- (3) Find the equations of the tangent and normal to the curve $y = x^3 2x + 7$ at the point (1, 6).
- (4) Find the equations of the tangent and normal to the curve $3xy^2 2x^2y = 1$ at the point (1, 1).
- (5) Find the equations of the tangent and normal to the curve $y = x^3 + 2x + 6$ at the point (2, 18).
- (6) Find the equations of the tangent and normal to the curve $y^2 = 4ax$ at the point $(a/m^2, 2a/m)$.
- (7) Find the equations of the tangent and normal to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $(a\cos\theta, b\sin\theta)$.
- (8) Find the equations of the tangent and normal to the curve $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $(a \sec \theta, b \tan \theta)$.
- (9) Find the equations of the tangent and normal to the curve $c^2(x^2 + y^2) = x^2y^2$ at the point $(c/\cos\theta, c/\sin\theta)$.
- (10) Find the equations of the tangent and normal to the parabola $y^2 = 4ax$ at the point $(at^2, 2at)$.
- (11) Find the equation of the normal to the curve $ay^2 = x^3$ at the point $(am^2, 2m^3)$.
- (12) Show that the equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point (p,q) is $\frac{xp}{a^2} \frac{yq}{b^2} = 1$