MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2004

HOMEWORK 7

 DUE October 25, 2004For each of the following graphing problems also determine
(a) where $f(x)$ is defined,
(b) where $f(x)$ is continuous,
(c) where $f(x)$ is differentiable,
(d) where $f(x)$ is increasing and where it is decreasing,
(e) where $f(x)$ is concave up and where it is concave down,
(f) what the critical points of $f(x)$ are,
(g) where the points of inflection are, and
(h) what the asymptotes to $f(x)$ are (if $f(x)$ has asymptotes).

Problem A. Graphing rational functions.

(1) Graph $f(x)=1 / x$.
(2) Graph the function $f(x)$ such that $\frac{d f}{d x}=1 / x$ and $f(-1)=2$ and $f(1)=1$.
(3) Graph $f(x)=x+1 / x$.
(4) Graph $f(x)=\frac{x^{2}+2 x-20}{x-4}$.
(5) Graph $f(x)=\frac{1}{x^{2}+1}$.
(6) Graph $f(x)=\frac{1}{x^{2}+2 x+c}$, where c is a constant.
(7) Graph $f(x)=\frac{x^{3}}{x^{2}+1}$.
(8) Graph $f(x)=\frac{x^{2}-1}{x^{2}+1}$.
(9) Graph $f(x)=\frac{2 x^{2}}{x^{2}-1}$.
(10) Graph $f(x)=\frac{x^{2}+7 x+3}{x^{2}}$.
(11) Graph $f(x)=\frac{x^{2}(x+1)^{3}}{(x-2)^{2}(x-4)^{4}}$.
(12) Graph $f(x)=\frac{x^{2}-1}{x^{3}-4 x}$.

Problem B. Graphing functions with square roots.

(1) Graph $y=f(x)$ where $x^{2}+y^{2}=1$.
(2) Graph $f(x)=\sqrt{1-x^{2}}$.
(3) Graph $f(x)=\sqrt{a^{2}-x^{2}}$, where a is a constant.
(4) Graph $y=f(x)$ when $(x-h)^{2}+(y-k)^{2}=r^{2}$, where h, k, and r are constants.
(5) Graph $y=f(x)$ when $x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}=r^{2}$, where h, k, and r are constants.
(6) Graph $y=f(x)$ when $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are constants.
(7) Graph $y=f(x)$ when $x=a \cos \theta$ and $y=b \sin \theta$, where a and b are constants.
(8) Graph $f(x)=(b / a) \sqrt{a^{2}-x^{2}}$, where a and b are constants.
(9) Graph $y=f(x)$ when $x^{2}-y^{2}=1$.
(10) Graph $y=f(x)$ when $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where a and b are constants.
(11) Graph $y=f(x)$ when $y=a x^{2}-b$, where a and b are constants.
(12) Graph $y=f(x)$ when $x=2 y^{2}-1$.
(13) Graph $y=f(x)$ when $x=\cos 2 \theta$ and $y=\cos \theta$.
(14) Graph $f(x)=b \sqrt{x-a}$, where a and b are constants.
(15) Graph $f(x)=\sqrt{x+2}$.
(16) Graph $f(x)=-\sqrt{x+2}$.
(17) Graph $y=f(x)$ when $y^{2}\left(x^{2}-x\right)=x^{2}-1$.
(18) Graph $y=f(x)$ when $x=\frac{y^{2}-1}{y^{2}+1}$.
(19) Graph $y=f(x)$ when $y=\frac{\sqrt{1+x}}{\sqrt{1-x}}$.
(20) Graph $f(x)=\frac{x^{2}}{\sqrt{x+1}}$.
(21) Graph $f(x)=x \sqrt{32-x^{2}}$.
(22) Graph $f(x)=x \sqrt{1-x^{2}}$.

Problem C. Graphing other functions.

(1) Graph $f(x)=\lfloor x\rfloor$.
(2) Graph $f(x)=|x|$.
(3) Graph $f(x)=|x-5|$.
(4) Graph $f(x)=\left|x^{2}-1\right|$.
(5) Graph $f(x)= \begin{cases}1, & \text { if } x>0, \\ 0, & \text { if } x=0, \\ -1, & \text { if } x<0 .\end{cases}$
(6) Graph $f(x)=(x-1)^{1 / 3}$.
(7) Graph $f(x)=x^{2 / 3}$.
(8) Graph $f(x)=\frac{1}{(x-1)^{2 / 3}}$.
(9) Graph $f(x)=x(1-x)^{2 / 5}$.
(10) Graph $f(x)=x^{2 / 3}(6-x)^{1 / 3}$.
(11) Graph $y=f(x)$ when $\sqrt{x}+\sqrt{y}=1$.
(12) Graph $y=f(x)$ when $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$.
(13) Graph $y=f(x)$ when $x=a \cos ^{3} \theta$ and $y=a \sin ^{3} \theta$.
(14) Graph $f(x)=\sin x$.
(15) Graph $f(x)=\sin 2 x-x$.
(16) Graph $f(x)=\sin x-\cos x$ for $-\pi / 3<x<0$.
(17) Graph $f(x)=2 \cos x+\sin 2 x$.
(18) Graph $f(x)=\frac{\sin x}{x}$.
(19) Graph $f(x)=\sin (1 / x)$.
(20) Graph $f(x)=\sin (x+\sin 2 x)$.
(21) Graph $f(x)=e^{-x}$.
(22) Graph $f(x)=e^{1 / x}$.
(23) Graph $f(x)=e^{-x^{2}}$.
(24) Graph $f(x)=\ln \left(4-x^{2}\right)$.

Problem D. Rolle's theorem and the mean value theorem.

(1) State Rolle's theorem and draw a picture which illustrates the statement of the theorem.
(2) State the mean value theorem and draw a picture which illustrates the statement of the theorem.
(3) Explain why Rolle's theorem is a special case of the mean value theorem.
(4) Verify Rolle's theorem for the function $f(x)=(x-1)(x-2)(x-3)$ on the interval [1,3].
(5) Verify Rolle's theorem for the function $f(x)=(x-2)^{2}(x-3)^{6}$ on the interval [2,3].
(6) Verify Rolle's theorem for the function $f(x)=\sin x-1$ on the interval $[\pi / 2,5 \pi / 2]$.
(7) Verify Rolle's theorem for the function $f(x)=e^{-x} \sin x$ on the interval $[0, \pi]$.
(8) Verify Rolle's theorem for the function $f(x)=x^{3}-6 x^{2}+11 x-6$.
(9) Let $f(x)=1-x^{2 / 3}$. Show that $f(-1)=f(1)$ but that there is no number c in the interval $(-1,1)$ such that $\left.\frac{d f}{d x}\right|_{x=c}=0$. Why does this not contradict Rolle's theorem?
(10) Let $f(x)=(x-1)^{-2}$. Show that $f(0)=f(2)$ but that there is no number c in the interval $(0,2)$ such that $\left.\frac{d f}{d x}\right|_{x=c}=0$. Why does this not contradict Rolle's theorem?
(11) Discuss the applicability of Rolle's theorem when $f(x)=(x-1)(2 x-3)$ on the interval $1 \leq x \leq 3$.
(12) Discuss the applicability of Rolle's theorem when $f(x)=2+(x-1)^{2 / 3}$ on the interval $0 \leq x \leq 2$.
(13) Discuss the applicability of Rolle's theorem when $f(x)=\lfloor x\rfloor$ on the interval $-1 \leq$ $x \leq 1$.
(14) At what point on the curve $y=6-(x-3)^{2}$ on the interval $[0,6]$ is the tangent to the curve parallel to the x-axis?
(15) Show that the equation $x^{5}+10 x+3=0$ has exactly one real root.
(16) Show that a polynomial of degree three has at most three real roots.
(17) Verify the mean value theorem for the function $f(x)=x^{2 / 3}$ in the interval $[0,1]$.
(18) Verify the mean value theorem for the function $f(x)=\ln x$ in the interval $[1, e]$.
(19) Verify the mean value theorem for the function $f(x)=x$ in the interval $[a, b]$.
(20) Verify the mean value theorem for the function $f(x)=\ell x^{2}+m x+n$ in the interval $[a, b]$, where ℓ, m and n are constants.
(21) Show that the mean value theorem is not applicable to the function $f(x)=|x|$ in the interval $[-1,1]$.
(22) Show that the mean value theorem is not applicable to the function $f(x)=1 / x$ in the interval $[-1,1]$.
(23) Find the points on the curve $y=x^{3}-3 x$ where the tangent is parallel to the chord joining $(1,-2)$ and $(2,2)$.
(24) If $f(x)=x(1-\ln x), x>0$, show that $(a-b) \ln c=b(1-\ln b)-a(1-\ln a)$, where $0<a<b$.

Problem E. Tangents and normals.

(1) Find the slope of the tangent to the curve $y=x^{3}-x$ at $x=2$.
(2) Find the slope of the tangent to the curve $y=(\sin 2 x+\cot x+2)^{2}$ at $x=\pi / 2$.
(3) Find the equations of the tangent and normal to the curve $y=x^{3}-2 x+7$ at the point $(1,6)$.
(4) Find the equations of the tangent and normal to the curve $3 x y^{2}-2 x^{2} y=1$ at the point $(1,1)$.
(5) Find the equations of the tangent and normal to the curve $y=x^{3}+2 x+6$ at the point $(2,18)$.
(6) Find the equations of the tangent and normal to the curve $y^{2}=4 a x$ at the point $\left(a / m^{2}, 2 a / m\right)$.
(7) Find the equations of the tangent and normal to the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $(a \cos \theta, b \sin \theta)$.
(8) Find the equations of the tangent and normal to the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \sec \theta, b \tan \theta)$.
(9) Find the equations of the tangent and normal to the curve $c^{2}\left(x^{2}+y^{2}\right)=x^{2} y^{2}$ at the point $(c / \cos \theta, c / \sin \theta)$.
(10) Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.
(11) Find the equation of the normal to the curve $a y^{2}=x^{3}$ at the point $\left(a m^{2}, 2 m^{3}\right)$.
(12) Show that the equation of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point (p, q) is $\frac{x p}{a^{2}}-\frac{y q}{b^{2}}=1$

