Math 521: Lecture 17

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Interiors and closures

Let X be a topological space and let $x \in X$. A **neighborhood** of x is a subset N of X such that there exists an open subset U of X with $x \in U$ and $U \subseteq N$.

Let X be a topological space and let $E \subset X$. A **neighborhood** of E is a subset N of X such that there exists an open subset U of X with $E \subseteq U \subseteq N$.

Let X be a topological space and let $E \subset X$. The **interior** of E is the subset E° of E such that

- (a) E° is open in X,
- (b) If U is an open subset of E then $U \subseteq E^{\circ}$.

Let X be a topological space and let $E \subseteq X$. The **closure** \overline{E} of E is the subset \overline{E} of X such that

- (a) \overline{E} is closed,
- (b) If V is a closed subset of X and $V \supseteq E$ then $V \supseteq \overline{E}$.

Let X be a topological space. Let $E \subseteq X$. An **interior point** of E is a point $x \in X$ such that there exists a neighborhood N_x of x with $N_x \subseteq E$.

Let X be a topological space. Let $E \subseteq X$. A close point to E is a point $x \in X$ such that If N_x is a neighborhood of x then N_x contains a point of E.

Theorem 1.1. Let X be a topological space. Let $E \subseteq X$.

- (a) The interior of E is the set of interior points of E.
- (b) The closure of E is the set of close points of E.

2 Hausdorff spaces

A **Hausdorff space** is a topological space X such that if $x, y \in Y$ and $x \neq y$ then there exist a neighborhood N_x of x and a neighborhood N_y of y such that $N_x \cup N_y = \emptyset$.

Theorem 2.1. Let X be a topological space. Show that the following are equivalent:

- (a) Any two distinct points of X have disjoint neighborhoods.
- (b) The intersection of the closed neighborhoods of any point of X consist of that point alone.
- (c) The diagonal of the product space $X \times X$ is a closed set.
- (d) For every set I, the diagonal of the product space $Y = X^{I}$ is closed in Y.
- (e) No filter on X has more than one limit point.
- (f) If a filter \mathcal{F} on X converges to x then x is the only cluster point of x.

3 Limit points and cluster points

Theorem 3.1. Let X be a topological space and let $(x_1, x_2, ...)$ be a sequence in X. Then

- (a) y is a limit point of $(x_1, x_2, ...)$ if and only if, if N_y is a neighborhood of y then there exists $n_0 \in \mathbb{Z}_{>0}$ such that $x_n \in N_x$ for all $n \in \mathbb{Z}_{\geq 0}$, $n \ge n_0$.
- (b) y is a cluster point of $(x_1, x_2, ...)$ if and only if, if N_y is a neighborhood of y and $n_0 \in \mathbb{Z}_{>0}$ then there exists $n \in \mathbb{Z}_{>0}$ with $n \ge n_0$ such that $x_n \in N_y$.

4 Compact sets

Let X be a set. A filter \mathcal{F} on X is **convergent** if it has a limit point.

Theorem 4.1. Let X be a topological space. The following are equivalent.

- (a) Every filter on X has at least one cluster point.
- (b) Every ultrafilter on X is convergent.
- (c) Every family of closed subsets of X whose intersection is empty contains a finite subfamily whose intersection is empty.
- (d) Every open cover of X contains a finite subcover.