MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2006

HOMEWORK 2: SELECTED ANSWERS

Problem A. Angles

- (1) The number π is the circumference of a circle divided by its diameter.
- (2) $360^{\circ} = 2\pi$ radians.
- (4) $2\pi r$ (5) $r\theta$ (6) πr^2 (7) $(1/2)\theta r^2$

Problem B. Computing trigonometric functions

(1)
$$\sin \frac{\pi}{6} = 1/2$$
, $\cos \frac{\pi}{6} = \sqrt{3}/2$, $\tan \frac{\pi}{6} = \sqrt{3}/3$,
 $\cot \frac{\pi}{6} = \sqrt{3}$, $\sec \frac{\pi}{6} = 2\sqrt{3}/3$, $\csc \frac{\pi}{6} = 2$.

(2) $\sin \frac{\pi}{3} = \sqrt{3}/2$, $\cos \frac{\pi}{3} = 1/2$, $\tan \frac{\pi}{3} = \sqrt{3}$, $\cot \frac{\pi}{3} = \sqrt{3}/3$, $\sec \frac{\pi}{3} = 2$, $\csc \frac{\pi}{3} = 2\sqrt{3}/3$.

(3)
$$\sin \frac{\pi}{4} = \sqrt{2}/2$$
, $\cos \frac{\pi}{4} = \sqrt{2}/2$, $\tan \frac{\pi}{4} = 1$,
 $\cot \frac{\pi}{4} = 1$, $\sec \frac{\pi}{4} = \sqrt{2}$, $\csc \frac{\pi}{4} = \sqrt{2}$.

(4)
$$\sin \frac{\pi}{2} = 1$$
, $\cos \frac{\pi}{2} = 0$, $\tan \frac{\pi}{2}$ is undefined,
 $\cot \frac{\pi}{2} = 0$, $\sec \frac{\pi}{2}$ is undefined, $\csc \frac{\pi}{2} = 1$

- (5) $\sin 0 = 0$, $\cos 0 = 1$, $\tan 0 = 0$, $\cot 0$ is undefined, $\sec 0 = 1$, $\csc 0$ is undefined.
- (6) $\sin \frac{3\pi}{4} = \sqrt{2}/2$, $\cos \frac{3\pi}{4} = -\sqrt{2}/2$, $\tan \frac{3\pi}{4} = -1$, $\cot \frac{3\pi}{4} = -1$, $\sec \frac{3\pi}{4} = -\sqrt{2}$, $\csc \frac{3\pi}{4} = \sqrt{2}$.

(7)
$$\sin \frac{-2\pi}{3} = -\sqrt{3}/2$$
, $\cos \frac{-2\pi}{3} = -1/2$, $\tan \frac{-2\pi}{3} = \sqrt{3}$,
 $\cot \frac{-2\pi}{3} = \sqrt{3}/3$, $\sec \frac{-2\pi}{3} = -2$, $\csc \frac{-2\pi}{3} = -2\sqrt{3}/3$.

(8)
$$\frac{1+\sqrt{3}}{2}$$
 (9) $\frac{\sqrt{3}}{4}$ (10) 1