MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2006

HOMEWORK 2: SELECTED ANSWERS

Problem A. Angles

(1) The number π is the circumference of a circle divided by its diameter.
(2) $360^{\circ}=2 \pi$ radians.
(4) $2 \pi r$
(5) $r \theta$
(6) πr^{2}
(7) $(1 / 2) \theta r^{2}$

Problem B. Computing trigonometric functions

(1) $\sin \frac{\pi}{6}=1 / 2, \quad \cos \frac{\pi}{6}=\sqrt{3} / 2, \quad \tan \frac{\pi}{6}=\sqrt{3} / 3$, $\cot \frac{\pi}{6}=\sqrt{3}, \quad \sec \frac{\pi}{6}=2 \sqrt{3} / 3, \quad \csc \frac{\pi}{6}=2$.
(2) $\sin \frac{\pi}{3}=\sqrt{3} / 2, \quad \cos \frac{\pi}{3}=1 / 2, \quad \tan \frac{\pi}{3}=\sqrt{3}$, $\cot \frac{\pi}{3}=\sqrt{3} / 3, \quad \sec \frac{\pi}{3}=2, \quad \csc \frac{\pi}{3}=2 \sqrt{3} / 3$.
(3) $\sin \frac{\pi}{4}=\sqrt{2} / 2, \quad \cos \frac{\pi}{4}=\sqrt{2} / 2, \quad \tan \frac{\pi}{4}=1$, $\cot \frac{\pi}{4}=1, \quad \sec \frac{\pi}{4}=\sqrt{2}, \quad \csc \frac{\pi}{4}=\sqrt{2}$.
(4) $\sin \frac{\pi}{2}=1, \quad \cos \frac{\pi}{2}=0, \quad \tan \frac{\pi}{2}$ is undefined, $\cot \frac{\pi}{2}=0, \quad \sec \frac{\pi}{2}$ is undefined, $\quad \csc \frac{\pi}{2}=1$.
(5) $\sin 0=0, \quad \cos 0=1, \quad \tan 0=0$, $\cot 0$ is undefined, $\quad \sec 0=1, \quad \csc 0$ is undefined.
(6) $\sin \frac{3 \pi}{4}=\sqrt{2} / 2, \quad \cos \frac{3 \pi}{4}=-\sqrt{2} / 2, \quad \tan \frac{3 \pi}{4}=-1$,

$$
\cot \frac{3 \pi}{4}=-1, \quad \sec \frac{3 \pi}{4}=-\sqrt{2}, \quad \csc \frac{3 \pi}{4}=\sqrt{2} .
$$

(7) $\sin \frac{-2 \pi}{3}=-\sqrt{3} / 2, \quad \cos \frac{-2 \pi}{3}=-1 / 2, \quad \tan \frac{-2 \pi}{3}=\sqrt{3}$,

$$
\cot \frac{-2 \pi}{3}=\sqrt{3} / 3, \quad \sec \frac{-2 \pi}{3}=-2, \quad \csc \frac{-2 \pi}{3}=-2 \sqrt{3} / 3 .
$$

(8) $\frac{1+\sqrt{3}}{2}$
(9) $\frac{\sqrt{3}}{4}$
(10) 1

