MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2006

HOMEWORK 6: SELECTED ANSWERS

Problem B. Where is a function continuous?

(1) all x
(2) all x
(3) $x \neq 0$
(4) $x \neq 0$
(5) $k=2 / 5$
(6) $1 \leq x \leq 3$
(7) $x \neq 0$
(8) $x \neq 0$
(9) $a=-2$
(10) $x \geq 0, x \neq 1$
(11) all x
(12) $a=3$
(13) $x \neq a$
(14) $x \neq 0$
(15) all x
(16) all x
(18) all x
(19) x not an integer
(20) $x \neq 1$
(21) $-1 \leq x \leq 2$

Problem D. Increasing, decreasing, and concavity.
(9) 1
(10) $a=3$ and $b=5$

Problem E. Graphing polynomials.

(1) Defined for all x; continuous for all x; differentiable for all x; increasing nowhere; decreasing nowhere; concave up nowhere; concave down nowhere; all x are critical points; no points of inflection; $y=a$ is an asymptote.
(2) Defined for all x; continuous for all x; differentiable for all x; increasing for all x if $a>0$; decreasing for all x if $a<0$; concave up nowhere; concave down nowhere; all x are critical points if $a=0$ and there are no critical points if $a \neq 0$; no points of inflection; $y=a x+b$ is an asymptote.
(3) Same as (2).
(4) Defined for $x \geq 0$; continuous for $x \geq 0$; differentiable for $x \neq 1$; increasing for $0<x<1$; decreasing for $x>1$; concave up nowhere; concave down nowhere; critical points at $x=1$ and $x=0$; no points of inflection; $y=2-x$ is an asymptote as $x \rightarrow \infty$.
(5) Defined for all x; continuous for all x; differentiable for $x \neq 0$; increasing for $x>0$; decreasing for $x<0$; concave up nowhere; concave down nowhere; critical point at $x=0$; no points of inflection; $y=2+x$ is an asymptote as $x \rightarrow \infty, y=2-x$ is an asymptote as $x \rightarrow-\infty$.
(6) Defined for all x; continuous for all x; differentiable for $x \neq 1$; increasing for $x>1$; decreasing for $x<1$; concave up for $x>1$; concave down nowhere; critical point at $x=1$; no points of inflection; $y=1-x$ is an asymptote as $x \rightarrow-\infty$.
(7) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<1$; decreasing for $x>1$; concave up nowhere; concave down for all x; critical point at $x=1$; no points of inflection; no asymptotes.
(8) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<1 / 2$; decreasing for $x>1 / 2$; concave up nowhere; concave down for all x; critical point at $x=1 / 2$; no points of inflection; no asymptotes.
(9) Defined for all x; continuous for all x; differentiable for all x; increasing for $x>1 / 3$; decreasing for $x<1 / 3$; concave up for all x; concave down nowhere; -critical point at $x=1 / 3$; no points of inflection; no asymptotes.
(10) Defined for all x; continuous for all x; differentiable for all x; increasing for all x; decreasing nowhere; concave up for $x>0$; concave down for $x<0$; critical point at $x=0$; point of inflection at $x=0$; no asymptotes.
(11) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<$ $-1 / \sqrt{3}, x>1 / \sqrt{3}$; decreasing for $-1 / \sqrt{3}<x<1 / \sqrt{3}$; concave up for $x>0$; concave down for $x<0$; critical points at $x= \pm 1 / \sqrt{3}$; point of inflection at $x=0$; no asymptotes.
(12) Same as (11).
(13) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<$ $4 / 3, x>2$; decreasing for $4 / 3<x<2$; concave up for $x>5 / 3$; concave down for $x<5 / 3$; critical points at $x=2$ and $x=4 / 3$; point of inflection at $x=5 / 3$; no asymptotes.
(14) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<1, x>$ 6 ; decreasing for $1<x<6$; concave up for $x>7 / 2$; concave down for $x<7 / 2$; critical points at $x=6$ and $x=1$; point of inflection at $x=7 / 2$; no asymptotes.
(15) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<$ $-5 / 3, x>2$; decreasing for $-5 / 3<x<2$; concave up for $x>1 / 6$; concave down for $x<1 / 6$; critical points at $x=-5 / 3$ and $x=2$; point of inflection at $x=1 / 6$; no asymptotes.
(16) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<0$; decreasing for $x>0$; concave up nowhere; concave down for all x; critical points at $x=0$; no points of inflection; no asymptotes.
(17) Defined for all x; continuous for all x; differentiable for all x; increasing for $-1<x<0$ and $x>2$; decreasing for $x<-1$ and $0<x<2$; concave up for x less than about $-1 / 2$, and for x greater than about 1.2 ; concave down for x between about $-1 / 2$ and 1.2 ; critical points at $x=-1, x=0$ and $x=2$; points of inflection at about $-1 / 2$ and about 1.2; no asymptotes.
(18) Defined for all x; continuous for all x; differentiable for all x; increasing for $0<x<1$ and $x>3$; decreasing for $x<0$ and $1<x<3$; concave up for x less than about $1 / 2$, and for x greater than about 2.2 ; concave down for x between about $1 / 2$ and 2.2; critical points at $x=0, x=1$ and $x=3$; points of inflection at about $1 / 2$ and about 2.2; no asymptotes.
(20) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<1.2$ and $x>2$; decreasing for $1.2<x<2$; concave up for x between 0 and about 1 , and for x greater than about 1.3; concave down for $x<0$ and x between about 1 and 1.3; critical points at $x=0, x=1.2$ and $x=2$; points of inflection at $x=0$ and x about 1 and about 1.3; no asymptotes.
(21) Defined for all x; continuous for all x; differentiable for all x; increasing for $x>0$ and less than about 1.2 and for $x>2$; decreasing for $x<0$ and between about 1.2 and 2; concave up for x less than about -.9 and between about -.5 and .5 and for x greater than about 1.5; concave down for x between about -.9 and -.5 and between about .5 and 1.5 ; critical points at $x=0, x=2$ and approximately -.9 and 1.2 ; points of inflection at approximately $-.9,-.5, .5$ and 1.5 ; no asymptotes.

