MATH 221: Calculus and Analytic Geometry Prof. Ram, Fall 2006

HOMEWORK 7: SELECTED ANSWERS

Problem A. Graphing rational functions.

(1) Defined for $x \neq 0$; continuous for $x \neq 0$; differentiable for all $x \neq 0$; increasing nowhere; decreasing for all $x \neq 0$; concave up for $x>0$; concave down for $x<0$; critical point at $x=0$; no point of inflection; asymptote $y=0$ as $x \rightarrow 0$; asymptote $x=0$ as $x \rightarrow \pm \infty$.
(2) Defined for $x \neq 0$; continuous for $x \neq 0$; differentiable for all $x \neq 0$; increasing for $x>0$; decreasing for all $x<0$; concave up nowhere; concave down for $x \neq 0$; critical points at $x=0$; no points of inflection; asymptote $y=0$ as $x \rightarrow 0$;
(3) Defined for $x \neq 0$; continuous for $x \neq 0$; differentiable for all $x \neq 0$; increasing for $x<-1, x>1$; decreasing for all $-1<x<0,0<x<1$; concave up for $x>0$; concave down for $x<0$; critical points at $x=0, \pm 1$; no points of inflection; asymptote $x=0$ as $x \rightarrow 0$; asymptote $y=x$ as $x \rightarrow \pm \infty$;
(4) Defined for $x \neq 4$; continuous for $x \neq 4$; differentiable for all $x \neq 4$; increasing for $x<2, x>6$; decreasing for all $2<x<4,4<x<6$; concave up for $x>4$; concave down for $x<4$; critical points at $x=2,4,6$; no points of inflection; asymptote $x=4$ as $x \rightarrow 4$; asymptote $y=x$ as $x \rightarrow \pm \infty$;
(5) Defined for all x; continuous for all x; differentiable for all x; increasing for $x<0$; decreasing for all $x>0$; concave up for $x<-1 / \sqrt{3}, x>1 / \sqrt{3}$; concave down for $-1 / \sqrt{3}<x<\sqrt{3} ;$ critical point at $x=0$; points of inflection at $x= \pm 1 / \sqrt{3}$; asymptote $y=0$ as $x \rightarrow \pm \infty$;

Problem B. Graphing functions with square roots.

(1-5) Circles.
(6-8) Ellipses.
(9-10) Hyperbolas.
(11-16) Parabolas.
(18) This problem appeared before on this homework assignment (almost).
(19) Make this one into problem (B18).

Problem C. Graphing other functions.

(1) Defined for all x; continuous for all $x \neq 0, \pm 1, \pm 2, \ldots$; differentiable for all $x \neq$ $0, \pm 1, \pm 2, \ldots$; increasing nowhere; decreasing nowhere; concave up nowhere; concave down nowhere; all points are critical points; no points of inflection; no asymptotes;
(2) Defined for all x; continuous for all x; differentiable for $x \neq 0$; increasing for $x>0$; decreasing for $x<0$; concave up nowhere; concave down nowhere; critical point at $x=0$; no points of inflection; asymptote $y=x$ as $x \rightarrow \infty$; asymptote $y=-x$ as $x \rightarrow-\infty$;
(3) Defined for all x; continuous for all x; differentiable for $x \neq 5$; increasing for $x>5$; decreasing for $x<5$; concave up nowhere; concave down nowhere; critical point at $x=5$; no points of inflection; asymptote $y=x$ as $x \rightarrow \infty$; asymptote $y=-x$ as $x \rightarrow-\infty$;
(4) Defined for all x; continuous for all x; differentiable for $x \neq \pm 1$; increasing for $-1<$ $x<0, x>1$; decreasing for $x<-1,0<x<1$; concave up for $x<-1, x>1$; concave down for $-1<x<1$; critical points at $x= \pm 1,0$; no points of inflection; no asymptotes;
(5) Defined for all x; continuous for all $x \neq 0$; differentiable for $x \neq 0$; increasing nowhere; decreasing nowhere; concave up nowhere; concave down nowhere; critical point at $x=0$; no points of inflection; asymptotes $y=1$ as $x \rightarrow \infty$; asymptotes $y=-1$ as $x \rightarrow-\infty$;
(6) Defined for all x; continuous for all x; differentiable for $x \neq 1$; increasing for all x; decreasing nowhere; concave up for $x<1$; concave down for $x>1$; critical point at $x=1$; point of inflection at $x=1$; no asymptotes;
(7) Defined for all x; continuous for all x; differentiable for $x \neq 0$; increasing for $x>0$; decreasing for $x<0$; concave up nowhere; concave down everywhere; critical point at $x=0$; no points of inflection; no asymptotes;
(8) Defined for $x \neq 1$; continuous for all $x \neq 1$; differentiable for $x \neq 1$; increasing for $x<1$; decreasing for $x>1$; concave up everywhere; concave down nowhere; critical point at $x=1$; no points of inflection; no asymptotes;
(12) See page 153 in the text.
(13) Make this one into problem (C12).
(14) Defined for all x; continuous for all x; differentiable for x; increasing for $2 k \pi+-\pi / 2<$ $x<2 k \pi+\pi / 2$, where k is an integer; decreasing for $2 k \pi+\pi / 2<x<2 k \pi+3 \pi / 2$, where k is an integer; concave up for $2 k \pi-\pi<x<2 k \pi$, where k is an integer; concave down
for $2 k \pi<x<2 k \pi+\pi$, where k is an integer; critical points at $x=k \pi+\pi / 2$, where k is an integer; points of inflection at $x=k \pi$, where k is an integer; no asymptotes;
(15) Compare the graphs of $y=\sin 2 x$ and $y=x$.

Problem D. Rolle's theorem and the mean value theorem.

(4) $c=2 \pm \sqrt{3} / 3$
(5) $c=9 / 4$
(6) $c=3 \pi / 2$
(7) $\quad c=\pi / 4$
(8) $c=2 \pm \sqrt{3} / 3$
(11) $\quad f(1) \neq f(3)$
(12) $f^{\prime}(1)$ does not exist
(13) $f(x)$ is discontinuous at $x=0$
$(14)(3,6)$
(17) $\quad c=8 / 27$
(18) $c=e-1$
(20) $c=(a+b) / 2$
(21) $f^{\prime}(0)$ does not exist
(22) $f(x)$ is discontinuous at $x=0$
(23) $\quad(\sqrt{7 / 3},(-2 / 3)(\sqrt{7 / 3})),(-\sqrt{7 / 3},(2 / 3)(\sqrt{7 / 3}))$

Problem E. Tangents and Normals.

(1) 11
(2) -12
(3) $x-y+5=0, \quad x+y-7=0$
(4) $x-4 y+3=0, \quad 4 x+y-5=0$
(5) $14 x-y-10=0, x+14 y-254=0$
(6) $m^{2} x-m y+a=0, \quad m^{2} x+m^{3} y-2 a m^{2}-a=0$
(7) $b x \cos \theta+a y \sin \theta=a b, \quad a x \sec \theta-b y \csc \theta=\left(a^{2}-b^{2}\right)$
(8) $b x \sec \theta-a y \tan \theta=a b, \quad x \sin \theta-y \cos \theta=(a / 4) \sin 4 \theta$
(9) $x \cos ^{3} \theta+y \sin ^{3} \theta=c, \quad x \sin ^{3} \theta-y \cos ^{3} \theta+2 c \cot 2 \theta=0$
(10) $x-t y+a t^{2}=0, \quad t x+y=a t^{3}+2 a t$
(11) $2 x+3 m y-18 m^{2}-27 m^{4}=0$

