MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 4 August 2014

Lecture 11

limx2f(x)=10 if f(x) gets closer and closer to 10 as x gets closer and closer to 2.

Evaluate limx23x2+8x2-x.

When x=1, 3x2+8 x2-x =11. When x=1.5, 3x2+8 x2-x =19.66. When x=1.9, 3x2+8 x2-x =11.011. When x=1.99, 3x2+8 x2-x =10.091. When x=1.999, 3x2+8 x2-x =10.00901. When x=1.9999, 3x2+8 x2-x =10.0009001. So limx2 3x2+8 x2-x =10. Usually determining the limit is straightforward.

limx16x2-4x+3=5.

But sometimes...

limx01+x-1x=?00.

00 makes NO SENSE.

limx05xx=?00. limx05xx =limx05=5.

limx017x2x=?00. limx017x2x =limx0172= 172.

Let's go back to

Evaluate limx01+x-1x. limx0 1+x-1x = limx0 (1+x-1)x (1+x+1) (1+x+1) = limx0 1+x-1 x(1+x+1) = limx0 xx(1+x+1) = limx0 11+x+1 = 11+0+1 = 12.

So, whenever a limit looks like it is coming out to 00 it needs to be looked at in a different way to see what it is really getting closer and closer to.

limx7 x2-49 x-7 = limx7 (x-7)(x+7) (x-7) = limx7 (x+7)=7+7=14.

Evaluate limx5x5-3125x-5. limx5 x5-3125x-5 = limx5 x5-55 x-5 = limx5 (x-5)(x4+5x3+52x2+53x+54) x-5 = limx5 x4+5x3+52x2+53x+54 = 54+54+54+54+54 =55=3125.

Evaluate limxax52-a52x-a. limxa x52-a52 x-a = limxa (x52-a52) (x-a) (x52+a52) (x52+a52) = limxa x5-a5 x-a · 1x52+a52 = limxa (x-a)(x4+ax3+a2x2+a3x+a4) x-a 1x52+a52 = limxa x4+ax3+a2x2+a3x+a4 x52+a52 = a4+a4+a4+a4+a4 a52+a52 =5a42a52 =52a32.

Particularly useful limits

(a) limx0 sinxx = limx0 x- x33!+ x55!- x67!+ x99!- x = limx0 1- x23!+ x45!- x67!+ x89!- = 1-0+0-0+0-=1.

(b) limx0 cosx-1x = limx0 ( 1- x22!+ x44!- x66!+ ) -1 x = limx0 -x22! +x44! -x66! +x88!- x = limx0 -x2! +x34! -x56! +x78!- = 0+0+0+=0.

(c) limx0 ex-1x = limx0 ( 1+x +x22! +x33! +x44! + ) -1 x = limx0 x+ x22!+ x33!+ x44!+ x = limx0 1+ x2!+ x23!+ x34!+ x45!+ = 1+0+0+=1.

(d) Evaluate limx0ln(1+x)x.

Let y=ln(1+x). Then ey=1+x and x=ey-1. Also y0 as x0. So limx0 ln(1+x)x= limy0 yey-1= limy0 1ey-1y= 11=1.

Evaluate limx0(1+x)1x. limx0 (1+x)1x = limx0 (eln(1+x))1x = limx0e1xln(1+x) = limx0 eln(1+x)x = e1=e.

Evaluate limn(1+1n)n.

Let x=1n. Then x0 as n. So limn (1+1n)n= limx0 (1+x)1x=e. Note: n means n gets larger and larger.

Evaluate limxπsinxx-π

Let y=x-π. Then y0 as xπ. So limxπ sinxx-π = limy0 sin(y+π)y = limy0 sinycosπ+cosysinπ y = limy0 siny(-1)+cosy·0 y = limy0 -sinyy=-1.

Notes and References

These are a typed copy of Lecture 11 from a series of handwritten lecture notes for the class MATH 221 given on October 2, 2000.

page history