MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 13 August 2014

Lecture 17

Graphing Examples

Graph f(x)=3x2-2x-1.

Notes:

(a) The x2 indicates this is a parabola.
(b) Since the coefficient of x2 is positive this is a concave up parabola.
(c) 3x2-2x-1=(x-1)(3x+1). We know x-1 should be a factor since when you plug in 1, 3·12-2·1-1=0.
(d) f(x)=0 if x=1 or if x=-13. x y -1 1 13 -13 -43 y=f(x)
(e) The minimum will be where dfdx|x=a is 0. dfdx|x=a=6x-2|x=a=6a-2. This 0 when a=13. f(13)= 3(13)2- 2(13)-1= 13-23-1= -43.

Graph f(x)=2x3-21x2+36x-20.

Notes:

(a) If x then f(x).
(b) If x- then f(x)-.
(c) dfdx=6x2-42x+36=6(x2-7x+6)=6(x-6)(x-1). So dfdx is 0 when x=6 and when x=1. f(6)=2·63- 21·62+36·6-20 =62(12-21+6)- 20=62(-3)-20 =-128, f(1)=2-21+ 36-20=38-41=-3.
(d) d2fdx2 |x=6 = 12x-42|x=6= 72-42=30>0,concave up, d2fdx2 |x=1 = 12x-42|x=1= 12-42=-30<0,concave down.
x y 1 6 -20 -128 y=f(x) =2x3-21x2 +36x-20

Graph f(x)=x3-x+1.

Notes:

(a) This is x3-x shifted up by 1.
(b) x3-x=x(x2-1)=x(x+1)(x-1). x y 1 -1 -13 13 y=x3-x d(x3-x)dx=3x2-1. So d(x3-x)dx|x=a is 0 when a=±13.
So x y 1 -1 1 -13 13 y=x3-x+1

Graph x-x2-27.

Notes:

(a) The -x2 indicates to us that this is a concave down parabola.
(b) x-x2-27 = -(x2-x+27) = -(x2-x+14-14+27) = -((x-12)2+2634).
So x y 1 -1 1 y=x2 x y 1 -12 12 32 y=(x-12)2 x y -12 12 32 2634 2734 y=(x-12)2+2634 x y -12 12 32 -2634 -2734 y=-((x-12)2+2634)
=x-x2-27

For which values of x is f(x)= { |x-a|x-a, ifxa, 1, ifx=a continuous?

Notes: f(x) = { |x-a|x-a, ifxa, 1, ifx=a = { x-ax-a, ifxaand x-a>0, -(x-a)x-a, ifxaand x-a<0, 1, ifx=a = { 1, ifxaand x>a, -1, ifxaand x<a, 1, ifx=a. x y a -1 1 y=f(x) f(x) has a jump at x=a. So f(x) is not continuous at x=a.

Notes and References

These are a typed copy of Lecture 17 from a series of handwritten lecture notes for the class MATH 221 given on October 16, 2000.

page history