MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 23

The chain rule for derivatives: dfdx= dfdududx Now f=dfdxdx= dfdu dudxdx. On the other hand f=dfdudu. So dfdududx dx=dfduu. So (JUNK)dudx dx=(JUNK)du. This is THE CHAIN RULE FOR INTEGRALS.

4x-52x2-5x+1dx u=2x2-5x+1, dudx=4x-5. So 4x-52x2-5x+1 dx = 1ududxdx= 1udu = lnu+c=ln(2x2-5x+1)+c.

tanxsec2xxdx u = tanx, dudx = sec2x12 x-12 = 12sec2xx. 2tanx sec2x2xdx= 2ududxdx= 2udu=u2+c= tan2x+c.

x3x-2dx = 133x3x-2dx = 13(3x-2+2) 3x-2dx = 13 ( (3x-2)32+ 2(3x-2)12 ) dx = 13 ( 25 (3x-2)523+ 2(3x-2)323 23 ) +c = 245(3x-2)52+ 427(3x-2)32+c.

xx2-1dx u=x2-1, dudx=2x. xx2-1dx = 122xx2-1dx = 12dudx udx = 12udu = 12u12du = 1223u32+c = 13u32+c = 13(x2-1)32+c.

cos3xdx = cosxcos2xdx = cosx(1-sin2x)dx = (cosx-sin2xcosx)dx = sinx-sin3x3+c.

lnx2xdx u=lnx2, dudx=1x2 2x=2x. 122lnx2xdx = 122xlnx2dx = 12dudxudx = 12udu = 12u22+c = u24+c = (lnx2)24+c.

x1+xdx = x+1-11+xdx = ( x+1(1+x)12- 1(1+x)12 ) dx = ( (x+1)12- (x+1)-12 ) dx = 23(x+1)32- 2(x+1)12+c.

xx-1dx = (x-1+1)x-1 dx = ( (x-1)x-1+ x-1 ) dx = (x-1)32+ (x-1)12dx = 25(x-1)52+ 23(x-1)32+c.

(1-x)1+xdx = (-(1+x)+2) 1+xdx = -(1+x)1+x2 1+xdx = ( -(1+x)32+ 2(1+x)12 ) dx = -25(1+x)52+ 2·23(1+x)32+c = -25(1+x)52+ 43(1+x)32+c.

sinxsinx-cosxdx = sinx-cosx+ sinx+cosx 2(sinx-cosx) dx = sinx-cosx 2(sinx-cosx) + sinx+cosx 2(sinx-cosx) dx = 12+12 sinx+cosx sinx-cosx dx = 12x+12ln (sinx-cosx)+c.

Notes and References

These are a typed copy of Lecture 23 from a series of handwritten lecture notes for the class MATH 221 given on November 1, 2000.

page history