MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 24

sinxsinx-cosxdx = sinx-cosx+sinx+cosx sinx-cosx ·12dx = 12 sinx-cosxsinx-cosx+ sinx+cosxsinx-cosxdx = 12 (1+sinx+cosxsinx-cosx)dx = 12(x+ln(sinx-cosx))+c since d12(x+ln(sinx-cosx))dx= 12(1+1sinx-cosx(cosx+sinx)).

x31+x8dx = x31+(x4)2dx = 14·4x31+(x4)2 dx = 14tan-1(x4)+c since d14tan-1xx4dx= 1411+(x4)2 dx4dx=14 4x31+(x4)2.

tan-1 (sin2x1+cos2x)dx = tan-1 (2sinxcosx1+cos2x-sin2x)dx = tan-1 (2sinxcosxcos2x+cos2x)dx = tan-1 (2sinxcosx2cos2x)dx = tan-1(sinxcosx)dx = tan-1(tanx) dx = xdx = x22+c.

cos-1(sinx)dx Let x=sin-1y. Then dxdy=11-y2. cos-1(sinx)dx = cos-1(sinx) dxdydy = cos-1(sin(sin-1y)) 11-y2dy = cos-1y11-y2dy = -cos-1y -11-y2dy = -(cos-1y)22+c = -(cos-1(sinx))22+c. Another way: cos-1(sinx) = y sinx = cosy. So y=π2-x. So cos-1(sinx) =π2-x. So cos-1(sinx) dx=(π2-x) dx=π2x-x22+c.

2x2+x-2x-2dx = 2x(x-2)+5x-2x-2dx = 2x+5x-2x-2dx = 2x+5(x-2)+8x-2dx = 2x+5+8x-2dx = x2+5x+8ln(x-2)+c.

Definite integrals

Warning: The following is not quite correct, though it is correct most of the time. abdfdxdx =f(b)-f(a).

12x-2dx = x-1-1+c |1=x2=x = (-2-1+c)- (-1-1+c) = -12+c+1-c = 12.

04xdx = 04x12dx = 23x32+c |0=x4=x = 23432+c- (23032+c) = 2323+c-c = 23·8 = 163.

13(1t2-1t4) dt = 13(t-2-t-4)dt = t-1-1- t-3-3+c |t=1t=3 = (3-1-1-3-3-3+c)- (1-1-1-1-3-3+c) = -13+134+c+1 -13-c = 1+181-23 = 13+181 = 2881.

-30 (5y4-6y2+14)dy = (y5-2y3+14y+c) |y=-3y=0 = (0-0+0+c)- ((-3)5-2(-3)3+14(-3)+c) = c+35-2·33+ 14·3-c = 243-54+42 = 231.

BUT abdfdxdx is not always equal to f(b)-f(a).

What does abf(x)dx really mean??

abf(x)dx really is limΔx0 ( f(a)Δx+ f(a+Δx)Δx++ f(b-2Δx)Δx+ f(b-Δx)Δx ) a b x y y=f(x) Δx Think of abf(x)dx as saying Add up the areasf(x)dx fromatob where f(x)dxis the "area" of an infinitesimally small box with heightf(x)and widthdx } f(x) dx

Notes and References

These are a typed copy of Lecture 24 from a series of handwritten lecture notes for the class MATH 221 given on November 4, 2000.

page history