MATH 221

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updated: 6 September 2014

Lecture 26

Computing Areas and Volumes

(1) Carefully draw the region.
(2) Slice it up; draw a typical slice.
(3) Find the volume of a slice.
(4) Add up the volumes of the slices with an integral.
Typical slices might look like: L { { L } Area } Area } Area } Area } height distance around

Calculate the area of the region bounded by the parabolas y=x2 and y2=x. -1 1 x -1 1 y 1 x 1 y L y=x2 y2=x Slice: L dx
Area of Slice: Ldx
Add slices from x=0 to x=1. x=0x=1Ldx = x=0x=1 (yupper-ylower)dx = x=0x=1 (x-x2)dx = 23x32- x33|x=0x=1 = (23132-13)- (23032-033) = 23-13=13.

Find the area of the region bounded by y=-1, y=2, x=y3 and x=0. -1 1 x -1 1 2 y y=2 y=-1 x=y3 Type 1 slice: L1 dy Area of slice:L1dy Add slices fromy=0toy=2. Type 2 slice: L1 dy Area of slice:L2dy Add slices fromy=-1toy=0. y=0y=2 L1dy+ y=-1y=0 L2dy = y=0y=2 xdy+ y=-1y=0 (-x)dy = y=0y=2 y3dy+ y=-1y=0 -y3dy = y44|y=0y=2+ -y44|y=-1y=0 = (244-04)+ (-044-(-(-1)44)) = 22+14 = 414.

Find the volume of a sphere of radius r. - r r R x - r r y x2+y2=r2 Slice: } dy R Volume of slice:πR2dy Add slices fromy=-rto y=r Volume of sphere = y=-ry=3 πR2dy = y=-ry=r πx2dy = y=-ry=rπ (r2-y2)dy = π(r2y-y33) |y=-ry=r = π(r2·r-r33)- π(r2(-r)-(-r)33) = π23r3+π r3-πr33 = 23πr3+ 23πr3 = 43πr3.

Compute -aaa2-x2dx.

If x=asinθ, then -aa a2-x2dx = -aa a2-a2sin2θ dx = x=-ax=a a2cos2θdx = x=-ax=a acosθdx = x=-ax=a acosθdxdθ dθ = x=-ax=a acosθ acosθ dθ = x=-ax=a a2cos2θdθ = x=-ax=a 12a2 (cos2θ+cos2θ) dθ = x=-ax=a 12a2 (cos2θ+1-sin2θ)dθ = x=-ax=a 12a2 (cos2θ-sin2θ+1)dθ = x=-ax=a 12a2 (cos2θ+1)dθ = 12a2 (sin2θ2+θ) |x=-ax=a = 12a2 (sin2θ2+θ) |sinθ=-1sinθ=1 = 12a2 (sin2θ2+θ) |θ=-π2θ=π2 = 12a2 (sinπ2+π2)- 12a2(sin(-π)2-π2) = 12a2π2- 12a2(-π2) = πa24.

Compute x=-ax=aa2-x2dx. - a a x a y y=a2-x2 Slice: L dx Area of slice:Ldx Area slices fromx=-ato x=a. πa22 = Area of semicircle = x=-ax=a Ldx = x=-ax=a ydx = x=-ax=a a2-x2dx. So πa22= x=-ax=a a2-x2dx.

Find the volume of a right circular cone of height h and radius r. - r r x h y y=-hrx+h Slice: } H R dx Volume of slice:2πRHdx Add slices fromx=0to x=r x=0x=r 2πRHdx = x=0x=r 2πxydx = x=0x=r 2πx(-hrx+h)dx = x=0x=r ( -2πhrx2 +2πhx ) dx = -2πhr x33+ πhx2 |x=0x=r = ( -2πhr r33+πhr2 ) -(-0+0) = -23πr2h+π r2h = 13πr2h.

Notes and References

These are a typed copy of Lecture 26 from a series of handwritten lecture notes for the class MATH 221 given on November 8, 2000.

page history