Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
Last updated: 6 September 2014
Lecture 26
Computing Areas and Volumes
(1)
Carefully draw the region.
(2)
Slice it up; draw a typical slice.
(3)
Find the volume of a slice.
(4)
Add up the volumes of the slices with an integral.
Typical slices might look like:
Calculate the area of the region bounded by the parabolas and
Slice:
Area of Slice:
Add slices from to
Find the area of the region bounded by
and
Find the volume of a sphere of radius
Volume of sphere=∫y=-ry=3πR2dy=∫y=-ry=rπx2dy=∫y=-ry=rπ(r2-y2)dy=π(r2y-y33)|y=-ry=r=π(r2·r-r33)-π(r2(-r)-(-r)33)=π23r3+πr3-πr33=23πr3+23πr3=43πr3.
Compute ∫-aaa2-x2dx.
If x=asinθ, then
∫-aaa2-x2dx=∫-aaa2-a2sin2θdx=∫x=-ax=aa2cos2θdx=∫x=-ax=aacosθdx=∫x=-ax=aacosθdxdθdθ=∫x=-ax=aacosθacosθdθ=∫x=-ax=aa2cos2θdθ=∫x=-ax=a12a2(cos2θ+cos2θ)dθ=∫x=-ax=a12a2(cos2θ+1-sin2θ)dθ=∫x=-ax=a12a2(cos2θ-sin2θ+1)dθ=∫x=-ax=a12a2(cos2θ+1)dθ=12a2(sin2θ2+θ)|x=-ax=a=12a2(sin2θ2+θ)|sinθ=-1sinθ=1=12a2(sin2θ2+θ)|θ=-π2θ=π2=12a2(sinπ2+π2)-12a2(sin(-π)2-π2)=12a2π2-12a2(-π2)=πa24.
Compute ∫x=-ax=aa2-x2dx.-aaxayy=a2-x2Slice:LdxArea of slice:LdxArea slices fromx=-atox=a.πa22=Area of semicircle=∫x=-ax=aLdx=∫x=-ax=aydx=∫x=-ax=aa2-x2dx.
So
πa22=∫x=-ax=aa2-x2dx.
Find the volume of a right circular cone of height h and radius r.-rrxhyy=-hrx+hSlice:}HRdx⏟Volume of slice:2πRHdxAdd slices fromx=0tox=r∫x=0x=r2πRHdx=∫x=0x=r2πxydx=∫x=0x=r2πx(-hrx+h)dx=∫x=0x=r(-2πhrx2+2πhx)dx=-2πhrx33+πhx2|x=0x=r=(-2πhrr33+πhr2)-(-0+0)=-23πr2h+πr2h=13πr2h.
Notes and References
These are a typed copy of Lecture 26 from a series of handwritten lecture notes for the class MATH 221 given on November 8, 2000.